xref: /linux-6.15/include/linux/pgtable.h (revision dc84bc2a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
10 
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13 
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19 
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24 
25 /*
26  * On almost all architectures and configurations, 0 can be used as the
27  * upper ceiling to free_pgtables(): on many architectures it has the same
28  * effect as using TASK_SIZE.  However, there is one configuration which
29  * must impose a more careful limit, to avoid freeing kernel pgtables.
30  */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING	0UL
33 #endif
34 
35 /*
36  * This defines the first usable user address. Platforms
37  * can override its value with custom FIRST_USER_ADDRESS
38  * defined in their respective <asm/pgtable.h>.
39  */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS	0UL
42 #endif
43 
44 /*
45  * This defines the generic helper for accessing PMD page
46  * table page. Although platforms can still override this
47  * via their respective <asm/pgtable.h>.
48  */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52 
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
54 
55 /*
56  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57  *
58  * The pXx_index() functions return the index of the entry in the page
59  * table page which would control the given virtual address
60  *
61  * As these functions may be used by the same code for different levels of
62  * the page table folding, they are always available, regardless of
63  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64  * because in such cases PTRS_PER_PxD equals 1.
65  */
66 
67 static inline unsigned long pte_index(unsigned long address)
68 {
69 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70 }
71 
72 #ifndef pmd_index
73 static inline unsigned long pmd_index(unsigned long address)
74 {
75 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76 }
77 #define pmd_index pmd_index
78 #endif
79 
80 #ifndef pud_index
81 static inline unsigned long pud_index(unsigned long address)
82 {
83 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84 }
85 #define pud_index pud_index
86 #endif
87 
88 #ifndef pgd_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91 #endif
92 
93 #ifndef kernel_pte_init
94 static inline void kernel_pte_init(void *addr)
95 {
96 }
97 #define kernel_pte_init kernel_pte_init
98 #endif
99 
100 #ifndef pmd_init
101 static inline void pmd_init(void *addr)
102 {
103 }
104 #define pmd_init pmd_init
105 #endif
106 
107 #ifndef pud_init
108 static inline void pud_init(void *addr)
109 {
110 }
111 #define pud_init pud_init
112 #endif
113 
114 #ifndef pte_offset_kernel
115 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116 {
117 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118 }
119 #define pte_offset_kernel pte_offset_kernel
120 #endif
121 
122 #ifdef CONFIG_HIGHPTE
123 #define __pte_map(pmd, address) \
124 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125 #define pte_unmap(pte)	do {	\
126 	kunmap_local((pte));	\
127 	rcu_read_unlock();	\
128 } while (0)
129 #else
130 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131 {
132 	return pte_offset_kernel(pmd, address);
133 }
134 static inline void pte_unmap(pte_t *pte)
135 {
136 	rcu_read_unlock();
137 }
138 #endif
139 
140 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141 
142 /* Find an entry in the second-level page table.. */
143 #ifndef pmd_offset
144 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145 {
146 	return pud_pgtable(*pud) + pmd_index(address);
147 }
148 #define pmd_offset pmd_offset
149 #endif
150 
151 #ifndef pud_offset
152 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153 {
154 	return p4d_pgtable(*p4d) + pud_index(address);
155 }
156 #define pud_offset pud_offset
157 #endif
158 
159 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160 {
161 	return (pgd + pgd_index(address));
162 };
163 
164 /*
165  * a shortcut to get a pgd_t in a given mm
166  */
167 #ifndef pgd_offset
168 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
169 #endif
170 
171 /*
172  * a shortcut which implies the use of the kernel's pgd, instead
173  * of a process's
174  */
175 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
176 
177 /*
178  * In many cases it is known that a virtual address is mapped at PMD or PTE
179  * level, so instead of traversing all the page table levels, we can get a
180  * pointer to the PMD entry in user or kernel page table or translate a virtual
181  * address to the pointer in the PTE in the kernel page tables with simple
182  * helpers.
183  */
184 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185 {
186 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187 }
188 
189 static inline pmd_t *pmd_off_k(unsigned long va)
190 {
191 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192 }
193 
194 static inline pte_t *virt_to_kpte(unsigned long vaddr)
195 {
196 	pmd_t *pmd = pmd_off_k(vaddr);
197 
198 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199 }
200 
201 #ifndef pmd_young
202 static inline int pmd_young(pmd_t pmd)
203 {
204 	return 0;
205 }
206 #endif
207 
208 #ifndef pmd_dirty
209 static inline int pmd_dirty(pmd_t pmd)
210 {
211 	return 0;
212 }
213 #endif
214 
215 /*
216  * A facility to provide lazy MMU batching.  This allows PTE updates and
217  * page invalidations to be delayed until a call to leave lazy MMU mode
218  * is issued.  Some architectures may benefit from doing this, and it is
219  * beneficial for both shadow and direct mode hypervisors, which may batch
220  * the PTE updates which happen during this window.  Note that using this
221  * interface requires that read hazards be removed from the code.  A read
222  * hazard could result in the direct mode hypervisor case, since the actual
223  * write to the page tables may not yet have taken place, so reads though
224  * a raw PTE pointer after it has been modified are not guaranteed to be
225  * up to date.  This mode can only be entered and left under the protection of
226  * the page table locks for all page tables which may be modified.  In the UP
227  * case, this is required so that preemption is disabled, and in the SMP case,
228  * it must synchronize the delayed page table writes properly on other CPUs.
229  */
230 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
231 #define arch_enter_lazy_mmu_mode()	do {} while (0)
232 #define arch_leave_lazy_mmu_mode()	do {} while (0)
233 #define arch_flush_lazy_mmu_mode()	do {} while (0)
234 #endif
235 
236 #ifndef pte_batch_hint
237 /**
238  * pte_batch_hint - Number of pages that can be added to batch without scanning.
239  * @ptep: Page table pointer for the entry.
240  * @pte: Page table entry.
241  *
242  * Some architectures know that a set of contiguous ptes all map the same
243  * contiguous memory with the same permissions. In this case, it can provide a
244  * hint to aid pte batching without the core code needing to scan every pte.
245  *
246  * An architecture implementation may ignore the PTE accessed state. Further,
247  * the dirty state must apply atomically to all the PTEs described by the hint.
248  *
249  * May be overridden by the architecture, else pte_batch_hint is always 1.
250  */
251 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
252 {
253 	return 1;
254 }
255 #endif
256 
257 #ifndef pte_advance_pfn
258 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
259 {
260 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
261 }
262 #endif
263 
264 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
265 
266 #ifndef set_ptes
267 /**
268  * set_ptes - Map consecutive pages to a contiguous range of addresses.
269  * @mm: Address space to map the pages into.
270  * @addr: Address to map the first page at.
271  * @ptep: Page table pointer for the first entry.
272  * @pte: Page table entry for the first page.
273  * @nr: Number of pages to map.
274  *
275  * When nr==1, initial state of pte may be present or not present, and new state
276  * may be present or not present. When nr>1, initial state of all ptes must be
277  * not present, and new state must be present.
278  *
279  * May be overridden by the architecture, or the architecture can define
280  * set_pte() and PFN_PTE_SHIFT.
281  *
282  * Context: The caller holds the page table lock.  The pages all belong
283  * to the same folio.  The PTEs are all in the same PMD.
284  */
285 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
286 		pte_t *ptep, pte_t pte, unsigned int nr)
287 {
288 	page_table_check_ptes_set(mm, ptep, pte, nr);
289 
290 	arch_enter_lazy_mmu_mode();
291 	for (;;) {
292 		set_pte(ptep, pte);
293 		if (--nr == 0)
294 			break;
295 		ptep++;
296 		pte = pte_next_pfn(pte);
297 	}
298 	arch_leave_lazy_mmu_mode();
299 }
300 #endif
301 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
302 
303 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
304 extern int ptep_set_access_flags(struct vm_area_struct *vma,
305 				 unsigned long address, pte_t *ptep,
306 				 pte_t entry, int dirty);
307 #endif
308 
309 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
312 				 unsigned long address, pmd_t *pmdp,
313 				 pmd_t entry, int dirty);
314 extern int pudp_set_access_flags(struct vm_area_struct *vma,
315 				 unsigned long address, pud_t *pudp,
316 				 pud_t entry, int dirty);
317 #else
318 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
319 					unsigned long address, pmd_t *pmdp,
320 					pmd_t entry, int dirty)
321 {
322 	BUILD_BUG();
323 	return 0;
324 }
325 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
326 					unsigned long address, pud_t *pudp,
327 					pud_t entry, int dirty)
328 {
329 	BUILD_BUG();
330 	return 0;
331 }
332 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
333 #endif
334 
335 #ifndef ptep_get
336 static inline pte_t ptep_get(pte_t *ptep)
337 {
338 	return READ_ONCE(*ptep);
339 }
340 #endif
341 
342 #ifndef pmdp_get
343 static inline pmd_t pmdp_get(pmd_t *pmdp)
344 {
345 	return READ_ONCE(*pmdp);
346 }
347 #endif
348 
349 #ifndef pudp_get
350 static inline pud_t pudp_get(pud_t *pudp)
351 {
352 	return READ_ONCE(*pudp);
353 }
354 #endif
355 
356 #ifndef p4dp_get
357 static inline p4d_t p4dp_get(p4d_t *p4dp)
358 {
359 	return READ_ONCE(*p4dp);
360 }
361 #endif
362 
363 #ifndef pgdp_get
364 static inline pgd_t pgdp_get(pgd_t *pgdp)
365 {
366 	return READ_ONCE(*pgdp);
367 }
368 #endif
369 
370 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
371 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 					    unsigned long address,
373 					    pte_t *ptep)
374 {
375 	pte_t pte = ptep_get(ptep);
376 	int r = 1;
377 	if (!pte_young(pte))
378 		r = 0;
379 	else
380 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
381 	return r;
382 }
383 #endif
384 
385 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
386 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
387 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 					    unsigned long address,
389 					    pmd_t *pmdp)
390 {
391 	pmd_t pmd = *pmdp;
392 	int r = 1;
393 	if (!pmd_young(pmd))
394 		r = 0;
395 	else
396 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
397 	return r;
398 }
399 #else
400 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
401 					    unsigned long address,
402 					    pmd_t *pmdp)
403 {
404 	BUILD_BUG();
405 	return 0;
406 }
407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
408 #endif
409 
410 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
411 int ptep_clear_flush_young(struct vm_area_struct *vma,
412 			   unsigned long address, pte_t *ptep);
413 #endif
414 
415 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
418 				  unsigned long address, pmd_t *pmdp);
419 #else
420 /*
421  * Despite relevant to THP only, this API is called from generic rmap code
422  * under PageTransHuge(), hence needs a dummy implementation for !THP
423  */
424 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
425 					 unsigned long address, pmd_t *pmdp)
426 {
427 	BUILD_BUG();
428 	return 0;
429 }
430 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
431 #endif
432 
433 #ifndef arch_has_hw_nonleaf_pmd_young
434 /*
435  * Return whether the accessed bit in non-leaf PMD entries is supported on the
436  * local CPU.
437  */
438 static inline bool arch_has_hw_nonleaf_pmd_young(void)
439 {
440 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
441 }
442 #endif
443 
444 #ifndef arch_has_hw_pte_young
445 /*
446  * Return whether the accessed bit is supported on the local CPU.
447  *
448  * This stub assumes accessing through an old PTE triggers a page fault.
449  * Architectures that automatically set the access bit should overwrite it.
450  */
451 static inline bool arch_has_hw_pte_young(void)
452 {
453 	return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
454 }
455 #endif
456 
457 #ifndef arch_check_zapped_pte
458 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
459 					 pte_t pte)
460 {
461 }
462 #endif
463 
464 #ifndef arch_check_zapped_pmd
465 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
466 					 pmd_t pmd)
467 {
468 }
469 #endif
470 
471 #ifndef arch_check_zapped_pud
472 static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
473 {
474 }
475 #endif
476 
477 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
478 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 				       unsigned long address,
480 				       pte_t *ptep)
481 {
482 	pte_t pte = ptep_get(ptep);
483 	pte_clear(mm, address, ptep);
484 	page_table_check_pte_clear(mm, pte);
485 	return pte;
486 }
487 #endif
488 
489 #ifndef clear_young_dirty_ptes
490 /**
491  * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
492  *		same folio as old/clean.
493  * @mm: Address space the pages are mapped into.
494  * @addr: Address the first page is mapped at.
495  * @ptep: Page table pointer for the first entry.
496  * @nr: Number of entries to mark old/clean.
497  * @flags: Flags to modify the PTE batch semantics.
498  *
499  * May be overridden by the architecture; otherwise, implemented by
500  * get_and_clear/modify/set for each pte in the range.
501  *
502  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
503  * some PTEs might be write-protected.
504  *
505  * Context: The caller holds the page table lock.  The PTEs map consecutive
506  * pages that belong to the same folio.  The PTEs are all in the same PMD.
507  */
508 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
509 					  unsigned long addr, pte_t *ptep,
510 					  unsigned int nr, cydp_t flags)
511 {
512 	pte_t pte;
513 
514 	for (;;) {
515 		if (flags == CYDP_CLEAR_YOUNG)
516 			ptep_test_and_clear_young(vma, addr, ptep);
517 		else {
518 			pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
519 			if (flags & CYDP_CLEAR_YOUNG)
520 				pte = pte_mkold(pte);
521 			if (flags & CYDP_CLEAR_DIRTY)
522 				pte = pte_mkclean(pte);
523 			set_pte_at(vma->vm_mm, addr, ptep, pte);
524 		}
525 		if (--nr == 0)
526 			break;
527 		ptep++;
528 		addr += PAGE_SIZE;
529 	}
530 }
531 #endif
532 
533 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
534 			      pte_t *ptep)
535 {
536 	pte_t pte = ptep_get(ptep);
537 
538 	pte_clear(mm, addr, ptep);
539 	/*
540 	 * No need for ptep_get_and_clear(): page table check doesn't care about
541 	 * any bits that could have been set by HW concurrently.
542 	 */
543 	page_table_check_pte_clear(mm, pte);
544 }
545 
546 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
547 /*
548  * For walking the pagetables without holding any locks.  Some architectures
549  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
550  * instructions.  We are guaranteed that a PTE will only either go from not
551  * present to present, or present to not present -- it will not switch to a
552  * completely different present page without a TLB flush inbetween; which we
553  * are blocking by holding interrupts off.
554  *
555  * Setting ptes from not present to present goes:
556  *
557  *   ptep->pte_high = h;
558  *   smp_wmb();
559  *   ptep->pte_low = l;
560  *
561  * And present to not present goes:
562  *
563  *   ptep->pte_low = 0;
564  *   smp_wmb();
565  *   ptep->pte_high = 0;
566  *
567  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
568  * We load pte_high *after* loading pte_low, which ensures we don't see an older
569  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
570  * picked up a changed pte high. We might have gotten rubbish values from
571  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
572  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
573  * operates on present ptes we're safe.
574  */
575 static inline pte_t ptep_get_lockless(pte_t *ptep)
576 {
577 	pte_t pte;
578 
579 	do {
580 		pte.pte_low = ptep->pte_low;
581 		smp_rmb();
582 		pte.pte_high = ptep->pte_high;
583 		smp_rmb();
584 	} while (unlikely(pte.pte_low != ptep->pte_low));
585 
586 	return pte;
587 }
588 #define ptep_get_lockless ptep_get_lockless
589 
590 #if CONFIG_PGTABLE_LEVELS > 2
591 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
592 {
593 	pmd_t pmd;
594 
595 	do {
596 		pmd.pmd_low = pmdp->pmd_low;
597 		smp_rmb();
598 		pmd.pmd_high = pmdp->pmd_high;
599 		smp_rmb();
600 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
601 
602 	return pmd;
603 }
604 #define pmdp_get_lockless pmdp_get_lockless
605 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
606 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
607 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
608 
609 /*
610  * We require that the PTE can be read atomically.
611  */
612 #ifndef ptep_get_lockless
613 static inline pte_t ptep_get_lockless(pte_t *ptep)
614 {
615 	return ptep_get(ptep);
616 }
617 #endif
618 
619 #ifndef pmdp_get_lockless
620 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
621 {
622 	return pmdp_get(pmdp);
623 }
624 static inline void pmdp_get_lockless_sync(void)
625 {
626 }
627 #endif
628 
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
631 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
632 					    unsigned long address,
633 					    pmd_t *pmdp)
634 {
635 	pmd_t pmd = *pmdp;
636 
637 	pmd_clear(pmdp);
638 	page_table_check_pmd_clear(mm, pmd);
639 
640 	return pmd;
641 }
642 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
643 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
644 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
645 					    unsigned long address,
646 					    pud_t *pudp)
647 {
648 	pud_t pud = *pudp;
649 
650 	pud_clear(pudp);
651 	page_table_check_pud_clear(mm, pud);
652 
653 	return pud;
654 }
655 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
656 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
657 
658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
659 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
660 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
661 					    unsigned long address, pmd_t *pmdp,
662 					    int full)
663 {
664 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
665 }
666 #endif
667 
668 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
669 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
670 					    unsigned long address, pud_t *pudp,
671 					    int full)
672 {
673 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
674 }
675 #endif
676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
677 
678 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
679 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
680 					    unsigned long address, pte_t *ptep,
681 					    int full)
682 {
683 	return ptep_get_and_clear(mm, address, ptep);
684 }
685 #endif
686 
687 #ifndef get_and_clear_full_ptes
688 /**
689  * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
690  *			     the same folio, collecting dirty/accessed bits.
691  * @mm: Address space the pages are mapped into.
692  * @addr: Address the first page is mapped at.
693  * @ptep: Page table pointer for the first entry.
694  * @nr: Number of entries to clear.
695  * @full: Whether we are clearing a full mm.
696  *
697  * May be overridden by the architecture; otherwise, implemented as a simple
698  * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
699  * returned PTE.
700  *
701  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
702  * some PTEs might be write-protected.
703  *
704  * Context: The caller holds the page table lock.  The PTEs map consecutive
705  * pages that belong to the same folio.  The PTEs are all in the same PMD.
706  */
707 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
708 		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
709 {
710 	pte_t pte, tmp_pte;
711 
712 	pte = ptep_get_and_clear_full(mm, addr, ptep, full);
713 	while (--nr) {
714 		ptep++;
715 		addr += PAGE_SIZE;
716 		tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
717 		if (pte_dirty(tmp_pte))
718 			pte = pte_mkdirty(pte);
719 		if (pte_young(tmp_pte))
720 			pte = pte_mkyoung(pte);
721 	}
722 	return pte;
723 }
724 #endif
725 
726 #ifndef clear_full_ptes
727 /**
728  * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
729  *		     folio.
730  * @mm: Address space the pages are mapped into.
731  * @addr: Address the first page is mapped at.
732  * @ptep: Page table pointer for the first entry.
733  * @nr: Number of entries to clear.
734  * @full: Whether we are clearing a full mm.
735  *
736  * May be overridden by the architecture; otherwise, implemented as a simple
737  * loop over ptep_get_and_clear_full().
738  *
739  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
740  * some PTEs might be write-protected.
741  *
742  * Context: The caller holds the page table lock.  The PTEs map consecutive
743  * pages that belong to the same folio.  The PTEs are all in the same PMD.
744  */
745 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
746 		pte_t *ptep, unsigned int nr, int full)
747 {
748 	for (;;) {
749 		ptep_get_and_clear_full(mm, addr, ptep, full);
750 		if (--nr == 0)
751 			break;
752 		ptep++;
753 		addr += PAGE_SIZE;
754 	}
755 }
756 #endif
757 
758 /*
759  * If two threads concurrently fault at the same page, the thread that
760  * won the race updates the PTE and its local TLB/Cache. The other thread
761  * gives up, simply does nothing, and continues; on architectures where
762  * software can update TLB,  local TLB can be updated here to avoid next page
763  * fault. This function updates TLB only, do nothing with cache or others.
764  * It is the difference with function update_mmu_cache.
765  */
766 #ifndef update_mmu_tlb_range
767 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
768 				unsigned long address, pte_t *ptep, unsigned int nr)
769 {
770 }
771 #endif
772 
773 static inline void update_mmu_tlb(struct vm_area_struct *vma,
774 				unsigned long address, pte_t *ptep)
775 {
776 	update_mmu_tlb_range(vma, address, ptep, 1);
777 }
778 
779 /*
780  * Some architectures may be able to avoid expensive synchronization
781  * primitives when modifications are made to PTE's which are already
782  * not present, or in the process of an address space destruction.
783  */
784 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
785 static inline void pte_clear_not_present_full(struct mm_struct *mm,
786 					      unsigned long address,
787 					      pte_t *ptep,
788 					      int full)
789 {
790 	pte_clear(mm, address, ptep);
791 }
792 #endif
793 
794 #ifndef clear_not_present_full_ptes
795 /**
796  * clear_not_present_full_ptes - Clear multiple not present PTEs which are
797  *				 consecutive in the pgtable.
798  * @mm: Address space the ptes represent.
799  * @addr: Address of the first pte.
800  * @ptep: Page table pointer for the first entry.
801  * @nr: Number of entries to clear.
802  * @full: Whether we are clearing a full mm.
803  *
804  * May be overridden by the architecture; otherwise, implemented as a simple
805  * loop over pte_clear_not_present_full().
806  *
807  * Context: The caller holds the page table lock.  The PTEs are all not present.
808  * The PTEs are all in the same PMD.
809  */
810 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
811 		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
812 {
813 	for (;;) {
814 		pte_clear_not_present_full(mm, addr, ptep, full);
815 		if (--nr == 0)
816 			break;
817 		ptep++;
818 		addr += PAGE_SIZE;
819 	}
820 }
821 #endif
822 
823 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
824 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
825 			      unsigned long address,
826 			      pte_t *ptep);
827 #endif
828 
829 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
830 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
831 			      unsigned long address,
832 			      pmd_t *pmdp);
833 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
834 			      unsigned long address,
835 			      pud_t *pudp);
836 #endif
837 
838 #ifndef pte_mkwrite
839 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
840 {
841 	return pte_mkwrite_novma(pte);
842 }
843 #endif
844 
845 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
846 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
847 {
848 	return pmd_mkwrite_novma(pmd);
849 }
850 #endif
851 
852 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
853 struct mm_struct;
854 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
855 {
856 	pte_t old_pte = ptep_get(ptep);
857 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
858 }
859 #endif
860 
861 #ifndef wrprotect_ptes
862 /**
863  * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
864  *		    folio.
865  * @mm: Address space the pages are mapped into.
866  * @addr: Address the first page is mapped at.
867  * @ptep: Page table pointer for the first entry.
868  * @nr: Number of entries to write-protect.
869  *
870  * May be overridden by the architecture; otherwise, implemented as a simple
871  * loop over ptep_set_wrprotect().
872  *
873  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
874  * some PTEs might be write-protected.
875  *
876  * Context: The caller holds the page table lock.  The PTEs map consecutive
877  * pages that belong to the same folio.  The PTEs are all in the same PMD.
878  */
879 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
880 		pte_t *ptep, unsigned int nr)
881 {
882 	for (;;) {
883 		ptep_set_wrprotect(mm, addr, ptep);
884 		if (--nr == 0)
885 			break;
886 		ptep++;
887 		addr += PAGE_SIZE;
888 	}
889 }
890 #endif
891 
892 /*
893  * On some architectures hardware does not set page access bit when accessing
894  * memory page, it is responsibility of software setting this bit. It brings
895  * out extra page fault penalty to track page access bit. For optimization page
896  * access bit can be set during all page fault flow on these arches.
897  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
898  * where software maintains page access bit.
899  */
900 #ifndef pte_sw_mkyoung
901 static inline pte_t pte_sw_mkyoung(pte_t pte)
902 {
903 	return pte;
904 }
905 #define pte_sw_mkyoung	pte_sw_mkyoung
906 #endif
907 
908 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
910 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
911 				      unsigned long address, pmd_t *pmdp)
912 {
913 	pmd_t old_pmd = *pmdp;
914 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
915 }
916 #else
917 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
918 				      unsigned long address, pmd_t *pmdp)
919 {
920 	BUILD_BUG();
921 }
922 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
923 #endif
924 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
925 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 static inline void pudp_set_wrprotect(struct mm_struct *mm,
928 				      unsigned long address, pud_t *pudp)
929 {
930 	pud_t old_pud = *pudp;
931 
932 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
933 }
934 #else
935 static inline void pudp_set_wrprotect(struct mm_struct *mm,
936 				      unsigned long address, pud_t *pudp)
937 {
938 	BUILD_BUG();
939 }
940 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
941 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
942 #endif
943 
944 #ifndef pmdp_collapse_flush
945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
946 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
947 				 unsigned long address, pmd_t *pmdp);
948 #else
949 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
950 					unsigned long address,
951 					pmd_t *pmdp)
952 {
953 	BUILD_BUG();
954 	return *pmdp;
955 }
956 #define pmdp_collapse_flush pmdp_collapse_flush
957 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
958 #endif
959 
960 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
961 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
962 				       pgtable_t pgtable);
963 #endif
964 
965 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
966 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
967 #endif
968 
969 #ifndef arch_needs_pgtable_deposit
970 #define arch_needs_pgtable_deposit() (false)
971 #endif
972 
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 /*
975  * This is an implementation of pmdp_establish() that is only suitable for an
976  * architecture that doesn't have hardware dirty/accessed bits. In this case we
977  * can't race with CPU which sets these bits and non-atomic approach is fine.
978  */
979 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
980 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
981 {
982 	pmd_t old_pmd = *pmdp;
983 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
984 	return old_pmd;
985 }
986 #endif
987 
988 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
989 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
990 			    pmd_t *pmdp);
991 #endif
992 
993 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
994 
995 /*
996  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
997  * hugepage mapping in the page tables. This function is similar to
998  * pmdp_invalidate(), but should only be used if the access and dirty bits would
999  * not be cleared by the software in the new PMD value. The function ensures
1000  * that hardware changes of the access and dirty bits updates would not be lost.
1001  *
1002  * Doing so can allow in certain architectures to avoid a TLB flush in most
1003  * cases. Yet, another TLB flush might be necessary later if the PMD update
1004  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1005  * even when a TLB flush is needed because of the update, the caller may be able
1006  * to batch these TLB flushing operations, so fewer TLB flush operations are
1007  * needed.
1008  */
1009 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1010 				unsigned long address, pmd_t *pmdp);
1011 #endif
1012 
1013 #ifndef __HAVE_ARCH_PTE_SAME
1014 static inline int pte_same(pte_t pte_a, pte_t pte_b)
1015 {
1016 	return pte_val(pte_a) == pte_val(pte_b);
1017 }
1018 #endif
1019 
1020 #ifndef __HAVE_ARCH_PTE_UNUSED
1021 /*
1022  * Some architectures provide facilities to virtualization guests
1023  * so that they can flag allocated pages as unused. This allows the
1024  * host to transparently reclaim unused pages. This function returns
1025  * whether the pte's page is unused.
1026  */
1027 static inline int pte_unused(pte_t pte)
1028 {
1029 	return 0;
1030 }
1031 #endif
1032 
1033 #ifndef pte_access_permitted
1034 #define pte_access_permitted(pte, write) \
1035 	(pte_present(pte) && (!(write) || pte_write(pte)))
1036 #endif
1037 
1038 #ifndef pmd_access_permitted
1039 #define pmd_access_permitted(pmd, write) \
1040 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1041 #endif
1042 
1043 #ifndef pud_access_permitted
1044 #define pud_access_permitted(pud, write) \
1045 	(pud_present(pud) && (!(write) || pud_write(pud)))
1046 #endif
1047 
1048 #ifndef p4d_access_permitted
1049 #define p4d_access_permitted(p4d, write) \
1050 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1051 #endif
1052 
1053 #ifndef pgd_access_permitted
1054 #define pgd_access_permitted(pgd, write) \
1055 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1056 #endif
1057 
1058 #ifndef __HAVE_ARCH_PMD_SAME
1059 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1060 {
1061 	return pmd_val(pmd_a) == pmd_val(pmd_b);
1062 }
1063 #endif
1064 
1065 #ifndef pud_same
1066 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1067 {
1068 	return pud_val(pud_a) == pud_val(pud_b);
1069 }
1070 #define pud_same pud_same
1071 #endif
1072 
1073 #ifndef __HAVE_ARCH_P4D_SAME
1074 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1075 {
1076 	return p4d_val(p4d_a) == p4d_val(p4d_b);
1077 }
1078 #endif
1079 
1080 #ifndef __HAVE_ARCH_PGD_SAME
1081 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1082 {
1083 	return pgd_val(pgd_a) == pgd_val(pgd_b);
1084 }
1085 #endif
1086 
1087 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1088 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1089 				     struct vm_area_struct *vma,
1090 				     unsigned long addr,
1091 				     pte_t pte, pte_t oldpte,
1092 				     int nr)
1093 {
1094 
1095 }
1096 #else
1097 /*
1098  * Some architectures support metadata associated with a page. When a
1099  * page is being swapped out, this metadata must be saved so it can be
1100  * restored when the page is swapped back in. SPARC M7 and newer
1101  * processors support an ADI (Application Data Integrity) tag for the
1102  * page as metadata for the page. arch_do_swap_page() can restore this
1103  * metadata when a page is swapped back in.
1104  */
1105 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1106 					struct vm_area_struct *vma,
1107 					unsigned long addr,
1108 					pte_t pte, pte_t oldpte,
1109 					int nr)
1110 {
1111 	for (int i = 0; i < nr; i++) {
1112 		arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1113 				pte_advance_pfn(pte, i),
1114 				pte_advance_pfn(oldpte, i));
1115 	}
1116 }
1117 #endif
1118 
1119 #ifndef __HAVE_ARCH_UNMAP_ONE
1120 /*
1121  * Some architectures support metadata associated with a page. When a
1122  * page is being swapped out, this metadata must be saved so it can be
1123  * restored when the page is swapped back in. SPARC M7 and newer
1124  * processors support an ADI (Application Data Integrity) tag for the
1125  * page as metadata for the page. arch_unmap_one() can save this
1126  * metadata on a swap-out of a page.
1127  */
1128 static inline int arch_unmap_one(struct mm_struct *mm,
1129 				  struct vm_area_struct *vma,
1130 				  unsigned long addr,
1131 				  pte_t orig_pte)
1132 {
1133 	return 0;
1134 }
1135 #endif
1136 
1137 /*
1138  * Allow architectures to preserve additional metadata associated with
1139  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1140  * prototypes must be defined in the arch-specific asm/pgtable.h file.
1141  */
1142 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1143 static inline int arch_prepare_to_swap(struct folio *folio)
1144 {
1145 	return 0;
1146 }
1147 #endif
1148 
1149 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1150 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1151 {
1152 }
1153 
1154 static inline void arch_swap_invalidate_area(int type)
1155 {
1156 }
1157 #endif
1158 
1159 #ifndef __HAVE_ARCH_SWAP_RESTORE
1160 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1161 {
1162 }
1163 #endif
1164 
1165 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1166 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
1167 #endif
1168 
1169 #ifndef __HAVE_ARCH_MOVE_PTE
1170 #define move_pte(pte, old_addr, new_addr)	(pte)
1171 #endif
1172 
1173 #ifndef pte_accessible
1174 # define pte_accessible(mm, pte)	((void)(pte), 1)
1175 #endif
1176 
1177 #ifndef flush_tlb_fix_spurious_fault
1178 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1179 #endif
1180 
1181 /*
1182  * When walking page tables, get the address of the next boundary,
1183  * or the end address of the range if that comes earlier.  Although no
1184  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1185  */
1186 
1187 #define pgd_addr_end(addr, end)						\
1188 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
1189 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1190 })
1191 
1192 #ifndef p4d_addr_end
1193 #define p4d_addr_end(addr, end)						\
1194 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
1195 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1196 })
1197 #endif
1198 
1199 #ifndef pud_addr_end
1200 #define pud_addr_end(addr, end)						\
1201 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
1202 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1203 })
1204 #endif
1205 
1206 #ifndef pmd_addr_end
1207 #define pmd_addr_end(addr, end)						\
1208 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
1209 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1210 })
1211 #endif
1212 
1213 /*
1214  * When walking page tables, we usually want to skip any p?d_none entries;
1215  * and any p?d_bad entries - reporting the error before resetting to none.
1216  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1217  */
1218 void pgd_clear_bad(pgd_t *);
1219 
1220 #ifndef __PAGETABLE_P4D_FOLDED
1221 void p4d_clear_bad(p4d_t *);
1222 #else
1223 #define p4d_clear_bad(p4d)        do { } while (0)
1224 #endif
1225 
1226 #ifndef __PAGETABLE_PUD_FOLDED
1227 void pud_clear_bad(pud_t *);
1228 #else
1229 #define pud_clear_bad(p4d)        do { } while (0)
1230 #endif
1231 
1232 void pmd_clear_bad(pmd_t *);
1233 
1234 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1235 {
1236 	if (pgd_none(*pgd))
1237 		return 1;
1238 	if (unlikely(pgd_bad(*pgd))) {
1239 		pgd_clear_bad(pgd);
1240 		return 1;
1241 	}
1242 	return 0;
1243 }
1244 
1245 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1246 {
1247 	if (p4d_none(*p4d))
1248 		return 1;
1249 	if (unlikely(p4d_bad(*p4d))) {
1250 		p4d_clear_bad(p4d);
1251 		return 1;
1252 	}
1253 	return 0;
1254 }
1255 
1256 static inline int pud_none_or_clear_bad(pud_t *pud)
1257 {
1258 	if (pud_none(*pud))
1259 		return 1;
1260 	if (unlikely(pud_bad(*pud))) {
1261 		pud_clear_bad(pud);
1262 		return 1;
1263 	}
1264 	return 0;
1265 }
1266 
1267 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1268 {
1269 	if (pmd_none(*pmd))
1270 		return 1;
1271 	if (unlikely(pmd_bad(*pmd))) {
1272 		pmd_clear_bad(pmd);
1273 		return 1;
1274 	}
1275 	return 0;
1276 }
1277 
1278 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1279 					     unsigned long addr,
1280 					     pte_t *ptep)
1281 {
1282 	/*
1283 	 * Get the current pte state, but zero it out to make it
1284 	 * non-present, preventing the hardware from asynchronously
1285 	 * updating it.
1286 	 */
1287 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1288 }
1289 
1290 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1291 					     unsigned long addr,
1292 					     pte_t *ptep, pte_t pte)
1293 {
1294 	/*
1295 	 * The pte is non-present, so there's no hardware state to
1296 	 * preserve.
1297 	 */
1298 	set_pte_at(vma->vm_mm, addr, ptep, pte);
1299 }
1300 
1301 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1302 /*
1303  * Start a pte protection read-modify-write transaction, which
1304  * protects against asynchronous hardware modifications to the pte.
1305  * The intention is not to prevent the hardware from making pte
1306  * updates, but to prevent any updates it may make from being lost.
1307  *
1308  * This does not protect against other software modifications of the
1309  * pte; the appropriate pte lock must be held over the transaction.
1310  *
1311  * Note that this interface is intended to be batchable, meaning that
1312  * ptep_modify_prot_commit may not actually update the pte, but merely
1313  * queue the update to be done at some later time.  The update must be
1314  * actually committed before the pte lock is released, however.
1315  */
1316 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1317 					   unsigned long addr,
1318 					   pte_t *ptep)
1319 {
1320 	return __ptep_modify_prot_start(vma, addr, ptep);
1321 }
1322 
1323 /*
1324  * Commit an update to a pte, leaving any hardware-controlled bits in
1325  * the PTE unmodified.
1326  */
1327 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1328 					   unsigned long addr,
1329 					   pte_t *ptep, pte_t old_pte, pte_t pte)
1330 {
1331 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1332 }
1333 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1334 #endif /* CONFIG_MMU */
1335 
1336 /*
1337  * No-op macros that just return the current protection value. Defined here
1338  * because these macros can be used even if CONFIG_MMU is not defined.
1339  */
1340 
1341 #ifndef pgprot_nx
1342 #define pgprot_nx(prot)	(prot)
1343 #endif
1344 
1345 #ifndef pgprot_noncached
1346 #define pgprot_noncached(prot)	(prot)
1347 #endif
1348 
1349 #ifndef pgprot_writecombine
1350 #define pgprot_writecombine pgprot_noncached
1351 #endif
1352 
1353 #ifndef pgprot_writethrough
1354 #define pgprot_writethrough pgprot_noncached
1355 #endif
1356 
1357 #ifndef pgprot_device
1358 #define pgprot_device pgprot_noncached
1359 #endif
1360 
1361 #ifndef pgprot_mhp
1362 #define pgprot_mhp(prot)	(prot)
1363 #endif
1364 
1365 #ifdef CONFIG_MMU
1366 #ifndef pgprot_modify
1367 #define pgprot_modify pgprot_modify
1368 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1369 {
1370 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1371 		newprot = pgprot_noncached(newprot);
1372 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1373 		newprot = pgprot_writecombine(newprot);
1374 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1375 		newprot = pgprot_device(newprot);
1376 	return newprot;
1377 }
1378 #endif
1379 #endif /* CONFIG_MMU */
1380 
1381 #ifndef pgprot_encrypted
1382 #define pgprot_encrypted(prot)	(prot)
1383 #endif
1384 
1385 #ifndef pgprot_decrypted
1386 #define pgprot_decrypted(prot)	(prot)
1387 #endif
1388 
1389 /*
1390  * A facility to provide batching of the reload of page tables and
1391  * other process state with the actual context switch code for
1392  * paravirtualized guests.  By convention, only one of the batched
1393  * update (lazy) modes (CPU, MMU) should be active at any given time,
1394  * entry should never be nested, and entry and exits should always be
1395  * paired.  This is for sanity of maintaining and reasoning about the
1396  * kernel code.  In this case, the exit (end of the context switch) is
1397  * in architecture-specific code, and so doesn't need a generic
1398  * definition.
1399  */
1400 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1401 #define arch_start_context_switch(prev)	do {} while (0)
1402 #endif
1403 
1404 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1405 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1406 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1407 {
1408 	return pmd;
1409 }
1410 
1411 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1412 {
1413 	return 0;
1414 }
1415 
1416 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1417 {
1418 	return pmd;
1419 }
1420 #endif
1421 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1422 static inline int pte_soft_dirty(pte_t pte)
1423 {
1424 	return 0;
1425 }
1426 
1427 static inline int pmd_soft_dirty(pmd_t pmd)
1428 {
1429 	return 0;
1430 }
1431 
1432 static inline pte_t pte_mksoft_dirty(pte_t pte)
1433 {
1434 	return pte;
1435 }
1436 
1437 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1438 {
1439 	return pmd;
1440 }
1441 
1442 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1443 {
1444 	return pte;
1445 }
1446 
1447 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1448 {
1449 	return pmd;
1450 }
1451 
1452 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1453 {
1454 	return pte;
1455 }
1456 
1457 static inline int pte_swp_soft_dirty(pte_t pte)
1458 {
1459 	return 0;
1460 }
1461 
1462 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1463 {
1464 	return pte;
1465 }
1466 
1467 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1468 {
1469 	return pmd;
1470 }
1471 
1472 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1473 {
1474 	return 0;
1475 }
1476 
1477 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1478 {
1479 	return pmd;
1480 }
1481 #endif
1482 
1483 #ifndef __HAVE_PFNMAP_TRACKING
1484 /*
1485  * Interfaces that can be used by architecture code to keep track of
1486  * memory type of pfn mappings specified by the remap_pfn_range,
1487  * vmf_insert_pfn.
1488  */
1489 
1490 /*
1491  * track_pfn_remap is called when a _new_ pfn mapping is being established
1492  * by remap_pfn_range() for physical range indicated by pfn and size.
1493  */
1494 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1495 				  unsigned long pfn, unsigned long addr,
1496 				  unsigned long size)
1497 {
1498 	return 0;
1499 }
1500 
1501 /*
1502  * track_pfn_insert is called when a _new_ single pfn is established
1503  * by vmf_insert_pfn().
1504  */
1505 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1506 				    pfn_t pfn)
1507 {
1508 }
1509 
1510 /*
1511  * track_pfn_copy is called when a VM_PFNMAP VMA is about to get the page
1512  * tables copied during copy_page_range(). On success, stores the pfn to be
1513  * passed to untrack_pfn_copy().
1514  */
1515 static inline int track_pfn_copy(struct vm_area_struct *dst_vma,
1516 		struct vm_area_struct *src_vma, unsigned long *pfn)
1517 {
1518 	return 0;
1519 }
1520 
1521 /*
1522  * untrack_pfn_copy is called when a VM_PFNMAP VMA failed to copy during
1523  * copy_page_range(), but after track_pfn_copy() was already called.
1524  */
1525 static inline void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1526 		unsigned long pfn)
1527 {
1528 }
1529 
1530 /*
1531  * untrack_pfn is called while unmapping a pfnmap for a region.
1532  * untrack can be called for a specific region indicated by pfn and size or
1533  * can be for the entire vma (in which case pfn, size are zero).
1534  */
1535 static inline void untrack_pfn(struct vm_area_struct *vma,
1536 			       unsigned long pfn, unsigned long size,
1537 			       bool mm_wr_locked)
1538 {
1539 }
1540 
1541 /*
1542  * untrack_pfn_clear is called in the following cases on a VM_PFNMAP VMA:
1543  *
1544  * 1) During mremap() on the src VMA after the page tables were moved.
1545  * 2) During fork() on the dst VMA, immediately after duplicating the src VMA.
1546  */
1547 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1548 {
1549 }
1550 #else
1551 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1552 			   unsigned long pfn, unsigned long addr,
1553 			   unsigned long size);
1554 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1555 			     pfn_t pfn);
1556 extern int track_pfn_copy(struct vm_area_struct *dst_vma,
1557 		struct vm_area_struct *src_vma, unsigned long *pfn);
1558 extern void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1559 		unsigned long pfn);
1560 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1561 			unsigned long size, bool mm_wr_locked);
1562 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1563 #endif
1564 
1565 #ifdef CONFIG_MMU
1566 #ifdef __HAVE_COLOR_ZERO_PAGE
1567 static inline int is_zero_pfn(unsigned long pfn)
1568 {
1569 	extern unsigned long zero_pfn;
1570 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1571 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1572 }
1573 
1574 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1575 
1576 #else
1577 static inline int is_zero_pfn(unsigned long pfn)
1578 {
1579 	extern unsigned long zero_pfn;
1580 	return pfn == zero_pfn;
1581 }
1582 
1583 static inline unsigned long my_zero_pfn(unsigned long addr)
1584 {
1585 	extern unsigned long zero_pfn;
1586 	return zero_pfn;
1587 }
1588 #endif
1589 #else
1590 static inline int is_zero_pfn(unsigned long pfn)
1591 {
1592 	return 0;
1593 }
1594 
1595 static inline unsigned long my_zero_pfn(unsigned long addr)
1596 {
1597 	return 0;
1598 }
1599 #endif /* CONFIG_MMU */
1600 
1601 #ifdef CONFIG_MMU
1602 
1603 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1604 static inline int pmd_trans_huge(pmd_t pmd)
1605 {
1606 	return 0;
1607 }
1608 #ifndef pmd_write
1609 static inline int pmd_write(pmd_t pmd)
1610 {
1611 	BUG();
1612 	return 0;
1613 }
1614 #endif /* pmd_write */
1615 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1616 
1617 #ifndef pud_write
1618 static inline int pud_write(pud_t pud)
1619 {
1620 	BUG();
1621 	return 0;
1622 }
1623 #endif /* pud_write */
1624 
1625 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1626 static inline int pmd_devmap(pmd_t pmd)
1627 {
1628 	return 0;
1629 }
1630 static inline int pud_devmap(pud_t pud)
1631 {
1632 	return 0;
1633 }
1634 static inline int pgd_devmap(pgd_t pgd)
1635 {
1636 	return 0;
1637 }
1638 #endif
1639 
1640 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1641 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1642 static inline int pud_trans_huge(pud_t pud)
1643 {
1644 	return 0;
1645 }
1646 #endif
1647 
1648 static inline int pud_trans_unstable(pud_t *pud)
1649 {
1650 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1651 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1652 	pud_t pudval = READ_ONCE(*pud);
1653 
1654 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1655 		return 1;
1656 	if (unlikely(pud_bad(pudval))) {
1657 		pud_clear_bad(pud);
1658 		return 1;
1659 	}
1660 #endif
1661 	return 0;
1662 }
1663 
1664 #ifndef CONFIG_NUMA_BALANCING
1665 /*
1666  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1667  * perfectly valid to indicate "no" in that case, which is why our default
1668  * implementation defaults to "always no".
1669  *
1670  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1671  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1672  * accessible VMAs.
1673  *
1674  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1675  * looking at the VMA accessibility is sufficient.
1676  */
1677 static inline int pte_protnone(pte_t pte)
1678 {
1679 	return 0;
1680 }
1681 
1682 static inline int pmd_protnone(pmd_t pmd)
1683 {
1684 	return 0;
1685 }
1686 #endif /* CONFIG_NUMA_BALANCING */
1687 
1688 #endif /* CONFIG_MMU */
1689 
1690 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1691 
1692 #ifndef __PAGETABLE_P4D_FOLDED
1693 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1694 void p4d_clear_huge(p4d_t *p4d);
1695 #else
1696 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1697 {
1698 	return 0;
1699 }
1700 static inline void p4d_clear_huge(p4d_t *p4d) { }
1701 #endif /* !__PAGETABLE_P4D_FOLDED */
1702 
1703 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1704 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1705 int pud_clear_huge(pud_t *pud);
1706 int pmd_clear_huge(pmd_t *pmd);
1707 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1708 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1709 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1710 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1711 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1712 {
1713 	return 0;
1714 }
1715 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1716 {
1717 	return 0;
1718 }
1719 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1720 {
1721 	return 0;
1722 }
1723 static inline void p4d_clear_huge(p4d_t *p4d) { }
1724 static inline int pud_clear_huge(pud_t *pud)
1725 {
1726 	return 0;
1727 }
1728 static inline int pmd_clear_huge(pmd_t *pmd)
1729 {
1730 	return 0;
1731 }
1732 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1733 {
1734 	return 0;
1735 }
1736 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1737 {
1738 	return 0;
1739 }
1740 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1741 {
1742 	return 0;
1743 }
1744 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1745 
1746 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1747 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1748 /*
1749  * ARCHes with special requirements for evicting THP backing TLB entries can
1750  * implement this. Otherwise also, it can help optimize normal TLB flush in
1751  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1752  * entire TLB if flush span is greater than a threshold, which will
1753  * likely be true for a single huge page. Thus a single THP flush will
1754  * invalidate the entire TLB which is not desirable.
1755  * e.g. see arch/arc: flush_pmd_tlb_range
1756  */
1757 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1758 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1759 #else
1760 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1761 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1762 #endif
1763 #endif
1764 
1765 struct file;
1766 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1767 			unsigned long size, pgprot_t *vma_prot);
1768 
1769 #ifndef CONFIG_X86_ESPFIX64
1770 static inline void init_espfix_bsp(void) { }
1771 #endif
1772 
1773 extern void __init pgtable_cache_init(void);
1774 
1775 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1776 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1777 {
1778 	return true;
1779 }
1780 
1781 static inline bool arch_has_pfn_modify_check(void)
1782 {
1783 	return false;
1784 }
1785 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1786 
1787 /*
1788  * Architecture PAGE_KERNEL_* fallbacks
1789  *
1790  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1791  * because they really don't support them, or the port needs to be updated to
1792  * reflect the required functionality. Below are a set of relatively safe
1793  * fallbacks, as best effort, which we can count on in lieu of the architectures
1794  * not defining them on their own yet.
1795  */
1796 
1797 #ifndef PAGE_KERNEL_RO
1798 # define PAGE_KERNEL_RO PAGE_KERNEL
1799 #endif
1800 
1801 #ifndef PAGE_KERNEL_EXEC
1802 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1803 #endif
1804 
1805 /*
1806  * Page Table Modification bits for pgtbl_mod_mask.
1807  *
1808  * These are used by the p?d_alloc_track*() set of functions an in the generic
1809  * vmalloc/ioremap code to track at which page-table levels entries have been
1810  * modified. Based on that the code can better decide when vmalloc and ioremap
1811  * mapping changes need to be synchronized to other page-tables in the system.
1812  */
1813 #define		__PGTBL_PGD_MODIFIED	0
1814 #define		__PGTBL_P4D_MODIFIED	1
1815 #define		__PGTBL_PUD_MODIFIED	2
1816 #define		__PGTBL_PMD_MODIFIED	3
1817 #define		__PGTBL_PTE_MODIFIED	4
1818 
1819 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1820 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1821 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1822 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1823 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1824 
1825 /* Page-Table Modification Mask */
1826 typedef unsigned int pgtbl_mod_mask;
1827 
1828 #endif /* !__ASSEMBLY__ */
1829 
1830 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1831 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1832 /*
1833  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1834  * with physical address space extension, but falls back to
1835  * BITS_PER_LONG otherwise.
1836  */
1837 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1838 #else
1839 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1840 #endif
1841 #endif
1842 
1843 #ifndef has_transparent_hugepage
1844 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1845 #endif
1846 
1847 #ifndef has_transparent_pud_hugepage
1848 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1849 #endif
1850 /*
1851  * On some architectures it depends on the mm if the p4d/pud or pmd
1852  * layer of the page table hierarchy is folded or not.
1853  */
1854 #ifndef mm_p4d_folded
1855 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1856 #endif
1857 
1858 #ifndef mm_pud_folded
1859 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1860 #endif
1861 
1862 #ifndef mm_pmd_folded
1863 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1864 #endif
1865 
1866 #ifndef p4d_offset_lockless
1867 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1868 #endif
1869 #ifndef pud_offset_lockless
1870 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1871 #endif
1872 #ifndef pmd_offset_lockless
1873 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1874 #endif
1875 
1876 /*
1877  * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1878  * mapping.  It should work globally across all archs, without any
1879  * dependency on CONFIG_* options.  For architectures that do not support
1880  * huge mappings on specific levels, below fallbacks will be used.
1881  *
1882  * A leaf pgtable entry should always imply the following:
1883  *
1884  * - It is a "present" entry.  IOW, before using this API, please check it
1885  *   with pXd_present() first. NOTE: it may not always mean the "present
1886  *   bit" is set.  For example, PROT_NONE entries are always "present".
1887  *
1888  * - It should _never_ be a swap entry of any type.  Above "present" check
1889  *   should have guarded this, but let's be crystal clear on this.
1890  *
1891  * - It should contain a huge PFN, which points to a huge page larger than
1892  *   PAGE_SIZE of the platform.  The PFN format isn't important here.
1893  *
1894  * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1895  *   pXd_devmap(), or hugetlb mappings).
1896  */
1897 #ifndef pgd_leaf
1898 #define pgd_leaf(x)	false
1899 #endif
1900 #ifndef p4d_leaf
1901 #define p4d_leaf(x)	false
1902 #endif
1903 #ifndef pud_leaf
1904 #define pud_leaf(x)	false
1905 #endif
1906 #ifndef pmd_leaf
1907 #define pmd_leaf(x)	false
1908 #endif
1909 
1910 #ifndef pgd_leaf_size
1911 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1912 #endif
1913 #ifndef p4d_leaf_size
1914 #define p4d_leaf_size(x) P4D_SIZE
1915 #endif
1916 #ifndef pud_leaf_size
1917 #define pud_leaf_size(x) PUD_SIZE
1918 #endif
1919 #ifndef pmd_leaf_size
1920 #define pmd_leaf_size(x) PMD_SIZE
1921 #endif
1922 #ifndef __pte_leaf_size
1923 #ifndef pte_leaf_size
1924 #define pte_leaf_size(x) PAGE_SIZE
1925 #endif
1926 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1927 #endif
1928 
1929 /*
1930  * We always define pmd_pfn for all archs as it's used in lots of generic
1931  * code.  Now it happens too for pud_pfn (and can happen for larger
1932  * mappings too in the future; we're not there yet).  Instead of defining
1933  * it for all archs (like pmd_pfn), provide a fallback.
1934  *
1935  * Note that returning 0 here means any arch that didn't define this can
1936  * get severely wrong when it hits a real pud leaf.  It's arch's
1937  * responsibility to properly define it when a huge pud is possible.
1938  */
1939 #ifndef pud_pfn
1940 #define pud_pfn(x) 0
1941 #endif
1942 
1943 /*
1944  * Some architectures have MMUs that are configurable or selectable at boot
1945  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1946  * helps to have a static maximum value.
1947  */
1948 
1949 #ifndef MAX_PTRS_PER_PTE
1950 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1951 #endif
1952 
1953 #ifndef MAX_PTRS_PER_PMD
1954 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1955 #endif
1956 
1957 #ifndef MAX_PTRS_PER_PUD
1958 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1959 #endif
1960 
1961 #ifndef MAX_PTRS_PER_P4D
1962 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1963 #endif
1964 
1965 #ifndef pte_pgprot
1966 #define pte_pgprot(x) ((pgprot_t) {0})
1967 #endif
1968 
1969 #ifndef pmd_pgprot
1970 #define pmd_pgprot(x) ((pgprot_t) {0})
1971 #endif
1972 
1973 #ifndef pud_pgprot
1974 #define pud_pgprot(x) ((pgprot_t) {0})
1975 #endif
1976 
1977 /* description of effects of mapping type and prot in current implementation.
1978  * this is due to the limited x86 page protection hardware.  The expected
1979  * behavior is in parens:
1980  *
1981  * map_type	prot
1982  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1983  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1984  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1985  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1986  *
1987  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1988  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1989  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1990  *
1991  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1992  * MAP_PRIVATE (with Enhanced PAN supported):
1993  *								r: (no) no
1994  *								w: (no) no
1995  *								x: (yes) yes
1996  */
1997 #define DECLARE_VM_GET_PAGE_PROT					\
1998 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1999 {									\
2000 		return protection_map[vm_flags &			\
2001 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
2002 }									\
2003 EXPORT_SYMBOL(vm_get_page_prot);
2004 
2005 #endif /* _LINUX_PGTABLE_H */
2006