xref: /linux-6.15/include/linux/pgtable.h (revision d34599bc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16 
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21 
22 /*
23  * On almost all architectures and configurations, 0 can be used as the
24  * upper ceiling to free_pgtables(): on many architectures it has the same
25  * effect as using TASK_SIZE.  However, there is one configuration which
26  * must impose a more careful limit, to avoid freeing kernel pgtables.
27  */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING	0UL
30 #endif
31 
32 /*
33  * This defines the first usable user address. Platforms
34  * can override its value with custom FIRST_USER_ADDRESS
35  * defined in their respective <asm/pgtable.h>.
36  */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS	0UL
39 #endif
40 
41 /*
42  * This defines the generic helper for accessing PMD page
43  * table page. Although platforms can still override this
44  * via their respective <asm/pgtable.h>.
45  */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49 
50 /*
51  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52  *
53  * The pXx_index() functions return the index of the entry in the page
54  * table page which would control the given virtual address
55  *
56  * As these functions may be used by the same code for different levels of
57  * the page table folding, they are always available, regardless of
58  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59  * because in such cases PTRS_PER_PxD equals 1.
60  */
61 
62 static inline unsigned long pte_index(unsigned long address)
63 {
64 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67 
68 #ifndef pmd_index
69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75 
76 #ifndef pud_index
77 static inline unsigned long pud_index(unsigned long address)
78 {
79 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83 
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88 
89 #ifndef pte_offset_kernel
90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96 
97 #ifdef CONFIG_HIGHPTE
98 #define __pte_map(pmd, address) \
99 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
100 #define pte_unmap(pte)	do {	\
101 	kunmap_local((pte));	\
102 	/* rcu_read_unlock() to be added later */	\
103 } while (0)
104 #else
105 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
106 {
107 	return pte_offset_kernel(pmd, address);
108 }
109 static inline void pte_unmap(pte_t *pte)
110 {
111 	/* rcu_read_unlock() to be added later */
112 }
113 #endif
114 
115 /* Find an entry in the second-level page table.. */
116 #ifndef pmd_offset
117 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
118 {
119 	return pud_pgtable(*pud) + pmd_index(address);
120 }
121 #define pmd_offset pmd_offset
122 #endif
123 
124 #ifndef pud_offset
125 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
126 {
127 	return p4d_pgtable(*p4d) + pud_index(address);
128 }
129 #define pud_offset pud_offset
130 #endif
131 
132 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
133 {
134 	return (pgd + pgd_index(address));
135 };
136 
137 /*
138  * a shortcut to get a pgd_t in a given mm
139  */
140 #ifndef pgd_offset
141 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
142 #endif
143 
144 /*
145  * a shortcut which implies the use of the kernel's pgd, instead
146  * of a process's
147  */
148 #ifndef pgd_offset_k
149 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
150 #endif
151 
152 /*
153  * In many cases it is known that a virtual address is mapped at PMD or PTE
154  * level, so instead of traversing all the page table levels, we can get a
155  * pointer to the PMD entry in user or kernel page table or translate a virtual
156  * address to the pointer in the PTE in the kernel page tables with simple
157  * helpers.
158  */
159 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
160 {
161 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
162 }
163 
164 static inline pmd_t *pmd_off_k(unsigned long va)
165 {
166 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
167 }
168 
169 static inline pte_t *virt_to_kpte(unsigned long vaddr)
170 {
171 	pmd_t *pmd = pmd_off_k(vaddr);
172 
173 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
174 }
175 
176 #ifndef pmd_young
177 static inline int pmd_young(pmd_t pmd)
178 {
179 	return 0;
180 }
181 #endif
182 
183 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
184 extern int ptep_set_access_flags(struct vm_area_struct *vma,
185 				 unsigned long address, pte_t *ptep,
186 				 pte_t entry, int dirty);
187 #endif
188 
189 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
191 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
192 				 unsigned long address, pmd_t *pmdp,
193 				 pmd_t entry, int dirty);
194 extern int pudp_set_access_flags(struct vm_area_struct *vma,
195 				 unsigned long address, pud_t *pudp,
196 				 pud_t entry, int dirty);
197 #else
198 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
199 					unsigned long address, pmd_t *pmdp,
200 					pmd_t entry, int dirty)
201 {
202 	BUILD_BUG();
203 	return 0;
204 }
205 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
206 					unsigned long address, pud_t *pudp,
207 					pud_t entry, int dirty)
208 {
209 	BUILD_BUG();
210 	return 0;
211 }
212 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
213 #endif
214 
215 #ifndef ptep_get
216 static inline pte_t ptep_get(pte_t *ptep)
217 {
218 	return READ_ONCE(*ptep);
219 }
220 #endif
221 
222 #ifndef pmdp_get
223 static inline pmd_t pmdp_get(pmd_t *pmdp)
224 {
225 	return READ_ONCE(*pmdp);
226 }
227 #endif
228 
229 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
230 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
231 					    unsigned long address,
232 					    pte_t *ptep)
233 {
234 	pte_t pte = ptep_get(ptep);
235 	int r = 1;
236 	if (!pte_young(pte))
237 		r = 0;
238 	else
239 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
240 	return r;
241 }
242 #endif
243 
244 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
245 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
246 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
247 					    unsigned long address,
248 					    pmd_t *pmdp)
249 {
250 	pmd_t pmd = *pmdp;
251 	int r = 1;
252 	if (!pmd_young(pmd))
253 		r = 0;
254 	else
255 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
256 	return r;
257 }
258 #else
259 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
260 					    unsigned long address,
261 					    pmd_t *pmdp)
262 {
263 	BUILD_BUG();
264 	return 0;
265 }
266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
267 #endif
268 
269 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
270 int ptep_clear_flush_young(struct vm_area_struct *vma,
271 			   unsigned long address, pte_t *ptep);
272 #endif
273 
274 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
276 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
277 				  unsigned long address, pmd_t *pmdp);
278 #else
279 /*
280  * Despite relevant to THP only, this API is called from generic rmap code
281  * under PageTransHuge(), hence needs a dummy implementation for !THP
282  */
283 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
284 					 unsigned long address, pmd_t *pmdp)
285 {
286 	BUILD_BUG();
287 	return 0;
288 }
289 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
290 #endif
291 
292 #ifndef arch_has_hw_nonleaf_pmd_young
293 /*
294  * Return whether the accessed bit in non-leaf PMD entries is supported on the
295  * local CPU.
296  */
297 static inline bool arch_has_hw_nonleaf_pmd_young(void)
298 {
299 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
300 }
301 #endif
302 
303 #ifndef arch_has_hw_pte_young
304 /*
305  * Return whether the accessed bit is supported on the local CPU.
306  *
307  * This stub assumes accessing through an old PTE triggers a page fault.
308  * Architectures that automatically set the access bit should overwrite it.
309  */
310 static inline bool arch_has_hw_pte_young(void)
311 {
312 	return false;
313 }
314 #endif
315 
316 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
317 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
318 				       unsigned long address,
319 				       pte_t *ptep)
320 {
321 	pte_t pte = ptep_get(ptep);
322 	pte_clear(mm, address, ptep);
323 	page_table_check_pte_clear(mm, address, pte);
324 	return pte;
325 }
326 #endif
327 
328 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
329 			      pte_t *ptep)
330 {
331 	ptep_get_and_clear(mm, addr, ptep);
332 }
333 
334 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
335 /*
336  * For walking the pagetables without holding any locks.  Some architectures
337  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
338  * instructions.  We are guaranteed that a PTE will only either go from not
339  * present to present, or present to not present -- it will not switch to a
340  * completely different present page without a TLB flush inbetween; which we
341  * are blocking by holding interrupts off.
342  *
343  * Setting ptes from not present to present goes:
344  *
345  *   ptep->pte_high = h;
346  *   smp_wmb();
347  *   ptep->pte_low = l;
348  *
349  * And present to not present goes:
350  *
351  *   ptep->pte_low = 0;
352  *   smp_wmb();
353  *   ptep->pte_high = 0;
354  *
355  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
356  * We load pte_high *after* loading pte_low, which ensures we don't see an older
357  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
358  * picked up a changed pte high. We might have gotten rubbish values from
359  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
360  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
361  * operates on present ptes we're safe.
362  */
363 static inline pte_t ptep_get_lockless(pte_t *ptep)
364 {
365 	pte_t pte;
366 
367 	do {
368 		pte.pte_low = ptep->pte_low;
369 		smp_rmb();
370 		pte.pte_high = ptep->pte_high;
371 		smp_rmb();
372 	} while (unlikely(pte.pte_low != ptep->pte_low));
373 
374 	return pte;
375 }
376 #define ptep_get_lockless ptep_get_lockless
377 
378 #if CONFIG_PGTABLE_LEVELS > 2
379 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
380 {
381 	pmd_t pmd;
382 
383 	do {
384 		pmd.pmd_low = pmdp->pmd_low;
385 		smp_rmb();
386 		pmd.pmd_high = pmdp->pmd_high;
387 		smp_rmb();
388 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
389 
390 	return pmd;
391 }
392 #define pmdp_get_lockless pmdp_get_lockless
393 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
394 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
395 
396 /*
397  * We require that the PTE can be read atomically.
398  */
399 #ifndef ptep_get_lockless
400 static inline pte_t ptep_get_lockless(pte_t *ptep)
401 {
402 	return ptep_get(ptep);
403 }
404 #endif
405 
406 #ifndef pmdp_get_lockless
407 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
408 {
409 	return pmdp_get(pmdp);
410 }
411 #endif
412 
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
415 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
416 					    unsigned long address,
417 					    pmd_t *pmdp)
418 {
419 	pmd_t pmd = *pmdp;
420 
421 	pmd_clear(pmdp);
422 	page_table_check_pmd_clear(mm, address, pmd);
423 
424 	return pmd;
425 }
426 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
427 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
428 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
429 					    unsigned long address,
430 					    pud_t *pudp)
431 {
432 	pud_t pud = *pudp;
433 
434 	pud_clear(pudp);
435 	page_table_check_pud_clear(mm, address, pud);
436 
437 	return pud;
438 }
439 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
441 
442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
443 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
444 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
445 					    unsigned long address, pmd_t *pmdp,
446 					    int full)
447 {
448 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
449 }
450 #endif
451 
452 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
453 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
454 					    unsigned long address, pud_t *pudp,
455 					    int full)
456 {
457 	return pudp_huge_get_and_clear(mm, address, pudp);
458 }
459 #endif
460 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
461 
462 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
463 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
464 					    unsigned long address, pte_t *ptep,
465 					    int full)
466 {
467 	return ptep_get_and_clear(mm, address, ptep);
468 }
469 #endif
470 
471 
472 /*
473  * If two threads concurrently fault at the same page, the thread that
474  * won the race updates the PTE and its local TLB/Cache. The other thread
475  * gives up, simply does nothing, and continues; on architectures where
476  * software can update TLB,  local TLB can be updated here to avoid next page
477  * fault. This function updates TLB only, do nothing with cache or others.
478  * It is the difference with function update_mmu_cache.
479  */
480 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
481 static inline void update_mmu_tlb(struct vm_area_struct *vma,
482 				unsigned long address, pte_t *ptep)
483 {
484 }
485 #define __HAVE_ARCH_UPDATE_MMU_TLB
486 #endif
487 
488 /*
489  * Some architectures may be able to avoid expensive synchronization
490  * primitives when modifications are made to PTE's which are already
491  * not present, or in the process of an address space destruction.
492  */
493 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
494 static inline void pte_clear_not_present_full(struct mm_struct *mm,
495 					      unsigned long address,
496 					      pte_t *ptep,
497 					      int full)
498 {
499 	pte_clear(mm, address, ptep);
500 }
501 #endif
502 
503 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
504 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
505 			      unsigned long address,
506 			      pte_t *ptep);
507 #endif
508 
509 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
510 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
511 			      unsigned long address,
512 			      pmd_t *pmdp);
513 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
514 			      unsigned long address,
515 			      pud_t *pudp);
516 #endif
517 
518 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
519 struct mm_struct;
520 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
521 {
522 	pte_t old_pte = ptep_get(ptep);
523 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
524 }
525 #endif
526 
527 /*
528  * On some architectures hardware does not set page access bit when accessing
529  * memory page, it is responsibility of software setting this bit. It brings
530  * out extra page fault penalty to track page access bit. For optimization page
531  * access bit can be set during all page fault flow on these arches.
532  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
533  * where software maintains page access bit.
534  */
535 #ifndef pte_sw_mkyoung
536 static inline pte_t pte_sw_mkyoung(pte_t pte)
537 {
538 	return pte;
539 }
540 #define pte_sw_mkyoung	pte_sw_mkyoung
541 #endif
542 
543 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
545 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
546 				      unsigned long address, pmd_t *pmdp)
547 {
548 	pmd_t old_pmd = *pmdp;
549 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
550 }
551 #else
552 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
553 				      unsigned long address, pmd_t *pmdp)
554 {
555 	BUILD_BUG();
556 }
557 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
558 #endif
559 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
560 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
561 static inline void pudp_set_wrprotect(struct mm_struct *mm,
562 				      unsigned long address, pud_t *pudp)
563 {
564 	pud_t old_pud = *pudp;
565 
566 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
567 }
568 #else
569 static inline void pudp_set_wrprotect(struct mm_struct *mm,
570 				      unsigned long address, pud_t *pudp)
571 {
572 	BUILD_BUG();
573 }
574 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
575 #endif
576 
577 #ifndef pmdp_collapse_flush
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
580 				 unsigned long address, pmd_t *pmdp);
581 #else
582 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
583 					unsigned long address,
584 					pmd_t *pmdp)
585 {
586 	BUILD_BUG();
587 	return *pmdp;
588 }
589 #define pmdp_collapse_flush pmdp_collapse_flush
590 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
591 #endif
592 
593 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
594 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
595 				       pgtable_t pgtable);
596 #endif
597 
598 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
599 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
600 #endif
601 
602 #ifndef arch_needs_pgtable_deposit
603 #define arch_needs_pgtable_deposit() (false)
604 #endif
605 
606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
607 /*
608  * This is an implementation of pmdp_establish() that is only suitable for an
609  * architecture that doesn't have hardware dirty/accessed bits. In this case we
610  * can't race with CPU which sets these bits and non-atomic approach is fine.
611  */
612 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
613 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
614 {
615 	pmd_t old_pmd = *pmdp;
616 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
617 	return old_pmd;
618 }
619 #endif
620 
621 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
622 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
623 			    pmd_t *pmdp);
624 #endif
625 
626 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
627 
628 /*
629  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
630  * hugepage mapping in the page tables. This function is similar to
631  * pmdp_invalidate(), but should only be used if the access and dirty bits would
632  * not be cleared by the software in the new PMD value. The function ensures
633  * that hardware changes of the access and dirty bits updates would not be lost.
634  *
635  * Doing so can allow in certain architectures to avoid a TLB flush in most
636  * cases. Yet, another TLB flush might be necessary later if the PMD update
637  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
638  * even when a TLB flush is needed because of the update, the caller may be able
639  * to batch these TLB flushing operations, so fewer TLB flush operations are
640  * needed.
641  */
642 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
643 				unsigned long address, pmd_t *pmdp);
644 #endif
645 
646 #ifndef __HAVE_ARCH_PTE_SAME
647 static inline int pte_same(pte_t pte_a, pte_t pte_b)
648 {
649 	return pte_val(pte_a) == pte_val(pte_b);
650 }
651 #endif
652 
653 #ifndef __HAVE_ARCH_PTE_UNUSED
654 /*
655  * Some architectures provide facilities to virtualization guests
656  * so that they can flag allocated pages as unused. This allows the
657  * host to transparently reclaim unused pages. This function returns
658  * whether the pte's page is unused.
659  */
660 static inline int pte_unused(pte_t pte)
661 {
662 	return 0;
663 }
664 #endif
665 
666 #ifndef pte_access_permitted
667 #define pte_access_permitted(pte, write) \
668 	(pte_present(pte) && (!(write) || pte_write(pte)))
669 #endif
670 
671 #ifndef pmd_access_permitted
672 #define pmd_access_permitted(pmd, write) \
673 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
674 #endif
675 
676 #ifndef pud_access_permitted
677 #define pud_access_permitted(pud, write) \
678 	(pud_present(pud) && (!(write) || pud_write(pud)))
679 #endif
680 
681 #ifndef p4d_access_permitted
682 #define p4d_access_permitted(p4d, write) \
683 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
684 #endif
685 
686 #ifndef pgd_access_permitted
687 #define pgd_access_permitted(pgd, write) \
688 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
689 #endif
690 
691 #ifndef __HAVE_ARCH_PMD_SAME
692 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
693 {
694 	return pmd_val(pmd_a) == pmd_val(pmd_b);
695 }
696 
697 static inline int pud_same(pud_t pud_a, pud_t pud_b)
698 {
699 	return pud_val(pud_a) == pud_val(pud_b);
700 }
701 #endif
702 
703 #ifndef __HAVE_ARCH_P4D_SAME
704 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
705 {
706 	return p4d_val(p4d_a) == p4d_val(p4d_b);
707 }
708 #endif
709 
710 #ifndef __HAVE_ARCH_PGD_SAME
711 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
712 {
713 	return pgd_val(pgd_a) == pgd_val(pgd_b);
714 }
715 #endif
716 
717 /*
718  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
719  * TLB flush will be required as a result of the "set". For example, use
720  * in scenarios where it is known ahead of time that the routine is
721  * setting non-present entries, or re-setting an existing entry to the
722  * same value. Otherwise, use the typical "set" helpers and flush the
723  * TLB.
724  */
725 #define set_pte_safe(ptep, pte) \
726 ({ \
727 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
728 	set_pte(ptep, pte); \
729 })
730 
731 #define set_pmd_safe(pmdp, pmd) \
732 ({ \
733 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
734 	set_pmd(pmdp, pmd); \
735 })
736 
737 #define set_pud_safe(pudp, pud) \
738 ({ \
739 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
740 	set_pud(pudp, pud); \
741 })
742 
743 #define set_p4d_safe(p4dp, p4d) \
744 ({ \
745 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
746 	set_p4d(p4dp, p4d); \
747 })
748 
749 #define set_pgd_safe(pgdp, pgd) \
750 ({ \
751 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
752 	set_pgd(pgdp, pgd); \
753 })
754 
755 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
756 /*
757  * Some architectures support metadata associated with a page. When a
758  * page is being swapped out, this metadata must be saved so it can be
759  * restored when the page is swapped back in. SPARC M7 and newer
760  * processors support an ADI (Application Data Integrity) tag for the
761  * page as metadata for the page. arch_do_swap_page() can restore this
762  * metadata when a page is swapped back in.
763  */
764 static inline void arch_do_swap_page(struct mm_struct *mm,
765 				     struct vm_area_struct *vma,
766 				     unsigned long addr,
767 				     pte_t pte, pte_t oldpte)
768 {
769 
770 }
771 #endif
772 
773 #ifndef __HAVE_ARCH_UNMAP_ONE
774 /*
775  * Some architectures support metadata associated with a page. When a
776  * page is being swapped out, this metadata must be saved so it can be
777  * restored when the page is swapped back in. SPARC M7 and newer
778  * processors support an ADI (Application Data Integrity) tag for the
779  * page as metadata for the page. arch_unmap_one() can save this
780  * metadata on a swap-out of a page.
781  */
782 static inline int arch_unmap_one(struct mm_struct *mm,
783 				  struct vm_area_struct *vma,
784 				  unsigned long addr,
785 				  pte_t orig_pte)
786 {
787 	return 0;
788 }
789 #endif
790 
791 /*
792  * Allow architectures to preserve additional metadata associated with
793  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
794  * prototypes must be defined in the arch-specific asm/pgtable.h file.
795  */
796 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
797 static inline int arch_prepare_to_swap(struct page *page)
798 {
799 	return 0;
800 }
801 #endif
802 
803 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
804 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
805 {
806 }
807 
808 static inline void arch_swap_invalidate_area(int type)
809 {
810 }
811 #endif
812 
813 #ifndef __HAVE_ARCH_SWAP_RESTORE
814 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
815 {
816 }
817 #endif
818 
819 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
820 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
821 #endif
822 
823 #ifndef __HAVE_ARCH_MOVE_PTE
824 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
825 #endif
826 
827 #ifndef pte_accessible
828 # define pte_accessible(mm, pte)	((void)(pte), 1)
829 #endif
830 
831 #ifndef flush_tlb_fix_spurious_fault
832 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
833 #endif
834 
835 /*
836  * When walking page tables, get the address of the next boundary,
837  * or the end address of the range if that comes earlier.  Although no
838  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
839  */
840 
841 #define pgd_addr_end(addr, end)						\
842 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
843 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
844 })
845 
846 #ifndef p4d_addr_end
847 #define p4d_addr_end(addr, end)						\
848 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
849 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
850 })
851 #endif
852 
853 #ifndef pud_addr_end
854 #define pud_addr_end(addr, end)						\
855 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
856 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
857 })
858 #endif
859 
860 #ifndef pmd_addr_end
861 #define pmd_addr_end(addr, end)						\
862 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
863 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
864 })
865 #endif
866 
867 /*
868  * When walking page tables, we usually want to skip any p?d_none entries;
869  * and any p?d_bad entries - reporting the error before resetting to none.
870  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
871  */
872 void pgd_clear_bad(pgd_t *);
873 
874 #ifndef __PAGETABLE_P4D_FOLDED
875 void p4d_clear_bad(p4d_t *);
876 #else
877 #define p4d_clear_bad(p4d)        do { } while (0)
878 #endif
879 
880 #ifndef __PAGETABLE_PUD_FOLDED
881 void pud_clear_bad(pud_t *);
882 #else
883 #define pud_clear_bad(p4d)        do { } while (0)
884 #endif
885 
886 void pmd_clear_bad(pmd_t *);
887 
888 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
889 {
890 	if (pgd_none(*pgd))
891 		return 1;
892 	if (unlikely(pgd_bad(*pgd))) {
893 		pgd_clear_bad(pgd);
894 		return 1;
895 	}
896 	return 0;
897 }
898 
899 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
900 {
901 	if (p4d_none(*p4d))
902 		return 1;
903 	if (unlikely(p4d_bad(*p4d))) {
904 		p4d_clear_bad(p4d);
905 		return 1;
906 	}
907 	return 0;
908 }
909 
910 static inline int pud_none_or_clear_bad(pud_t *pud)
911 {
912 	if (pud_none(*pud))
913 		return 1;
914 	if (unlikely(pud_bad(*pud))) {
915 		pud_clear_bad(pud);
916 		return 1;
917 	}
918 	return 0;
919 }
920 
921 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
922 {
923 	if (pmd_none(*pmd))
924 		return 1;
925 	if (unlikely(pmd_bad(*pmd))) {
926 		pmd_clear_bad(pmd);
927 		return 1;
928 	}
929 	return 0;
930 }
931 
932 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
933 					     unsigned long addr,
934 					     pte_t *ptep)
935 {
936 	/*
937 	 * Get the current pte state, but zero it out to make it
938 	 * non-present, preventing the hardware from asynchronously
939 	 * updating it.
940 	 */
941 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
942 }
943 
944 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
945 					     unsigned long addr,
946 					     pte_t *ptep, pte_t pte)
947 {
948 	/*
949 	 * The pte is non-present, so there's no hardware state to
950 	 * preserve.
951 	 */
952 	set_pte_at(vma->vm_mm, addr, ptep, pte);
953 }
954 
955 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
956 /*
957  * Start a pte protection read-modify-write transaction, which
958  * protects against asynchronous hardware modifications to the pte.
959  * The intention is not to prevent the hardware from making pte
960  * updates, but to prevent any updates it may make from being lost.
961  *
962  * This does not protect against other software modifications of the
963  * pte; the appropriate pte lock must be held over the transaction.
964  *
965  * Note that this interface is intended to be batchable, meaning that
966  * ptep_modify_prot_commit may not actually update the pte, but merely
967  * queue the update to be done at some later time.  The update must be
968  * actually committed before the pte lock is released, however.
969  */
970 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
971 					   unsigned long addr,
972 					   pte_t *ptep)
973 {
974 	return __ptep_modify_prot_start(vma, addr, ptep);
975 }
976 
977 /*
978  * Commit an update to a pte, leaving any hardware-controlled bits in
979  * the PTE unmodified.
980  */
981 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
982 					   unsigned long addr,
983 					   pte_t *ptep, pte_t old_pte, pte_t pte)
984 {
985 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
986 }
987 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
988 #endif /* CONFIG_MMU */
989 
990 /*
991  * No-op macros that just return the current protection value. Defined here
992  * because these macros can be used even if CONFIG_MMU is not defined.
993  */
994 
995 #ifndef pgprot_nx
996 #define pgprot_nx(prot)	(prot)
997 #endif
998 
999 #ifndef pgprot_noncached
1000 #define pgprot_noncached(prot)	(prot)
1001 #endif
1002 
1003 #ifndef pgprot_writecombine
1004 #define pgprot_writecombine pgprot_noncached
1005 #endif
1006 
1007 #ifndef pgprot_writethrough
1008 #define pgprot_writethrough pgprot_noncached
1009 #endif
1010 
1011 #ifndef pgprot_device
1012 #define pgprot_device pgprot_noncached
1013 #endif
1014 
1015 #ifndef pgprot_mhp
1016 #define pgprot_mhp(prot)	(prot)
1017 #endif
1018 
1019 #ifdef CONFIG_MMU
1020 #ifndef pgprot_modify
1021 #define pgprot_modify pgprot_modify
1022 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1023 {
1024 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1025 		newprot = pgprot_noncached(newprot);
1026 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1027 		newprot = pgprot_writecombine(newprot);
1028 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1029 		newprot = pgprot_device(newprot);
1030 	return newprot;
1031 }
1032 #endif
1033 #endif /* CONFIG_MMU */
1034 
1035 #ifndef pgprot_encrypted
1036 #define pgprot_encrypted(prot)	(prot)
1037 #endif
1038 
1039 #ifndef pgprot_decrypted
1040 #define pgprot_decrypted(prot)	(prot)
1041 #endif
1042 
1043 /*
1044  * A facility to provide lazy MMU batching.  This allows PTE updates and
1045  * page invalidations to be delayed until a call to leave lazy MMU mode
1046  * is issued.  Some architectures may benefit from doing this, and it is
1047  * beneficial for both shadow and direct mode hypervisors, which may batch
1048  * the PTE updates which happen during this window.  Note that using this
1049  * interface requires that read hazards be removed from the code.  A read
1050  * hazard could result in the direct mode hypervisor case, since the actual
1051  * write to the page tables may not yet have taken place, so reads though
1052  * a raw PTE pointer after it has been modified are not guaranteed to be
1053  * up to date.  This mode can only be entered and left under the protection of
1054  * the page table locks for all page tables which may be modified.  In the UP
1055  * case, this is required so that preemption is disabled, and in the SMP case,
1056  * it must synchronize the delayed page table writes properly on other CPUs.
1057  */
1058 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1059 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1060 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1061 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1062 #endif
1063 
1064 /*
1065  * A facility to provide batching of the reload of page tables and
1066  * other process state with the actual context switch code for
1067  * paravirtualized guests.  By convention, only one of the batched
1068  * update (lazy) modes (CPU, MMU) should be active at any given time,
1069  * entry should never be nested, and entry and exits should always be
1070  * paired.  This is for sanity of maintaining and reasoning about the
1071  * kernel code.  In this case, the exit (end of the context switch) is
1072  * in architecture-specific code, and so doesn't need a generic
1073  * definition.
1074  */
1075 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1076 #define arch_start_context_switch(prev)	do {} while (0)
1077 #endif
1078 
1079 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1080 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1081 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1082 {
1083 	return pmd;
1084 }
1085 
1086 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1087 {
1088 	return 0;
1089 }
1090 
1091 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1092 {
1093 	return pmd;
1094 }
1095 #endif
1096 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1097 static inline int pte_soft_dirty(pte_t pte)
1098 {
1099 	return 0;
1100 }
1101 
1102 static inline int pmd_soft_dirty(pmd_t pmd)
1103 {
1104 	return 0;
1105 }
1106 
1107 static inline pte_t pte_mksoft_dirty(pte_t pte)
1108 {
1109 	return pte;
1110 }
1111 
1112 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1113 {
1114 	return pmd;
1115 }
1116 
1117 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1118 {
1119 	return pte;
1120 }
1121 
1122 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1123 {
1124 	return pmd;
1125 }
1126 
1127 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1128 {
1129 	return pte;
1130 }
1131 
1132 static inline int pte_swp_soft_dirty(pte_t pte)
1133 {
1134 	return 0;
1135 }
1136 
1137 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1138 {
1139 	return pte;
1140 }
1141 
1142 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1143 {
1144 	return pmd;
1145 }
1146 
1147 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1148 {
1149 	return 0;
1150 }
1151 
1152 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1153 {
1154 	return pmd;
1155 }
1156 #endif
1157 
1158 #ifndef __HAVE_PFNMAP_TRACKING
1159 /*
1160  * Interfaces that can be used by architecture code to keep track of
1161  * memory type of pfn mappings specified by the remap_pfn_range,
1162  * vmf_insert_pfn.
1163  */
1164 
1165 /*
1166  * track_pfn_remap is called when a _new_ pfn mapping is being established
1167  * by remap_pfn_range() for physical range indicated by pfn and size.
1168  */
1169 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1170 				  unsigned long pfn, unsigned long addr,
1171 				  unsigned long size)
1172 {
1173 	return 0;
1174 }
1175 
1176 /*
1177  * track_pfn_insert is called when a _new_ single pfn is established
1178  * by vmf_insert_pfn().
1179  */
1180 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1181 				    pfn_t pfn)
1182 {
1183 }
1184 
1185 /*
1186  * track_pfn_copy is called when vma that is covering the pfnmap gets
1187  * copied through copy_page_range().
1188  */
1189 static inline int track_pfn_copy(struct vm_area_struct *vma)
1190 {
1191 	return 0;
1192 }
1193 
1194 /*
1195  * untrack_pfn is called while unmapping a pfnmap for a region.
1196  * untrack can be called for a specific region indicated by pfn and size or
1197  * can be for the entire vma (in which case pfn, size are zero).
1198  */
1199 static inline void untrack_pfn(struct vm_area_struct *vma,
1200 			       unsigned long pfn, unsigned long size,
1201 			       bool mm_wr_locked)
1202 {
1203 }
1204 
1205 /*
1206  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1207  * or fails to copy pgtable during duplicate vm area.
1208  */
1209 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1210 {
1211 }
1212 #else
1213 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1214 			   unsigned long pfn, unsigned long addr,
1215 			   unsigned long size);
1216 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1217 			     pfn_t pfn);
1218 extern int track_pfn_copy(struct vm_area_struct *vma);
1219 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1220 			unsigned long size, bool mm_wr_locked);
1221 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1222 #endif
1223 
1224 #ifdef CONFIG_MMU
1225 #ifdef __HAVE_COLOR_ZERO_PAGE
1226 static inline int is_zero_pfn(unsigned long pfn)
1227 {
1228 	extern unsigned long zero_pfn;
1229 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1230 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1231 }
1232 
1233 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1234 
1235 #else
1236 static inline int is_zero_pfn(unsigned long pfn)
1237 {
1238 	extern unsigned long zero_pfn;
1239 	return pfn == zero_pfn;
1240 }
1241 
1242 static inline unsigned long my_zero_pfn(unsigned long addr)
1243 {
1244 	extern unsigned long zero_pfn;
1245 	return zero_pfn;
1246 }
1247 #endif
1248 #else
1249 static inline int is_zero_pfn(unsigned long pfn)
1250 {
1251 	return 0;
1252 }
1253 
1254 static inline unsigned long my_zero_pfn(unsigned long addr)
1255 {
1256 	return 0;
1257 }
1258 #endif /* CONFIG_MMU */
1259 
1260 #ifdef CONFIG_MMU
1261 
1262 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1263 static inline int pmd_trans_huge(pmd_t pmd)
1264 {
1265 	return 0;
1266 }
1267 #ifndef pmd_write
1268 static inline int pmd_write(pmd_t pmd)
1269 {
1270 	BUG();
1271 	return 0;
1272 }
1273 #endif /* pmd_write */
1274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1275 
1276 #ifndef pud_write
1277 static inline int pud_write(pud_t pud)
1278 {
1279 	BUG();
1280 	return 0;
1281 }
1282 #endif /* pud_write */
1283 
1284 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1285 static inline int pmd_devmap(pmd_t pmd)
1286 {
1287 	return 0;
1288 }
1289 static inline int pud_devmap(pud_t pud)
1290 {
1291 	return 0;
1292 }
1293 static inline int pgd_devmap(pgd_t pgd)
1294 {
1295 	return 0;
1296 }
1297 #endif
1298 
1299 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1300 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1301 static inline int pud_trans_huge(pud_t pud)
1302 {
1303 	return 0;
1304 }
1305 #endif
1306 
1307 static inline int pud_trans_unstable(pud_t *pud)
1308 {
1309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1310 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1311 	pud_t pudval = READ_ONCE(*pud);
1312 
1313 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1314 		return 1;
1315 	if (unlikely(pud_bad(pudval))) {
1316 		pud_clear_bad(pud);
1317 		return 1;
1318 	}
1319 #endif
1320 	return 0;
1321 }
1322 
1323 #ifndef CONFIG_NUMA_BALANCING
1324 /*
1325  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1326  * the only case the kernel cares is for NUMA balancing and is only ever set
1327  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1328  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1329  * is the responsibility of the caller to distinguish between PROT_NONE
1330  * protections and NUMA hinting fault protections.
1331  */
1332 static inline int pte_protnone(pte_t pte)
1333 {
1334 	return 0;
1335 }
1336 
1337 static inline int pmd_protnone(pmd_t pmd)
1338 {
1339 	return 0;
1340 }
1341 #endif /* CONFIG_NUMA_BALANCING */
1342 
1343 #endif /* CONFIG_MMU */
1344 
1345 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1346 
1347 #ifndef __PAGETABLE_P4D_FOLDED
1348 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1349 void p4d_clear_huge(p4d_t *p4d);
1350 #else
1351 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1352 {
1353 	return 0;
1354 }
1355 static inline void p4d_clear_huge(p4d_t *p4d) { }
1356 #endif /* !__PAGETABLE_P4D_FOLDED */
1357 
1358 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1359 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1360 int pud_clear_huge(pud_t *pud);
1361 int pmd_clear_huge(pmd_t *pmd);
1362 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1363 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1364 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1365 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1366 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1367 {
1368 	return 0;
1369 }
1370 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1371 {
1372 	return 0;
1373 }
1374 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1375 {
1376 	return 0;
1377 }
1378 static inline void p4d_clear_huge(p4d_t *p4d) { }
1379 static inline int pud_clear_huge(pud_t *pud)
1380 {
1381 	return 0;
1382 }
1383 static inline int pmd_clear_huge(pmd_t *pmd)
1384 {
1385 	return 0;
1386 }
1387 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1388 {
1389 	return 0;
1390 }
1391 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1392 {
1393 	return 0;
1394 }
1395 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1396 {
1397 	return 0;
1398 }
1399 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1400 
1401 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1403 /*
1404  * ARCHes with special requirements for evicting THP backing TLB entries can
1405  * implement this. Otherwise also, it can help optimize normal TLB flush in
1406  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1407  * entire TLB if flush span is greater than a threshold, which will
1408  * likely be true for a single huge page. Thus a single THP flush will
1409  * invalidate the entire TLB which is not desirable.
1410  * e.g. see arch/arc: flush_pmd_tlb_range
1411  */
1412 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1413 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1414 #else
1415 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1416 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1417 #endif
1418 #endif
1419 
1420 struct file;
1421 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1422 			unsigned long size, pgprot_t *vma_prot);
1423 
1424 #ifndef CONFIG_X86_ESPFIX64
1425 static inline void init_espfix_bsp(void) { }
1426 #endif
1427 
1428 extern void __init pgtable_cache_init(void);
1429 
1430 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1431 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1432 {
1433 	return true;
1434 }
1435 
1436 static inline bool arch_has_pfn_modify_check(void)
1437 {
1438 	return false;
1439 }
1440 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1441 
1442 /*
1443  * Architecture PAGE_KERNEL_* fallbacks
1444  *
1445  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1446  * because they really don't support them, or the port needs to be updated to
1447  * reflect the required functionality. Below are a set of relatively safe
1448  * fallbacks, as best effort, which we can count on in lieu of the architectures
1449  * not defining them on their own yet.
1450  */
1451 
1452 #ifndef PAGE_KERNEL_RO
1453 # define PAGE_KERNEL_RO PAGE_KERNEL
1454 #endif
1455 
1456 #ifndef PAGE_KERNEL_EXEC
1457 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1458 #endif
1459 
1460 /*
1461  * Page Table Modification bits for pgtbl_mod_mask.
1462  *
1463  * These are used by the p?d_alloc_track*() set of functions an in the generic
1464  * vmalloc/ioremap code to track at which page-table levels entries have been
1465  * modified. Based on that the code can better decide when vmalloc and ioremap
1466  * mapping changes need to be synchronized to other page-tables in the system.
1467  */
1468 #define		__PGTBL_PGD_MODIFIED	0
1469 #define		__PGTBL_P4D_MODIFIED	1
1470 #define		__PGTBL_PUD_MODIFIED	2
1471 #define		__PGTBL_PMD_MODIFIED	3
1472 #define		__PGTBL_PTE_MODIFIED	4
1473 
1474 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1475 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1476 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1477 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1478 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1479 
1480 /* Page-Table Modification Mask */
1481 typedef unsigned int pgtbl_mod_mask;
1482 
1483 #endif /* !__ASSEMBLY__ */
1484 
1485 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1486 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1487 /*
1488  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1489  * with physical address space extension, but falls back to
1490  * BITS_PER_LONG otherwise.
1491  */
1492 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1493 #else
1494 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1495 #endif
1496 #endif
1497 
1498 #ifndef has_transparent_hugepage
1499 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1500 #endif
1501 
1502 /*
1503  * On some architectures it depends on the mm if the p4d/pud or pmd
1504  * layer of the page table hierarchy is folded or not.
1505  */
1506 #ifndef mm_p4d_folded
1507 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1508 #endif
1509 
1510 #ifndef mm_pud_folded
1511 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1512 #endif
1513 
1514 #ifndef mm_pmd_folded
1515 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1516 #endif
1517 
1518 #ifndef p4d_offset_lockless
1519 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1520 #endif
1521 #ifndef pud_offset_lockless
1522 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1523 #endif
1524 #ifndef pmd_offset_lockless
1525 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1526 #endif
1527 
1528 /*
1529  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1530  * This differs from p?d_huge() by the fact that they are always available (if
1531  * the architecture supports large pages at the appropriate level) even
1532  * if CONFIG_HUGETLB_PAGE is not defined.
1533  * Only meaningful when called on a valid entry.
1534  */
1535 #ifndef pgd_leaf
1536 #define pgd_leaf(x)	0
1537 #endif
1538 #ifndef p4d_leaf
1539 #define p4d_leaf(x)	0
1540 #endif
1541 #ifndef pud_leaf
1542 #define pud_leaf(x)	0
1543 #endif
1544 #ifndef pmd_leaf
1545 #define pmd_leaf(x)	0
1546 #endif
1547 
1548 #ifndef pgd_leaf_size
1549 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1550 #endif
1551 #ifndef p4d_leaf_size
1552 #define p4d_leaf_size(x) P4D_SIZE
1553 #endif
1554 #ifndef pud_leaf_size
1555 #define pud_leaf_size(x) PUD_SIZE
1556 #endif
1557 #ifndef pmd_leaf_size
1558 #define pmd_leaf_size(x) PMD_SIZE
1559 #endif
1560 #ifndef pte_leaf_size
1561 #define pte_leaf_size(x) PAGE_SIZE
1562 #endif
1563 
1564 /*
1565  * Some architectures have MMUs that are configurable or selectable at boot
1566  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1567  * helps to have a static maximum value.
1568  */
1569 
1570 #ifndef MAX_PTRS_PER_PTE
1571 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1572 #endif
1573 
1574 #ifndef MAX_PTRS_PER_PMD
1575 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1576 #endif
1577 
1578 #ifndef MAX_PTRS_PER_PUD
1579 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1580 #endif
1581 
1582 #ifndef MAX_PTRS_PER_P4D
1583 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1584 #endif
1585 
1586 /* description of effects of mapping type and prot in current implementation.
1587  * this is due to the limited x86 page protection hardware.  The expected
1588  * behavior is in parens:
1589  *
1590  * map_type	prot
1591  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1592  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1593  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1594  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1595  *
1596  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1597  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1598  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1599  *
1600  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1601  * MAP_PRIVATE (with Enhanced PAN supported):
1602  *								r: (no) no
1603  *								w: (no) no
1604  *								x: (yes) yes
1605  */
1606 #define DECLARE_VM_GET_PAGE_PROT					\
1607 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1608 {									\
1609 		return protection_map[vm_flags &			\
1610 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1611 }									\
1612 EXPORT_SYMBOL(vm_get_page_prot);
1613 
1614 #endif /* _LINUX_PGTABLE_H */
1615