xref: /linux-6.15/include/linux/pgtable.h (revision 8f65aa32)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
10 
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13 
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19 
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24 
25 /*
26  * On almost all architectures and configurations, 0 can be used as the
27  * upper ceiling to free_pgtables(): on many architectures it has the same
28  * effect as using TASK_SIZE.  However, there is one configuration which
29  * must impose a more careful limit, to avoid freeing kernel pgtables.
30  */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING	0UL
33 #endif
34 
35 /*
36  * This defines the first usable user address. Platforms
37  * can override its value with custom FIRST_USER_ADDRESS
38  * defined in their respective <asm/pgtable.h>.
39  */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS	0UL
42 #endif
43 
44 /*
45  * This defines the generic helper for accessing PMD page
46  * table page. Although platforms can still override this
47  * via their respective <asm/pgtable.h>.
48  */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52 
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
54 
55 /*
56  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57  *
58  * The pXx_index() functions return the index of the entry in the page
59  * table page which would control the given virtual address
60  *
61  * As these functions may be used by the same code for different levels of
62  * the page table folding, they are always available, regardless of
63  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64  * because in such cases PTRS_PER_PxD equals 1.
65  */
66 
67 static inline unsigned long pte_index(unsigned long address)
68 {
69 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70 }
71 
72 #ifndef pmd_index
73 static inline unsigned long pmd_index(unsigned long address)
74 {
75 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76 }
77 #define pmd_index pmd_index
78 #endif
79 
80 #ifndef pud_index
81 static inline unsigned long pud_index(unsigned long address)
82 {
83 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84 }
85 #define pud_index pud_index
86 #endif
87 
88 #ifndef pgd_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91 #endif
92 
93 #ifndef pte_offset_kernel
94 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
95 {
96 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
97 }
98 #define pte_offset_kernel pte_offset_kernel
99 #endif
100 
101 #ifdef CONFIG_HIGHPTE
102 #define __pte_map(pmd, address) \
103 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
104 #define pte_unmap(pte)	do {	\
105 	kunmap_local((pte));	\
106 	rcu_read_unlock();	\
107 } while (0)
108 #else
109 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
110 {
111 	return pte_offset_kernel(pmd, address);
112 }
113 static inline void pte_unmap(pte_t *pte)
114 {
115 	rcu_read_unlock();
116 }
117 #endif
118 
119 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
120 
121 /* Find an entry in the second-level page table.. */
122 #ifndef pmd_offset
123 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
124 {
125 	return pud_pgtable(*pud) + pmd_index(address);
126 }
127 #define pmd_offset pmd_offset
128 #endif
129 
130 #ifndef pud_offset
131 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
132 {
133 	return p4d_pgtable(*p4d) + pud_index(address);
134 }
135 #define pud_offset pud_offset
136 #endif
137 
138 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
139 {
140 	return (pgd + pgd_index(address));
141 };
142 
143 /*
144  * a shortcut to get a pgd_t in a given mm
145  */
146 #ifndef pgd_offset
147 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
148 #endif
149 
150 /*
151  * a shortcut which implies the use of the kernel's pgd, instead
152  * of a process's
153  */
154 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
155 
156 /*
157  * In many cases it is known that a virtual address is mapped at PMD or PTE
158  * level, so instead of traversing all the page table levels, we can get a
159  * pointer to the PMD entry in user or kernel page table or translate a virtual
160  * address to the pointer in the PTE in the kernel page tables with simple
161  * helpers.
162  */
163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167 
168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172 
173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 	pmd_t *pmd = pmd_off_k(vaddr);
176 
177 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179 
180 #ifndef pmd_young
181 static inline int pmd_young(pmd_t pmd)
182 {
183 	return 0;
184 }
185 #endif
186 
187 #ifndef pmd_dirty
188 static inline int pmd_dirty(pmd_t pmd)
189 {
190 	return 0;
191 }
192 #endif
193 
194 /*
195  * A facility to provide lazy MMU batching.  This allows PTE updates and
196  * page invalidations to be delayed until a call to leave lazy MMU mode
197  * is issued.  Some architectures may benefit from doing this, and it is
198  * beneficial for both shadow and direct mode hypervisors, which may batch
199  * the PTE updates which happen during this window.  Note that using this
200  * interface requires that read hazards be removed from the code.  A read
201  * hazard could result in the direct mode hypervisor case, since the actual
202  * write to the page tables may not yet have taken place, so reads though
203  * a raw PTE pointer after it has been modified are not guaranteed to be
204  * up to date.  This mode can only be entered and left under the protection of
205  * the page table locks for all page tables which may be modified.  In the UP
206  * case, this is required so that preemption is disabled, and in the SMP case,
207  * it must synchronize the delayed page table writes properly on other CPUs.
208  */
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode()	do {} while (0)
211 #define arch_leave_lazy_mmu_mode()	do {} while (0)
212 #define arch_flush_lazy_mmu_mode()	do {} while (0)
213 #endif
214 
215 #ifndef pte_batch_hint
216 /**
217  * pte_batch_hint - Number of pages that can be added to batch without scanning.
218  * @ptep: Page table pointer for the entry.
219  * @pte: Page table entry.
220  *
221  * Some architectures know that a set of contiguous ptes all map the same
222  * contiguous memory with the same permissions. In this case, it can provide a
223  * hint to aid pte batching without the core code needing to scan every pte.
224  *
225  * An architecture implementation may ignore the PTE accessed state. Further,
226  * the dirty state must apply atomically to all the PTEs described by the hint.
227  *
228  * May be overridden by the architecture, else pte_batch_hint is always 1.
229  */
230 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
231 {
232 	return 1;
233 }
234 #endif
235 
236 #ifndef pte_advance_pfn
237 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
238 {
239 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
240 }
241 #endif
242 
243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
244 
245 #ifndef set_ptes
246 /**
247  * set_ptes - Map consecutive pages to a contiguous range of addresses.
248  * @mm: Address space to map the pages into.
249  * @addr: Address to map the first page at.
250  * @ptep: Page table pointer for the first entry.
251  * @pte: Page table entry for the first page.
252  * @nr: Number of pages to map.
253  *
254  * When nr==1, initial state of pte may be present or not present, and new state
255  * may be present or not present. When nr>1, initial state of all ptes must be
256  * not present, and new state must be present.
257  *
258  * May be overridden by the architecture, or the architecture can define
259  * set_pte() and PFN_PTE_SHIFT.
260  *
261  * Context: The caller holds the page table lock.  The pages all belong
262  * to the same folio.  The PTEs are all in the same PMD.
263  */
264 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
265 		pte_t *ptep, pte_t pte, unsigned int nr)
266 {
267 	page_table_check_ptes_set(mm, ptep, pte, nr);
268 
269 	arch_enter_lazy_mmu_mode();
270 	for (;;) {
271 		set_pte(ptep, pte);
272 		if (--nr == 0)
273 			break;
274 		ptep++;
275 		pte = pte_next_pfn(pte);
276 	}
277 	arch_leave_lazy_mmu_mode();
278 }
279 #endif
280 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
281 
282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
283 extern int ptep_set_access_flags(struct vm_area_struct *vma,
284 				 unsigned long address, pte_t *ptep,
285 				 pte_t entry, int dirty);
286 #endif
287 
288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
290 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
291 				 unsigned long address, pmd_t *pmdp,
292 				 pmd_t entry, int dirty);
293 extern int pudp_set_access_flags(struct vm_area_struct *vma,
294 				 unsigned long address, pud_t *pudp,
295 				 pud_t entry, int dirty);
296 #else
297 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
298 					unsigned long address, pmd_t *pmdp,
299 					pmd_t entry, int dirty)
300 {
301 	BUILD_BUG();
302 	return 0;
303 }
304 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
305 					unsigned long address, pud_t *pudp,
306 					pud_t entry, int dirty)
307 {
308 	BUILD_BUG();
309 	return 0;
310 }
311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
312 #endif
313 
314 #ifndef ptep_get
315 static inline pte_t ptep_get(pte_t *ptep)
316 {
317 	return READ_ONCE(*ptep);
318 }
319 #endif
320 
321 #ifndef pmdp_get
322 static inline pmd_t pmdp_get(pmd_t *pmdp)
323 {
324 	return READ_ONCE(*pmdp);
325 }
326 #endif
327 
328 #ifndef pudp_get
329 static inline pud_t pudp_get(pud_t *pudp)
330 {
331 	return READ_ONCE(*pudp);
332 }
333 #endif
334 
335 #ifndef p4dp_get
336 static inline p4d_t p4dp_get(p4d_t *p4dp)
337 {
338 	return READ_ONCE(*p4dp);
339 }
340 #endif
341 
342 #ifndef pgdp_get
343 static inline pgd_t pgdp_get(pgd_t *pgdp)
344 {
345 	return READ_ONCE(*pgdp);
346 }
347 #endif
348 
349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
350 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
351 					    unsigned long address,
352 					    pte_t *ptep)
353 {
354 	pte_t pte = ptep_get(ptep);
355 	int r = 1;
356 	if (!pte_young(pte))
357 		r = 0;
358 	else
359 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
360 	return r;
361 }
362 #endif
363 
364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
366 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
367 					    unsigned long address,
368 					    pmd_t *pmdp)
369 {
370 	pmd_t pmd = *pmdp;
371 	int r = 1;
372 	if (!pmd_young(pmd))
373 		r = 0;
374 	else
375 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
376 	return r;
377 }
378 #else
379 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
380 					    unsigned long address,
381 					    pmd_t *pmdp)
382 {
383 	BUILD_BUG();
384 	return 0;
385 }
386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
387 #endif
388 
389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
390 int ptep_clear_flush_young(struct vm_area_struct *vma,
391 			   unsigned long address, pte_t *ptep);
392 #endif
393 
394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
396 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
397 				  unsigned long address, pmd_t *pmdp);
398 #else
399 /*
400  * Despite relevant to THP only, this API is called from generic rmap code
401  * under PageTransHuge(), hence needs a dummy implementation for !THP
402  */
403 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
404 					 unsigned long address, pmd_t *pmdp)
405 {
406 	BUILD_BUG();
407 	return 0;
408 }
409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
410 #endif
411 
412 #ifndef arch_has_hw_nonleaf_pmd_young
413 /*
414  * Return whether the accessed bit in non-leaf PMD entries is supported on the
415  * local CPU.
416  */
417 static inline bool arch_has_hw_nonleaf_pmd_young(void)
418 {
419 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
420 }
421 #endif
422 
423 #ifndef arch_has_hw_pte_young
424 /*
425  * Return whether the accessed bit is supported on the local CPU.
426  *
427  * This stub assumes accessing through an old PTE triggers a page fault.
428  * Architectures that automatically set the access bit should overwrite it.
429  */
430 static inline bool arch_has_hw_pte_young(void)
431 {
432 	return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
433 }
434 #endif
435 
436 #ifndef arch_check_zapped_pte
437 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
438 					 pte_t pte)
439 {
440 }
441 #endif
442 
443 #ifndef arch_check_zapped_pmd
444 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
445 					 pmd_t pmd)
446 {
447 }
448 #endif
449 
450 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
452 				       unsigned long address,
453 				       pte_t *ptep)
454 {
455 	pte_t pte = ptep_get(ptep);
456 	pte_clear(mm, address, ptep);
457 	page_table_check_pte_clear(mm, pte);
458 	return pte;
459 }
460 #endif
461 
462 #ifndef clear_young_dirty_ptes
463 /**
464  * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
465  *		same folio as old/clean.
466  * @mm: Address space the pages are mapped into.
467  * @addr: Address the first page is mapped at.
468  * @ptep: Page table pointer for the first entry.
469  * @nr: Number of entries to mark old/clean.
470  * @flags: Flags to modify the PTE batch semantics.
471  *
472  * May be overridden by the architecture; otherwise, implemented by
473  * get_and_clear/modify/set for each pte in the range.
474  *
475  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
476  * some PTEs might be write-protected.
477  *
478  * Context: The caller holds the page table lock.  The PTEs map consecutive
479  * pages that belong to the same folio.  The PTEs are all in the same PMD.
480  */
481 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
482 					  unsigned long addr, pte_t *ptep,
483 					  unsigned int nr, cydp_t flags)
484 {
485 	pte_t pte;
486 
487 	for (;;) {
488 		if (flags == CYDP_CLEAR_YOUNG)
489 			ptep_test_and_clear_young(vma, addr, ptep);
490 		else {
491 			pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
492 			if (flags & CYDP_CLEAR_YOUNG)
493 				pte = pte_mkold(pte);
494 			if (flags & CYDP_CLEAR_DIRTY)
495 				pte = pte_mkclean(pte);
496 			set_pte_at(vma->vm_mm, addr, ptep, pte);
497 		}
498 		if (--nr == 0)
499 			break;
500 		ptep++;
501 		addr += PAGE_SIZE;
502 	}
503 }
504 #endif
505 
506 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
507 			      pte_t *ptep)
508 {
509 	ptep_get_and_clear(mm, addr, ptep);
510 }
511 
512 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
513 /*
514  * For walking the pagetables without holding any locks.  Some architectures
515  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
516  * instructions.  We are guaranteed that a PTE will only either go from not
517  * present to present, or present to not present -- it will not switch to a
518  * completely different present page without a TLB flush inbetween; which we
519  * are blocking by holding interrupts off.
520  *
521  * Setting ptes from not present to present goes:
522  *
523  *   ptep->pte_high = h;
524  *   smp_wmb();
525  *   ptep->pte_low = l;
526  *
527  * And present to not present goes:
528  *
529  *   ptep->pte_low = 0;
530  *   smp_wmb();
531  *   ptep->pte_high = 0;
532  *
533  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
534  * We load pte_high *after* loading pte_low, which ensures we don't see an older
535  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
536  * picked up a changed pte high. We might have gotten rubbish values from
537  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
538  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
539  * operates on present ptes we're safe.
540  */
541 static inline pte_t ptep_get_lockless(pte_t *ptep)
542 {
543 	pte_t pte;
544 
545 	do {
546 		pte.pte_low = ptep->pte_low;
547 		smp_rmb();
548 		pte.pte_high = ptep->pte_high;
549 		smp_rmb();
550 	} while (unlikely(pte.pte_low != ptep->pte_low));
551 
552 	return pte;
553 }
554 #define ptep_get_lockless ptep_get_lockless
555 
556 #if CONFIG_PGTABLE_LEVELS > 2
557 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
558 {
559 	pmd_t pmd;
560 
561 	do {
562 		pmd.pmd_low = pmdp->pmd_low;
563 		smp_rmb();
564 		pmd.pmd_high = pmdp->pmd_high;
565 		smp_rmb();
566 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
567 
568 	return pmd;
569 }
570 #define pmdp_get_lockless pmdp_get_lockless
571 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
572 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
573 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
574 
575 /*
576  * We require that the PTE can be read atomically.
577  */
578 #ifndef ptep_get_lockless
579 static inline pte_t ptep_get_lockless(pte_t *ptep)
580 {
581 	return ptep_get(ptep);
582 }
583 #endif
584 
585 #ifndef pmdp_get_lockless
586 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
587 {
588 	return pmdp_get(pmdp);
589 }
590 static inline void pmdp_get_lockless_sync(void)
591 {
592 }
593 #endif
594 
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
597 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
598 					    unsigned long address,
599 					    pmd_t *pmdp)
600 {
601 	pmd_t pmd = *pmdp;
602 
603 	pmd_clear(pmdp);
604 	page_table_check_pmd_clear(mm, pmd);
605 
606 	return pmd;
607 }
608 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
609 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
610 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
611 					    unsigned long address,
612 					    pud_t *pudp)
613 {
614 	pud_t pud = *pudp;
615 
616 	pud_clear(pudp);
617 	page_table_check_pud_clear(mm, pud);
618 
619 	return pud;
620 }
621 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
622 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
623 
624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
625 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
626 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
627 					    unsigned long address, pmd_t *pmdp,
628 					    int full)
629 {
630 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
631 }
632 #endif
633 
634 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
635 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
636 					    unsigned long address, pud_t *pudp,
637 					    int full)
638 {
639 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
640 }
641 #endif
642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
643 
644 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
645 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
646 					    unsigned long address, pte_t *ptep,
647 					    int full)
648 {
649 	return ptep_get_and_clear(mm, address, ptep);
650 }
651 #endif
652 
653 #ifndef get_and_clear_full_ptes
654 /**
655  * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
656  *			     the same folio, collecting dirty/accessed bits.
657  * @mm: Address space the pages are mapped into.
658  * @addr: Address the first page is mapped at.
659  * @ptep: Page table pointer for the first entry.
660  * @nr: Number of entries to clear.
661  * @full: Whether we are clearing a full mm.
662  *
663  * May be overridden by the architecture; otherwise, implemented as a simple
664  * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
665  * returned PTE.
666  *
667  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
668  * some PTEs might be write-protected.
669  *
670  * Context: The caller holds the page table lock.  The PTEs map consecutive
671  * pages that belong to the same folio.  The PTEs are all in the same PMD.
672  */
673 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
674 		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
675 {
676 	pte_t pte, tmp_pte;
677 
678 	pte = ptep_get_and_clear_full(mm, addr, ptep, full);
679 	while (--nr) {
680 		ptep++;
681 		addr += PAGE_SIZE;
682 		tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
683 		if (pte_dirty(tmp_pte))
684 			pte = pte_mkdirty(pte);
685 		if (pte_young(tmp_pte))
686 			pte = pte_mkyoung(pte);
687 	}
688 	return pte;
689 }
690 #endif
691 
692 #ifndef clear_full_ptes
693 /**
694  * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
695  *		     folio.
696  * @mm: Address space the pages are mapped into.
697  * @addr: Address the first page is mapped at.
698  * @ptep: Page table pointer for the first entry.
699  * @nr: Number of entries to clear.
700  * @full: Whether we are clearing a full mm.
701  *
702  * May be overridden by the architecture; otherwise, implemented as a simple
703  * loop over ptep_get_and_clear_full().
704  *
705  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
706  * some PTEs might be write-protected.
707  *
708  * Context: The caller holds the page table lock.  The PTEs map consecutive
709  * pages that belong to the same folio.  The PTEs are all in the same PMD.
710  */
711 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
712 		pte_t *ptep, unsigned int nr, int full)
713 {
714 	for (;;) {
715 		ptep_get_and_clear_full(mm, addr, ptep, full);
716 		if (--nr == 0)
717 			break;
718 		ptep++;
719 		addr += PAGE_SIZE;
720 	}
721 }
722 #endif
723 
724 /*
725  * If two threads concurrently fault at the same page, the thread that
726  * won the race updates the PTE and its local TLB/Cache. The other thread
727  * gives up, simply does nothing, and continues; on architectures where
728  * software can update TLB,  local TLB can be updated here to avoid next page
729  * fault. This function updates TLB only, do nothing with cache or others.
730  * It is the difference with function update_mmu_cache.
731  */
732 #ifndef update_mmu_tlb_range
733 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
734 				unsigned long address, pte_t *ptep, unsigned int nr)
735 {
736 }
737 #endif
738 
739 static inline void update_mmu_tlb(struct vm_area_struct *vma,
740 				unsigned long address, pte_t *ptep)
741 {
742 	update_mmu_tlb_range(vma, address, ptep, 1);
743 }
744 
745 /*
746  * Some architectures may be able to avoid expensive synchronization
747  * primitives when modifications are made to PTE's which are already
748  * not present, or in the process of an address space destruction.
749  */
750 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
751 static inline void pte_clear_not_present_full(struct mm_struct *mm,
752 					      unsigned long address,
753 					      pte_t *ptep,
754 					      int full)
755 {
756 	pte_clear(mm, address, ptep);
757 }
758 #endif
759 
760 #ifndef clear_not_present_full_ptes
761 /**
762  * clear_not_present_full_ptes - Clear multiple not present PTEs which are
763  *				 consecutive in the pgtable.
764  * @mm: Address space the ptes represent.
765  * @addr: Address of the first pte.
766  * @ptep: Page table pointer for the first entry.
767  * @nr: Number of entries to clear.
768  * @full: Whether we are clearing a full mm.
769  *
770  * May be overridden by the architecture; otherwise, implemented as a simple
771  * loop over pte_clear_not_present_full().
772  *
773  * Context: The caller holds the page table lock.  The PTEs are all not present.
774  * The PTEs are all in the same PMD.
775  */
776 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
777 		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
778 {
779 	for (;;) {
780 		pte_clear_not_present_full(mm, addr, ptep, full);
781 		if (--nr == 0)
782 			break;
783 		ptep++;
784 		addr += PAGE_SIZE;
785 	}
786 }
787 #endif
788 
789 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
790 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
791 			      unsigned long address,
792 			      pte_t *ptep);
793 #endif
794 
795 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
796 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
797 			      unsigned long address,
798 			      pmd_t *pmdp);
799 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
800 			      unsigned long address,
801 			      pud_t *pudp);
802 #endif
803 
804 #ifndef pte_mkwrite
805 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
806 {
807 	return pte_mkwrite_novma(pte);
808 }
809 #endif
810 
811 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
812 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
813 {
814 	return pmd_mkwrite_novma(pmd);
815 }
816 #endif
817 
818 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
819 struct mm_struct;
820 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
821 {
822 	pte_t old_pte = ptep_get(ptep);
823 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
824 }
825 #endif
826 
827 #ifndef wrprotect_ptes
828 /**
829  * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
830  *		    folio.
831  * @mm: Address space the pages are mapped into.
832  * @addr: Address the first page is mapped at.
833  * @ptep: Page table pointer for the first entry.
834  * @nr: Number of entries to write-protect.
835  *
836  * May be overridden by the architecture; otherwise, implemented as a simple
837  * loop over ptep_set_wrprotect().
838  *
839  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
840  * some PTEs might be write-protected.
841  *
842  * Context: The caller holds the page table lock.  The PTEs map consecutive
843  * pages that belong to the same folio.  The PTEs are all in the same PMD.
844  */
845 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
846 		pte_t *ptep, unsigned int nr)
847 {
848 	for (;;) {
849 		ptep_set_wrprotect(mm, addr, ptep);
850 		if (--nr == 0)
851 			break;
852 		ptep++;
853 		addr += PAGE_SIZE;
854 	}
855 }
856 #endif
857 
858 /*
859  * On some architectures hardware does not set page access bit when accessing
860  * memory page, it is responsibility of software setting this bit. It brings
861  * out extra page fault penalty to track page access bit. For optimization page
862  * access bit can be set during all page fault flow on these arches.
863  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
864  * where software maintains page access bit.
865  */
866 #ifndef pte_sw_mkyoung
867 static inline pte_t pte_sw_mkyoung(pte_t pte)
868 {
869 	return pte;
870 }
871 #define pte_sw_mkyoung	pte_sw_mkyoung
872 #endif
873 
874 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
875 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
876 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
877 				      unsigned long address, pmd_t *pmdp)
878 {
879 	pmd_t old_pmd = *pmdp;
880 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
881 }
882 #else
883 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
884 				      unsigned long address, pmd_t *pmdp)
885 {
886 	BUILD_BUG();
887 }
888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
889 #endif
890 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
891 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
893 static inline void pudp_set_wrprotect(struct mm_struct *mm,
894 				      unsigned long address, pud_t *pudp)
895 {
896 	pud_t old_pud = *pudp;
897 
898 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
899 }
900 #else
901 static inline void pudp_set_wrprotect(struct mm_struct *mm,
902 				      unsigned long address, pud_t *pudp)
903 {
904 	BUILD_BUG();
905 }
906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
907 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
908 #endif
909 
910 #ifndef pmdp_collapse_flush
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
913 				 unsigned long address, pmd_t *pmdp);
914 #else
915 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
916 					unsigned long address,
917 					pmd_t *pmdp)
918 {
919 	BUILD_BUG();
920 	return *pmdp;
921 }
922 #define pmdp_collapse_flush pmdp_collapse_flush
923 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
924 #endif
925 
926 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
927 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
928 				       pgtable_t pgtable);
929 #endif
930 
931 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
932 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
933 #endif
934 
935 #ifndef arch_needs_pgtable_deposit
936 #define arch_needs_pgtable_deposit() (false)
937 #endif
938 
939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
940 /*
941  * This is an implementation of pmdp_establish() that is only suitable for an
942  * architecture that doesn't have hardware dirty/accessed bits. In this case we
943  * can't race with CPU which sets these bits and non-atomic approach is fine.
944  */
945 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
946 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
947 {
948 	pmd_t old_pmd = *pmdp;
949 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
950 	return old_pmd;
951 }
952 #endif
953 
954 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
955 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
956 			    pmd_t *pmdp);
957 #endif
958 
959 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
960 
961 /*
962  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
963  * hugepage mapping in the page tables. This function is similar to
964  * pmdp_invalidate(), but should only be used if the access and dirty bits would
965  * not be cleared by the software in the new PMD value. The function ensures
966  * that hardware changes of the access and dirty bits updates would not be lost.
967  *
968  * Doing so can allow in certain architectures to avoid a TLB flush in most
969  * cases. Yet, another TLB flush might be necessary later if the PMD update
970  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
971  * even when a TLB flush is needed because of the update, the caller may be able
972  * to batch these TLB flushing operations, so fewer TLB flush operations are
973  * needed.
974  */
975 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
976 				unsigned long address, pmd_t *pmdp);
977 #endif
978 
979 #ifndef __HAVE_ARCH_PTE_SAME
980 static inline int pte_same(pte_t pte_a, pte_t pte_b)
981 {
982 	return pte_val(pte_a) == pte_val(pte_b);
983 }
984 #endif
985 
986 #ifndef __HAVE_ARCH_PTE_UNUSED
987 /*
988  * Some architectures provide facilities to virtualization guests
989  * so that they can flag allocated pages as unused. This allows the
990  * host to transparently reclaim unused pages. This function returns
991  * whether the pte's page is unused.
992  */
993 static inline int pte_unused(pte_t pte)
994 {
995 	return 0;
996 }
997 #endif
998 
999 #ifndef pte_access_permitted
1000 #define pte_access_permitted(pte, write) \
1001 	(pte_present(pte) && (!(write) || pte_write(pte)))
1002 #endif
1003 
1004 #ifndef pmd_access_permitted
1005 #define pmd_access_permitted(pmd, write) \
1006 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1007 #endif
1008 
1009 #ifndef pud_access_permitted
1010 #define pud_access_permitted(pud, write) \
1011 	(pud_present(pud) && (!(write) || pud_write(pud)))
1012 #endif
1013 
1014 #ifndef p4d_access_permitted
1015 #define p4d_access_permitted(p4d, write) \
1016 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1017 #endif
1018 
1019 #ifndef pgd_access_permitted
1020 #define pgd_access_permitted(pgd, write) \
1021 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1022 #endif
1023 
1024 #ifndef __HAVE_ARCH_PMD_SAME
1025 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1026 {
1027 	return pmd_val(pmd_a) == pmd_val(pmd_b);
1028 }
1029 #endif
1030 
1031 #ifndef pud_same
1032 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1033 {
1034 	return pud_val(pud_a) == pud_val(pud_b);
1035 }
1036 #define pud_same pud_same
1037 #endif
1038 
1039 #ifndef __HAVE_ARCH_P4D_SAME
1040 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1041 {
1042 	return p4d_val(p4d_a) == p4d_val(p4d_b);
1043 }
1044 #endif
1045 
1046 #ifndef __HAVE_ARCH_PGD_SAME
1047 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1048 {
1049 	return pgd_val(pgd_a) == pgd_val(pgd_b);
1050 }
1051 #endif
1052 
1053 /*
1054  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1055  * TLB flush will be required as a result of the "set". For example, use
1056  * in scenarios where it is known ahead of time that the routine is
1057  * setting non-present entries, or re-setting an existing entry to the
1058  * same value. Otherwise, use the typical "set" helpers and flush the
1059  * TLB.
1060  */
1061 #define set_pte_safe(ptep, pte) \
1062 ({ \
1063 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
1064 	set_pte(ptep, pte); \
1065 })
1066 
1067 #define set_pmd_safe(pmdp, pmd) \
1068 ({ \
1069 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
1070 	set_pmd(pmdp, pmd); \
1071 })
1072 
1073 #define set_pud_safe(pudp, pud) \
1074 ({ \
1075 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
1076 	set_pud(pudp, pud); \
1077 })
1078 
1079 #define set_p4d_safe(p4dp, p4d) \
1080 ({ \
1081 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1082 	set_p4d(p4dp, p4d); \
1083 })
1084 
1085 #define set_pgd_safe(pgdp, pgd) \
1086 ({ \
1087 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1088 	set_pgd(pgdp, pgd); \
1089 })
1090 
1091 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1092 /*
1093  * Some architectures support metadata associated with a page. When a
1094  * page is being swapped out, this metadata must be saved so it can be
1095  * restored when the page is swapped back in. SPARC M7 and newer
1096  * processors support an ADI (Application Data Integrity) tag for the
1097  * page as metadata for the page. arch_do_swap_page() can restore this
1098  * metadata when a page is swapped back in.
1099  */
1100 static inline void arch_do_swap_page(struct mm_struct *mm,
1101 				     struct vm_area_struct *vma,
1102 				     unsigned long addr,
1103 				     pte_t pte, pte_t oldpte)
1104 {
1105 
1106 }
1107 #endif
1108 
1109 #ifndef __HAVE_ARCH_UNMAP_ONE
1110 /*
1111  * Some architectures support metadata associated with a page. When a
1112  * page is being swapped out, this metadata must be saved so it can be
1113  * restored when the page is swapped back in. SPARC M7 and newer
1114  * processors support an ADI (Application Data Integrity) tag for the
1115  * page as metadata for the page. arch_unmap_one() can save this
1116  * metadata on a swap-out of a page.
1117  */
1118 static inline int arch_unmap_one(struct mm_struct *mm,
1119 				  struct vm_area_struct *vma,
1120 				  unsigned long addr,
1121 				  pte_t orig_pte)
1122 {
1123 	return 0;
1124 }
1125 #endif
1126 
1127 /*
1128  * Allow architectures to preserve additional metadata associated with
1129  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1130  * prototypes must be defined in the arch-specific asm/pgtable.h file.
1131  */
1132 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1133 static inline int arch_prepare_to_swap(struct folio *folio)
1134 {
1135 	return 0;
1136 }
1137 #endif
1138 
1139 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1140 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1141 {
1142 }
1143 
1144 static inline void arch_swap_invalidate_area(int type)
1145 {
1146 }
1147 #endif
1148 
1149 #ifndef __HAVE_ARCH_SWAP_RESTORE
1150 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1151 {
1152 }
1153 #endif
1154 
1155 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1156 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
1157 #endif
1158 
1159 #ifndef __HAVE_ARCH_MOVE_PTE
1160 #define move_pte(pte, old_addr, new_addr)	(pte)
1161 #endif
1162 
1163 #ifndef pte_accessible
1164 # define pte_accessible(mm, pte)	((void)(pte), 1)
1165 #endif
1166 
1167 #ifndef flush_tlb_fix_spurious_fault
1168 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1169 #endif
1170 
1171 /*
1172  * When walking page tables, get the address of the next boundary,
1173  * or the end address of the range if that comes earlier.  Although no
1174  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1175  */
1176 
1177 #define pgd_addr_end(addr, end)						\
1178 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
1179 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1180 })
1181 
1182 #ifndef p4d_addr_end
1183 #define p4d_addr_end(addr, end)						\
1184 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
1185 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1186 })
1187 #endif
1188 
1189 #ifndef pud_addr_end
1190 #define pud_addr_end(addr, end)						\
1191 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
1192 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1193 })
1194 #endif
1195 
1196 #ifndef pmd_addr_end
1197 #define pmd_addr_end(addr, end)						\
1198 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
1199 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1200 })
1201 #endif
1202 
1203 /*
1204  * When walking page tables, we usually want to skip any p?d_none entries;
1205  * and any p?d_bad entries - reporting the error before resetting to none.
1206  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1207  */
1208 void pgd_clear_bad(pgd_t *);
1209 
1210 #ifndef __PAGETABLE_P4D_FOLDED
1211 void p4d_clear_bad(p4d_t *);
1212 #else
1213 #define p4d_clear_bad(p4d)        do { } while (0)
1214 #endif
1215 
1216 #ifndef __PAGETABLE_PUD_FOLDED
1217 void pud_clear_bad(pud_t *);
1218 #else
1219 #define pud_clear_bad(p4d)        do { } while (0)
1220 #endif
1221 
1222 void pmd_clear_bad(pmd_t *);
1223 
1224 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1225 {
1226 	if (pgd_none(*pgd))
1227 		return 1;
1228 	if (unlikely(pgd_bad(*pgd))) {
1229 		pgd_clear_bad(pgd);
1230 		return 1;
1231 	}
1232 	return 0;
1233 }
1234 
1235 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1236 {
1237 	if (p4d_none(*p4d))
1238 		return 1;
1239 	if (unlikely(p4d_bad(*p4d))) {
1240 		p4d_clear_bad(p4d);
1241 		return 1;
1242 	}
1243 	return 0;
1244 }
1245 
1246 static inline int pud_none_or_clear_bad(pud_t *pud)
1247 {
1248 	if (pud_none(*pud))
1249 		return 1;
1250 	if (unlikely(pud_bad(*pud))) {
1251 		pud_clear_bad(pud);
1252 		return 1;
1253 	}
1254 	return 0;
1255 }
1256 
1257 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1258 {
1259 	if (pmd_none(*pmd))
1260 		return 1;
1261 	if (unlikely(pmd_bad(*pmd))) {
1262 		pmd_clear_bad(pmd);
1263 		return 1;
1264 	}
1265 	return 0;
1266 }
1267 
1268 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1269 					     unsigned long addr,
1270 					     pte_t *ptep)
1271 {
1272 	/*
1273 	 * Get the current pte state, but zero it out to make it
1274 	 * non-present, preventing the hardware from asynchronously
1275 	 * updating it.
1276 	 */
1277 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1278 }
1279 
1280 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1281 					     unsigned long addr,
1282 					     pte_t *ptep, pte_t pte)
1283 {
1284 	/*
1285 	 * The pte is non-present, so there's no hardware state to
1286 	 * preserve.
1287 	 */
1288 	set_pte_at(vma->vm_mm, addr, ptep, pte);
1289 }
1290 
1291 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1292 /*
1293  * Start a pte protection read-modify-write transaction, which
1294  * protects against asynchronous hardware modifications to the pte.
1295  * The intention is not to prevent the hardware from making pte
1296  * updates, but to prevent any updates it may make from being lost.
1297  *
1298  * This does not protect against other software modifications of the
1299  * pte; the appropriate pte lock must be held over the transaction.
1300  *
1301  * Note that this interface is intended to be batchable, meaning that
1302  * ptep_modify_prot_commit may not actually update the pte, but merely
1303  * queue the update to be done at some later time.  The update must be
1304  * actually committed before the pte lock is released, however.
1305  */
1306 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1307 					   unsigned long addr,
1308 					   pte_t *ptep)
1309 {
1310 	return __ptep_modify_prot_start(vma, addr, ptep);
1311 }
1312 
1313 /*
1314  * Commit an update to a pte, leaving any hardware-controlled bits in
1315  * the PTE unmodified.
1316  */
1317 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1318 					   unsigned long addr,
1319 					   pte_t *ptep, pte_t old_pte, pte_t pte)
1320 {
1321 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1322 }
1323 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1324 #endif /* CONFIG_MMU */
1325 
1326 /*
1327  * No-op macros that just return the current protection value. Defined here
1328  * because these macros can be used even if CONFIG_MMU is not defined.
1329  */
1330 
1331 #ifndef pgprot_nx
1332 #define pgprot_nx(prot)	(prot)
1333 #endif
1334 
1335 #ifndef pgprot_noncached
1336 #define pgprot_noncached(prot)	(prot)
1337 #endif
1338 
1339 #ifndef pgprot_writecombine
1340 #define pgprot_writecombine pgprot_noncached
1341 #endif
1342 
1343 #ifndef pgprot_writethrough
1344 #define pgprot_writethrough pgprot_noncached
1345 #endif
1346 
1347 #ifndef pgprot_device
1348 #define pgprot_device pgprot_noncached
1349 #endif
1350 
1351 #ifndef pgprot_mhp
1352 #define pgprot_mhp(prot)	(prot)
1353 #endif
1354 
1355 #ifdef CONFIG_MMU
1356 #ifndef pgprot_modify
1357 #define pgprot_modify pgprot_modify
1358 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1359 {
1360 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1361 		newprot = pgprot_noncached(newprot);
1362 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1363 		newprot = pgprot_writecombine(newprot);
1364 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1365 		newprot = pgprot_device(newprot);
1366 	return newprot;
1367 }
1368 #endif
1369 #endif /* CONFIG_MMU */
1370 
1371 #ifndef pgprot_encrypted
1372 #define pgprot_encrypted(prot)	(prot)
1373 #endif
1374 
1375 #ifndef pgprot_decrypted
1376 #define pgprot_decrypted(prot)	(prot)
1377 #endif
1378 
1379 /*
1380  * A facility to provide batching of the reload of page tables and
1381  * other process state with the actual context switch code for
1382  * paravirtualized guests.  By convention, only one of the batched
1383  * update (lazy) modes (CPU, MMU) should be active at any given time,
1384  * entry should never be nested, and entry and exits should always be
1385  * paired.  This is for sanity of maintaining and reasoning about the
1386  * kernel code.  In this case, the exit (end of the context switch) is
1387  * in architecture-specific code, and so doesn't need a generic
1388  * definition.
1389  */
1390 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1391 #define arch_start_context_switch(prev)	do {} while (0)
1392 #endif
1393 
1394 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1395 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1396 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1397 {
1398 	return pmd;
1399 }
1400 
1401 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1402 {
1403 	return 0;
1404 }
1405 
1406 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1407 {
1408 	return pmd;
1409 }
1410 #endif
1411 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1412 static inline int pte_soft_dirty(pte_t pte)
1413 {
1414 	return 0;
1415 }
1416 
1417 static inline int pmd_soft_dirty(pmd_t pmd)
1418 {
1419 	return 0;
1420 }
1421 
1422 static inline pte_t pte_mksoft_dirty(pte_t pte)
1423 {
1424 	return pte;
1425 }
1426 
1427 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1428 {
1429 	return pmd;
1430 }
1431 
1432 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1433 {
1434 	return pte;
1435 }
1436 
1437 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1438 {
1439 	return pmd;
1440 }
1441 
1442 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1443 {
1444 	return pte;
1445 }
1446 
1447 static inline int pte_swp_soft_dirty(pte_t pte)
1448 {
1449 	return 0;
1450 }
1451 
1452 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1453 {
1454 	return pte;
1455 }
1456 
1457 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1458 {
1459 	return pmd;
1460 }
1461 
1462 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1463 {
1464 	return 0;
1465 }
1466 
1467 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1468 {
1469 	return pmd;
1470 }
1471 #endif
1472 
1473 #ifndef __HAVE_PFNMAP_TRACKING
1474 /*
1475  * Interfaces that can be used by architecture code to keep track of
1476  * memory type of pfn mappings specified by the remap_pfn_range,
1477  * vmf_insert_pfn.
1478  */
1479 
1480 /*
1481  * track_pfn_remap is called when a _new_ pfn mapping is being established
1482  * by remap_pfn_range() for physical range indicated by pfn and size.
1483  */
1484 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1485 				  unsigned long pfn, unsigned long addr,
1486 				  unsigned long size)
1487 {
1488 	return 0;
1489 }
1490 
1491 /*
1492  * track_pfn_insert is called when a _new_ single pfn is established
1493  * by vmf_insert_pfn().
1494  */
1495 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1496 				    pfn_t pfn)
1497 {
1498 }
1499 
1500 /*
1501  * track_pfn_copy is called when vma that is covering the pfnmap gets
1502  * copied through copy_page_range().
1503  */
1504 static inline int track_pfn_copy(struct vm_area_struct *vma)
1505 {
1506 	return 0;
1507 }
1508 
1509 /*
1510  * untrack_pfn is called while unmapping a pfnmap for a region.
1511  * untrack can be called for a specific region indicated by pfn and size or
1512  * can be for the entire vma (in which case pfn, size are zero).
1513  */
1514 static inline void untrack_pfn(struct vm_area_struct *vma,
1515 			       unsigned long pfn, unsigned long size,
1516 			       bool mm_wr_locked)
1517 {
1518 }
1519 
1520 /*
1521  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1522  * or fails to copy pgtable during duplicate vm area.
1523  */
1524 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1525 {
1526 }
1527 #else
1528 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1529 			   unsigned long pfn, unsigned long addr,
1530 			   unsigned long size);
1531 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1532 			     pfn_t pfn);
1533 extern int track_pfn_copy(struct vm_area_struct *vma);
1534 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1535 			unsigned long size, bool mm_wr_locked);
1536 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1537 #endif
1538 
1539 #ifdef CONFIG_MMU
1540 #ifdef __HAVE_COLOR_ZERO_PAGE
1541 static inline int is_zero_pfn(unsigned long pfn)
1542 {
1543 	extern unsigned long zero_pfn;
1544 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1545 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1546 }
1547 
1548 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1549 
1550 #else
1551 static inline int is_zero_pfn(unsigned long pfn)
1552 {
1553 	extern unsigned long zero_pfn;
1554 	return pfn == zero_pfn;
1555 }
1556 
1557 static inline unsigned long my_zero_pfn(unsigned long addr)
1558 {
1559 	extern unsigned long zero_pfn;
1560 	return zero_pfn;
1561 }
1562 #endif
1563 #else
1564 static inline int is_zero_pfn(unsigned long pfn)
1565 {
1566 	return 0;
1567 }
1568 
1569 static inline unsigned long my_zero_pfn(unsigned long addr)
1570 {
1571 	return 0;
1572 }
1573 #endif /* CONFIG_MMU */
1574 
1575 #ifdef CONFIG_MMU
1576 
1577 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1578 static inline int pmd_trans_huge(pmd_t pmd)
1579 {
1580 	return 0;
1581 }
1582 #ifndef pmd_write
1583 static inline int pmd_write(pmd_t pmd)
1584 {
1585 	BUG();
1586 	return 0;
1587 }
1588 #endif /* pmd_write */
1589 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1590 
1591 #ifndef pud_write
1592 static inline int pud_write(pud_t pud)
1593 {
1594 	BUG();
1595 	return 0;
1596 }
1597 #endif /* pud_write */
1598 
1599 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1600 static inline int pmd_devmap(pmd_t pmd)
1601 {
1602 	return 0;
1603 }
1604 static inline int pud_devmap(pud_t pud)
1605 {
1606 	return 0;
1607 }
1608 static inline int pgd_devmap(pgd_t pgd)
1609 {
1610 	return 0;
1611 }
1612 #endif
1613 
1614 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1615 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1616 static inline int pud_trans_huge(pud_t pud)
1617 {
1618 	return 0;
1619 }
1620 #endif
1621 
1622 static inline int pud_trans_unstable(pud_t *pud)
1623 {
1624 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1625 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1626 	pud_t pudval = READ_ONCE(*pud);
1627 
1628 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1629 		return 1;
1630 	if (unlikely(pud_bad(pudval))) {
1631 		pud_clear_bad(pud);
1632 		return 1;
1633 	}
1634 #endif
1635 	return 0;
1636 }
1637 
1638 #ifndef CONFIG_NUMA_BALANCING
1639 /*
1640  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1641  * perfectly valid to indicate "no" in that case, which is why our default
1642  * implementation defaults to "always no".
1643  *
1644  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1645  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1646  * accessible VMAs.
1647  *
1648  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1649  * looking at the VMA accessibility is sufficient.
1650  */
1651 static inline int pte_protnone(pte_t pte)
1652 {
1653 	return 0;
1654 }
1655 
1656 static inline int pmd_protnone(pmd_t pmd)
1657 {
1658 	return 0;
1659 }
1660 #endif /* CONFIG_NUMA_BALANCING */
1661 
1662 #endif /* CONFIG_MMU */
1663 
1664 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1665 
1666 #ifndef __PAGETABLE_P4D_FOLDED
1667 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1668 void p4d_clear_huge(p4d_t *p4d);
1669 #else
1670 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1671 {
1672 	return 0;
1673 }
1674 static inline void p4d_clear_huge(p4d_t *p4d) { }
1675 #endif /* !__PAGETABLE_P4D_FOLDED */
1676 
1677 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1678 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1679 int pud_clear_huge(pud_t *pud);
1680 int pmd_clear_huge(pmd_t *pmd);
1681 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1682 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1683 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1684 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1685 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1686 {
1687 	return 0;
1688 }
1689 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1690 {
1691 	return 0;
1692 }
1693 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1694 {
1695 	return 0;
1696 }
1697 static inline void p4d_clear_huge(p4d_t *p4d) { }
1698 static inline int pud_clear_huge(pud_t *pud)
1699 {
1700 	return 0;
1701 }
1702 static inline int pmd_clear_huge(pmd_t *pmd)
1703 {
1704 	return 0;
1705 }
1706 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1707 {
1708 	return 0;
1709 }
1710 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1711 {
1712 	return 0;
1713 }
1714 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1715 {
1716 	return 0;
1717 }
1718 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1719 
1720 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1722 /*
1723  * ARCHes with special requirements for evicting THP backing TLB entries can
1724  * implement this. Otherwise also, it can help optimize normal TLB flush in
1725  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1726  * entire TLB if flush span is greater than a threshold, which will
1727  * likely be true for a single huge page. Thus a single THP flush will
1728  * invalidate the entire TLB which is not desirable.
1729  * e.g. see arch/arc: flush_pmd_tlb_range
1730  */
1731 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1732 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1733 #else
1734 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1735 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1736 #endif
1737 #endif
1738 
1739 struct file;
1740 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1741 			unsigned long size, pgprot_t *vma_prot);
1742 
1743 #ifndef CONFIG_X86_ESPFIX64
1744 static inline void init_espfix_bsp(void) { }
1745 #endif
1746 
1747 extern void __init pgtable_cache_init(void);
1748 
1749 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1750 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1751 {
1752 	return true;
1753 }
1754 
1755 static inline bool arch_has_pfn_modify_check(void)
1756 {
1757 	return false;
1758 }
1759 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1760 
1761 /*
1762  * Architecture PAGE_KERNEL_* fallbacks
1763  *
1764  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1765  * because they really don't support them, or the port needs to be updated to
1766  * reflect the required functionality. Below are a set of relatively safe
1767  * fallbacks, as best effort, which we can count on in lieu of the architectures
1768  * not defining them on their own yet.
1769  */
1770 
1771 #ifndef PAGE_KERNEL_RO
1772 # define PAGE_KERNEL_RO PAGE_KERNEL
1773 #endif
1774 
1775 #ifndef PAGE_KERNEL_EXEC
1776 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1777 #endif
1778 
1779 /*
1780  * Page Table Modification bits for pgtbl_mod_mask.
1781  *
1782  * These are used by the p?d_alloc_track*() set of functions an in the generic
1783  * vmalloc/ioremap code to track at which page-table levels entries have been
1784  * modified. Based on that the code can better decide when vmalloc and ioremap
1785  * mapping changes need to be synchronized to other page-tables in the system.
1786  */
1787 #define		__PGTBL_PGD_MODIFIED	0
1788 #define		__PGTBL_P4D_MODIFIED	1
1789 #define		__PGTBL_PUD_MODIFIED	2
1790 #define		__PGTBL_PMD_MODIFIED	3
1791 #define		__PGTBL_PTE_MODIFIED	4
1792 
1793 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1794 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1795 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1796 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1797 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1798 
1799 /* Page-Table Modification Mask */
1800 typedef unsigned int pgtbl_mod_mask;
1801 
1802 #endif /* !__ASSEMBLY__ */
1803 
1804 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1805 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1806 /*
1807  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1808  * with physical address space extension, but falls back to
1809  * BITS_PER_LONG otherwise.
1810  */
1811 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1812 #else
1813 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1814 #endif
1815 #endif
1816 
1817 #ifndef has_transparent_hugepage
1818 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1819 #endif
1820 
1821 #ifndef has_transparent_pud_hugepage
1822 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1823 #endif
1824 /*
1825  * On some architectures it depends on the mm if the p4d/pud or pmd
1826  * layer of the page table hierarchy is folded or not.
1827  */
1828 #ifndef mm_p4d_folded
1829 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1830 #endif
1831 
1832 #ifndef mm_pud_folded
1833 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1834 #endif
1835 
1836 #ifndef mm_pmd_folded
1837 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1838 #endif
1839 
1840 #ifndef p4d_offset_lockless
1841 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1842 #endif
1843 #ifndef pud_offset_lockless
1844 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1845 #endif
1846 #ifndef pmd_offset_lockless
1847 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1848 #endif
1849 
1850 /*
1851  * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1852  * mapping.  It should work globally across all archs, without any
1853  * dependency on CONFIG_* options.  For architectures that do not support
1854  * huge mappings on specific levels, below fallbacks will be used.
1855  *
1856  * A leaf pgtable entry should always imply the following:
1857  *
1858  * - It is a "present" entry.  IOW, before using this API, please check it
1859  *   with pXd_present() first. NOTE: it may not always mean the "present
1860  *   bit" is set.  For example, PROT_NONE entries are always "present".
1861  *
1862  * - It should _never_ be a swap entry of any type.  Above "present" check
1863  *   should have guarded this, but let's be crystal clear on this.
1864  *
1865  * - It should contain a huge PFN, which points to a huge page larger than
1866  *   PAGE_SIZE of the platform.  The PFN format isn't important here.
1867  *
1868  * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1869  *   pXd_devmap(), or hugetlb mappings).
1870  */
1871 #ifndef pgd_leaf
1872 #define pgd_leaf(x)	false
1873 #endif
1874 #ifndef p4d_leaf
1875 #define p4d_leaf(x)	false
1876 #endif
1877 #ifndef pud_leaf
1878 #define pud_leaf(x)	false
1879 #endif
1880 #ifndef pmd_leaf
1881 #define pmd_leaf(x)	false
1882 #endif
1883 
1884 #ifndef pgd_leaf_size
1885 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1886 #endif
1887 #ifndef p4d_leaf_size
1888 #define p4d_leaf_size(x) P4D_SIZE
1889 #endif
1890 #ifndef pud_leaf_size
1891 #define pud_leaf_size(x) PUD_SIZE
1892 #endif
1893 #ifndef pmd_leaf_size
1894 #define pmd_leaf_size(x) PMD_SIZE
1895 #endif
1896 #ifndef pte_leaf_size
1897 #define pte_leaf_size(x) PAGE_SIZE
1898 #endif
1899 
1900 /*
1901  * We always define pmd_pfn for all archs as it's used in lots of generic
1902  * code.  Now it happens too for pud_pfn (and can happen for larger
1903  * mappings too in the future; we're not there yet).  Instead of defining
1904  * it for all archs (like pmd_pfn), provide a fallback.
1905  *
1906  * Note that returning 0 here means any arch that didn't define this can
1907  * get severely wrong when it hits a real pud leaf.  It's arch's
1908  * responsibility to properly define it when a huge pud is possible.
1909  */
1910 #ifndef pud_pfn
1911 #define pud_pfn(x) 0
1912 #endif
1913 
1914 /*
1915  * Some architectures have MMUs that are configurable or selectable at boot
1916  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1917  * helps to have a static maximum value.
1918  */
1919 
1920 #ifndef MAX_PTRS_PER_PTE
1921 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1922 #endif
1923 
1924 #ifndef MAX_PTRS_PER_PMD
1925 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1926 #endif
1927 
1928 #ifndef MAX_PTRS_PER_PUD
1929 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1930 #endif
1931 
1932 #ifndef MAX_PTRS_PER_P4D
1933 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1934 #endif
1935 
1936 /* description of effects of mapping type and prot in current implementation.
1937  * this is due to the limited x86 page protection hardware.  The expected
1938  * behavior is in parens:
1939  *
1940  * map_type	prot
1941  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1942  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1943  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1944  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1945  *
1946  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1947  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1948  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1949  *
1950  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1951  * MAP_PRIVATE (with Enhanced PAN supported):
1952  *								r: (no) no
1953  *								w: (no) no
1954  *								x: (yes) yes
1955  */
1956 #define DECLARE_VM_GET_PAGE_PROT					\
1957 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1958 {									\
1959 		return protection_map[vm_flags &			\
1960 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1961 }									\
1962 EXPORT_SYMBOL(vm_get_page_prot);
1963 
1964 #endif /* _LINUX_PGTABLE_H */
1965