xref: /linux-6.15/include/linux/pgtable.h (revision 5b0a6700)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
10 
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13 
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19 
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24 
25 /*
26  * On almost all architectures and configurations, 0 can be used as the
27  * upper ceiling to free_pgtables(): on many architectures it has the same
28  * effect as using TASK_SIZE.  However, there is one configuration which
29  * must impose a more careful limit, to avoid freeing kernel pgtables.
30  */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING	0UL
33 #endif
34 
35 /*
36  * This defines the first usable user address. Platforms
37  * can override its value with custom FIRST_USER_ADDRESS
38  * defined in their respective <asm/pgtable.h>.
39  */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS	0UL
42 #endif
43 
44 /*
45  * This defines the generic helper for accessing PMD page
46  * table page. Although platforms can still override this
47  * via their respective <asm/pgtable.h>.
48  */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52 
53 /*
54  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55  *
56  * The pXx_index() functions return the index of the entry in the page
57  * table page which would control the given virtual address
58  *
59  * As these functions may be used by the same code for different levels of
60  * the page table folding, they are always available, regardless of
61  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62  * because in such cases PTRS_PER_PxD equals 1.
63  */
64 
65 static inline unsigned long pte_index(unsigned long address)
66 {
67 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69 
70 #ifndef pmd_index
71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77 
78 #ifndef pud_index
79 static inline unsigned long pud_index(unsigned long address)
80 {
81 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85 
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90 
91 #ifndef pte_offset_kernel
92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98 
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte)	do {	\
103 	kunmap_local((pte));	\
104 	rcu_read_unlock();	\
105 } while (0)
106 #else
107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 	return pte_offset_kernel(pmd, address);
110 }
111 static inline void pte_unmap(pte_t *pte)
112 {
113 	rcu_read_unlock();
114 }
115 #endif
116 
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118 
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 	return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127 
128 #ifndef pud_offset
129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 	return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135 
136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 	return (pgd + pgd_index(address));
139 };
140 
141 /*
142  * a shortcut to get a pgd_t in a given mm
143  */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147 
148 /*
149  * a shortcut which implies the use of the kernel's pgd, instead
150  * of a process's
151  */
152 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
153 
154 /*
155  * In many cases it is known that a virtual address is mapped at PMD or PTE
156  * level, so instead of traversing all the page table levels, we can get a
157  * pointer to the PMD entry in user or kernel page table or translate a virtual
158  * address to the pointer in the PTE in the kernel page tables with simple
159  * helpers.
160  */
161 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
162 {
163 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
164 }
165 
166 static inline pmd_t *pmd_off_k(unsigned long va)
167 {
168 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
169 }
170 
171 static inline pte_t *virt_to_kpte(unsigned long vaddr)
172 {
173 	pmd_t *pmd = pmd_off_k(vaddr);
174 
175 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
176 }
177 
178 #ifndef pmd_young
179 static inline int pmd_young(pmd_t pmd)
180 {
181 	return 0;
182 }
183 #endif
184 
185 #ifndef pmd_dirty
186 static inline int pmd_dirty(pmd_t pmd)
187 {
188 	return 0;
189 }
190 #endif
191 
192 /*
193  * A facility to provide lazy MMU batching.  This allows PTE updates and
194  * page invalidations to be delayed until a call to leave lazy MMU mode
195  * is issued.  Some architectures may benefit from doing this, and it is
196  * beneficial for both shadow and direct mode hypervisors, which may batch
197  * the PTE updates which happen during this window.  Note that using this
198  * interface requires that read hazards be removed from the code.  A read
199  * hazard could result in the direct mode hypervisor case, since the actual
200  * write to the page tables may not yet have taken place, so reads though
201  * a raw PTE pointer after it has been modified are not guaranteed to be
202  * up to date.  This mode can only be entered and left under the protection of
203  * the page table locks for all page tables which may be modified.  In the UP
204  * case, this is required so that preemption is disabled, and in the SMP case,
205  * it must synchronize the delayed page table writes properly on other CPUs.
206  */
207 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
208 #define arch_enter_lazy_mmu_mode()	do {} while (0)
209 #define arch_leave_lazy_mmu_mode()	do {} while (0)
210 #define arch_flush_lazy_mmu_mode()	do {} while (0)
211 #endif
212 
213 #ifndef pte_batch_hint
214 /**
215  * pte_batch_hint - Number of pages that can be added to batch without scanning.
216  * @ptep: Page table pointer for the entry.
217  * @pte: Page table entry.
218  *
219  * Some architectures know that a set of contiguous ptes all map the same
220  * contiguous memory with the same permissions. In this case, it can provide a
221  * hint to aid pte batching without the core code needing to scan every pte.
222  *
223  * An architecture implementation may ignore the PTE accessed state. Further,
224  * the dirty state must apply atomically to all the PTEs described by the hint.
225  *
226  * May be overridden by the architecture, else pte_batch_hint is always 1.
227  */
228 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
229 {
230 	return 1;
231 }
232 #endif
233 
234 #ifndef pte_advance_pfn
235 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
236 {
237 	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
238 }
239 #endif
240 
241 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
242 
243 #ifndef set_ptes
244 /**
245  * set_ptes - Map consecutive pages to a contiguous range of addresses.
246  * @mm: Address space to map the pages into.
247  * @addr: Address to map the first page at.
248  * @ptep: Page table pointer for the first entry.
249  * @pte: Page table entry for the first page.
250  * @nr: Number of pages to map.
251  *
252  * When nr==1, initial state of pte may be present or not present, and new state
253  * may be present or not present. When nr>1, initial state of all ptes must be
254  * not present, and new state must be present.
255  *
256  * May be overridden by the architecture, or the architecture can define
257  * set_pte() and PFN_PTE_SHIFT.
258  *
259  * Context: The caller holds the page table lock.  The pages all belong
260  * to the same folio.  The PTEs are all in the same PMD.
261  */
262 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
263 		pte_t *ptep, pte_t pte, unsigned int nr)
264 {
265 	page_table_check_ptes_set(mm, ptep, pte, nr);
266 
267 	arch_enter_lazy_mmu_mode();
268 	for (;;) {
269 		set_pte(ptep, pte);
270 		if (--nr == 0)
271 			break;
272 		ptep++;
273 		pte = pte_next_pfn(pte);
274 	}
275 	arch_leave_lazy_mmu_mode();
276 }
277 #endif
278 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
279 
280 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
281 extern int ptep_set_access_flags(struct vm_area_struct *vma,
282 				 unsigned long address, pte_t *ptep,
283 				 pte_t entry, int dirty);
284 #endif
285 
286 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
288 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
289 				 unsigned long address, pmd_t *pmdp,
290 				 pmd_t entry, int dirty);
291 extern int pudp_set_access_flags(struct vm_area_struct *vma,
292 				 unsigned long address, pud_t *pudp,
293 				 pud_t entry, int dirty);
294 #else
295 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
296 					unsigned long address, pmd_t *pmdp,
297 					pmd_t entry, int dirty)
298 {
299 	BUILD_BUG();
300 	return 0;
301 }
302 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
303 					unsigned long address, pud_t *pudp,
304 					pud_t entry, int dirty)
305 {
306 	BUILD_BUG();
307 	return 0;
308 }
309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
310 #endif
311 
312 #ifndef ptep_get
313 static inline pte_t ptep_get(pte_t *ptep)
314 {
315 	return READ_ONCE(*ptep);
316 }
317 #endif
318 
319 #ifndef pmdp_get
320 static inline pmd_t pmdp_get(pmd_t *pmdp)
321 {
322 	return READ_ONCE(*pmdp);
323 }
324 #endif
325 
326 #ifndef pudp_get
327 static inline pud_t pudp_get(pud_t *pudp)
328 {
329 	return READ_ONCE(*pudp);
330 }
331 #endif
332 
333 #ifndef p4dp_get
334 static inline p4d_t p4dp_get(p4d_t *p4dp)
335 {
336 	return READ_ONCE(*p4dp);
337 }
338 #endif
339 
340 #ifndef pgdp_get
341 static inline pgd_t pgdp_get(pgd_t *pgdp)
342 {
343 	return READ_ONCE(*pgdp);
344 }
345 #endif
346 
347 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
348 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
349 					    unsigned long address,
350 					    pte_t *ptep)
351 {
352 	pte_t pte = ptep_get(ptep);
353 	int r = 1;
354 	if (!pte_young(pte))
355 		r = 0;
356 	else
357 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
358 	return r;
359 }
360 #endif
361 
362 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
363 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
364 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
365 					    unsigned long address,
366 					    pmd_t *pmdp)
367 {
368 	pmd_t pmd = *pmdp;
369 	int r = 1;
370 	if (!pmd_young(pmd))
371 		r = 0;
372 	else
373 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
374 	return r;
375 }
376 #else
377 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
378 					    unsigned long address,
379 					    pmd_t *pmdp)
380 {
381 	BUILD_BUG();
382 	return 0;
383 }
384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
385 #endif
386 
387 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
388 int ptep_clear_flush_young(struct vm_area_struct *vma,
389 			   unsigned long address, pte_t *ptep);
390 #endif
391 
392 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
394 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
395 				  unsigned long address, pmd_t *pmdp);
396 #else
397 /*
398  * Despite relevant to THP only, this API is called from generic rmap code
399  * under PageTransHuge(), hence needs a dummy implementation for !THP
400  */
401 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
402 					 unsigned long address, pmd_t *pmdp)
403 {
404 	BUILD_BUG();
405 	return 0;
406 }
407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
408 #endif
409 
410 #ifndef arch_has_hw_nonleaf_pmd_young
411 /*
412  * Return whether the accessed bit in non-leaf PMD entries is supported on the
413  * local CPU.
414  */
415 static inline bool arch_has_hw_nonleaf_pmd_young(void)
416 {
417 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
418 }
419 #endif
420 
421 #ifndef arch_has_hw_pte_young
422 /*
423  * Return whether the accessed bit is supported on the local CPU.
424  *
425  * This stub assumes accessing through an old PTE triggers a page fault.
426  * Architectures that automatically set the access bit should overwrite it.
427  */
428 static inline bool arch_has_hw_pte_young(void)
429 {
430 	return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
431 }
432 #endif
433 
434 #ifndef arch_check_zapped_pte
435 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
436 					 pte_t pte)
437 {
438 }
439 #endif
440 
441 #ifndef arch_check_zapped_pmd
442 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
443 					 pmd_t pmd)
444 {
445 }
446 #endif
447 
448 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
449 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
450 				       unsigned long address,
451 				       pte_t *ptep)
452 {
453 	pte_t pte = ptep_get(ptep);
454 	pte_clear(mm, address, ptep);
455 	page_table_check_pte_clear(mm, pte);
456 	return pte;
457 }
458 #endif
459 
460 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
461 			      pte_t *ptep)
462 {
463 	ptep_get_and_clear(mm, addr, ptep);
464 }
465 
466 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
467 /*
468  * For walking the pagetables without holding any locks.  Some architectures
469  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
470  * instructions.  We are guaranteed that a PTE will only either go from not
471  * present to present, or present to not present -- it will not switch to a
472  * completely different present page without a TLB flush inbetween; which we
473  * are blocking by holding interrupts off.
474  *
475  * Setting ptes from not present to present goes:
476  *
477  *   ptep->pte_high = h;
478  *   smp_wmb();
479  *   ptep->pte_low = l;
480  *
481  * And present to not present goes:
482  *
483  *   ptep->pte_low = 0;
484  *   smp_wmb();
485  *   ptep->pte_high = 0;
486  *
487  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
488  * We load pte_high *after* loading pte_low, which ensures we don't see an older
489  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
490  * picked up a changed pte high. We might have gotten rubbish values from
491  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
492  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
493  * operates on present ptes we're safe.
494  */
495 static inline pte_t ptep_get_lockless(pte_t *ptep)
496 {
497 	pte_t pte;
498 
499 	do {
500 		pte.pte_low = ptep->pte_low;
501 		smp_rmb();
502 		pte.pte_high = ptep->pte_high;
503 		smp_rmb();
504 	} while (unlikely(pte.pte_low != ptep->pte_low));
505 
506 	return pte;
507 }
508 #define ptep_get_lockless ptep_get_lockless
509 
510 #if CONFIG_PGTABLE_LEVELS > 2
511 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
512 {
513 	pmd_t pmd;
514 
515 	do {
516 		pmd.pmd_low = pmdp->pmd_low;
517 		smp_rmb();
518 		pmd.pmd_high = pmdp->pmd_high;
519 		smp_rmb();
520 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
521 
522 	return pmd;
523 }
524 #define pmdp_get_lockless pmdp_get_lockless
525 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
526 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
527 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
528 
529 /*
530  * We require that the PTE can be read atomically.
531  */
532 #ifndef ptep_get_lockless
533 static inline pte_t ptep_get_lockless(pte_t *ptep)
534 {
535 	return ptep_get(ptep);
536 }
537 #endif
538 
539 #ifndef pmdp_get_lockless
540 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
541 {
542 	return pmdp_get(pmdp);
543 }
544 static inline void pmdp_get_lockless_sync(void)
545 {
546 }
547 #endif
548 
549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
550 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
551 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
552 					    unsigned long address,
553 					    pmd_t *pmdp)
554 {
555 	pmd_t pmd = *pmdp;
556 
557 	pmd_clear(pmdp);
558 	page_table_check_pmd_clear(mm, pmd);
559 
560 	return pmd;
561 }
562 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
563 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
564 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
565 					    unsigned long address,
566 					    pud_t *pudp)
567 {
568 	pud_t pud = *pudp;
569 
570 	pud_clear(pudp);
571 	page_table_check_pud_clear(mm, pud);
572 
573 	return pud;
574 }
575 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
576 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
577 
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
580 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
581 					    unsigned long address, pmd_t *pmdp,
582 					    int full)
583 {
584 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
585 }
586 #endif
587 
588 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
589 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
590 					    unsigned long address, pud_t *pudp,
591 					    int full)
592 {
593 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
594 }
595 #endif
596 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
597 
598 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
599 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
600 					    unsigned long address, pte_t *ptep,
601 					    int full)
602 {
603 	return ptep_get_and_clear(mm, address, ptep);
604 }
605 #endif
606 
607 #ifndef get_and_clear_full_ptes
608 /**
609  * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
610  *			     the same folio, collecting dirty/accessed bits.
611  * @mm: Address space the pages are mapped into.
612  * @addr: Address the first page is mapped at.
613  * @ptep: Page table pointer for the first entry.
614  * @nr: Number of entries to clear.
615  * @full: Whether we are clearing a full mm.
616  *
617  * May be overridden by the architecture; otherwise, implemented as a simple
618  * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
619  * returned PTE.
620  *
621  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
622  * some PTEs might be write-protected.
623  *
624  * Context: The caller holds the page table lock.  The PTEs map consecutive
625  * pages that belong to the same folio.  The PTEs are all in the same PMD.
626  */
627 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
628 		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
629 {
630 	pte_t pte, tmp_pte;
631 
632 	pte = ptep_get_and_clear_full(mm, addr, ptep, full);
633 	while (--nr) {
634 		ptep++;
635 		addr += PAGE_SIZE;
636 		tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
637 		if (pte_dirty(tmp_pte))
638 			pte = pte_mkdirty(pte);
639 		if (pte_young(tmp_pte))
640 			pte = pte_mkyoung(pte);
641 	}
642 	return pte;
643 }
644 #endif
645 
646 #ifndef clear_full_ptes
647 /**
648  * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
649  *		     folio.
650  * @mm: Address space the pages are mapped into.
651  * @addr: Address the first page is mapped at.
652  * @ptep: Page table pointer for the first entry.
653  * @nr: Number of entries to clear.
654  * @full: Whether we are clearing a full mm.
655  *
656  * May be overridden by the architecture; otherwise, implemented as a simple
657  * loop over ptep_get_and_clear_full().
658  *
659  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
660  * some PTEs might be write-protected.
661  *
662  * Context: The caller holds the page table lock.  The PTEs map consecutive
663  * pages that belong to the same folio.  The PTEs are all in the same PMD.
664  */
665 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
666 		pte_t *ptep, unsigned int nr, int full)
667 {
668 	for (;;) {
669 		ptep_get_and_clear_full(mm, addr, ptep, full);
670 		if (--nr == 0)
671 			break;
672 		ptep++;
673 		addr += PAGE_SIZE;
674 	}
675 }
676 #endif
677 
678 /*
679  * If two threads concurrently fault at the same page, the thread that
680  * won the race updates the PTE and its local TLB/Cache. The other thread
681  * gives up, simply does nothing, and continues; on architectures where
682  * software can update TLB,  local TLB can be updated here to avoid next page
683  * fault. This function updates TLB only, do nothing with cache or others.
684  * It is the difference with function update_mmu_cache.
685  */
686 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
687 static inline void update_mmu_tlb(struct vm_area_struct *vma,
688 				unsigned long address, pte_t *ptep)
689 {
690 }
691 #define __HAVE_ARCH_UPDATE_MMU_TLB
692 #endif
693 
694 /*
695  * Some architectures may be able to avoid expensive synchronization
696  * primitives when modifications are made to PTE's which are already
697  * not present, or in the process of an address space destruction.
698  */
699 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
700 static inline void pte_clear_not_present_full(struct mm_struct *mm,
701 					      unsigned long address,
702 					      pte_t *ptep,
703 					      int full)
704 {
705 	pte_clear(mm, address, ptep);
706 }
707 #endif
708 
709 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
710 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
711 			      unsigned long address,
712 			      pte_t *ptep);
713 #endif
714 
715 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
716 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
717 			      unsigned long address,
718 			      pmd_t *pmdp);
719 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
720 			      unsigned long address,
721 			      pud_t *pudp);
722 #endif
723 
724 #ifndef pte_mkwrite
725 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
726 {
727 	return pte_mkwrite_novma(pte);
728 }
729 #endif
730 
731 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
732 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
733 {
734 	return pmd_mkwrite_novma(pmd);
735 }
736 #endif
737 
738 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
739 struct mm_struct;
740 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
741 {
742 	pte_t old_pte = ptep_get(ptep);
743 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
744 }
745 #endif
746 
747 #ifndef wrprotect_ptes
748 /**
749  * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
750  *		    folio.
751  * @mm: Address space the pages are mapped into.
752  * @addr: Address the first page is mapped at.
753  * @ptep: Page table pointer for the first entry.
754  * @nr: Number of entries to write-protect.
755  *
756  * May be overridden by the architecture; otherwise, implemented as a simple
757  * loop over ptep_set_wrprotect().
758  *
759  * Note that PTE bits in the PTE range besides the PFN can differ. For example,
760  * some PTEs might be write-protected.
761  *
762  * Context: The caller holds the page table lock.  The PTEs map consecutive
763  * pages that belong to the same folio.  The PTEs are all in the same PMD.
764  */
765 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
766 		pte_t *ptep, unsigned int nr)
767 {
768 	for (;;) {
769 		ptep_set_wrprotect(mm, addr, ptep);
770 		if (--nr == 0)
771 			break;
772 		ptep++;
773 		addr += PAGE_SIZE;
774 	}
775 }
776 #endif
777 
778 /*
779  * On some architectures hardware does not set page access bit when accessing
780  * memory page, it is responsibility of software setting this bit. It brings
781  * out extra page fault penalty to track page access bit. For optimization page
782  * access bit can be set during all page fault flow on these arches.
783  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
784  * where software maintains page access bit.
785  */
786 #ifndef pte_sw_mkyoung
787 static inline pte_t pte_sw_mkyoung(pte_t pte)
788 {
789 	return pte;
790 }
791 #define pte_sw_mkyoung	pte_sw_mkyoung
792 #endif
793 
794 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
796 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
797 				      unsigned long address, pmd_t *pmdp)
798 {
799 	pmd_t old_pmd = *pmdp;
800 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
801 }
802 #else
803 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
804 				      unsigned long address, pmd_t *pmdp)
805 {
806 	BUILD_BUG();
807 }
808 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
809 #endif
810 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
811 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
812 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
813 static inline void pudp_set_wrprotect(struct mm_struct *mm,
814 				      unsigned long address, pud_t *pudp)
815 {
816 	pud_t old_pud = *pudp;
817 
818 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
819 }
820 #else
821 static inline void pudp_set_wrprotect(struct mm_struct *mm,
822 				      unsigned long address, pud_t *pudp)
823 {
824 	BUILD_BUG();
825 }
826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
827 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
828 #endif
829 
830 #ifndef pmdp_collapse_flush
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
832 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
833 				 unsigned long address, pmd_t *pmdp);
834 #else
835 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
836 					unsigned long address,
837 					pmd_t *pmdp)
838 {
839 	BUILD_BUG();
840 	return *pmdp;
841 }
842 #define pmdp_collapse_flush pmdp_collapse_flush
843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
844 #endif
845 
846 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
847 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
848 				       pgtable_t pgtable);
849 #endif
850 
851 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
852 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
853 #endif
854 
855 #ifndef arch_needs_pgtable_deposit
856 #define arch_needs_pgtable_deposit() (false)
857 #endif
858 
859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
860 /*
861  * This is an implementation of pmdp_establish() that is only suitable for an
862  * architecture that doesn't have hardware dirty/accessed bits. In this case we
863  * can't race with CPU which sets these bits and non-atomic approach is fine.
864  */
865 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
866 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
867 {
868 	pmd_t old_pmd = *pmdp;
869 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
870 	return old_pmd;
871 }
872 #endif
873 
874 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
875 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
876 			    pmd_t *pmdp);
877 #endif
878 
879 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
880 
881 /*
882  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
883  * hugepage mapping in the page tables. This function is similar to
884  * pmdp_invalidate(), but should only be used if the access and dirty bits would
885  * not be cleared by the software in the new PMD value. The function ensures
886  * that hardware changes of the access and dirty bits updates would not be lost.
887  *
888  * Doing so can allow in certain architectures to avoid a TLB flush in most
889  * cases. Yet, another TLB flush might be necessary later if the PMD update
890  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
891  * even when a TLB flush is needed because of the update, the caller may be able
892  * to batch these TLB flushing operations, so fewer TLB flush operations are
893  * needed.
894  */
895 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
896 				unsigned long address, pmd_t *pmdp);
897 #endif
898 
899 #ifndef __HAVE_ARCH_PTE_SAME
900 static inline int pte_same(pte_t pte_a, pte_t pte_b)
901 {
902 	return pte_val(pte_a) == pte_val(pte_b);
903 }
904 #endif
905 
906 #ifndef __HAVE_ARCH_PTE_UNUSED
907 /*
908  * Some architectures provide facilities to virtualization guests
909  * so that they can flag allocated pages as unused. This allows the
910  * host to transparently reclaim unused pages. This function returns
911  * whether the pte's page is unused.
912  */
913 static inline int pte_unused(pte_t pte)
914 {
915 	return 0;
916 }
917 #endif
918 
919 #ifndef pte_access_permitted
920 #define pte_access_permitted(pte, write) \
921 	(pte_present(pte) && (!(write) || pte_write(pte)))
922 #endif
923 
924 #ifndef pmd_access_permitted
925 #define pmd_access_permitted(pmd, write) \
926 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
927 #endif
928 
929 #ifndef pud_access_permitted
930 #define pud_access_permitted(pud, write) \
931 	(pud_present(pud) && (!(write) || pud_write(pud)))
932 #endif
933 
934 #ifndef p4d_access_permitted
935 #define p4d_access_permitted(p4d, write) \
936 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
937 #endif
938 
939 #ifndef pgd_access_permitted
940 #define pgd_access_permitted(pgd, write) \
941 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
942 #endif
943 
944 #ifndef __HAVE_ARCH_PMD_SAME
945 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
946 {
947 	return pmd_val(pmd_a) == pmd_val(pmd_b);
948 }
949 #endif
950 
951 #ifndef pud_same
952 static inline int pud_same(pud_t pud_a, pud_t pud_b)
953 {
954 	return pud_val(pud_a) == pud_val(pud_b);
955 }
956 #define pud_same pud_same
957 #endif
958 
959 #ifndef __HAVE_ARCH_P4D_SAME
960 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
961 {
962 	return p4d_val(p4d_a) == p4d_val(p4d_b);
963 }
964 #endif
965 
966 #ifndef __HAVE_ARCH_PGD_SAME
967 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
968 {
969 	return pgd_val(pgd_a) == pgd_val(pgd_b);
970 }
971 #endif
972 
973 /*
974  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
975  * TLB flush will be required as a result of the "set". For example, use
976  * in scenarios where it is known ahead of time that the routine is
977  * setting non-present entries, or re-setting an existing entry to the
978  * same value. Otherwise, use the typical "set" helpers and flush the
979  * TLB.
980  */
981 #define set_pte_safe(ptep, pte) \
982 ({ \
983 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
984 	set_pte(ptep, pte); \
985 })
986 
987 #define set_pmd_safe(pmdp, pmd) \
988 ({ \
989 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
990 	set_pmd(pmdp, pmd); \
991 })
992 
993 #define set_pud_safe(pudp, pud) \
994 ({ \
995 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
996 	set_pud(pudp, pud); \
997 })
998 
999 #define set_p4d_safe(p4dp, p4d) \
1000 ({ \
1001 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1002 	set_p4d(p4dp, p4d); \
1003 })
1004 
1005 #define set_pgd_safe(pgdp, pgd) \
1006 ({ \
1007 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1008 	set_pgd(pgdp, pgd); \
1009 })
1010 
1011 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1012 /*
1013  * Some architectures support metadata associated with a page. When a
1014  * page is being swapped out, this metadata must be saved so it can be
1015  * restored when the page is swapped back in. SPARC M7 and newer
1016  * processors support an ADI (Application Data Integrity) tag for the
1017  * page as metadata for the page. arch_do_swap_page() can restore this
1018  * metadata when a page is swapped back in.
1019  */
1020 static inline void arch_do_swap_page(struct mm_struct *mm,
1021 				     struct vm_area_struct *vma,
1022 				     unsigned long addr,
1023 				     pte_t pte, pte_t oldpte)
1024 {
1025 
1026 }
1027 #endif
1028 
1029 #ifndef __HAVE_ARCH_UNMAP_ONE
1030 /*
1031  * Some architectures support metadata associated with a page. When a
1032  * page is being swapped out, this metadata must be saved so it can be
1033  * restored when the page is swapped back in. SPARC M7 and newer
1034  * processors support an ADI (Application Data Integrity) tag for the
1035  * page as metadata for the page. arch_unmap_one() can save this
1036  * metadata on a swap-out of a page.
1037  */
1038 static inline int arch_unmap_one(struct mm_struct *mm,
1039 				  struct vm_area_struct *vma,
1040 				  unsigned long addr,
1041 				  pte_t orig_pte)
1042 {
1043 	return 0;
1044 }
1045 #endif
1046 
1047 /*
1048  * Allow architectures to preserve additional metadata associated with
1049  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1050  * prototypes must be defined in the arch-specific asm/pgtable.h file.
1051  */
1052 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1053 static inline int arch_prepare_to_swap(struct page *page)
1054 {
1055 	return 0;
1056 }
1057 #endif
1058 
1059 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1060 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1061 {
1062 }
1063 
1064 static inline void arch_swap_invalidate_area(int type)
1065 {
1066 }
1067 #endif
1068 
1069 #ifndef __HAVE_ARCH_SWAP_RESTORE
1070 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1071 {
1072 }
1073 #endif
1074 
1075 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1076 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
1077 #endif
1078 
1079 #ifndef __HAVE_ARCH_MOVE_PTE
1080 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
1081 #endif
1082 
1083 #ifndef pte_accessible
1084 # define pte_accessible(mm, pte)	((void)(pte), 1)
1085 #endif
1086 
1087 #ifndef flush_tlb_fix_spurious_fault
1088 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1089 #endif
1090 
1091 /*
1092  * When walking page tables, get the address of the next boundary,
1093  * or the end address of the range if that comes earlier.  Although no
1094  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1095  */
1096 
1097 #define pgd_addr_end(addr, end)						\
1098 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
1099 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1100 })
1101 
1102 #ifndef p4d_addr_end
1103 #define p4d_addr_end(addr, end)						\
1104 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
1105 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1106 })
1107 #endif
1108 
1109 #ifndef pud_addr_end
1110 #define pud_addr_end(addr, end)						\
1111 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
1112 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1113 })
1114 #endif
1115 
1116 #ifndef pmd_addr_end
1117 #define pmd_addr_end(addr, end)						\
1118 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
1119 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1120 })
1121 #endif
1122 
1123 /*
1124  * When walking page tables, we usually want to skip any p?d_none entries;
1125  * and any p?d_bad entries - reporting the error before resetting to none.
1126  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1127  */
1128 void pgd_clear_bad(pgd_t *);
1129 
1130 #ifndef __PAGETABLE_P4D_FOLDED
1131 void p4d_clear_bad(p4d_t *);
1132 #else
1133 #define p4d_clear_bad(p4d)        do { } while (0)
1134 #endif
1135 
1136 #ifndef __PAGETABLE_PUD_FOLDED
1137 void pud_clear_bad(pud_t *);
1138 #else
1139 #define pud_clear_bad(p4d)        do { } while (0)
1140 #endif
1141 
1142 void pmd_clear_bad(pmd_t *);
1143 
1144 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1145 {
1146 	if (pgd_none(*pgd))
1147 		return 1;
1148 	if (unlikely(pgd_bad(*pgd))) {
1149 		pgd_clear_bad(pgd);
1150 		return 1;
1151 	}
1152 	return 0;
1153 }
1154 
1155 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1156 {
1157 	if (p4d_none(*p4d))
1158 		return 1;
1159 	if (unlikely(p4d_bad(*p4d))) {
1160 		p4d_clear_bad(p4d);
1161 		return 1;
1162 	}
1163 	return 0;
1164 }
1165 
1166 static inline int pud_none_or_clear_bad(pud_t *pud)
1167 {
1168 	if (pud_none(*pud))
1169 		return 1;
1170 	if (unlikely(pud_bad(*pud))) {
1171 		pud_clear_bad(pud);
1172 		return 1;
1173 	}
1174 	return 0;
1175 }
1176 
1177 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1178 {
1179 	if (pmd_none(*pmd))
1180 		return 1;
1181 	if (unlikely(pmd_bad(*pmd))) {
1182 		pmd_clear_bad(pmd);
1183 		return 1;
1184 	}
1185 	return 0;
1186 }
1187 
1188 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1189 					     unsigned long addr,
1190 					     pte_t *ptep)
1191 {
1192 	/*
1193 	 * Get the current pte state, but zero it out to make it
1194 	 * non-present, preventing the hardware from asynchronously
1195 	 * updating it.
1196 	 */
1197 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1198 }
1199 
1200 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1201 					     unsigned long addr,
1202 					     pte_t *ptep, pte_t pte)
1203 {
1204 	/*
1205 	 * The pte is non-present, so there's no hardware state to
1206 	 * preserve.
1207 	 */
1208 	set_pte_at(vma->vm_mm, addr, ptep, pte);
1209 }
1210 
1211 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1212 /*
1213  * Start a pte protection read-modify-write transaction, which
1214  * protects against asynchronous hardware modifications to the pte.
1215  * The intention is not to prevent the hardware from making pte
1216  * updates, but to prevent any updates it may make from being lost.
1217  *
1218  * This does not protect against other software modifications of the
1219  * pte; the appropriate pte lock must be held over the transaction.
1220  *
1221  * Note that this interface is intended to be batchable, meaning that
1222  * ptep_modify_prot_commit may not actually update the pte, but merely
1223  * queue the update to be done at some later time.  The update must be
1224  * actually committed before the pte lock is released, however.
1225  */
1226 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1227 					   unsigned long addr,
1228 					   pte_t *ptep)
1229 {
1230 	return __ptep_modify_prot_start(vma, addr, ptep);
1231 }
1232 
1233 /*
1234  * Commit an update to a pte, leaving any hardware-controlled bits in
1235  * the PTE unmodified.
1236  */
1237 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1238 					   unsigned long addr,
1239 					   pte_t *ptep, pte_t old_pte, pte_t pte)
1240 {
1241 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1242 }
1243 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1244 #endif /* CONFIG_MMU */
1245 
1246 /*
1247  * No-op macros that just return the current protection value. Defined here
1248  * because these macros can be used even if CONFIG_MMU is not defined.
1249  */
1250 
1251 #ifndef pgprot_nx
1252 #define pgprot_nx(prot)	(prot)
1253 #endif
1254 
1255 #ifndef pgprot_noncached
1256 #define pgprot_noncached(prot)	(prot)
1257 #endif
1258 
1259 #ifndef pgprot_writecombine
1260 #define pgprot_writecombine pgprot_noncached
1261 #endif
1262 
1263 #ifndef pgprot_writethrough
1264 #define pgprot_writethrough pgprot_noncached
1265 #endif
1266 
1267 #ifndef pgprot_device
1268 #define pgprot_device pgprot_noncached
1269 #endif
1270 
1271 #ifndef pgprot_mhp
1272 #define pgprot_mhp(prot)	(prot)
1273 #endif
1274 
1275 #ifdef CONFIG_MMU
1276 #ifndef pgprot_modify
1277 #define pgprot_modify pgprot_modify
1278 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1279 {
1280 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1281 		newprot = pgprot_noncached(newprot);
1282 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1283 		newprot = pgprot_writecombine(newprot);
1284 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1285 		newprot = pgprot_device(newprot);
1286 	return newprot;
1287 }
1288 #endif
1289 #endif /* CONFIG_MMU */
1290 
1291 #ifndef pgprot_encrypted
1292 #define pgprot_encrypted(prot)	(prot)
1293 #endif
1294 
1295 #ifndef pgprot_decrypted
1296 #define pgprot_decrypted(prot)	(prot)
1297 #endif
1298 
1299 /*
1300  * A facility to provide batching of the reload of page tables and
1301  * other process state with the actual context switch code for
1302  * paravirtualized guests.  By convention, only one of the batched
1303  * update (lazy) modes (CPU, MMU) should be active at any given time,
1304  * entry should never be nested, and entry and exits should always be
1305  * paired.  This is for sanity of maintaining and reasoning about the
1306  * kernel code.  In this case, the exit (end of the context switch) is
1307  * in architecture-specific code, and so doesn't need a generic
1308  * definition.
1309  */
1310 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1311 #define arch_start_context_switch(prev)	do {} while (0)
1312 #endif
1313 
1314 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1315 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1316 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1317 {
1318 	return pmd;
1319 }
1320 
1321 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1322 {
1323 	return 0;
1324 }
1325 
1326 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1327 {
1328 	return pmd;
1329 }
1330 #endif
1331 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1332 static inline int pte_soft_dirty(pte_t pte)
1333 {
1334 	return 0;
1335 }
1336 
1337 static inline int pmd_soft_dirty(pmd_t pmd)
1338 {
1339 	return 0;
1340 }
1341 
1342 static inline pte_t pte_mksoft_dirty(pte_t pte)
1343 {
1344 	return pte;
1345 }
1346 
1347 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1348 {
1349 	return pmd;
1350 }
1351 
1352 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1353 {
1354 	return pte;
1355 }
1356 
1357 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1358 {
1359 	return pmd;
1360 }
1361 
1362 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1363 {
1364 	return pte;
1365 }
1366 
1367 static inline int pte_swp_soft_dirty(pte_t pte)
1368 {
1369 	return 0;
1370 }
1371 
1372 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1373 {
1374 	return pte;
1375 }
1376 
1377 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1378 {
1379 	return pmd;
1380 }
1381 
1382 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1383 {
1384 	return 0;
1385 }
1386 
1387 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1388 {
1389 	return pmd;
1390 }
1391 #endif
1392 
1393 #ifndef __HAVE_PFNMAP_TRACKING
1394 /*
1395  * Interfaces that can be used by architecture code to keep track of
1396  * memory type of pfn mappings specified by the remap_pfn_range,
1397  * vmf_insert_pfn.
1398  */
1399 
1400 /*
1401  * track_pfn_remap is called when a _new_ pfn mapping is being established
1402  * by remap_pfn_range() for physical range indicated by pfn and size.
1403  */
1404 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1405 				  unsigned long pfn, unsigned long addr,
1406 				  unsigned long size)
1407 {
1408 	return 0;
1409 }
1410 
1411 /*
1412  * track_pfn_insert is called when a _new_ single pfn is established
1413  * by vmf_insert_pfn().
1414  */
1415 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1416 				    pfn_t pfn)
1417 {
1418 }
1419 
1420 /*
1421  * track_pfn_copy is called when vma that is covering the pfnmap gets
1422  * copied through copy_page_range().
1423  */
1424 static inline int track_pfn_copy(struct vm_area_struct *vma)
1425 {
1426 	return 0;
1427 }
1428 
1429 /*
1430  * untrack_pfn is called while unmapping a pfnmap for a region.
1431  * untrack can be called for a specific region indicated by pfn and size or
1432  * can be for the entire vma (in which case pfn, size are zero).
1433  */
1434 static inline void untrack_pfn(struct vm_area_struct *vma,
1435 			       unsigned long pfn, unsigned long size,
1436 			       bool mm_wr_locked)
1437 {
1438 }
1439 
1440 /*
1441  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1442  * or fails to copy pgtable during duplicate vm area.
1443  */
1444 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1445 {
1446 }
1447 #else
1448 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1449 			   unsigned long pfn, unsigned long addr,
1450 			   unsigned long size);
1451 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1452 			     pfn_t pfn);
1453 extern int track_pfn_copy(struct vm_area_struct *vma);
1454 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1455 			unsigned long size, bool mm_wr_locked);
1456 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1457 #endif
1458 
1459 #ifdef CONFIG_MMU
1460 #ifdef __HAVE_COLOR_ZERO_PAGE
1461 static inline int is_zero_pfn(unsigned long pfn)
1462 {
1463 	extern unsigned long zero_pfn;
1464 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1465 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1466 }
1467 
1468 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1469 
1470 #else
1471 static inline int is_zero_pfn(unsigned long pfn)
1472 {
1473 	extern unsigned long zero_pfn;
1474 	return pfn == zero_pfn;
1475 }
1476 
1477 static inline unsigned long my_zero_pfn(unsigned long addr)
1478 {
1479 	extern unsigned long zero_pfn;
1480 	return zero_pfn;
1481 }
1482 #endif
1483 #else
1484 static inline int is_zero_pfn(unsigned long pfn)
1485 {
1486 	return 0;
1487 }
1488 
1489 static inline unsigned long my_zero_pfn(unsigned long addr)
1490 {
1491 	return 0;
1492 }
1493 #endif /* CONFIG_MMU */
1494 
1495 #ifdef CONFIG_MMU
1496 
1497 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1498 static inline int pmd_trans_huge(pmd_t pmd)
1499 {
1500 	return 0;
1501 }
1502 #ifndef pmd_write
1503 static inline int pmd_write(pmd_t pmd)
1504 {
1505 	BUG();
1506 	return 0;
1507 }
1508 #endif /* pmd_write */
1509 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1510 
1511 #ifndef pud_write
1512 static inline int pud_write(pud_t pud)
1513 {
1514 	BUG();
1515 	return 0;
1516 }
1517 #endif /* pud_write */
1518 
1519 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1520 static inline int pmd_devmap(pmd_t pmd)
1521 {
1522 	return 0;
1523 }
1524 static inline int pud_devmap(pud_t pud)
1525 {
1526 	return 0;
1527 }
1528 static inline int pgd_devmap(pgd_t pgd)
1529 {
1530 	return 0;
1531 }
1532 #endif
1533 
1534 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1535 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1536 static inline int pud_trans_huge(pud_t pud)
1537 {
1538 	return 0;
1539 }
1540 #endif
1541 
1542 static inline int pud_trans_unstable(pud_t *pud)
1543 {
1544 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1545 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1546 	pud_t pudval = READ_ONCE(*pud);
1547 
1548 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1549 		return 1;
1550 	if (unlikely(pud_bad(pudval))) {
1551 		pud_clear_bad(pud);
1552 		return 1;
1553 	}
1554 #endif
1555 	return 0;
1556 }
1557 
1558 #ifndef CONFIG_NUMA_BALANCING
1559 /*
1560  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1561  * perfectly valid to indicate "no" in that case, which is why our default
1562  * implementation defaults to "always no".
1563  *
1564  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1565  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1566  * accessible VMAs.
1567  *
1568  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1569  * looking at the VMA accessibility is sufficient.
1570  */
1571 static inline int pte_protnone(pte_t pte)
1572 {
1573 	return 0;
1574 }
1575 
1576 static inline int pmd_protnone(pmd_t pmd)
1577 {
1578 	return 0;
1579 }
1580 #endif /* CONFIG_NUMA_BALANCING */
1581 
1582 #endif /* CONFIG_MMU */
1583 
1584 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1585 
1586 #ifndef __PAGETABLE_P4D_FOLDED
1587 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1588 void p4d_clear_huge(p4d_t *p4d);
1589 #else
1590 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1591 {
1592 	return 0;
1593 }
1594 static inline void p4d_clear_huge(p4d_t *p4d) { }
1595 #endif /* !__PAGETABLE_P4D_FOLDED */
1596 
1597 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1598 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1599 int pud_clear_huge(pud_t *pud);
1600 int pmd_clear_huge(pmd_t *pmd);
1601 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1602 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1603 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1604 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1605 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1606 {
1607 	return 0;
1608 }
1609 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1610 {
1611 	return 0;
1612 }
1613 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1614 {
1615 	return 0;
1616 }
1617 static inline void p4d_clear_huge(p4d_t *p4d) { }
1618 static inline int pud_clear_huge(pud_t *pud)
1619 {
1620 	return 0;
1621 }
1622 static inline int pmd_clear_huge(pmd_t *pmd)
1623 {
1624 	return 0;
1625 }
1626 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1627 {
1628 	return 0;
1629 }
1630 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1631 {
1632 	return 0;
1633 }
1634 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1635 {
1636 	return 0;
1637 }
1638 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1639 
1640 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1642 /*
1643  * ARCHes with special requirements for evicting THP backing TLB entries can
1644  * implement this. Otherwise also, it can help optimize normal TLB flush in
1645  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1646  * entire TLB if flush span is greater than a threshold, which will
1647  * likely be true for a single huge page. Thus a single THP flush will
1648  * invalidate the entire TLB which is not desirable.
1649  * e.g. see arch/arc: flush_pmd_tlb_range
1650  */
1651 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1652 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1653 #else
1654 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1655 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1656 #endif
1657 #endif
1658 
1659 struct file;
1660 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1661 			unsigned long size, pgprot_t *vma_prot);
1662 
1663 #ifndef CONFIG_X86_ESPFIX64
1664 static inline void init_espfix_bsp(void) { }
1665 #endif
1666 
1667 extern void __init pgtable_cache_init(void);
1668 
1669 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1670 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1671 {
1672 	return true;
1673 }
1674 
1675 static inline bool arch_has_pfn_modify_check(void)
1676 {
1677 	return false;
1678 }
1679 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1680 
1681 /*
1682  * Architecture PAGE_KERNEL_* fallbacks
1683  *
1684  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1685  * because they really don't support them, or the port needs to be updated to
1686  * reflect the required functionality. Below are a set of relatively safe
1687  * fallbacks, as best effort, which we can count on in lieu of the architectures
1688  * not defining them on their own yet.
1689  */
1690 
1691 #ifndef PAGE_KERNEL_RO
1692 # define PAGE_KERNEL_RO PAGE_KERNEL
1693 #endif
1694 
1695 #ifndef PAGE_KERNEL_EXEC
1696 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1697 #endif
1698 
1699 /*
1700  * Page Table Modification bits for pgtbl_mod_mask.
1701  *
1702  * These are used by the p?d_alloc_track*() set of functions an in the generic
1703  * vmalloc/ioremap code to track at which page-table levels entries have been
1704  * modified. Based on that the code can better decide when vmalloc and ioremap
1705  * mapping changes need to be synchronized to other page-tables in the system.
1706  */
1707 #define		__PGTBL_PGD_MODIFIED	0
1708 #define		__PGTBL_P4D_MODIFIED	1
1709 #define		__PGTBL_PUD_MODIFIED	2
1710 #define		__PGTBL_PMD_MODIFIED	3
1711 #define		__PGTBL_PTE_MODIFIED	4
1712 
1713 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1714 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1715 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1716 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1717 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1718 
1719 /* Page-Table Modification Mask */
1720 typedef unsigned int pgtbl_mod_mask;
1721 
1722 #endif /* !__ASSEMBLY__ */
1723 
1724 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1725 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1726 /*
1727  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1728  * with physical address space extension, but falls back to
1729  * BITS_PER_LONG otherwise.
1730  */
1731 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1732 #else
1733 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1734 #endif
1735 #endif
1736 
1737 #ifndef has_transparent_hugepage
1738 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1739 #endif
1740 
1741 #ifndef has_transparent_pud_hugepage
1742 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1743 #endif
1744 /*
1745  * On some architectures it depends on the mm if the p4d/pud or pmd
1746  * layer of the page table hierarchy is folded or not.
1747  */
1748 #ifndef mm_p4d_folded
1749 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1750 #endif
1751 
1752 #ifndef mm_pud_folded
1753 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1754 #endif
1755 
1756 #ifndef mm_pmd_folded
1757 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1758 #endif
1759 
1760 #ifndef p4d_offset_lockless
1761 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1762 #endif
1763 #ifndef pud_offset_lockless
1764 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1765 #endif
1766 #ifndef pmd_offset_lockless
1767 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1768 #endif
1769 
1770 /*
1771  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1772  * This differs from p?d_huge() by the fact that they are always available (if
1773  * the architecture supports large pages at the appropriate level) even
1774  * if CONFIG_HUGETLB_PAGE is not defined.
1775  * Only meaningful when called on a valid entry.
1776  */
1777 #ifndef pgd_leaf
1778 #define pgd_leaf(x)	false
1779 #endif
1780 #ifndef p4d_leaf
1781 #define p4d_leaf(x)	false
1782 #endif
1783 #ifndef pud_leaf
1784 #define pud_leaf(x)	false
1785 #endif
1786 #ifndef pmd_leaf
1787 #define pmd_leaf(x)	false
1788 #endif
1789 
1790 #ifndef pgd_leaf_size
1791 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1792 #endif
1793 #ifndef p4d_leaf_size
1794 #define p4d_leaf_size(x) P4D_SIZE
1795 #endif
1796 #ifndef pud_leaf_size
1797 #define pud_leaf_size(x) PUD_SIZE
1798 #endif
1799 #ifndef pmd_leaf_size
1800 #define pmd_leaf_size(x) PMD_SIZE
1801 #endif
1802 #ifndef pte_leaf_size
1803 #define pte_leaf_size(x) PAGE_SIZE
1804 #endif
1805 
1806 /*
1807  * Some architectures have MMUs that are configurable or selectable at boot
1808  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1809  * helps to have a static maximum value.
1810  */
1811 
1812 #ifndef MAX_PTRS_PER_PTE
1813 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1814 #endif
1815 
1816 #ifndef MAX_PTRS_PER_PMD
1817 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1818 #endif
1819 
1820 #ifndef MAX_PTRS_PER_PUD
1821 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1822 #endif
1823 
1824 #ifndef MAX_PTRS_PER_P4D
1825 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1826 #endif
1827 
1828 /* description of effects of mapping type and prot in current implementation.
1829  * this is due to the limited x86 page protection hardware.  The expected
1830  * behavior is in parens:
1831  *
1832  * map_type	prot
1833  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1834  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1835  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1836  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1837  *
1838  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1839  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1840  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1841  *
1842  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1843  * MAP_PRIVATE (with Enhanced PAN supported):
1844  *								r: (no) no
1845  *								w: (no) no
1846  *								x: (yes) yes
1847  */
1848 #define DECLARE_VM_GET_PAGE_PROT					\
1849 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1850 {									\
1851 		return protection_map[vm_flags &			\
1852 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1853 }									\
1854 EXPORT_SYMBOL(vm_get_page_prot);
1855 
1856 #endif /* _LINUX_PGTABLE_H */
1857