xref: /linux-6.15/include/linux/pgtable.h (revision 43b3dfdd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16 
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21 
22 /*
23  * On almost all architectures and configurations, 0 can be used as the
24  * upper ceiling to free_pgtables(): on many architectures it has the same
25  * effect as using TASK_SIZE.  However, there is one configuration which
26  * must impose a more careful limit, to avoid freeing kernel pgtables.
27  */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING	0UL
30 #endif
31 
32 /*
33  * This defines the first usable user address. Platforms
34  * can override its value with custom FIRST_USER_ADDRESS
35  * defined in their respective <asm/pgtable.h>.
36  */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS	0UL
39 #endif
40 
41 /*
42  * This defines the generic helper for accessing PMD page
43  * table page. Although platforms can still override this
44  * via their respective <asm/pgtable.h>.
45  */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49 
50 /*
51  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52  *
53  * The pXx_index() functions return the index of the entry in the page
54  * table page which would control the given virtual address
55  *
56  * As these functions may be used by the same code for different levels of
57  * the page table folding, they are always available, regardless of
58  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59  * because in such cases PTRS_PER_PxD equals 1.
60  */
61 
62 static inline unsigned long pte_index(unsigned long address)
63 {
64 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67 
68 #ifndef pmd_index
69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75 
76 #ifndef pud_index
77 static inline unsigned long pud_index(unsigned long address)
78 {
79 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83 
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88 
89 #ifndef pte_offset_kernel
90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96 
97 #ifdef CONFIG_HIGHPTE
98 #define __pte_map(pmd, address) \
99 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
100 #define pte_unmap(pte)	do {	\
101 	kunmap_local((pte));	\
102 	rcu_read_unlock();	\
103 } while (0)
104 #else
105 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
106 {
107 	return pte_offset_kernel(pmd, address);
108 }
109 static inline void pte_unmap(pte_t *pte)
110 {
111 	rcu_read_unlock();
112 }
113 #endif
114 
115 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
116 
117 /* Find an entry in the second-level page table.. */
118 #ifndef pmd_offset
119 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
120 {
121 	return pud_pgtable(*pud) + pmd_index(address);
122 }
123 #define pmd_offset pmd_offset
124 #endif
125 
126 #ifndef pud_offset
127 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
128 {
129 	return p4d_pgtable(*p4d) + pud_index(address);
130 }
131 #define pud_offset pud_offset
132 #endif
133 
134 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
135 {
136 	return (pgd + pgd_index(address));
137 };
138 
139 /*
140  * a shortcut to get a pgd_t in a given mm
141  */
142 #ifndef pgd_offset
143 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
144 #endif
145 
146 /*
147  * a shortcut which implies the use of the kernel's pgd, instead
148  * of a process's
149  */
150 #ifndef pgd_offset_k
151 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
152 #endif
153 
154 /*
155  * In many cases it is known that a virtual address is mapped at PMD or PTE
156  * level, so instead of traversing all the page table levels, we can get a
157  * pointer to the PMD entry in user or kernel page table or translate a virtual
158  * address to the pointer in the PTE in the kernel page tables with simple
159  * helpers.
160  */
161 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
162 {
163 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
164 }
165 
166 static inline pmd_t *pmd_off_k(unsigned long va)
167 {
168 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
169 }
170 
171 static inline pte_t *virt_to_kpte(unsigned long vaddr)
172 {
173 	pmd_t *pmd = pmd_off_k(vaddr);
174 
175 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
176 }
177 
178 #ifndef pmd_young
179 static inline int pmd_young(pmd_t pmd)
180 {
181 	return 0;
182 }
183 #endif
184 
185 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
186 extern int ptep_set_access_flags(struct vm_area_struct *vma,
187 				 unsigned long address, pte_t *ptep,
188 				 pte_t entry, int dirty);
189 #endif
190 
191 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
192 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
193 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
194 				 unsigned long address, pmd_t *pmdp,
195 				 pmd_t entry, int dirty);
196 extern int pudp_set_access_flags(struct vm_area_struct *vma,
197 				 unsigned long address, pud_t *pudp,
198 				 pud_t entry, int dirty);
199 #else
200 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
201 					unsigned long address, pmd_t *pmdp,
202 					pmd_t entry, int dirty)
203 {
204 	BUILD_BUG();
205 	return 0;
206 }
207 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
208 					unsigned long address, pud_t *pudp,
209 					pud_t entry, int dirty)
210 {
211 	BUILD_BUG();
212 	return 0;
213 }
214 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
215 #endif
216 
217 #ifndef ptep_get
218 static inline pte_t ptep_get(pte_t *ptep)
219 {
220 	return READ_ONCE(*ptep);
221 }
222 #endif
223 
224 #ifndef pmdp_get
225 static inline pmd_t pmdp_get(pmd_t *pmdp)
226 {
227 	return READ_ONCE(*pmdp);
228 }
229 #endif
230 
231 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
232 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
233 					    unsigned long address,
234 					    pte_t *ptep)
235 {
236 	pte_t pte = ptep_get(ptep);
237 	int r = 1;
238 	if (!pte_young(pte))
239 		r = 0;
240 	else
241 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
242 	return r;
243 }
244 #endif
245 
246 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
247 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
248 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
249 					    unsigned long address,
250 					    pmd_t *pmdp)
251 {
252 	pmd_t pmd = *pmdp;
253 	int r = 1;
254 	if (!pmd_young(pmd))
255 		r = 0;
256 	else
257 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
258 	return r;
259 }
260 #else
261 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
262 					    unsigned long address,
263 					    pmd_t *pmdp)
264 {
265 	BUILD_BUG();
266 	return 0;
267 }
268 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
269 #endif
270 
271 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
272 int ptep_clear_flush_young(struct vm_area_struct *vma,
273 			   unsigned long address, pte_t *ptep);
274 #endif
275 
276 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
278 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
279 				  unsigned long address, pmd_t *pmdp);
280 #else
281 /*
282  * Despite relevant to THP only, this API is called from generic rmap code
283  * under PageTransHuge(), hence needs a dummy implementation for !THP
284  */
285 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
286 					 unsigned long address, pmd_t *pmdp)
287 {
288 	BUILD_BUG();
289 	return 0;
290 }
291 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
292 #endif
293 
294 #ifndef arch_has_hw_nonleaf_pmd_young
295 /*
296  * Return whether the accessed bit in non-leaf PMD entries is supported on the
297  * local CPU.
298  */
299 static inline bool arch_has_hw_nonleaf_pmd_young(void)
300 {
301 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
302 }
303 #endif
304 
305 #ifndef arch_has_hw_pte_young
306 /*
307  * Return whether the accessed bit is supported on the local CPU.
308  *
309  * This stub assumes accessing through an old PTE triggers a page fault.
310  * Architectures that automatically set the access bit should overwrite it.
311  */
312 static inline bool arch_has_hw_pte_young(void)
313 {
314 	return false;
315 }
316 #endif
317 
318 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
319 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
320 				       unsigned long address,
321 				       pte_t *ptep)
322 {
323 	pte_t pte = ptep_get(ptep);
324 	pte_clear(mm, address, ptep);
325 	page_table_check_pte_clear(mm, pte);
326 	return pte;
327 }
328 #endif
329 
330 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
331 			      pte_t *ptep)
332 {
333 	ptep_get_and_clear(mm, addr, ptep);
334 }
335 
336 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
337 /*
338  * For walking the pagetables without holding any locks.  Some architectures
339  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
340  * instructions.  We are guaranteed that a PTE will only either go from not
341  * present to present, or present to not present -- it will not switch to a
342  * completely different present page without a TLB flush inbetween; which we
343  * are blocking by holding interrupts off.
344  *
345  * Setting ptes from not present to present goes:
346  *
347  *   ptep->pte_high = h;
348  *   smp_wmb();
349  *   ptep->pte_low = l;
350  *
351  * And present to not present goes:
352  *
353  *   ptep->pte_low = 0;
354  *   smp_wmb();
355  *   ptep->pte_high = 0;
356  *
357  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
358  * We load pte_high *after* loading pte_low, which ensures we don't see an older
359  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
360  * picked up a changed pte high. We might have gotten rubbish values from
361  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
362  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
363  * operates on present ptes we're safe.
364  */
365 static inline pte_t ptep_get_lockless(pte_t *ptep)
366 {
367 	pte_t pte;
368 
369 	do {
370 		pte.pte_low = ptep->pte_low;
371 		smp_rmb();
372 		pte.pte_high = ptep->pte_high;
373 		smp_rmb();
374 	} while (unlikely(pte.pte_low != ptep->pte_low));
375 
376 	return pte;
377 }
378 #define ptep_get_lockless ptep_get_lockless
379 
380 #if CONFIG_PGTABLE_LEVELS > 2
381 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
382 {
383 	pmd_t pmd;
384 
385 	do {
386 		pmd.pmd_low = pmdp->pmd_low;
387 		smp_rmb();
388 		pmd.pmd_high = pmdp->pmd_high;
389 		smp_rmb();
390 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
391 
392 	return pmd;
393 }
394 #define pmdp_get_lockless pmdp_get_lockless
395 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
396 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
397 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
398 
399 /*
400  * We require that the PTE can be read atomically.
401  */
402 #ifndef ptep_get_lockless
403 static inline pte_t ptep_get_lockless(pte_t *ptep)
404 {
405 	return ptep_get(ptep);
406 }
407 #endif
408 
409 #ifndef pmdp_get_lockless
410 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
411 {
412 	return pmdp_get(pmdp);
413 }
414 static inline void pmdp_get_lockless_sync(void)
415 {
416 }
417 #endif
418 
419 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
420 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
421 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
422 					    unsigned long address,
423 					    pmd_t *pmdp)
424 {
425 	pmd_t pmd = *pmdp;
426 
427 	pmd_clear(pmdp);
428 	page_table_check_pmd_clear(mm, pmd);
429 
430 	return pmd;
431 }
432 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
433 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
434 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
435 					    unsigned long address,
436 					    pud_t *pudp)
437 {
438 	pud_t pud = *pudp;
439 
440 	pud_clear(pudp);
441 	page_table_check_pud_clear(mm, pud);
442 
443 	return pud;
444 }
445 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
446 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
447 
448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
449 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
450 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
451 					    unsigned long address, pmd_t *pmdp,
452 					    int full)
453 {
454 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
455 }
456 #endif
457 
458 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
459 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
460 					    unsigned long address, pud_t *pudp,
461 					    int full)
462 {
463 	return pudp_huge_get_and_clear(mm, address, pudp);
464 }
465 #endif
466 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
467 
468 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
469 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
470 					    unsigned long address, pte_t *ptep,
471 					    int full)
472 {
473 	return ptep_get_and_clear(mm, address, ptep);
474 }
475 #endif
476 
477 
478 /*
479  * If two threads concurrently fault at the same page, the thread that
480  * won the race updates the PTE and its local TLB/Cache. The other thread
481  * gives up, simply does nothing, and continues; on architectures where
482  * software can update TLB,  local TLB can be updated here to avoid next page
483  * fault. This function updates TLB only, do nothing with cache or others.
484  * It is the difference with function update_mmu_cache.
485  */
486 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
487 static inline void update_mmu_tlb(struct vm_area_struct *vma,
488 				unsigned long address, pte_t *ptep)
489 {
490 }
491 #define __HAVE_ARCH_UPDATE_MMU_TLB
492 #endif
493 
494 /*
495  * Some architectures may be able to avoid expensive synchronization
496  * primitives when modifications are made to PTE's which are already
497  * not present, or in the process of an address space destruction.
498  */
499 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
500 static inline void pte_clear_not_present_full(struct mm_struct *mm,
501 					      unsigned long address,
502 					      pte_t *ptep,
503 					      int full)
504 {
505 	pte_clear(mm, address, ptep);
506 }
507 #endif
508 
509 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
510 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
511 			      unsigned long address,
512 			      pte_t *ptep);
513 #endif
514 
515 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
516 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
517 			      unsigned long address,
518 			      pmd_t *pmdp);
519 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
520 			      unsigned long address,
521 			      pud_t *pudp);
522 #endif
523 
524 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
525 struct mm_struct;
526 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
527 {
528 	pte_t old_pte = ptep_get(ptep);
529 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
530 }
531 #endif
532 
533 /*
534  * On some architectures hardware does not set page access bit when accessing
535  * memory page, it is responsibility of software setting this bit. It brings
536  * out extra page fault penalty to track page access bit. For optimization page
537  * access bit can be set during all page fault flow on these arches.
538  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
539  * where software maintains page access bit.
540  */
541 #ifndef pte_sw_mkyoung
542 static inline pte_t pte_sw_mkyoung(pte_t pte)
543 {
544 	return pte;
545 }
546 #define pte_sw_mkyoung	pte_sw_mkyoung
547 #endif
548 
549 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
552 				      unsigned long address, pmd_t *pmdp)
553 {
554 	pmd_t old_pmd = *pmdp;
555 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
556 }
557 #else
558 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
559 				      unsigned long address, pmd_t *pmdp)
560 {
561 	BUILD_BUG();
562 }
563 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
564 #endif
565 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
566 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
567 static inline void pudp_set_wrprotect(struct mm_struct *mm,
568 				      unsigned long address, pud_t *pudp)
569 {
570 	pud_t old_pud = *pudp;
571 
572 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
573 }
574 #else
575 static inline void pudp_set_wrprotect(struct mm_struct *mm,
576 				      unsigned long address, pud_t *pudp)
577 {
578 	BUILD_BUG();
579 }
580 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
581 #endif
582 
583 #ifndef pmdp_collapse_flush
584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
585 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
586 				 unsigned long address, pmd_t *pmdp);
587 #else
588 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
589 					unsigned long address,
590 					pmd_t *pmdp)
591 {
592 	BUILD_BUG();
593 	return *pmdp;
594 }
595 #define pmdp_collapse_flush pmdp_collapse_flush
596 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
597 #endif
598 
599 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
600 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
601 				       pgtable_t pgtable);
602 #endif
603 
604 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
605 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
606 #endif
607 
608 #ifndef arch_needs_pgtable_deposit
609 #define arch_needs_pgtable_deposit() (false)
610 #endif
611 
612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
613 /*
614  * This is an implementation of pmdp_establish() that is only suitable for an
615  * architecture that doesn't have hardware dirty/accessed bits. In this case we
616  * can't race with CPU which sets these bits and non-atomic approach is fine.
617  */
618 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
619 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
620 {
621 	pmd_t old_pmd = *pmdp;
622 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
623 	return old_pmd;
624 }
625 #endif
626 
627 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
628 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
629 			    pmd_t *pmdp);
630 #endif
631 
632 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
633 
634 /*
635  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
636  * hugepage mapping in the page tables. This function is similar to
637  * pmdp_invalidate(), but should only be used if the access and dirty bits would
638  * not be cleared by the software in the new PMD value. The function ensures
639  * that hardware changes of the access and dirty bits updates would not be lost.
640  *
641  * Doing so can allow in certain architectures to avoid a TLB flush in most
642  * cases. Yet, another TLB flush might be necessary later if the PMD update
643  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
644  * even when a TLB flush is needed because of the update, the caller may be able
645  * to batch these TLB flushing operations, so fewer TLB flush operations are
646  * needed.
647  */
648 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
649 				unsigned long address, pmd_t *pmdp);
650 #endif
651 
652 #ifndef __HAVE_ARCH_PTE_SAME
653 static inline int pte_same(pte_t pte_a, pte_t pte_b)
654 {
655 	return pte_val(pte_a) == pte_val(pte_b);
656 }
657 #endif
658 
659 #ifndef __HAVE_ARCH_PTE_UNUSED
660 /*
661  * Some architectures provide facilities to virtualization guests
662  * so that they can flag allocated pages as unused. This allows the
663  * host to transparently reclaim unused pages. This function returns
664  * whether the pte's page is unused.
665  */
666 static inline int pte_unused(pte_t pte)
667 {
668 	return 0;
669 }
670 #endif
671 
672 #ifndef pte_access_permitted
673 #define pte_access_permitted(pte, write) \
674 	(pte_present(pte) && (!(write) || pte_write(pte)))
675 #endif
676 
677 #ifndef pmd_access_permitted
678 #define pmd_access_permitted(pmd, write) \
679 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
680 #endif
681 
682 #ifndef pud_access_permitted
683 #define pud_access_permitted(pud, write) \
684 	(pud_present(pud) && (!(write) || pud_write(pud)))
685 #endif
686 
687 #ifndef p4d_access_permitted
688 #define p4d_access_permitted(p4d, write) \
689 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
690 #endif
691 
692 #ifndef pgd_access_permitted
693 #define pgd_access_permitted(pgd, write) \
694 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
695 #endif
696 
697 #ifndef __HAVE_ARCH_PMD_SAME
698 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
699 {
700 	return pmd_val(pmd_a) == pmd_val(pmd_b);
701 }
702 
703 static inline int pud_same(pud_t pud_a, pud_t pud_b)
704 {
705 	return pud_val(pud_a) == pud_val(pud_b);
706 }
707 #endif
708 
709 #ifndef __HAVE_ARCH_P4D_SAME
710 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
711 {
712 	return p4d_val(p4d_a) == p4d_val(p4d_b);
713 }
714 #endif
715 
716 #ifndef __HAVE_ARCH_PGD_SAME
717 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
718 {
719 	return pgd_val(pgd_a) == pgd_val(pgd_b);
720 }
721 #endif
722 
723 /*
724  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
725  * TLB flush will be required as a result of the "set". For example, use
726  * in scenarios where it is known ahead of time that the routine is
727  * setting non-present entries, or re-setting an existing entry to the
728  * same value. Otherwise, use the typical "set" helpers and flush the
729  * TLB.
730  */
731 #define set_pte_safe(ptep, pte) \
732 ({ \
733 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
734 	set_pte(ptep, pte); \
735 })
736 
737 #define set_pmd_safe(pmdp, pmd) \
738 ({ \
739 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
740 	set_pmd(pmdp, pmd); \
741 })
742 
743 #define set_pud_safe(pudp, pud) \
744 ({ \
745 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
746 	set_pud(pudp, pud); \
747 })
748 
749 #define set_p4d_safe(p4dp, p4d) \
750 ({ \
751 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
752 	set_p4d(p4dp, p4d); \
753 })
754 
755 #define set_pgd_safe(pgdp, pgd) \
756 ({ \
757 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
758 	set_pgd(pgdp, pgd); \
759 })
760 
761 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
762 /*
763  * Some architectures support metadata associated with a page. When a
764  * page is being swapped out, this metadata must be saved so it can be
765  * restored when the page is swapped back in. SPARC M7 and newer
766  * processors support an ADI (Application Data Integrity) tag for the
767  * page as metadata for the page. arch_do_swap_page() can restore this
768  * metadata when a page is swapped back in.
769  */
770 static inline void arch_do_swap_page(struct mm_struct *mm,
771 				     struct vm_area_struct *vma,
772 				     unsigned long addr,
773 				     pte_t pte, pte_t oldpte)
774 {
775 
776 }
777 #endif
778 
779 #ifndef __HAVE_ARCH_UNMAP_ONE
780 /*
781  * Some architectures support metadata associated with a page. When a
782  * page is being swapped out, this metadata must be saved so it can be
783  * restored when the page is swapped back in. SPARC M7 and newer
784  * processors support an ADI (Application Data Integrity) tag for the
785  * page as metadata for the page. arch_unmap_one() can save this
786  * metadata on a swap-out of a page.
787  */
788 static inline int arch_unmap_one(struct mm_struct *mm,
789 				  struct vm_area_struct *vma,
790 				  unsigned long addr,
791 				  pte_t orig_pte)
792 {
793 	return 0;
794 }
795 #endif
796 
797 /*
798  * Allow architectures to preserve additional metadata associated with
799  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
800  * prototypes must be defined in the arch-specific asm/pgtable.h file.
801  */
802 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
803 static inline int arch_prepare_to_swap(struct page *page)
804 {
805 	return 0;
806 }
807 #endif
808 
809 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
810 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
811 {
812 }
813 
814 static inline void arch_swap_invalidate_area(int type)
815 {
816 }
817 #endif
818 
819 #ifndef __HAVE_ARCH_SWAP_RESTORE
820 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
821 {
822 }
823 #endif
824 
825 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
826 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
827 #endif
828 
829 #ifndef __HAVE_ARCH_MOVE_PTE
830 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
831 #endif
832 
833 #ifndef pte_accessible
834 # define pte_accessible(mm, pte)	((void)(pte), 1)
835 #endif
836 
837 #ifndef flush_tlb_fix_spurious_fault
838 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
839 #endif
840 
841 /*
842  * When walking page tables, get the address of the next boundary,
843  * or the end address of the range if that comes earlier.  Although no
844  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
845  */
846 
847 #define pgd_addr_end(addr, end)						\
848 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
849 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
850 })
851 
852 #ifndef p4d_addr_end
853 #define p4d_addr_end(addr, end)						\
854 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
855 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
856 })
857 #endif
858 
859 #ifndef pud_addr_end
860 #define pud_addr_end(addr, end)						\
861 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
862 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
863 })
864 #endif
865 
866 #ifndef pmd_addr_end
867 #define pmd_addr_end(addr, end)						\
868 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
869 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
870 })
871 #endif
872 
873 /*
874  * When walking page tables, we usually want to skip any p?d_none entries;
875  * and any p?d_bad entries - reporting the error before resetting to none.
876  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
877  */
878 void pgd_clear_bad(pgd_t *);
879 
880 #ifndef __PAGETABLE_P4D_FOLDED
881 void p4d_clear_bad(p4d_t *);
882 #else
883 #define p4d_clear_bad(p4d)        do { } while (0)
884 #endif
885 
886 #ifndef __PAGETABLE_PUD_FOLDED
887 void pud_clear_bad(pud_t *);
888 #else
889 #define pud_clear_bad(p4d)        do { } while (0)
890 #endif
891 
892 void pmd_clear_bad(pmd_t *);
893 
894 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
895 {
896 	if (pgd_none(*pgd))
897 		return 1;
898 	if (unlikely(pgd_bad(*pgd))) {
899 		pgd_clear_bad(pgd);
900 		return 1;
901 	}
902 	return 0;
903 }
904 
905 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
906 {
907 	if (p4d_none(*p4d))
908 		return 1;
909 	if (unlikely(p4d_bad(*p4d))) {
910 		p4d_clear_bad(p4d);
911 		return 1;
912 	}
913 	return 0;
914 }
915 
916 static inline int pud_none_or_clear_bad(pud_t *pud)
917 {
918 	if (pud_none(*pud))
919 		return 1;
920 	if (unlikely(pud_bad(*pud))) {
921 		pud_clear_bad(pud);
922 		return 1;
923 	}
924 	return 0;
925 }
926 
927 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
928 {
929 	if (pmd_none(*pmd))
930 		return 1;
931 	if (unlikely(pmd_bad(*pmd))) {
932 		pmd_clear_bad(pmd);
933 		return 1;
934 	}
935 	return 0;
936 }
937 
938 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
939 					     unsigned long addr,
940 					     pte_t *ptep)
941 {
942 	/*
943 	 * Get the current pte state, but zero it out to make it
944 	 * non-present, preventing the hardware from asynchronously
945 	 * updating it.
946 	 */
947 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
948 }
949 
950 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
951 					     unsigned long addr,
952 					     pte_t *ptep, pte_t pte)
953 {
954 	/*
955 	 * The pte is non-present, so there's no hardware state to
956 	 * preserve.
957 	 */
958 	set_pte_at(vma->vm_mm, addr, ptep, pte);
959 }
960 
961 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
962 /*
963  * Start a pte protection read-modify-write transaction, which
964  * protects against asynchronous hardware modifications to the pte.
965  * The intention is not to prevent the hardware from making pte
966  * updates, but to prevent any updates it may make from being lost.
967  *
968  * This does not protect against other software modifications of the
969  * pte; the appropriate pte lock must be held over the transaction.
970  *
971  * Note that this interface is intended to be batchable, meaning that
972  * ptep_modify_prot_commit may not actually update the pte, but merely
973  * queue the update to be done at some later time.  The update must be
974  * actually committed before the pte lock is released, however.
975  */
976 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
977 					   unsigned long addr,
978 					   pte_t *ptep)
979 {
980 	return __ptep_modify_prot_start(vma, addr, ptep);
981 }
982 
983 /*
984  * Commit an update to a pte, leaving any hardware-controlled bits in
985  * the PTE unmodified.
986  */
987 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
988 					   unsigned long addr,
989 					   pte_t *ptep, pte_t old_pte, pte_t pte)
990 {
991 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
992 }
993 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
994 #endif /* CONFIG_MMU */
995 
996 /*
997  * No-op macros that just return the current protection value. Defined here
998  * because these macros can be used even if CONFIG_MMU is not defined.
999  */
1000 
1001 #ifndef pgprot_nx
1002 #define pgprot_nx(prot)	(prot)
1003 #endif
1004 
1005 #ifndef pgprot_noncached
1006 #define pgprot_noncached(prot)	(prot)
1007 #endif
1008 
1009 #ifndef pgprot_writecombine
1010 #define pgprot_writecombine pgprot_noncached
1011 #endif
1012 
1013 #ifndef pgprot_writethrough
1014 #define pgprot_writethrough pgprot_noncached
1015 #endif
1016 
1017 #ifndef pgprot_device
1018 #define pgprot_device pgprot_noncached
1019 #endif
1020 
1021 #ifndef pgprot_mhp
1022 #define pgprot_mhp(prot)	(prot)
1023 #endif
1024 
1025 #ifdef CONFIG_MMU
1026 #ifndef pgprot_modify
1027 #define pgprot_modify pgprot_modify
1028 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1029 {
1030 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1031 		newprot = pgprot_noncached(newprot);
1032 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1033 		newprot = pgprot_writecombine(newprot);
1034 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1035 		newprot = pgprot_device(newprot);
1036 	return newprot;
1037 }
1038 #endif
1039 #endif /* CONFIG_MMU */
1040 
1041 #ifndef pgprot_encrypted
1042 #define pgprot_encrypted(prot)	(prot)
1043 #endif
1044 
1045 #ifndef pgprot_decrypted
1046 #define pgprot_decrypted(prot)	(prot)
1047 #endif
1048 
1049 /*
1050  * A facility to provide lazy MMU batching.  This allows PTE updates and
1051  * page invalidations to be delayed until a call to leave lazy MMU mode
1052  * is issued.  Some architectures may benefit from doing this, and it is
1053  * beneficial for both shadow and direct mode hypervisors, which may batch
1054  * the PTE updates which happen during this window.  Note that using this
1055  * interface requires that read hazards be removed from the code.  A read
1056  * hazard could result in the direct mode hypervisor case, since the actual
1057  * write to the page tables may not yet have taken place, so reads though
1058  * a raw PTE pointer after it has been modified are not guaranteed to be
1059  * up to date.  This mode can only be entered and left under the protection of
1060  * the page table locks for all page tables which may be modified.  In the UP
1061  * case, this is required so that preemption is disabled, and in the SMP case,
1062  * it must synchronize the delayed page table writes properly on other CPUs.
1063  */
1064 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1065 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1066 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1067 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1068 #endif
1069 
1070 /*
1071  * A facility to provide batching of the reload of page tables and
1072  * other process state with the actual context switch code for
1073  * paravirtualized guests.  By convention, only one of the batched
1074  * update (lazy) modes (CPU, MMU) should be active at any given time,
1075  * entry should never be nested, and entry and exits should always be
1076  * paired.  This is for sanity of maintaining and reasoning about the
1077  * kernel code.  In this case, the exit (end of the context switch) is
1078  * in architecture-specific code, and so doesn't need a generic
1079  * definition.
1080  */
1081 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1082 #define arch_start_context_switch(prev)	do {} while (0)
1083 #endif
1084 
1085 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1086 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1087 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1088 {
1089 	return pmd;
1090 }
1091 
1092 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1093 {
1094 	return 0;
1095 }
1096 
1097 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1098 {
1099 	return pmd;
1100 }
1101 #endif
1102 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1103 static inline int pte_soft_dirty(pte_t pte)
1104 {
1105 	return 0;
1106 }
1107 
1108 static inline int pmd_soft_dirty(pmd_t pmd)
1109 {
1110 	return 0;
1111 }
1112 
1113 static inline pte_t pte_mksoft_dirty(pte_t pte)
1114 {
1115 	return pte;
1116 }
1117 
1118 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1119 {
1120 	return pmd;
1121 }
1122 
1123 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1124 {
1125 	return pte;
1126 }
1127 
1128 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1129 {
1130 	return pmd;
1131 }
1132 
1133 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1134 {
1135 	return pte;
1136 }
1137 
1138 static inline int pte_swp_soft_dirty(pte_t pte)
1139 {
1140 	return 0;
1141 }
1142 
1143 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1144 {
1145 	return pte;
1146 }
1147 
1148 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1149 {
1150 	return pmd;
1151 }
1152 
1153 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1154 {
1155 	return 0;
1156 }
1157 
1158 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1159 {
1160 	return pmd;
1161 }
1162 #endif
1163 
1164 #ifndef __HAVE_PFNMAP_TRACKING
1165 /*
1166  * Interfaces that can be used by architecture code to keep track of
1167  * memory type of pfn mappings specified by the remap_pfn_range,
1168  * vmf_insert_pfn.
1169  */
1170 
1171 /*
1172  * track_pfn_remap is called when a _new_ pfn mapping is being established
1173  * by remap_pfn_range() for physical range indicated by pfn and size.
1174  */
1175 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1176 				  unsigned long pfn, unsigned long addr,
1177 				  unsigned long size)
1178 {
1179 	return 0;
1180 }
1181 
1182 /*
1183  * track_pfn_insert is called when a _new_ single pfn is established
1184  * by vmf_insert_pfn().
1185  */
1186 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1187 				    pfn_t pfn)
1188 {
1189 }
1190 
1191 /*
1192  * track_pfn_copy is called when vma that is covering the pfnmap gets
1193  * copied through copy_page_range().
1194  */
1195 static inline int track_pfn_copy(struct vm_area_struct *vma)
1196 {
1197 	return 0;
1198 }
1199 
1200 /*
1201  * untrack_pfn is called while unmapping a pfnmap for a region.
1202  * untrack can be called for a specific region indicated by pfn and size or
1203  * can be for the entire vma (in which case pfn, size are zero).
1204  */
1205 static inline void untrack_pfn(struct vm_area_struct *vma,
1206 			       unsigned long pfn, unsigned long size,
1207 			       bool mm_wr_locked)
1208 {
1209 }
1210 
1211 /*
1212  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1213  * or fails to copy pgtable during duplicate vm area.
1214  */
1215 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1216 {
1217 }
1218 #else
1219 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1220 			   unsigned long pfn, unsigned long addr,
1221 			   unsigned long size);
1222 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1223 			     pfn_t pfn);
1224 extern int track_pfn_copy(struct vm_area_struct *vma);
1225 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1226 			unsigned long size, bool mm_wr_locked);
1227 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1228 #endif
1229 
1230 #ifdef CONFIG_MMU
1231 #ifdef __HAVE_COLOR_ZERO_PAGE
1232 static inline int is_zero_pfn(unsigned long pfn)
1233 {
1234 	extern unsigned long zero_pfn;
1235 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1236 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1237 }
1238 
1239 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1240 
1241 #else
1242 static inline int is_zero_pfn(unsigned long pfn)
1243 {
1244 	extern unsigned long zero_pfn;
1245 	return pfn == zero_pfn;
1246 }
1247 
1248 static inline unsigned long my_zero_pfn(unsigned long addr)
1249 {
1250 	extern unsigned long zero_pfn;
1251 	return zero_pfn;
1252 }
1253 #endif
1254 #else
1255 static inline int is_zero_pfn(unsigned long pfn)
1256 {
1257 	return 0;
1258 }
1259 
1260 static inline unsigned long my_zero_pfn(unsigned long addr)
1261 {
1262 	return 0;
1263 }
1264 #endif /* CONFIG_MMU */
1265 
1266 #ifdef CONFIG_MMU
1267 
1268 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1269 static inline int pmd_trans_huge(pmd_t pmd)
1270 {
1271 	return 0;
1272 }
1273 #ifndef pmd_write
1274 static inline int pmd_write(pmd_t pmd)
1275 {
1276 	BUG();
1277 	return 0;
1278 }
1279 #endif /* pmd_write */
1280 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1281 
1282 #ifndef pud_write
1283 static inline int pud_write(pud_t pud)
1284 {
1285 	BUG();
1286 	return 0;
1287 }
1288 #endif /* pud_write */
1289 
1290 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1291 static inline int pmd_devmap(pmd_t pmd)
1292 {
1293 	return 0;
1294 }
1295 static inline int pud_devmap(pud_t pud)
1296 {
1297 	return 0;
1298 }
1299 static inline int pgd_devmap(pgd_t pgd)
1300 {
1301 	return 0;
1302 }
1303 #endif
1304 
1305 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1306 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1307 static inline int pud_trans_huge(pud_t pud)
1308 {
1309 	return 0;
1310 }
1311 #endif
1312 
1313 static inline int pud_trans_unstable(pud_t *pud)
1314 {
1315 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1316 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1317 	pud_t pudval = READ_ONCE(*pud);
1318 
1319 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1320 		return 1;
1321 	if (unlikely(pud_bad(pudval))) {
1322 		pud_clear_bad(pud);
1323 		return 1;
1324 	}
1325 #endif
1326 	return 0;
1327 }
1328 
1329 #ifndef CONFIG_NUMA_BALANCING
1330 /*
1331  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1332  * the only case the kernel cares is for NUMA balancing and is only ever set
1333  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1334  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1335  * is the responsibility of the caller to distinguish between PROT_NONE
1336  * protections and NUMA hinting fault protections.
1337  */
1338 static inline int pte_protnone(pte_t pte)
1339 {
1340 	return 0;
1341 }
1342 
1343 static inline int pmd_protnone(pmd_t pmd)
1344 {
1345 	return 0;
1346 }
1347 #endif /* CONFIG_NUMA_BALANCING */
1348 
1349 #endif /* CONFIG_MMU */
1350 
1351 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1352 
1353 #ifndef __PAGETABLE_P4D_FOLDED
1354 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1355 void p4d_clear_huge(p4d_t *p4d);
1356 #else
1357 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1358 {
1359 	return 0;
1360 }
1361 static inline void p4d_clear_huge(p4d_t *p4d) { }
1362 #endif /* !__PAGETABLE_P4D_FOLDED */
1363 
1364 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1365 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1366 int pud_clear_huge(pud_t *pud);
1367 int pmd_clear_huge(pmd_t *pmd);
1368 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1369 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1370 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1371 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1372 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1373 {
1374 	return 0;
1375 }
1376 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1377 {
1378 	return 0;
1379 }
1380 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1381 {
1382 	return 0;
1383 }
1384 static inline void p4d_clear_huge(p4d_t *p4d) { }
1385 static inline int pud_clear_huge(pud_t *pud)
1386 {
1387 	return 0;
1388 }
1389 static inline int pmd_clear_huge(pmd_t *pmd)
1390 {
1391 	return 0;
1392 }
1393 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1394 {
1395 	return 0;
1396 }
1397 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1398 {
1399 	return 0;
1400 }
1401 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1402 {
1403 	return 0;
1404 }
1405 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1406 
1407 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1409 /*
1410  * ARCHes with special requirements for evicting THP backing TLB entries can
1411  * implement this. Otherwise also, it can help optimize normal TLB flush in
1412  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1413  * entire TLB if flush span is greater than a threshold, which will
1414  * likely be true for a single huge page. Thus a single THP flush will
1415  * invalidate the entire TLB which is not desirable.
1416  * e.g. see arch/arc: flush_pmd_tlb_range
1417  */
1418 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1419 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1420 #else
1421 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1422 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1423 #endif
1424 #endif
1425 
1426 struct file;
1427 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1428 			unsigned long size, pgprot_t *vma_prot);
1429 
1430 #ifndef CONFIG_X86_ESPFIX64
1431 static inline void init_espfix_bsp(void) { }
1432 #endif
1433 
1434 extern void __init pgtable_cache_init(void);
1435 
1436 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1437 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1438 {
1439 	return true;
1440 }
1441 
1442 static inline bool arch_has_pfn_modify_check(void)
1443 {
1444 	return false;
1445 }
1446 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1447 
1448 /*
1449  * Architecture PAGE_KERNEL_* fallbacks
1450  *
1451  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1452  * because they really don't support them, or the port needs to be updated to
1453  * reflect the required functionality. Below are a set of relatively safe
1454  * fallbacks, as best effort, which we can count on in lieu of the architectures
1455  * not defining them on their own yet.
1456  */
1457 
1458 #ifndef PAGE_KERNEL_RO
1459 # define PAGE_KERNEL_RO PAGE_KERNEL
1460 #endif
1461 
1462 #ifndef PAGE_KERNEL_EXEC
1463 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1464 #endif
1465 
1466 /*
1467  * Page Table Modification bits for pgtbl_mod_mask.
1468  *
1469  * These are used by the p?d_alloc_track*() set of functions an in the generic
1470  * vmalloc/ioremap code to track at which page-table levels entries have been
1471  * modified. Based on that the code can better decide when vmalloc and ioremap
1472  * mapping changes need to be synchronized to other page-tables in the system.
1473  */
1474 #define		__PGTBL_PGD_MODIFIED	0
1475 #define		__PGTBL_P4D_MODIFIED	1
1476 #define		__PGTBL_PUD_MODIFIED	2
1477 #define		__PGTBL_PMD_MODIFIED	3
1478 #define		__PGTBL_PTE_MODIFIED	4
1479 
1480 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1481 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1482 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1483 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1484 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1485 
1486 /* Page-Table Modification Mask */
1487 typedef unsigned int pgtbl_mod_mask;
1488 
1489 #endif /* !__ASSEMBLY__ */
1490 
1491 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1492 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1493 /*
1494  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1495  * with physical address space extension, but falls back to
1496  * BITS_PER_LONG otherwise.
1497  */
1498 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1499 #else
1500 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1501 #endif
1502 #endif
1503 
1504 #ifndef has_transparent_hugepage
1505 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1506 #endif
1507 
1508 /*
1509  * On some architectures it depends on the mm if the p4d/pud or pmd
1510  * layer of the page table hierarchy is folded or not.
1511  */
1512 #ifndef mm_p4d_folded
1513 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1514 #endif
1515 
1516 #ifndef mm_pud_folded
1517 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1518 #endif
1519 
1520 #ifndef mm_pmd_folded
1521 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1522 #endif
1523 
1524 #ifndef p4d_offset_lockless
1525 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1526 #endif
1527 #ifndef pud_offset_lockless
1528 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1529 #endif
1530 #ifndef pmd_offset_lockless
1531 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1532 #endif
1533 
1534 /*
1535  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1536  * This differs from p?d_huge() by the fact that they are always available (if
1537  * the architecture supports large pages at the appropriate level) even
1538  * if CONFIG_HUGETLB_PAGE is not defined.
1539  * Only meaningful when called on a valid entry.
1540  */
1541 #ifndef pgd_leaf
1542 #define pgd_leaf(x)	0
1543 #endif
1544 #ifndef p4d_leaf
1545 #define p4d_leaf(x)	0
1546 #endif
1547 #ifndef pud_leaf
1548 #define pud_leaf(x)	0
1549 #endif
1550 #ifndef pmd_leaf
1551 #define pmd_leaf(x)	0
1552 #endif
1553 
1554 #ifndef pgd_leaf_size
1555 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1556 #endif
1557 #ifndef p4d_leaf_size
1558 #define p4d_leaf_size(x) P4D_SIZE
1559 #endif
1560 #ifndef pud_leaf_size
1561 #define pud_leaf_size(x) PUD_SIZE
1562 #endif
1563 #ifndef pmd_leaf_size
1564 #define pmd_leaf_size(x) PMD_SIZE
1565 #endif
1566 #ifndef pte_leaf_size
1567 #define pte_leaf_size(x) PAGE_SIZE
1568 #endif
1569 
1570 /*
1571  * Some architectures have MMUs that are configurable or selectable at boot
1572  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1573  * helps to have a static maximum value.
1574  */
1575 
1576 #ifndef MAX_PTRS_PER_PTE
1577 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1578 #endif
1579 
1580 #ifndef MAX_PTRS_PER_PMD
1581 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1582 #endif
1583 
1584 #ifndef MAX_PTRS_PER_PUD
1585 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1586 #endif
1587 
1588 #ifndef MAX_PTRS_PER_P4D
1589 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1590 #endif
1591 
1592 /* description of effects of mapping type and prot in current implementation.
1593  * this is due to the limited x86 page protection hardware.  The expected
1594  * behavior is in parens:
1595  *
1596  * map_type	prot
1597  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1598  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1599  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1600  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1601  *
1602  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1603  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1604  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1605  *
1606  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1607  * MAP_PRIVATE (with Enhanced PAN supported):
1608  *								r: (no) no
1609  *								w: (no) no
1610  *								x: (yes) yes
1611  */
1612 #define DECLARE_VM_GET_PAGE_PROT					\
1613 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1614 {									\
1615 		return protection_map[vm_flags &			\
1616 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1617 }									\
1618 EXPORT_SYMBOL(vm_get_page_prot);
1619 
1620 #endif /* _LINUX_PGTABLE_H */
1621