xref: /linux-6.15/include/linux/pgtable.h (revision 2c4ca797)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
10 
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13 
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19 
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24 
25 /*
26  * On almost all architectures and configurations, 0 can be used as the
27  * upper ceiling to free_pgtables(): on many architectures it has the same
28  * effect as using TASK_SIZE.  However, there is one configuration which
29  * must impose a more careful limit, to avoid freeing kernel pgtables.
30  */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING	0UL
33 #endif
34 
35 /*
36  * This defines the first usable user address. Platforms
37  * can override its value with custom FIRST_USER_ADDRESS
38  * defined in their respective <asm/pgtable.h>.
39  */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS	0UL
42 #endif
43 
44 /*
45  * This defines the generic helper for accessing PMD page
46  * table page. Although platforms can still override this
47  * via their respective <asm/pgtable.h>.
48  */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52 
53 /*
54  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55  *
56  * The pXx_index() functions return the index of the entry in the page
57  * table page which would control the given virtual address
58  *
59  * As these functions may be used by the same code for different levels of
60  * the page table folding, they are always available, regardless of
61  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62  * because in such cases PTRS_PER_PxD equals 1.
63  */
64 
65 static inline unsigned long pte_index(unsigned long address)
66 {
67 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69 
70 #ifndef pmd_index
71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77 
78 #ifndef pud_index
79 static inline unsigned long pud_index(unsigned long address)
80 {
81 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85 
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90 
91 #ifndef pte_offset_kernel
92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98 
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte)	do {	\
103 	kunmap_local((pte));	\
104 	rcu_read_unlock();	\
105 } while (0)
106 #else
107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 	return pte_offset_kernel(pmd, address);
110 }
111 static inline void pte_unmap(pte_t *pte)
112 {
113 	rcu_read_unlock();
114 }
115 #endif
116 
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118 
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 	return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127 
128 #ifndef pud_offset
129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 	return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135 
136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 	return (pgd + pgd_index(address));
139 };
140 
141 /*
142  * a shortcut to get a pgd_t in a given mm
143  */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147 
148 /*
149  * a shortcut which implies the use of the kernel's pgd, instead
150  * of a process's
151  */
152 #ifndef pgd_offset_k
153 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
154 #endif
155 
156 /*
157  * In many cases it is known that a virtual address is mapped at PMD or PTE
158  * level, so instead of traversing all the page table levels, we can get a
159  * pointer to the PMD entry in user or kernel page table or translate a virtual
160  * address to the pointer in the PTE in the kernel page tables with simple
161  * helpers.
162  */
163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167 
168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172 
173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 	pmd_t *pmd = pmd_off_k(vaddr);
176 
177 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179 
180 #ifndef pmd_young
181 static inline int pmd_young(pmd_t pmd)
182 {
183 	return 0;
184 }
185 #endif
186 
187 #ifndef pmd_dirty
188 static inline int pmd_dirty(pmd_t pmd)
189 {
190 	return 0;
191 }
192 #endif
193 
194 /*
195  * A facility to provide lazy MMU batching.  This allows PTE updates and
196  * page invalidations to be delayed until a call to leave lazy MMU mode
197  * is issued.  Some architectures may benefit from doing this, and it is
198  * beneficial for both shadow and direct mode hypervisors, which may batch
199  * the PTE updates which happen during this window.  Note that using this
200  * interface requires that read hazards be removed from the code.  A read
201  * hazard could result in the direct mode hypervisor case, since the actual
202  * write to the page tables may not yet have taken place, so reads though
203  * a raw PTE pointer after it has been modified are not guaranteed to be
204  * up to date.  This mode can only be entered and left under the protection of
205  * the page table locks for all page tables which may be modified.  In the UP
206  * case, this is required so that preemption is disabled, and in the SMP case,
207  * it must synchronize the delayed page table writes properly on other CPUs.
208  */
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode()	do {} while (0)
211 #define arch_leave_lazy_mmu_mode()	do {} while (0)
212 #define arch_flush_lazy_mmu_mode()	do {} while (0)
213 #endif
214 
215 #ifndef set_ptes
216 
217 #ifndef pte_next_pfn
218 static inline pte_t pte_next_pfn(pte_t pte)
219 {
220 	return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
221 }
222 #endif
223 
224 /**
225  * set_ptes - Map consecutive pages to a contiguous range of addresses.
226  * @mm: Address space to map the pages into.
227  * @addr: Address to map the first page at.
228  * @ptep: Page table pointer for the first entry.
229  * @pte: Page table entry for the first page.
230  * @nr: Number of pages to map.
231  *
232  * May be overridden by the architecture, or the architecture can define
233  * set_pte() and PFN_PTE_SHIFT.
234  *
235  * Context: The caller holds the page table lock.  The pages all belong
236  * to the same folio.  The PTEs are all in the same PMD.
237  */
238 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
239 		pte_t *ptep, pte_t pte, unsigned int nr)
240 {
241 	page_table_check_ptes_set(mm, ptep, pte, nr);
242 
243 	arch_enter_lazy_mmu_mode();
244 	for (;;) {
245 		set_pte(ptep, pte);
246 		if (--nr == 0)
247 			break;
248 		ptep++;
249 		pte = pte_next_pfn(pte);
250 	}
251 	arch_leave_lazy_mmu_mode();
252 }
253 #endif
254 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
255 
256 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
257 extern int ptep_set_access_flags(struct vm_area_struct *vma,
258 				 unsigned long address, pte_t *ptep,
259 				 pte_t entry, int dirty);
260 #endif
261 
262 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
265 				 unsigned long address, pmd_t *pmdp,
266 				 pmd_t entry, int dirty);
267 extern int pudp_set_access_flags(struct vm_area_struct *vma,
268 				 unsigned long address, pud_t *pudp,
269 				 pud_t entry, int dirty);
270 #else
271 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
272 					unsigned long address, pmd_t *pmdp,
273 					pmd_t entry, int dirty)
274 {
275 	BUILD_BUG();
276 	return 0;
277 }
278 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
279 					unsigned long address, pud_t *pudp,
280 					pud_t entry, int dirty)
281 {
282 	BUILD_BUG();
283 	return 0;
284 }
285 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
286 #endif
287 
288 #ifndef ptep_get
289 static inline pte_t ptep_get(pte_t *ptep)
290 {
291 	return READ_ONCE(*ptep);
292 }
293 #endif
294 
295 #ifndef pmdp_get
296 static inline pmd_t pmdp_get(pmd_t *pmdp)
297 {
298 	return READ_ONCE(*pmdp);
299 }
300 #endif
301 
302 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
303 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
304 					    unsigned long address,
305 					    pte_t *ptep)
306 {
307 	pte_t pte = ptep_get(ptep);
308 	int r = 1;
309 	if (!pte_young(pte))
310 		r = 0;
311 	else
312 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
313 	return r;
314 }
315 #endif
316 
317 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
318 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
319 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
320 					    unsigned long address,
321 					    pmd_t *pmdp)
322 {
323 	pmd_t pmd = *pmdp;
324 	int r = 1;
325 	if (!pmd_young(pmd))
326 		r = 0;
327 	else
328 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
329 	return r;
330 }
331 #else
332 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
333 					    unsigned long address,
334 					    pmd_t *pmdp)
335 {
336 	BUILD_BUG();
337 	return 0;
338 }
339 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
340 #endif
341 
342 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
343 int ptep_clear_flush_young(struct vm_area_struct *vma,
344 			   unsigned long address, pte_t *ptep);
345 #endif
346 
347 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
350 				  unsigned long address, pmd_t *pmdp);
351 #else
352 /*
353  * Despite relevant to THP only, this API is called from generic rmap code
354  * under PageTransHuge(), hence needs a dummy implementation for !THP
355  */
356 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
357 					 unsigned long address, pmd_t *pmdp)
358 {
359 	BUILD_BUG();
360 	return 0;
361 }
362 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
363 #endif
364 
365 #ifndef arch_has_hw_nonleaf_pmd_young
366 /*
367  * Return whether the accessed bit in non-leaf PMD entries is supported on the
368  * local CPU.
369  */
370 static inline bool arch_has_hw_nonleaf_pmd_young(void)
371 {
372 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
373 }
374 #endif
375 
376 #ifndef arch_has_hw_pte_young
377 /*
378  * Return whether the accessed bit is supported on the local CPU.
379  *
380  * This stub assumes accessing through an old PTE triggers a page fault.
381  * Architectures that automatically set the access bit should overwrite it.
382  */
383 static inline bool arch_has_hw_pte_young(void)
384 {
385 	return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
386 }
387 #endif
388 
389 #ifndef arch_check_zapped_pte
390 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
391 					 pte_t pte)
392 {
393 }
394 #endif
395 
396 #ifndef arch_check_zapped_pmd
397 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
398 					 pmd_t pmd)
399 {
400 }
401 #endif
402 
403 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
404 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
405 				       unsigned long address,
406 				       pte_t *ptep)
407 {
408 	pte_t pte = ptep_get(ptep);
409 	pte_clear(mm, address, ptep);
410 	page_table_check_pte_clear(mm, pte);
411 	return pte;
412 }
413 #endif
414 
415 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
416 			      pte_t *ptep)
417 {
418 	ptep_get_and_clear(mm, addr, ptep);
419 }
420 
421 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
422 /*
423  * For walking the pagetables without holding any locks.  Some architectures
424  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
425  * instructions.  We are guaranteed that a PTE will only either go from not
426  * present to present, or present to not present -- it will not switch to a
427  * completely different present page without a TLB flush inbetween; which we
428  * are blocking by holding interrupts off.
429  *
430  * Setting ptes from not present to present goes:
431  *
432  *   ptep->pte_high = h;
433  *   smp_wmb();
434  *   ptep->pte_low = l;
435  *
436  * And present to not present goes:
437  *
438  *   ptep->pte_low = 0;
439  *   smp_wmb();
440  *   ptep->pte_high = 0;
441  *
442  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
443  * We load pte_high *after* loading pte_low, which ensures we don't see an older
444  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
445  * picked up a changed pte high. We might have gotten rubbish values from
446  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
447  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
448  * operates on present ptes we're safe.
449  */
450 static inline pte_t ptep_get_lockless(pte_t *ptep)
451 {
452 	pte_t pte;
453 
454 	do {
455 		pte.pte_low = ptep->pte_low;
456 		smp_rmb();
457 		pte.pte_high = ptep->pte_high;
458 		smp_rmb();
459 	} while (unlikely(pte.pte_low != ptep->pte_low));
460 
461 	return pte;
462 }
463 #define ptep_get_lockless ptep_get_lockless
464 
465 #if CONFIG_PGTABLE_LEVELS > 2
466 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
467 {
468 	pmd_t pmd;
469 
470 	do {
471 		pmd.pmd_low = pmdp->pmd_low;
472 		smp_rmb();
473 		pmd.pmd_high = pmdp->pmd_high;
474 		smp_rmb();
475 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
476 
477 	return pmd;
478 }
479 #define pmdp_get_lockless pmdp_get_lockless
480 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
481 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
482 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
483 
484 /*
485  * We require that the PTE can be read atomically.
486  */
487 #ifndef ptep_get_lockless
488 static inline pte_t ptep_get_lockless(pte_t *ptep)
489 {
490 	return ptep_get(ptep);
491 }
492 #endif
493 
494 #ifndef pmdp_get_lockless
495 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
496 {
497 	return pmdp_get(pmdp);
498 }
499 static inline void pmdp_get_lockless_sync(void)
500 {
501 }
502 #endif
503 
504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
505 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
506 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
507 					    unsigned long address,
508 					    pmd_t *pmdp)
509 {
510 	pmd_t pmd = *pmdp;
511 
512 	pmd_clear(pmdp);
513 	page_table_check_pmd_clear(mm, pmd);
514 
515 	return pmd;
516 }
517 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
518 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
519 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
520 					    unsigned long address,
521 					    pud_t *pudp)
522 {
523 	pud_t pud = *pudp;
524 
525 	pud_clear(pudp);
526 	page_table_check_pud_clear(mm, pud);
527 
528 	return pud;
529 }
530 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
531 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
535 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
536 					    unsigned long address, pmd_t *pmdp,
537 					    int full)
538 {
539 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
540 }
541 #endif
542 
543 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
544 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
545 					    unsigned long address, pud_t *pudp,
546 					    int full)
547 {
548 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
549 }
550 #endif
551 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
552 
553 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
554 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
555 					    unsigned long address, pte_t *ptep,
556 					    int full)
557 {
558 	return ptep_get_and_clear(mm, address, ptep);
559 }
560 #endif
561 
562 
563 /*
564  * If two threads concurrently fault at the same page, the thread that
565  * won the race updates the PTE and its local TLB/Cache. The other thread
566  * gives up, simply does nothing, and continues; on architectures where
567  * software can update TLB,  local TLB can be updated here to avoid next page
568  * fault. This function updates TLB only, do nothing with cache or others.
569  * It is the difference with function update_mmu_cache.
570  */
571 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
572 static inline void update_mmu_tlb(struct vm_area_struct *vma,
573 				unsigned long address, pte_t *ptep)
574 {
575 }
576 #define __HAVE_ARCH_UPDATE_MMU_TLB
577 #endif
578 
579 /*
580  * Some architectures may be able to avoid expensive synchronization
581  * primitives when modifications are made to PTE's which are already
582  * not present, or in the process of an address space destruction.
583  */
584 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
585 static inline void pte_clear_not_present_full(struct mm_struct *mm,
586 					      unsigned long address,
587 					      pte_t *ptep,
588 					      int full)
589 {
590 	pte_clear(mm, address, ptep);
591 }
592 #endif
593 
594 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
595 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
596 			      unsigned long address,
597 			      pte_t *ptep);
598 #endif
599 
600 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
601 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
602 			      unsigned long address,
603 			      pmd_t *pmdp);
604 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
605 			      unsigned long address,
606 			      pud_t *pudp);
607 #endif
608 
609 #ifndef pte_mkwrite
610 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
611 {
612 	return pte_mkwrite_novma(pte);
613 }
614 #endif
615 
616 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
617 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
618 {
619 	return pmd_mkwrite_novma(pmd);
620 }
621 #endif
622 
623 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
624 struct mm_struct;
625 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
626 {
627 	pte_t old_pte = ptep_get(ptep);
628 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
629 }
630 #endif
631 
632 /*
633  * On some architectures hardware does not set page access bit when accessing
634  * memory page, it is responsibility of software setting this bit. It brings
635  * out extra page fault penalty to track page access bit. For optimization page
636  * access bit can be set during all page fault flow on these arches.
637  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
638  * where software maintains page access bit.
639  */
640 #ifndef pte_sw_mkyoung
641 static inline pte_t pte_sw_mkyoung(pte_t pte)
642 {
643 	return pte;
644 }
645 #define pte_sw_mkyoung	pte_sw_mkyoung
646 #endif
647 
648 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
651 				      unsigned long address, pmd_t *pmdp)
652 {
653 	pmd_t old_pmd = *pmdp;
654 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
655 }
656 #else
657 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
658 				      unsigned long address, pmd_t *pmdp)
659 {
660 	BUILD_BUG();
661 }
662 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
663 #endif
664 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
665 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
666 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
667 static inline void pudp_set_wrprotect(struct mm_struct *mm,
668 				      unsigned long address, pud_t *pudp)
669 {
670 	pud_t old_pud = *pudp;
671 
672 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
673 }
674 #else
675 static inline void pudp_set_wrprotect(struct mm_struct *mm,
676 				      unsigned long address, pud_t *pudp)
677 {
678 	BUILD_BUG();
679 }
680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
681 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
682 #endif
683 
684 #ifndef pmdp_collapse_flush
685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
686 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
687 				 unsigned long address, pmd_t *pmdp);
688 #else
689 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
690 					unsigned long address,
691 					pmd_t *pmdp)
692 {
693 	BUILD_BUG();
694 	return *pmdp;
695 }
696 #define pmdp_collapse_flush pmdp_collapse_flush
697 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
698 #endif
699 
700 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
701 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
702 				       pgtable_t pgtable);
703 #endif
704 
705 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
706 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
707 #endif
708 
709 #ifndef arch_needs_pgtable_deposit
710 #define arch_needs_pgtable_deposit() (false)
711 #endif
712 
713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
714 /*
715  * This is an implementation of pmdp_establish() that is only suitable for an
716  * architecture that doesn't have hardware dirty/accessed bits. In this case we
717  * can't race with CPU which sets these bits and non-atomic approach is fine.
718  */
719 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
720 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
721 {
722 	pmd_t old_pmd = *pmdp;
723 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
724 	return old_pmd;
725 }
726 #endif
727 
728 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
729 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
730 			    pmd_t *pmdp);
731 #endif
732 
733 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
734 
735 /*
736  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
737  * hugepage mapping in the page tables. This function is similar to
738  * pmdp_invalidate(), but should only be used if the access and dirty bits would
739  * not be cleared by the software in the new PMD value. The function ensures
740  * that hardware changes of the access and dirty bits updates would not be lost.
741  *
742  * Doing so can allow in certain architectures to avoid a TLB flush in most
743  * cases. Yet, another TLB flush might be necessary later if the PMD update
744  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
745  * even when a TLB flush is needed because of the update, the caller may be able
746  * to batch these TLB flushing operations, so fewer TLB flush operations are
747  * needed.
748  */
749 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
750 				unsigned long address, pmd_t *pmdp);
751 #endif
752 
753 #ifndef __HAVE_ARCH_PTE_SAME
754 static inline int pte_same(pte_t pte_a, pte_t pte_b)
755 {
756 	return pte_val(pte_a) == pte_val(pte_b);
757 }
758 #endif
759 
760 #ifndef __HAVE_ARCH_PTE_UNUSED
761 /*
762  * Some architectures provide facilities to virtualization guests
763  * so that they can flag allocated pages as unused. This allows the
764  * host to transparently reclaim unused pages. This function returns
765  * whether the pte's page is unused.
766  */
767 static inline int pte_unused(pte_t pte)
768 {
769 	return 0;
770 }
771 #endif
772 
773 #ifndef pte_access_permitted
774 #define pte_access_permitted(pte, write) \
775 	(pte_present(pte) && (!(write) || pte_write(pte)))
776 #endif
777 
778 #ifndef pmd_access_permitted
779 #define pmd_access_permitted(pmd, write) \
780 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
781 #endif
782 
783 #ifndef pud_access_permitted
784 #define pud_access_permitted(pud, write) \
785 	(pud_present(pud) && (!(write) || pud_write(pud)))
786 #endif
787 
788 #ifndef p4d_access_permitted
789 #define p4d_access_permitted(p4d, write) \
790 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
791 #endif
792 
793 #ifndef pgd_access_permitted
794 #define pgd_access_permitted(pgd, write) \
795 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
796 #endif
797 
798 #ifndef __HAVE_ARCH_PMD_SAME
799 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
800 {
801 	return pmd_val(pmd_a) == pmd_val(pmd_b);
802 }
803 #endif
804 
805 #ifndef pud_same
806 static inline int pud_same(pud_t pud_a, pud_t pud_b)
807 {
808 	return pud_val(pud_a) == pud_val(pud_b);
809 }
810 #define pud_same pud_same
811 #endif
812 
813 #ifndef __HAVE_ARCH_P4D_SAME
814 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
815 {
816 	return p4d_val(p4d_a) == p4d_val(p4d_b);
817 }
818 #endif
819 
820 #ifndef __HAVE_ARCH_PGD_SAME
821 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
822 {
823 	return pgd_val(pgd_a) == pgd_val(pgd_b);
824 }
825 #endif
826 
827 /*
828  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
829  * TLB flush will be required as a result of the "set". For example, use
830  * in scenarios where it is known ahead of time that the routine is
831  * setting non-present entries, or re-setting an existing entry to the
832  * same value. Otherwise, use the typical "set" helpers and flush the
833  * TLB.
834  */
835 #define set_pte_safe(ptep, pte) \
836 ({ \
837 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
838 	set_pte(ptep, pte); \
839 })
840 
841 #define set_pmd_safe(pmdp, pmd) \
842 ({ \
843 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
844 	set_pmd(pmdp, pmd); \
845 })
846 
847 #define set_pud_safe(pudp, pud) \
848 ({ \
849 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
850 	set_pud(pudp, pud); \
851 })
852 
853 #define set_p4d_safe(p4dp, p4d) \
854 ({ \
855 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
856 	set_p4d(p4dp, p4d); \
857 })
858 
859 #define set_pgd_safe(pgdp, pgd) \
860 ({ \
861 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
862 	set_pgd(pgdp, pgd); \
863 })
864 
865 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
866 /*
867  * Some architectures support metadata associated with a page. When a
868  * page is being swapped out, this metadata must be saved so it can be
869  * restored when the page is swapped back in. SPARC M7 and newer
870  * processors support an ADI (Application Data Integrity) tag for the
871  * page as metadata for the page. arch_do_swap_page() can restore this
872  * metadata when a page is swapped back in.
873  */
874 static inline void arch_do_swap_page(struct mm_struct *mm,
875 				     struct vm_area_struct *vma,
876 				     unsigned long addr,
877 				     pte_t pte, pte_t oldpte)
878 {
879 
880 }
881 #endif
882 
883 #ifndef __HAVE_ARCH_UNMAP_ONE
884 /*
885  * Some architectures support metadata associated with a page. When a
886  * page is being swapped out, this metadata must be saved so it can be
887  * restored when the page is swapped back in. SPARC M7 and newer
888  * processors support an ADI (Application Data Integrity) tag for the
889  * page as metadata for the page. arch_unmap_one() can save this
890  * metadata on a swap-out of a page.
891  */
892 static inline int arch_unmap_one(struct mm_struct *mm,
893 				  struct vm_area_struct *vma,
894 				  unsigned long addr,
895 				  pte_t orig_pte)
896 {
897 	return 0;
898 }
899 #endif
900 
901 /*
902  * Allow architectures to preserve additional metadata associated with
903  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
904  * prototypes must be defined in the arch-specific asm/pgtable.h file.
905  */
906 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
907 static inline int arch_prepare_to_swap(struct page *page)
908 {
909 	return 0;
910 }
911 #endif
912 
913 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
914 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
915 {
916 }
917 
918 static inline void arch_swap_invalidate_area(int type)
919 {
920 }
921 #endif
922 
923 #ifndef __HAVE_ARCH_SWAP_RESTORE
924 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
925 {
926 }
927 #endif
928 
929 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
930 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
931 #endif
932 
933 #ifndef __HAVE_ARCH_MOVE_PTE
934 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
935 #endif
936 
937 #ifndef pte_accessible
938 # define pte_accessible(mm, pte)	((void)(pte), 1)
939 #endif
940 
941 #ifndef flush_tlb_fix_spurious_fault
942 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
943 #endif
944 
945 /*
946  * When walking page tables, get the address of the next boundary,
947  * or the end address of the range if that comes earlier.  Although no
948  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
949  */
950 
951 #define pgd_addr_end(addr, end)						\
952 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
953 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
954 })
955 
956 #ifndef p4d_addr_end
957 #define p4d_addr_end(addr, end)						\
958 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
959 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
960 })
961 #endif
962 
963 #ifndef pud_addr_end
964 #define pud_addr_end(addr, end)						\
965 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
966 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
967 })
968 #endif
969 
970 #ifndef pmd_addr_end
971 #define pmd_addr_end(addr, end)						\
972 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
973 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
974 })
975 #endif
976 
977 /*
978  * When walking page tables, we usually want to skip any p?d_none entries;
979  * and any p?d_bad entries - reporting the error before resetting to none.
980  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
981  */
982 void pgd_clear_bad(pgd_t *);
983 
984 #ifndef __PAGETABLE_P4D_FOLDED
985 void p4d_clear_bad(p4d_t *);
986 #else
987 #define p4d_clear_bad(p4d)        do { } while (0)
988 #endif
989 
990 #ifndef __PAGETABLE_PUD_FOLDED
991 void pud_clear_bad(pud_t *);
992 #else
993 #define pud_clear_bad(p4d)        do { } while (0)
994 #endif
995 
996 void pmd_clear_bad(pmd_t *);
997 
998 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
999 {
1000 	if (pgd_none(*pgd))
1001 		return 1;
1002 	if (unlikely(pgd_bad(*pgd))) {
1003 		pgd_clear_bad(pgd);
1004 		return 1;
1005 	}
1006 	return 0;
1007 }
1008 
1009 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1010 {
1011 	if (p4d_none(*p4d))
1012 		return 1;
1013 	if (unlikely(p4d_bad(*p4d))) {
1014 		p4d_clear_bad(p4d);
1015 		return 1;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static inline int pud_none_or_clear_bad(pud_t *pud)
1021 {
1022 	if (pud_none(*pud))
1023 		return 1;
1024 	if (unlikely(pud_bad(*pud))) {
1025 		pud_clear_bad(pud);
1026 		return 1;
1027 	}
1028 	return 0;
1029 }
1030 
1031 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1032 {
1033 	if (pmd_none(*pmd))
1034 		return 1;
1035 	if (unlikely(pmd_bad(*pmd))) {
1036 		pmd_clear_bad(pmd);
1037 		return 1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1043 					     unsigned long addr,
1044 					     pte_t *ptep)
1045 {
1046 	/*
1047 	 * Get the current pte state, but zero it out to make it
1048 	 * non-present, preventing the hardware from asynchronously
1049 	 * updating it.
1050 	 */
1051 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1052 }
1053 
1054 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1055 					     unsigned long addr,
1056 					     pte_t *ptep, pte_t pte)
1057 {
1058 	/*
1059 	 * The pte is non-present, so there's no hardware state to
1060 	 * preserve.
1061 	 */
1062 	set_pte_at(vma->vm_mm, addr, ptep, pte);
1063 }
1064 
1065 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1066 /*
1067  * Start a pte protection read-modify-write transaction, which
1068  * protects against asynchronous hardware modifications to the pte.
1069  * The intention is not to prevent the hardware from making pte
1070  * updates, but to prevent any updates it may make from being lost.
1071  *
1072  * This does not protect against other software modifications of the
1073  * pte; the appropriate pte lock must be held over the transaction.
1074  *
1075  * Note that this interface is intended to be batchable, meaning that
1076  * ptep_modify_prot_commit may not actually update the pte, but merely
1077  * queue the update to be done at some later time.  The update must be
1078  * actually committed before the pte lock is released, however.
1079  */
1080 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1081 					   unsigned long addr,
1082 					   pte_t *ptep)
1083 {
1084 	return __ptep_modify_prot_start(vma, addr, ptep);
1085 }
1086 
1087 /*
1088  * Commit an update to a pte, leaving any hardware-controlled bits in
1089  * the PTE unmodified.
1090  */
1091 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1092 					   unsigned long addr,
1093 					   pte_t *ptep, pte_t old_pte, pte_t pte)
1094 {
1095 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1096 }
1097 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1098 #endif /* CONFIG_MMU */
1099 
1100 /*
1101  * No-op macros that just return the current protection value. Defined here
1102  * because these macros can be used even if CONFIG_MMU is not defined.
1103  */
1104 
1105 #ifndef pgprot_nx
1106 #define pgprot_nx(prot)	(prot)
1107 #endif
1108 
1109 #ifndef pgprot_noncached
1110 #define pgprot_noncached(prot)	(prot)
1111 #endif
1112 
1113 #ifndef pgprot_writecombine
1114 #define pgprot_writecombine pgprot_noncached
1115 #endif
1116 
1117 #ifndef pgprot_writethrough
1118 #define pgprot_writethrough pgprot_noncached
1119 #endif
1120 
1121 #ifndef pgprot_device
1122 #define pgprot_device pgprot_noncached
1123 #endif
1124 
1125 #ifndef pgprot_mhp
1126 #define pgprot_mhp(prot)	(prot)
1127 #endif
1128 
1129 #ifdef CONFIG_MMU
1130 #ifndef pgprot_modify
1131 #define pgprot_modify pgprot_modify
1132 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1133 {
1134 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1135 		newprot = pgprot_noncached(newprot);
1136 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1137 		newprot = pgprot_writecombine(newprot);
1138 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1139 		newprot = pgprot_device(newprot);
1140 	return newprot;
1141 }
1142 #endif
1143 #endif /* CONFIG_MMU */
1144 
1145 #ifndef pgprot_encrypted
1146 #define pgprot_encrypted(prot)	(prot)
1147 #endif
1148 
1149 #ifndef pgprot_decrypted
1150 #define pgprot_decrypted(prot)	(prot)
1151 #endif
1152 
1153 /*
1154  * A facility to provide batching of the reload of page tables and
1155  * other process state with the actual context switch code for
1156  * paravirtualized guests.  By convention, only one of the batched
1157  * update (lazy) modes (CPU, MMU) should be active at any given time,
1158  * entry should never be nested, and entry and exits should always be
1159  * paired.  This is for sanity of maintaining and reasoning about the
1160  * kernel code.  In this case, the exit (end of the context switch) is
1161  * in architecture-specific code, and so doesn't need a generic
1162  * definition.
1163  */
1164 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1165 #define arch_start_context_switch(prev)	do {} while (0)
1166 #endif
1167 
1168 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1169 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1170 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1171 {
1172 	return pmd;
1173 }
1174 
1175 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1176 {
1177 	return 0;
1178 }
1179 
1180 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1181 {
1182 	return pmd;
1183 }
1184 #endif
1185 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1186 static inline int pte_soft_dirty(pte_t pte)
1187 {
1188 	return 0;
1189 }
1190 
1191 static inline int pmd_soft_dirty(pmd_t pmd)
1192 {
1193 	return 0;
1194 }
1195 
1196 static inline pte_t pte_mksoft_dirty(pte_t pte)
1197 {
1198 	return pte;
1199 }
1200 
1201 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1202 {
1203 	return pmd;
1204 }
1205 
1206 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1207 {
1208 	return pte;
1209 }
1210 
1211 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1212 {
1213 	return pmd;
1214 }
1215 
1216 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1217 {
1218 	return pte;
1219 }
1220 
1221 static inline int pte_swp_soft_dirty(pte_t pte)
1222 {
1223 	return 0;
1224 }
1225 
1226 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1227 {
1228 	return pte;
1229 }
1230 
1231 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1232 {
1233 	return pmd;
1234 }
1235 
1236 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1237 {
1238 	return 0;
1239 }
1240 
1241 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1242 {
1243 	return pmd;
1244 }
1245 #endif
1246 
1247 #ifndef __HAVE_PFNMAP_TRACKING
1248 /*
1249  * Interfaces that can be used by architecture code to keep track of
1250  * memory type of pfn mappings specified by the remap_pfn_range,
1251  * vmf_insert_pfn.
1252  */
1253 
1254 /*
1255  * track_pfn_remap is called when a _new_ pfn mapping is being established
1256  * by remap_pfn_range() for physical range indicated by pfn and size.
1257  */
1258 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1259 				  unsigned long pfn, unsigned long addr,
1260 				  unsigned long size)
1261 {
1262 	return 0;
1263 }
1264 
1265 /*
1266  * track_pfn_insert is called when a _new_ single pfn is established
1267  * by vmf_insert_pfn().
1268  */
1269 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1270 				    pfn_t pfn)
1271 {
1272 }
1273 
1274 /*
1275  * track_pfn_copy is called when vma that is covering the pfnmap gets
1276  * copied through copy_page_range().
1277  */
1278 static inline int track_pfn_copy(struct vm_area_struct *vma)
1279 {
1280 	return 0;
1281 }
1282 
1283 /*
1284  * untrack_pfn is called while unmapping a pfnmap for a region.
1285  * untrack can be called for a specific region indicated by pfn and size or
1286  * can be for the entire vma (in which case pfn, size are zero).
1287  */
1288 static inline void untrack_pfn(struct vm_area_struct *vma,
1289 			       unsigned long pfn, unsigned long size,
1290 			       bool mm_wr_locked)
1291 {
1292 }
1293 
1294 /*
1295  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1296  * or fails to copy pgtable during duplicate vm area.
1297  */
1298 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1299 {
1300 }
1301 #else
1302 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1303 			   unsigned long pfn, unsigned long addr,
1304 			   unsigned long size);
1305 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1306 			     pfn_t pfn);
1307 extern int track_pfn_copy(struct vm_area_struct *vma);
1308 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1309 			unsigned long size, bool mm_wr_locked);
1310 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1311 #endif
1312 
1313 #ifdef CONFIG_MMU
1314 #ifdef __HAVE_COLOR_ZERO_PAGE
1315 static inline int is_zero_pfn(unsigned long pfn)
1316 {
1317 	extern unsigned long zero_pfn;
1318 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1319 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1320 }
1321 
1322 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1323 
1324 #else
1325 static inline int is_zero_pfn(unsigned long pfn)
1326 {
1327 	extern unsigned long zero_pfn;
1328 	return pfn == zero_pfn;
1329 }
1330 
1331 static inline unsigned long my_zero_pfn(unsigned long addr)
1332 {
1333 	extern unsigned long zero_pfn;
1334 	return zero_pfn;
1335 }
1336 #endif
1337 #else
1338 static inline int is_zero_pfn(unsigned long pfn)
1339 {
1340 	return 0;
1341 }
1342 
1343 static inline unsigned long my_zero_pfn(unsigned long addr)
1344 {
1345 	return 0;
1346 }
1347 #endif /* CONFIG_MMU */
1348 
1349 #ifdef CONFIG_MMU
1350 
1351 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1352 static inline int pmd_trans_huge(pmd_t pmd)
1353 {
1354 	return 0;
1355 }
1356 #ifndef pmd_write
1357 static inline int pmd_write(pmd_t pmd)
1358 {
1359 	BUG();
1360 	return 0;
1361 }
1362 #endif /* pmd_write */
1363 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1364 
1365 #ifndef pud_write
1366 static inline int pud_write(pud_t pud)
1367 {
1368 	BUG();
1369 	return 0;
1370 }
1371 #endif /* pud_write */
1372 
1373 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1374 static inline int pmd_devmap(pmd_t pmd)
1375 {
1376 	return 0;
1377 }
1378 static inline int pud_devmap(pud_t pud)
1379 {
1380 	return 0;
1381 }
1382 static inline int pgd_devmap(pgd_t pgd)
1383 {
1384 	return 0;
1385 }
1386 #endif
1387 
1388 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1389 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1390 static inline int pud_trans_huge(pud_t pud)
1391 {
1392 	return 0;
1393 }
1394 #endif
1395 
1396 static inline int pud_trans_unstable(pud_t *pud)
1397 {
1398 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1399 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1400 	pud_t pudval = READ_ONCE(*pud);
1401 
1402 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1403 		return 1;
1404 	if (unlikely(pud_bad(pudval))) {
1405 		pud_clear_bad(pud);
1406 		return 1;
1407 	}
1408 #endif
1409 	return 0;
1410 }
1411 
1412 #ifndef CONFIG_NUMA_BALANCING
1413 /*
1414  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1415  * perfectly valid to indicate "no" in that case, which is why our default
1416  * implementation defaults to "always no".
1417  *
1418  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1419  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1420  * accessible VMAs.
1421  *
1422  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1423  * looking at the VMA accessibility is sufficient.
1424  */
1425 static inline int pte_protnone(pte_t pte)
1426 {
1427 	return 0;
1428 }
1429 
1430 static inline int pmd_protnone(pmd_t pmd)
1431 {
1432 	return 0;
1433 }
1434 #endif /* CONFIG_NUMA_BALANCING */
1435 
1436 #endif /* CONFIG_MMU */
1437 
1438 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1439 
1440 #ifndef __PAGETABLE_P4D_FOLDED
1441 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1442 void p4d_clear_huge(p4d_t *p4d);
1443 #else
1444 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1445 {
1446 	return 0;
1447 }
1448 static inline void p4d_clear_huge(p4d_t *p4d) { }
1449 #endif /* !__PAGETABLE_P4D_FOLDED */
1450 
1451 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1452 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1453 int pud_clear_huge(pud_t *pud);
1454 int pmd_clear_huge(pmd_t *pmd);
1455 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1456 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1457 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1458 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1459 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1460 {
1461 	return 0;
1462 }
1463 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1464 {
1465 	return 0;
1466 }
1467 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1468 {
1469 	return 0;
1470 }
1471 static inline void p4d_clear_huge(p4d_t *p4d) { }
1472 static inline int pud_clear_huge(pud_t *pud)
1473 {
1474 	return 0;
1475 }
1476 static inline int pmd_clear_huge(pmd_t *pmd)
1477 {
1478 	return 0;
1479 }
1480 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1481 {
1482 	return 0;
1483 }
1484 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1485 {
1486 	return 0;
1487 }
1488 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1489 {
1490 	return 0;
1491 }
1492 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1493 
1494 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1496 /*
1497  * ARCHes with special requirements for evicting THP backing TLB entries can
1498  * implement this. Otherwise also, it can help optimize normal TLB flush in
1499  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1500  * entire TLB if flush span is greater than a threshold, which will
1501  * likely be true for a single huge page. Thus a single THP flush will
1502  * invalidate the entire TLB which is not desirable.
1503  * e.g. see arch/arc: flush_pmd_tlb_range
1504  */
1505 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1506 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1507 #else
1508 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1509 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1510 #endif
1511 #endif
1512 
1513 struct file;
1514 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1515 			unsigned long size, pgprot_t *vma_prot);
1516 
1517 #ifndef CONFIG_X86_ESPFIX64
1518 static inline void init_espfix_bsp(void) { }
1519 #endif
1520 
1521 extern void __init pgtable_cache_init(void);
1522 
1523 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1524 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1525 {
1526 	return true;
1527 }
1528 
1529 static inline bool arch_has_pfn_modify_check(void)
1530 {
1531 	return false;
1532 }
1533 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1534 
1535 /*
1536  * Architecture PAGE_KERNEL_* fallbacks
1537  *
1538  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1539  * because they really don't support them, or the port needs to be updated to
1540  * reflect the required functionality. Below are a set of relatively safe
1541  * fallbacks, as best effort, which we can count on in lieu of the architectures
1542  * not defining them on their own yet.
1543  */
1544 
1545 #ifndef PAGE_KERNEL_RO
1546 # define PAGE_KERNEL_RO PAGE_KERNEL
1547 #endif
1548 
1549 #ifndef PAGE_KERNEL_EXEC
1550 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1551 #endif
1552 
1553 /*
1554  * Page Table Modification bits for pgtbl_mod_mask.
1555  *
1556  * These are used by the p?d_alloc_track*() set of functions an in the generic
1557  * vmalloc/ioremap code to track at which page-table levels entries have been
1558  * modified. Based on that the code can better decide when vmalloc and ioremap
1559  * mapping changes need to be synchronized to other page-tables in the system.
1560  */
1561 #define		__PGTBL_PGD_MODIFIED	0
1562 #define		__PGTBL_P4D_MODIFIED	1
1563 #define		__PGTBL_PUD_MODIFIED	2
1564 #define		__PGTBL_PMD_MODIFIED	3
1565 #define		__PGTBL_PTE_MODIFIED	4
1566 
1567 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1568 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1569 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1570 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1571 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1572 
1573 /* Page-Table Modification Mask */
1574 typedef unsigned int pgtbl_mod_mask;
1575 
1576 #endif /* !__ASSEMBLY__ */
1577 
1578 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1579 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1580 /*
1581  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1582  * with physical address space extension, but falls back to
1583  * BITS_PER_LONG otherwise.
1584  */
1585 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1586 #else
1587 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1588 #endif
1589 #endif
1590 
1591 #ifndef has_transparent_hugepage
1592 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1593 #endif
1594 
1595 #ifndef has_transparent_pud_hugepage
1596 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1597 #endif
1598 /*
1599  * On some architectures it depends on the mm if the p4d/pud or pmd
1600  * layer of the page table hierarchy is folded or not.
1601  */
1602 #ifndef mm_p4d_folded
1603 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1604 #endif
1605 
1606 #ifndef mm_pud_folded
1607 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1608 #endif
1609 
1610 #ifndef mm_pmd_folded
1611 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1612 #endif
1613 
1614 #ifndef p4d_offset_lockless
1615 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1616 #endif
1617 #ifndef pud_offset_lockless
1618 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1619 #endif
1620 #ifndef pmd_offset_lockless
1621 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1622 #endif
1623 
1624 /*
1625  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1626  * This differs from p?d_huge() by the fact that they are always available (if
1627  * the architecture supports large pages at the appropriate level) even
1628  * if CONFIG_HUGETLB_PAGE is not defined.
1629  * Only meaningful when called on a valid entry.
1630  */
1631 #ifndef pgd_leaf
1632 #define pgd_leaf(x)	0
1633 #endif
1634 #ifndef p4d_leaf
1635 #define p4d_leaf(x)	0
1636 #endif
1637 #ifndef pud_leaf
1638 #define pud_leaf(x)	0
1639 #endif
1640 #ifndef pmd_leaf
1641 #define pmd_leaf(x)	0
1642 #endif
1643 
1644 #ifndef pgd_leaf_size
1645 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1646 #endif
1647 #ifndef p4d_leaf_size
1648 #define p4d_leaf_size(x) P4D_SIZE
1649 #endif
1650 #ifndef pud_leaf_size
1651 #define pud_leaf_size(x) PUD_SIZE
1652 #endif
1653 #ifndef pmd_leaf_size
1654 #define pmd_leaf_size(x) PMD_SIZE
1655 #endif
1656 #ifndef pte_leaf_size
1657 #define pte_leaf_size(x) PAGE_SIZE
1658 #endif
1659 
1660 /*
1661  * Some architectures have MMUs that are configurable or selectable at boot
1662  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1663  * helps to have a static maximum value.
1664  */
1665 
1666 #ifndef MAX_PTRS_PER_PTE
1667 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1668 #endif
1669 
1670 #ifndef MAX_PTRS_PER_PMD
1671 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1672 #endif
1673 
1674 #ifndef MAX_PTRS_PER_PUD
1675 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1676 #endif
1677 
1678 #ifndef MAX_PTRS_PER_P4D
1679 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1680 #endif
1681 
1682 /* description of effects of mapping type and prot in current implementation.
1683  * this is due to the limited x86 page protection hardware.  The expected
1684  * behavior is in parens:
1685  *
1686  * map_type	prot
1687  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1688  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1689  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1690  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1691  *
1692  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1693  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1694  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1695  *
1696  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1697  * MAP_PRIVATE (with Enhanced PAN supported):
1698  *								r: (no) no
1699  *								w: (no) no
1700  *								x: (yes) yes
1701  */
1702 #define DECLARE_VM_GET_PAGE_PROT					\
1703 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1704 {									\
1705 		return protection_map[vm_flags &			\
1706 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1707 }									\
1708 EXPORT_SYMBOL(vm_get_page_prot);
1709 
1710 #endif /* _LINUX_PGTABLE_H */
1711