xref: /linux-6.15/include/linux/perf_event.h (revision fa60ce2c)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61 
62 struct perf_callchain_entry {
63 	__u64				nr;
64 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66 
67 struct perf_callchain_entry_ctx {
68 	struct perf_callchain_entry *entry;
69 	u32			    max_stack;
70 	u32			    nr;
71 	short			    contexts;
72 	bool			    contexts_maxed;
73 };
74 
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 				     unsigned long off, unsigned long len);
77 
78 struct perf_raw_frag {
79 	union {
80 		struct perf_raw_frag	*next;
81 		unsigned long		pad;
82 	};
83 	perf_copy_f			copy;
84 	void				*data;
85 	u32				size;
86 } __packed;
87 
88 struct perf_raw_record {
89 	struct perf_raw_frag		frag;
90 	u32				size;
91 };
92 
93 /*
94  * branch stack layout:
95  *  nr: number of taken branches stored in entries[]
96  *  hw_idx: The low level index of raw branch records
97  *          for the most recent branch.
98  *          -1ULL means invalid/unknown.
99  *
100  * Note that nr can vary from sample to sample
101  * branches (to, from) are stored from most recent
102  * to least recent, i.e., entries[0] contains the most
103  * recent branch.
104  * The entries[] is an abstraction of raw branch records,
105  * which may not be stored in age order in HW, e.g. Intel LBR.
106  * The hw_idx is to expose the low level index of raw
107  * branch record for the most recent branch aka entries[0].
108  * The hw_idx index is between -1 (unknown) and max depth,
109  * which can be retrieved in /sys/devices/cpu/caps/branches.
110  * For the architectures whose raw branch records are
111  * already stored in age order, the hw_idx should be 0.
112  */
113 struct perf_branch_stack {
114 	__u64				nr;
115 	__u64				hw_idx;
116 	struct perf_branch_entry	entries[];
117 };
118 
119 struct task_struct;
120 
121 /*
122  * extra PMU register associated with an event
123  */
124 struct hw_perf_event_extra {
125 	u64		config;	/* register value */
126 	unsigned int	reg;	/* register address or index */
127 	int		alloc;	/* extra register already allocated */
128 	int		idx;	/* index in shared_regs->regs[] */
129 };
130 
131 /**
132  * struct hw_perf_event - performance event hardware details:
133  */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 	union {
137 		struct { /* hardware */
138 			u64		config;
139 			u64		last_tag;
140 			unsigned long	config_base;
141 			unsigned long	event_base;
142 			int		event_base_rdpmc;
143 			int		idx;
144 			int		last_cpu;
145 			int		flags;
146 
147 			struct hw_perf_event_extra extra_reg;
148 			struct hw_perf_event_extra branch_reg;
149 		};
150 		struct { /* software */
151 			struct hrtimer	hrtimer;
152 		};
153 		struct { /* tracepoint */
154 			/* for tp_event->class */
155 			struct list_head	tp_list;
156 		};
157 		struct { /* amd_power */
158 			u64	pwr_acc;
159 			u64	ptsc;
160 		};
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 		struct { /* breakpoint */
163 			/*
164 			 * Crufty hack to avoid the chicken and egg
165 			 * problem hw_breakpoint has with context
166 			 * creation and event initalization.
167 			 */
168 			struct arch_hw_breakpoint	info;
169 			struct list_head		bp_list;
170 		};
171 #endif
172 		struct { /* amd_iommu */
173 			u8	iommu_bank;
174 			u8	iommu_cntr;
175 			u16	padding;
176 			u64	conf;
177 			u64	conf1;
178 		};
179 	};
180 	/*
181 	 * If the event is a per task event, this will point to the task in
182 	 * question. See the comment in perf_event_alloc().
183 	 */
184 	struct task_struct		*target;
185 
186 	/*
187 	 * PMU would store hardware filter configuration
188 	 * here.
189 	 */
190 	void				*addr_filters;
191 
192 	/* Last sync'ed generation of filters */
193 	unsigned long			addr_filters_gen;
194 
195 /*
196  * hw_perf_event::state flags; used to track the PERF_EF_* state.
197  */
198 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH		0x04
201 
202 	int				state;
203 
204 	/*
205 	 * The last observed hardware counter value, updated with a
206 	 * local64_cmpxchg() such that pmu::read() can be called nested.
207 	 */
208 	local64_t			prev_count;
209 
210 	/*
211 	 * The period to start the next sample with.
212 	 */
213 	u64				sample_period;
214 
215 	union {
216 		struct { /* Sampling */
217 			/*
218 			 * The period we started this sample with.
219 			 */
220 			u64				last_period;
221 
222 			/*
223 			 * However much is left of the current period;
224 			 * note that this is a full 64bit value and
225 			 * allows for generation of periods longer
226 			 * than hardware might allow.
227 			 */
228 			local64_t			period_left;
229 		};
230 		struct { /* Topdown events counting for context switch */
231 			u64				saved_metric;
232 			u64				saved_slots;
233 		};
234 	};
235 
236 	/*
237 	 * State for throttling the event, see __perf_event_overflow() and
238 	 * perf_adjust_freq_unthr_context().
239 	 */
240 	u64                             interrupts_seq;
241 	u64				interrupts;
242 
243 	/*
244 	 * State for freq target events, see __perf_event_overflow() and
245 	 * perf_adjust_freq_unthr_context().
246 	 */
247 	u64				freq_time_stamp;
248 	u64				freq_count_stamp;
249 #endif
250 };
251 
252 struct perf_event;
253 
254 /*
255  * Common implementation detail of pmu::{start,commit,cancel}_txn
256  */
257 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
259 
260 /**
261  * pmu::capabilities flags
262  */
263 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
264 #define PERF_PMU_CAP_NO_NMI			0x0002
265 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
266 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
267 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
268 #define PERF_PMU_CAP_ITRACE			0x0020
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x0040
270 #define PERF_PMU_CAP_NO_EXCLUDE			0x0080
271 #define PERF_PMU_CAP_AUX_OUTPUT			0x0100
272 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0200
273 
274 struct perf_output_handle;
275 
276 /**
277  * struct pmu - generic performance monitoring unit
278  */
279 struct pmu {
280 	struct list_head		entry;
281 
282 	struct module			*module;
283 	struct device			*dev;
284 	const struct attribute_group	**attr_groups;
285 	const struct attribute_group	**attr_update;
286 	const char			*name;
287 	int				type;
288 
289 	/*
290 	 * various common per-pmu feature flags
291 	 */
292 	int				capabilities;
293 
294 	int __percpu			*pmu_disable_count;
295 	struct perf_cpu_context __percpu *pmu_cpu_context;
296 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
297 	int				task_ctx_nr;
298 	int				hrtimer_interval_ms;
299 
300 	/* number of address filters this PMU can do */
301 	unsigned int			nr_addr_filters;
302 
303 	/*
304 	 * Fully disable/enable this PMU, can be used to protect from the PMI
305 	 * as well as for lazy/batch writing of the MSRs.
306 	 */
307 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
308 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
309 
310 	/*
311 	 * Try and initialize the event for this PMU.
312 	 *
313 	 * Returns:
314 	 *  -ENOENT	-- @event is not for this PMU
315 	 *
316 	 *  -ENODEV	-- @event is for this PMU but PMU not present
317 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
318 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
319 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
320 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
321 	 *
322 	 *  0		-- @event is for this PMU and valid
323 	 *
324 	 * Other error return values are allowed.
325 	 */
326 	int (*event_init)		(struct perf_event *event);
327 
328 	/*
329 	 * Notification that the event was mapped or unmapped.  Called
330 	 * in the context of the mapping task.
331 	 */
332 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
333 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
334 
335 	/*
336 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
337 	 * matching hw_perf_event::state flags.
338 	 */
339 #define PERF_EF_START	0x01		/* start the counter when adding    */
340 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
341 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
342 
343 	/*
344 	 * Adds/Removes a counter to/from the PMU, can be done inside a
345 	 * transaction, see the ->*_txn() methods.
346 	 *
347 	 * The add/del callbacks will reserve all hardware resources required
348 	 * to service the event, this includes any counter constraint
349 	 * scheduling etc.
350 	 *
351 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
352 	 * is on.
353 	 *
354 	 * ->add() called without PERF_EF_START should result in the same state
355 	 *  as ->add() followed by ->stop().
356 	 *
357 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
358 	 *  ->stop() that must deal with already being stopped without
359 	 *  PERF_EF_UPDATE.
360 	 */
361 	int  (*add)			(struct perf_event *event, int flags);
362 	void (*del)			(struct perf_event *event, int flags);
363 
364 	/*
365 	 * Starts/Stops a counter present on the PMU.
366 	 *
367 	 * The PMI handler should stop the counter when perf_event_overflow()
368 	 * returns !0. ->start() will be used to continue.
369 	 *
370 	 * Also used to change the sample period.
371 	 *
372 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
373 	 * is on -- will be called from NMI context with the PMU generates
374 	 * NMIs.
375 	 *
376 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
377 	 *  period/count values like ->read() would.
378 	 *
379 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
380 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
381 	 */
382 	void (*start)			(struct perf_event *event, int flags);
383 	void (*stop)			(struct perf_event *event, int flags);
384 
385 	/*
386 	 * Updates the counter value of the event.
387 	 *
388 	 * For sampling capable PMUs this will also update the software period
389 	 * hw_perf_event::period_left field.
390 	 */
391 	void (*read)			(struct perf_event *event);
392 
393 	/*
394 	 * Group events scheduling is treated as a transaction, add
395 	 * group events as a whole and perform one schedulability test.
396 	 * If the test fails, roll back the whole group
397 	 *
398 	 * Start the transaction, after this ->add() doesn't need to
399 	 * do schedulability tests.
400 	 *
401 	 * Optional.
402 	 */
403 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
404 	/*
405 	 * If ->start_txn() disabled the ->add() schedulability test
406 	 * then ->commit_txn() is required to perform one. On success
407 	 * the transaction is closed. On error the transaction is kept
408 	 * open until ->cancel_txn() is called.
409 	 *
410 	 * Optional.
411 	 */
412 	int  (*commit_txn)		(struct pmu *pmu);
413 	/*
414 	 * Will cancel the transaction, assumes ->del() is called
415 	 * for each successful ->add() during the transaction.
416 	 *
417 	 * Optional.
418 	 */
419 	void (*cancel_txn)		(struct pmu *pmu);
420 
421 	/*
422 	 * Will return the value for perf_event_mmap_page::index for this event,
423 	 * if no implementation is provided it will default to: event->hw.idx + 1.
424 	 */
425 	int (*event_idx)		(struct perf_event *event); /*optional */
426 
427 	/*
428 	 * context-switches callback
429 	 */
430 	void (*sched_task)		(struct perf_event_context *ctx,
431 					bool sched_in);
432 
433 	/*
434 	 * Kmem cache of PMU specific data
435 	 */
436 	struct kmem_cache		*task_ctx_cache;
437 
438 	/*
439 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
440 	 * can be synchronized using this function. See Intel LBR callstack support
441 	 * implementation and Perf core context switch handling callbacks for usage
442 	 * examples.
443 	 */
444 	void (*swap_task_ctx)		(struct perf_event_context *prev,
445 					 struct perf_event_context *next);
446 					/* optional */
447 
448 	/*
449 	 * Set up pmu-private data structures for an AUX area
450 	 */
451 	void *(*setup_aux)		(struct perf_event *event, void **pages,
452 					 int nr_pages, bool overwrite);
453 					/* optional */
454 
455 	/*
456 	 * Free pmu-private AUX data structures
457 	 */
458 	void (*free_aux)		(void *aux); /* optional */
459 
460 	/*
461 	 * Take a snapshot of the AUX buffer without touching the event
462 	 * state, so that preempting ->start()/->stop() callbacks does
463 	 * not interfere with their logic. Called in PMI context.
464 	 *
465 	 * Returns the size of AUX data copied to the output handle.
466 	 *
467 	 * Optional.
468 	 */
469 	long (*snapshot_aux)		(struct perf_event *event,
470 					 struct perf_output_handle *handle,
471 					 unsigned long size);
472 
473 	/*
474 	 * Validate address range filters: make sure the HW supports the
475 	 * requested configuration and number of filters; return 0 if the
476 	 * supplied filters are valid, -errno otherwise.
477 	 *
478 	 * Runs in the context of the ioctl()ing process and is not serialized
479 	 * with the rest of the PMU callbacks.
480 	 */
481 	int (*addr_filters_validate)	(struct list_head *filters);
482 					/* optional */
483 
484 	/*
485 	 * Synchronize address range filter configuration:
486 	 * translate hw-agnostic filters into hardware configuration in
487 	 * event::hw::addr_filters.
488 	 *
489 	 * Runs as a part of filter sync sequence that is done in ->start()
490 	 * callback by calling perf_event_addr_filters_sync().
491 	 *
492 	 * May (and should) traverse event::addr_filters::list, for which its
493 	 * caller provides necessary serialization.
494 	 */
495 	void (*addr_filters_sync)	(struct perf_event *event);
496 					/* optional */
497 
498 	/*
499 	 * Check if event can be used for aux_output purposes for
500 	 * events of this PMU.
501 	 *
502 	 * Runs from perf_event_open(). Should return 0 for "no match"
503 	 * or non-zero for "match".
504 	 */
505 	int (*aux_output_match)		(struct perf_event *event);
506 					/* optional */
507 
508 	/*
509 	 * Filter events for PMU-specific reasons.
510 	 */
511 	int (*filter_match)		(struct perf_event *event); /* optional */
512 
513 	/*
514 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
515 	 */
516 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
517 };
518 
519 enum perf_addr_filter_action_t {
520 	PERF_ADDR_FILTER_ACTION_STOP = 0,
521 	PERF_ADDR_FILTER_ACTION_START,
522 	PERF_ADDR_FILTER_ACTION_FILTER,
523 };
524 
525 /**
526  * struct perf_addr_filter - address range filter definition
527  * @entry:	event's filter list linkage
528  * @path:	object file's path for file-based filters
529  * @offset:	filter range offset
530  * @size:	filter range size (size==0 means single address trigger)
531  * @action:	filter/start/stop
532  *
533  * This is a hardware-agnostic filter configuration as specified by the user.
534  */
535 struct perf_addr_filter {
536 	struct list_head	entry;
537 	struct path		path;
538 	unsigned long		offset;
539 	unsigned long		size;
540 	enum perf_addr_filter_action_t	action;
541 };
542 
543 /**
544  * struct perf_addr_filters_head - container for address range filters
545  * @list:	list of filters for this event
546  * @lock:	spinlock that serializes accesses to the @list and event's
547  *		(and its children's) filter generations.
548  * @nr_file_filters:	number of file-based filters
549  *
550  * A child event will use parent's @list (and therefore @lock), so they are
551  * bundled together; see perf_event_addr_filters().
552  */
553 struct perf_addr_filters_head {
554 	struct list_head	list;
555 	raw_spinlock_t		lock;
556 	unsigned int		nr_file_filters;
557 };
558 
559 struct perf_addr_filter_range {
560 	unsigned long		start;
561 	unsigned long		size;
562 };
563 
564 /**
565  * enum perf_event_state - the states of an event:
566  */
567 enum perf_event_state {
568 	PERF_EVENT_STATE_DEAD		= -4,
569 	PERF_EVENT_STATE_EXIT		= -3,
570 	PERF_EVENT_STATE_ERROR		= -2,
571 	PERF_EVENT_STATE_OFF		= -1,
572 	PERF_EVENT_STATE_INACTIVE	=  0,
573 	PERF_EVENT_STATE_ACTIVE		=  1,
574 };
575 
576 struct file;
577 struct perf_sample_data;
578 
579 typedef void (*perf_overflow_handler_t)(struct perf_event *,
580 					struct perf_sample_data *,
581 					struct pt_regs *regs);
582 
583 /*
584  * Event capabilities. For event_caps and groups caps.
585  *
586  * PERF_EV_CAP_SOFTWARE: Is a software event.
587  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
588  * from any CPU in the package where it is active.
589  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
590  * cannot be a group leader. If an event with this flag is detached from the
591  * group it is scheduled out and moved into an unrecoverable ERROR state.
592  */
593 #define PERF_EV_CAP_SOFTWARE		BIT(0)
594 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
595 #define PERF_EV_CAP_SIBLING		BIT(2)
596 
597 #define SWEVENT_HLIST_BITS		8
598 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
599 
600 struct swevent_hlist {
601 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
602 	struct rcu_head			rcu_head;
603 };
604 
605 #define PERF_ATTACH_CONTEXT	0x01
606 #define PERF_ATTACH_GROUP	0x02
607 #define PERF_ATTACH_TASK	0x04
608 #define PERF_ATTACH_TASK_DATA	0x08
609 #define PERF_ATTACH_ITRACE	0x10
610 #define PERF_ATTACH_SCHED_CB	0x20
611 #define PERF_ATTACH_CHILD	0x40
612 
613 struct perf_cgroup;
614 struct perf_buffer;
615 
616 struct pmu_event_list {
617 	raw_spinlock_t		lock;
618 	struct list_head	list;
619 };
620 
621 #define for_each_sibling_event(sibling, event)			\
622 	if ((event)->group_leader == (event))			\
623 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
624 
625 /**
626  * struct perf_event - performance event kernel representation:
627  */
628 struct perf_event {
629 #ifdef CONFIG_PERF_EVENTS
630 	/*
631 	 * entry onto perf_event_context::event_list;
632 	 *   modifications require ctx->lock
633 	 *   RCU safe iterations.
634 	 */
635 	struct list_head		event_entry;
636 
637 	/*
638 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
639 	 * either sufficies for read.
640 	 */
641 	struct list_head		sibling_list;
642 	struct list_head		active_list;
643 	/*
644 	 * Node on the pinned or flexible tree located at the event context;
645 	 */
646 	struct rb_node			group_node;
647 	u64				group_index;
648 	/*
649 	 * We need storage to track the entries in perf_pmu_migrate_context; we
650 	 * cannot use the event_entry because of RCU and we want to keep the
651 	 * group in tact which avoids us using the other two entries.
652 	 */
653 	struct list_head		migrate_entry;
654 
655 	struct hlist_node		hlist_entry;
656 	struct list_head		active_entry;
657 	int				nr_siblings;
658 
659 	/* Not serialized. Only written during event initialization. */
660 	int				event_caps;
661 	/* The cumulative AND of all event_caps for events in this group. */
662 	int				group_caps;
663 
664 	struct perf_event		*group_leader;
665 	struct pmu			*pmu;
666 	void				*pmu_private;
667 
668 	enum perf_event_state		state;
669 	unsigned int			attach_state;
670 	local64_t			count;
671 	atomic64_t			child_count;
672 
673 	/*
674 	 * These are the total time in nanoseconds that the event
675 	 * has been enabled (i.e. eligible to run, and the task has
676 	 * been scheduled in, if this is a per-task event)
677 	 * and running (scheduled onto the CPU), respectively.
678 	 */
679 	u64				total_time_enabled;
680 	u64				total_time_running;
681 	u64				tstamp;
682 
683 	/*
684 	 * timestamp shadows the actual context timing but it can
685 	 * be safely used in NMI interrupt context. It reflects the
686 	 * context time as it was when the event was last scheduled in.
687 	 *
688 	 * ctx_time already accounts for ctx->timestamp. Therefore to
689 	 * compute ctx_time for a sample, simply add perf_clock().
690 	 */
691 	u64				shadow_ctx_time;
692 
693 	struct perf_event_attr		attr;
694 	u16				header_size;
695 	u16				id_header_size;
696 	u16				read_size;
697 	struct hw_perf_event		hw;
698 
699 	struct perf_event_context	*ctx;
700 	atomic_long_t			refcount;
701 
702 	/*
703 	 * These accumulate total time (in nanoseconds) that children
704 	 * events have been enabled and running, respectively.
705 	 */
706 	atomic64_t			child_total_time_enabled;
707 	atomic64_t			child_total_time_running;
708 
709 	/*
710 	 * Protect attach/detach and child_list:
711 	 */
712 	struct mutex			child_mutex;
713 	struct list_head		child_list;
714 	struct perf_event		*parent;
715 
716 	int				oncpu;
717 	int				cpu;
718 
719 	struct list_head		owner_entry;
720 	struct task_struct		*owner;
721 
722 	/* mmap bits */
723 	struct mutex			mmap_mutex;
724 	atomic_t			mmap_count;
725 
726 	struct perf_buffer		*rb;
727 	struct list_head		rb_entry;
728 	unsigned long			rcu_batches;
729 	int				rcu_pending;
730 
731 	/* poll related */
732 	wait_queue_head_t		waitq;
733 	struct fasync_struct		*fasync;
734 
735 	/* delayed work for NMIs and such */
736 	int				pending_wakeup;
737 	int				pending_kill;
738 	int				pending_disable;
739 	unsigned long			pending_addr;	/* SIGTRAP */
740 	struct irq_work			pending;
741 
742 	atomic_t			event_limit;
743 
744 	/* address range filters */
745 	struct perf_addr_filters_head	addr_filters;
746 	/* vma address array for file-based filders */
747 	struct perf_addr_filter_range	*addr_filter_ranges;
748 	unsigned long			addr_filters_gen;
749 
750 	/* for aux_output events */
751 	struct perf_event		*aux_event;
752 
753 	void (*destroy)(struct perf_event *);
754 	struct rcu_head			rcu_head;
755 
756 	struct pid_namespace		*ns;
757 	u64				id;
758 
759 	u64				(*clock)(void);
760 	perf_overflow_handler_t		overflow_handler;
761 	void				*overflow_handler_context;
762 #ifdef CONFIG_BPF_SYSCALL
763 	perf_overflow_handler_t		orig_overflow_handler;
764 	struct bpf_prog			*prog;
765 #endif
766 
767 #ifdef CONFIG_EVENT_TRACING
768 	struct trace_event_call		*tp_event;
769 	struct event_filter		*filter;
770 #ifdef CONFIG_FUNCTION_TRACER
771 	struct ftrace_ops               ftrace_ops;
772 #endif
773 #endif
774 
775 #ifdef CONFIG_CGROUP_PERF
776 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
777 #endif
778 
779 #ifdef CONFIG_SECURITY
780 	void *security;
781 #endif
782 	struct list_head		sb_list;
783 #endif /* CONFIG_PERF_EVENTS */
784 };
785 
786 
787 struct perf_event_groups {
788 	struct rb_root	tree;
789 	u64		index;
790 };
791 
792 /**
793  * struct perf_event_context - event context structure
794  *
795  * Used as a container for task events and CPU events as well:
796  */
797 struct perf_event_context {
798 	struct pmu			*pmu;
799 	/*
800 	 * Protect the states of the events in the list,
801 	 * nr_active, and the list:
802 	 */
803 	raw_spinlock_t			lock;
804 	/*
805 	 * Protect the list of events.  Locking either mutex or lock
806 	 * is sufficient to ensure the list doesn't change; to change
807 	 * the list you need to lock both the mutex and the spinlock.
808 	 */
809 	struct mutex			mutex;
810 
811 	struct list_head		active_ctx_list;
812 	struct perf_event_groups	pinned_groups;
813 	struct perf_event_groups	flexible_groups;
814 	struct list_head		event_list;
815 
816 	struct list_head		pinned_active;
817 	struct list_head		flexible_active;
818 
819 	int				nr_events;
820 	int				nr_active;
821 	int				is_active;
822 	int				nr_stat;
823 	int				nr_freq;
824 	int				rotate_disable;
825 	/*
826 	 * Set when nr_events != nr_active, except tolerant to events not
827 	 * necessary to be active due to scheduling constraints, such as cgroups.
828 	 */
829 	int				rotate_necessary;
830 	refcount_t			refcount;
831 	struct task_struct		*task;
832 
833 	/*
834 	 * Context clock, runs when context enabled.
835 	 */
836 	u64				time;
837 	u64				timestamp;
838 
839 	/*
840 	 * These fields let us detect when two contexts have both
841 	 * been cloned (inherited) from a common ancestor.
842 	 */
843 	struct perf_event_context	*parent_ctx;
844 	u64				parent_gen;
845 	u64				generation;
846 	int				pin_count;
847 #ifdef CONFIG_CGROUP_PERF
848 	int				nr_cgroups;	 /* cgroup evts */
849 #endif
850 	void				*task_ctx_data; /* pmu specific data */
851 	struct rcu_head			rcu_head;
852 };
853 
854 /*
855  * Number of contexts where an event can trigger:
856  *	task, softirq, hardirq, nmi.
857  */
858 #define PERF_NR_CONTEXTS	4
859 
860 /**
861  * struct perf_event_cpu_context - per cpu event context structure
862  */
863 struct perf_cpu_context {
864 	struct perf_event_context	ctx;
865 	struct perf_event_context	*task_ctx;
866 	int				active_oncpu;
867 	int				exclusive;
868 
869 	raw_spinlock_t			hrtimer_lock;
870 	struct hrtimer			hrtimer;
871 	ktime_t				hrtimer_interval;
872 	unsigned int			hrtimer_active;
873 
874 #ifdef CONFIG_CGROUP_PERF
875 	struct perf_cgroup		*cgrp;
876 	struct list_head		cgrp_cpuctx_entry;
877 #endif
878 
879 	struct list_head		sched_cb_entry;
880 	int				sched_cb_usage;
881 
882 	int				online;
883 	/*
884 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
885 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
886 	 */
887 	int				heap_size;
888 	struct perf_event		**heap;
889 	struct perf_event		*heap_default[2];
890 };
891 
892 struct perf_output_handle {
893 	struct perf_event		*event;
894 	struct perf_buffer		*rb;
895 	unsigned long			wakeup;
896 	unsigned long			size;
897 	u64				aux_flags;
898 	union {
899 		void			*addr;
900 		unsigned long		head;
901 	};
902 	int				page;
903 };
904 
905 struct bpf_perf_event_data_kern {
906 	bpf_user_pt_regs_t *regs;
907 	struct perf_sample_data *data;
908 	struct perf_event *event;
909 };
910 
911 #ifdef CONFIG_CGROUP_PERF
912 
913 /*
914  * perf_cgroup_info keeps track of time_enabled for a cgroup.
915  * This is a per-cpu dynamically allocated data structure.
916  */
917 struct perf_cgroup_info {
918 	u64				time;
919 	u64				timestamp;
920 };
921 
922 struct perf_cgroup {
923 	struct cgroup_subsys_state	css;
924 	struct perf_cgroup_info	__percpu *info;
925 };
926 
927 /*
928  * Must ensure cgroup is pinned (css_get) before calling
929  * this function. In other words, we cannot call this function
930  * if there is no cgroup event for the current CPU context.
931  */
932 static inline struct perf_cgroup *
933 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
934 {
935 	return container_of(task_css_check(task, perf_event_cgrp_id,
936 					   ctx ? lockdep_is_held(&ctx->lock)
937 					       : true),
938 			    struct perf_cgroup, css);
939 }
940 #endif /* CONFIG_CGROUP_PERF */
941 
942 #ifdef CONFIG_PERF_EVENTS
943 
944 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
945 				   struct perf_event *event);
946 extern void perf_aux_output_end(struct perf_output_handle *handle,
947 				unsigned long size);
948 extern int perf_aux_output_skip(struct perf_output_handle *handle,
949 				unsigned long size);
950 extern void *perf_get_aux(struct perf_output_handle *handle);
951 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
952 extern void perf_event_itrace_started(struct perf_event *event);
953 
954 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
955 extern void perf_pmu_unregister(struct pmu *pmu);
956 
957 extern int perf_num_counters(void);
958 extern const char *perf_pmu_name(void);
959 extern void __perf_event_task_sched_in(struct task_struct *prev,
960 				       struct task_struct *task);
961 extern void __perf_event_task_sched_out(struct task_struct *prev,
962 					struct task_struct *next);
963 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
964 extern void perf_event_exit_task(struct task_struct *child);
965 extern void perf_event_free_task(struct task_struct *task);
966 extern void perf_event_delayed_put(struct task_struct *task);
967 extern struct file *perf_event_get(unsigned int fd);
968 extern const struct perf_event *perf_get_event(struct file *file);
969 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
970 extern void perf_event_print_debug(void);
971 extern void perf_pmu_disable(struct pmu *pmu);
972 extern void perf_pmu_enable(struct pmu *pmu);
973 extern void perf_sched_cb_dec(struct pmu *pmu);
974 extern void perf_sched_cb_inc(struct pmu *pmu);
975 extern int perf_event_task_disable(void);
976 extern int perf_event_task_enable(void);
977 
978 extern void perf_pmu_resched(struct pmu *pmu);
979 
980 extern int perf_event_refresh(struct perf_event *event, int refresh);
981 extern void perf_event_update_userpage(struct perf_event *event);
982 extern int perf_event_release_kernel(struct perf_event *event);
983 extern struct perf_event *
984 perf_event_create_kernel_counter(struct perf_event_attr *attr,
985 				int cpu,
986 				struct task_struct *task,
987 				perf_overflow_handler_t callback,
988 				void *context);
989 extern void perf_pmu_migrate_context(struct pmu *pmu,
990 				int src_cpu, int dst_cpu);
991 int perf_event_read_local(struct perf_event *event, u64 *value,
992 			  u64 *enabled, u64 *running);
993 extern u64 perf_event_read_value(struct perf_event *event,
994 				 u64 *enabled, u64 *running);
995 
996 
997 struct perf_sample_data {
998 	/*
999 	 * Fields set by perf_sample_data_init(), group so as to
1000 	 * minimize the cachelines touched.
1001 	 */
1002 	u64				addr;
1003 	struct perf_raw_record		*raw;
1004 	struct perf_branch_stack	*br_stack;
1005 	u64				period;
1006 	union perf_sample_weight	weight;
1007 	u64				txn;
1008 	union  perf_mem_data_src	data_src;
1009 
1010 	/*
1011 	 * The other fields, optionally {set,used} by
1012 	 * perf_{prepare,output}_sample().
1013 	 */
1014 	u64				type;
1015 	u64				ip;
1016 	struct {
1017 		u32	pid;
1018 		u32	tid;
1019 	}				tid_entry;
1020 	u64				time;
1021 	u64				id;
1022 	u64				stream_id;
1023 	struct {
1024 		u32	cpu;
1025 		u32	reserved;
1026 	}				cpu_entry;
1027 	struct perf_callchain_entry	*callchain;
1028 	u64				aux_size;
1029 
1030 	struct perf_regs		regs_user;
1031 	struct perf_regs		regs_intr;
1032 	u64				stack_user_size;
1033 
1034 	u64				phys_addr;
1035 	u64				cgroup;
1036 	u64				data_page_size;
1037 	u64				code_page_size;
1038 } ____cacheline_aligned;
1039 
1040 /* default value for data source */
1041 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1042 		    PERF_MEM_S(LVL, NA)   |\
1043 		    PERF_MEM_S(SNOOP, NA) |\
1044 		    PERF_MEM_S(LOCK, NA)  |\
1045 		    PERF_MEM_S(TLB, NA))
1046 
1047 static inline void perf_sample_data_init(struct perf_sample_data *data,
1048 					 u64 addr, u64 period)
1049 {
1050 	/* remaining struct members initialized in perf_prepare_sample() */
1051 	data->addr = addr;
1052 	data->raw  = NULL;
1053 	data->br_stack = NULL;
1054 	data->period = period;
1055 	data->weight.full = 0;
1056 	data->data_src.val = PERF_MEM_NA;
1057 	data->txn = 0;
1058 }
1059 
1060 extern void perf_output_sample(struct perf_output_handle *handle,
1061 			       struct perf_event_header *header,
1062 			       struct perf_sample_data *data,
1063 			       struct perf_event *event);
1064 extern void perf_prepare_sample(struct perf_event_header *header,
1065 				struct perf_sample_data *data,
1066 				struct perf_event *event,
1067 				struct pt_regs *regs);
1068 
1069 extern int perf_event_overflow(struct perf_event *event,
1070 				 struct perf_sample_data *data,
1071 				 struct pt_regs *regs);
1072 
1073 extern void perf_event_output_forward(struct perf_event *event,
1074 				     struct perf_sample_data *data,
1075 				     struct pt_regs *regs);
1076 extern void perf_event_output_backward(struct perf_event *event,
1077 				       struct perf_sample_data *data,
1078 				       struct pt_regs *regs);
1079 extern int perf_event_output(struct perf_event *event,
1080 			     struct perf_sample_data *data,
1081 			     struct pt_regs *regs);
1082 
1083 static inline bool
1084 is_default_overflow_handler(struct perf_event *event)
1085 {
1086 	if (likely(event->overflow_handler == perf_event_output_forward))
1087 		return true;
1088 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1089 		return true;
1090 	return false;
1091 }
1092 
1093 extern void
1094 perf_event_header__init_id(struct perf_event_header *header,
1095 			   struct perf_sample_data *data,
1096 			   struct perf_event *event);
1097 extern void
1098 perf_event__output_id_sample(struct perf_event *event,
1099 			     struct perf_output_handle *handle,
1100 			     struct perf_sample_data *sample);
1101 
1102 extern void
1103 perf_log_lost_samples(struct perf_event *event, u64 lost);
1104 
1105 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1106 {
1107 	struct perf_event_attr *attr = &event->attr;
1108 
1109 	return attr->exclude_idle || attr->exclude_user ||
1110 	       attr->exclude_kernel || attr->exclude_hv ||
1111 	       attr->exclude_guest || attr->exclude_host;
1112 }
1113 
1114 static inline bool is_sampling_event(struct perf_event *event)
1115 {
1116 	return event->attr.sample_period != 0;
1117 }
1118 
1119 /*
1120  * Return 1 for a software event, 0 for a hardware event
1121  */
1122 static inline int is_software_event(struct perf_event *event)
1123 {
1124 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1125 }
1126 
1127 /*
1128  * Return 1 for event in sw context, 0 for event in hw context
1129  */
1130 static inline int in_software_context(struct perf_event *event)
1131 {
1132 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1133 }
1134 
1135 static inline int is_exclusive_pmu(struct pmu *pmu)
1136 {
1137 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1138 }
1139 
1140 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1141 
1142 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1143 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1144 
1145 #ifndef perf_arch_fetch_caller_regs
1146 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1147 #endif
1148 
1149 /*
1150  * When generating a perf sample in-line, instead of from an interrupt /
1151  * exception, we lack a pt_regs. This is typically used from software events
1152  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1153  *
1154  * We typically don't need a full set, but (for x86) do require:
1155  * - ip for PERF_SAMPLE_IP
1156  * - cs for user_mode() tests
1157  * - sp for PERF_SAMPLE_CALLCHAIN
1158  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1159  *
1160  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1161  * things like PERF_SAMPLE_REGS_INTR.
1162  */
1163 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1164 {
1165 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1166 }
1167 
1168 static __always_inline void
1169 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1170 {
1171 	if (static_key_false(&perf_swevent_enabled[event_id]))
1172 		__perf_sw_event(event_id, nr, regs, addr);
1173 }
1174 
1175 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1176 
1177 /*
1178  * 'Special' version for the scheduler, it hard assumes no recursion,
1179  * which is guaranteed by us not actually scheduling inside other swevents
1180  * because those disable preemption.
1181  */
1182 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1183 {
1184 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1185 
1186 	perf_fetch_caller_regs(regs);
1187 	___perf_sw_event(event_id, nr, regs, addr);
1188 }
1189 
1190 extern struct static_key_false perf_sched_events;
1191 
1192 static __always_inline bool __perf_sw_enabled(int swevt)
1193 {
1194 	return static_key_false(&perf_swevent_enabled[swevt]);
1195 }
1196 
1197 static inline void perf_event_task_migrate(struct task_struct *task)
1198 {
1199 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1200 		task->sched_migrated = 1;
1201 }
1202 
1203 static inline void perf_event_task_sched_in(struct task_struct *prev,
1204 					    struct task_struct *task)
1205 {
1206 	if (static_branch_unlikely(&perf_sched_events))
1207 		__perf_event_task_sched_in(prev, task);
1208 
1209 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1210 	    task->sched_migrated) {
1211 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1212 		task->sched_migrated = 0;
1213 	}
1214 }
1215 
1216 static inline void perf_event_task_sched_out(struct task_struct *prev,
1217 					     struct task_struct *next)
1218 {
1219 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1220 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1221 
1222 #ifdef CONFIG_CGROUP_PERF
1223 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1224 	    perf_cgroup_from_task(prev, NULL) !=
1225 	    perf_cgroup_from_task(next, NULL))
1226 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1227 #endif
1228 
1229 	if (static_branch_unlikely(&perf_sched_events))
1230 		__perf_event_task_sched_out(prev, next);
1231 }
1232 
1233 extern void perf_event_mmap(struct vm_area_struct *vma);
1234 
1235 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1236 			       bool unregister, const char *sym);
1237 extern void perf_event_bpf_event(struct bpf_prog *prog,
1238 				 enum perf_bpf_event_type type,
1239 				 u16 flags);
1240 
1241 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1242 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1243 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1244 
1245 extern void perf_event_exec(void);
1246 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1247 extern void perf_event_namespaces(struct task_struct *tsk);
1248 extern void perf_event_fork(struct task_struct *tsk);
1249 extern void perf_event_text_poke(const void *addr,
1250 				 const void *old_bytes, size_t old_len,
1251 				 const void *new_bytes, size_t new_len);
1252 
1253 /* Callchains */
1254 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1255 
1256 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1257 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1258 extern struct perf_callchain_entry *
1259 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1260 		   u32 max_stack, bool crosstask, bool add_mark);
1261 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1262 extern int get_callchain_buffers(int max_stack);
1263 extern void put_callchain_buffers(void);
1264 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1265 extern void put_callchain_entry(int rctx);
1266 
1267 extern int sysctl_perf_event_max_stack;
1268 extern int sysctl_perf_event_max_contexts_per_stack;
1269 
1270 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1271 {
1272 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1273 		struct perf_callchain_entry *entry = ctx->entry;
1274 		entry->ip[entry->nr++] = ip;
1275 		++ctx->contexts;
1276 		return 0;
1277 	} else {
1278 		ctx->contexts_maxed = true;
1279 		return -1; /* no more room, stop walking the stack */
1280 	}
1281 }
1282 
1283 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1284 {
1285 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1286 		struct perf_callchain_entry *entry = ctx->entry;
1287 		entry->ip[entry->nr++] = ip;
1288 		++ctx->nr;
1289 		return 0;
1290 	} else {
1291 		return -1; /* no more room, stop walking the stack */
1292 	}
1293 }
1294 
1295 extern int sysctl_perf_event_paranoid;
1296 extern int sysctl_perf_event_mlock;
1297 extern int sysctl_perf_event_sample_rate;
1298 extern int sysctl_perf_cpu_time_max_percent;
1299 
1300 extern void perf_sample_event_took(u64 sample_len_ns);
1301 
1302 int perf_proc_update_handler(struct ctl_table *table, int write,
1303 		void *buffer, size_t *lenp, loff_t *ppos);
1304 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1305 		void *buffer, size_t *lenp, loff_t *ppos);
1306 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1307 		void *buffer, size_t *lenp, loff_t *ppos);
1308 
1309 /* Access to perf_event_open(2) syscall. */
1310 #define PERF_SECURITY_OPEN		0
1311 
1312 /* Finer grained perf_event_open(2) access control. */
1313 #define PERF_SECURITY_CPU		1
1314 #define PERF_SECURITY_KERNEL		2
1315 #define PERF_SECURITY_TRACEPOINT	3
1316 
1317 static inline int perf_is_paranoid(void)
1318 {
1319 	return sysctl_perf_event_paranoid > -1;
1320 }
1321 
1322 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1323 {
1324 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1325 		return -EACCES;
1326 
1327 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1328 }
1329 
1330 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1331 {
1332 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1333 		return -EACCES;
1334 
1335 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1336 }
1337 
1338 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1339 {
1340 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1341 		return -EPERM;
1342 
1343 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1344 }
1345 
1346 extern void perf_event_init(void);
1347 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1348 			  int entry_size, struct pt_regs *regs,
1349 			  struct hlist_head *head, int rctx,
1350 			  struct task_struct *task);
1351 extern void perf_bp_event(struct perf_event *event, void *data);
1352 
1353 #ifndef perf_misc_flags
1354 # define perf_misc_flags(regs) \
1355 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1356 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1357 #endif
1358 #ifndef perf_arch_bpf_user_pt_regs
1359 # define perf_arch_bpf_user_pt_regs(regs) regs
1360 #endif
1361 
1362 static inline bool has_branch_stack(struct perf_event *event)
1363 {
1364 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1365 }
1366 
1367 static inline bool needs_branch_stack(struct perf_event *event)
1368 {
1369 	return event->attr.branch_sample_type != 0;
1370 }
1371 
1372 static inline bool has_aux(struct perf_event *event)
1373 {
1374 	return event->pmu->setup_aux;
1375 }
1376 
1377 static inline bool is_write_backward(struct perf_event *event)
1378 {
1379 	return !!event->attr.write_backward;
1380 }
1381 
1382 static inline bool has_addr_filter(struct perf_event *event)
1383 {
1384 	return event->pmu->nr_addr_filters;
1385 }
1386 
1387 /*
1388  * An inherited event uses parent's filters
1389  */
1390 static inline struct perf_addr_filters_head *
1391 perf_event_addr_filters(struct perf_event *event)
1392 {
1393 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1394 
1395 	if (event->parent)
1396 		ifh = &event->parent->addr_filters;
1397 
1398 	return ifh;
1399 }
1400 
1401 extern void perf_event_addr_filters_sync(struct perf_event *event);
1402 
1403 extern int perf_output_begin(struct perf_output_handle *handle,
1404 			     struct perf_sample_data *data,
1405 			     struct perf_event *event, unsigned int size);
1406 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1407 				     struct perf_sample_data *data,
1408 				     struct perf_event *event,
1409 				     unsigned int size);
1410 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1411 				      struct perf_sample_data *data,
1412 				      struct perf_event *event,
1413 				      unsigned int size);
1414 
1415 extern void perf_output_end(struct perf_output_handle *handle);
1416 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1417 			     const void *buf, unsigned int len);
1418 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1419 				     unsigned int len);
1420 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1421 				 struct perf_output_handle *handle,
1422 				 unsigned long from, unsigned long to);
1423 extern int perf_swevent_get_recursion_context(void);
1424 extern void perf_swevent_put_recursion_context(int rctx);
1425 extern u64 perf_swevent_set_period(struct perf_event *event);
1426 extern void perf_event_enable(struct perf_event *event);
1427 extern void perf_event_disable(struct perf_event *event);
1428 extern void perf_event_disable_local(struct perf_event *event);
1429 extern void perf_event_disable_inatomic(struct perf_event *event);
1430 extern void perf_event_task_tick(void);
1431 extern int perf_event_account_interrupt(struct perf_event *event);
1432 extern int perf_event_period(struct perf_event *event, u64 value);
1433 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1434 #else /* !CONFIG_PERF_EVENTS: */
1435 static inline void *
1436 perf_aux_output_begin(struct perf_output_handle *handle,
1437 		      struct perf_event *event)				{ return NULL; }
1438 static inline void
1439 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1440 									{ }
1441 static inline int
1442 perf_aux_output_skip(struct perf_output_handle *handle,
1443 		     unsigned long size)				{ return -EINVAL; }
1444 static inline void *
1445 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1446 static inline void
1447 perf_event_task_migrate(struct task_struct *task)			{ }
1448 static inline void
1449 perf_event_task_sched_in(struct task_struct *prev,
1450 			 struct task_struct *task)			{ }
1451 static inline void
1452 perf_event_task_sched_out(struct task_struct *prev,
1453 			  struct task_struct *next)			{ }
1454 static inline int perf_event_init_task(struct task_struct *child,
1455 				       u64 clone_flags)			{ return 0; }
1456 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1457 static inline void perf_event_free_task(struct task_struct *task)	{ }
1458 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1459 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1460 static inline const struct perf_event *perf_get_event(struct file *file)
1461 {
1462 	return ERR_PTR(-EINVAL);
1463 }
1464 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1465 {
1466 	return ERR_PTR(-EINVAL);
1467 }
1468 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1469 					u64 *enabled, u64 *running)
1470 {
1471 	return -EINVAL;
1472 }
1473 static inline void perf_event_print_debug(void)				{ }
1474 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1475 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1476 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1477 {
1478 	return -EINVAL;
1479 }
1480 
1481 static inline void
1482 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1483 static inline void
1484 perf_bp_event(struct perf_event *event, void *data)			{ }
1485 
1486 static inline int perf_register_guest_info_callbacks
1487 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1488 static inline int perf_unregister_guest_info_callbacks
1489 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1490 
1491 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1492 
1493 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1494 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1495 				      bool unregister, const char *sym)	{ }
1496 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1497 					enum perf_bpf_event_type type,
1498 					u16 flags)			{ }
1499 static inline void perf_event_exec(void)				{ }
1500 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1501 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1502 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1503 static inline void perf_event_text_poke(const void *addr,
1504 					const void *old_bytes,
1505 					size_t old_len,
1506 					const void *new_bytes,
1507 					size_t new_len)			{ }
1508 static inline void perf_event_init(void)				{ }
1509 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1510 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1511 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1512 static inline void perf_event_enable(struct perf_event *event)		{ }
1513 static inline void perf_event_disable(struct perf_event *event)		{ }
1514 static inline int __perf_event_disable(void *info)			{ return -1; }
1515 static inline void perf_event_task_tick(void)				{ }
1516 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1517 static inline int perf_event_period(struct perf_event *event, u64 value)
1518 {
1519 	return -EINVAL;
1520 }
1521 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1522 {
1523 	return 0;
1524 }
1525 #endif
1526 
1527 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1528 extern void perf_restore_debug_store(void);
1529 #else
1530 static inline void perf_restore_debug_store(void)			{ }
1531 #endif
1532 
1533 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1534 {
1535 	return frag->pad < sizeof(u64);
1536 }
1537 
1538 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1539 
1540 struct perf_pmu_events_attr {
1541 	struct device_attribute attr;
1542 	u64 id;
1543 	const char *event_str;
1544 };
1545 
1546 struct perf_pmu_events_ht_attr {
1547 	struct device_attribute			attr;
1548 	u64					id;
1549 	const char				*event_str_ht;
1550 	const char				*event_str_noht;
1551 };
1552 
1553 struct perf_pmu_events_hybrid_attr {
1554 	struct device_attribute			attr;
1555 	u64					id;
1556 	const char				*event_str;
1557 	u64					pmu_type;
1558 };
1559 
1560 struct perf_pmu_format_hybrid_attr {
1561 	struct device_attribute			attr;
1562 	u64					pmu_type;
1563 };
1564 
1565 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1566 			      char *page);
1567 
1568 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1569 static struct perf_pmu_events_attr _var = {				\
1570 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1571 	.id   =  _id,							\
1572 };
1573 
1574 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1575 static struct perf_pmu_events_attr _var = {				    \
1576 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1577 	.id		= 0,						    \
1578 	.event_str	= _str,						    \
1579 };
1580 
1581 #define PMU_FORMAT_ATTR(_name, _format)					\
1582 static ssize_t								\
1583 _name##_show(struct device *dev,					\
1584 			       struct device_attribute *attr,		\
1585 			       char *page)				\
1586 {									\
1587 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1588 	return sprintf(page, _format "\n");				\
1589 }									\
1590 									\
1591 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1592 
1593 /* Performance counter hotplug functions */
1594 #ifdef CONFIG_PERF_EVENTS
1595 int perf_event_init_cpu(unsigned int cpu);
1596 int perf_event_exit_cpu(unsigned int cpu);
1597 #else
1598 #define perf_event_init_cpu	NULL
1599 #define perf_event_exit_cpu	NULL
1600 #endif
1601 
1602 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1603 					     struct perf_event_mmap_page *userpg,
1604 					     u64 now);
1605 
1606 #ifdef CONFIG_MMU
1607 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1608 #endif
1609 
1610 #endif /* _LINUX_PERF_EVENT_H */
1611