1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34 }; 35 36 #ifdef CONFIG_HAVE_HW_BREAKPOINT 37 #include <asm/hw_breakpoint.h> 38 #endif 39 40 #include <linux/list.h> 41 #include <linux/mutex.h> 42 #include <linux/rculist.h> 43 #include <linux/rcupdate.h> 44 #include <linux/spinlock.h> 45 #include <linux/hrtimer.h> 46 #include <linux/fs.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/workqueue.h> 49 #include <linux/ftrace.h> 50 #include <linux/cpu.h> 51 #include <linux/irq_work.h> 52 #include <linux/static_key.h> 53 #include <linux/jump_label_ratelimit.h> 54 #include <linux/atomic.h> 55 #include <linux/sysfs.h> 56 #include <linux/perf_regs.h> 57 #include <linux/cgroup.h> 58 #include <linux/refcount.h> 59 #include <linux/security.h> 60 #include <asm/local.h> 61 62 struct perf_callchain_entry { 63 __u64 nr; 64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 65 }; 66 67 struct perf_callchain_entry_ctx { 68 struct perf_callchain_entry *entry; 69 u32 max_stack; 70 u32 nr; 71 short contexts; 72 bool contexts_maxed; 73 }; 74 75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 76 unsigned long off, unsigned long len); 77 78 struct perf_raw_frag { 79 union { 80 struct perf_raw_frag *next; 81 unsigned long pad; 82 }; 83 perf_copy_f copy; 84 void *data; 85 u32 size; 86 } __packed; 87 88 struct perf_raw_record { 89 struct perf_raw_frag frag; 90 u32 size; 91 }; 92 93 /* 94 * branch stack layout: 95 * nr: number of taken branches stored in entries[] 96 * hw_idx: The low level index of raw branch records 97 * for the most recent branch. 98 * -1ULL means invalid/unknown. 99 * 100 * Note that nr can vary from sample to sample 101 * branches (to, from) are stored from most recent 102 * to least recent, i.e., entries[0] contains the most 103 * recent branch. 104 * The entries[] is an abstraction of raw branch records, 105 * which may not be stored in age order in HW, e.g. Intel LBR. 106 * The hw_idx is to expose the low level index of raw 107 * branch record for the most recent branch aka entries[0]. 108 * The hw_idx index is between -1 (unknown) and max depth, 109 * which can be retrieved in /sys/devices/cpu/caps/branches. 110 * For the architectures whose raw branch records are 111 * already stored in age order, the hw_idx should be 0. 112 */ 113 struct perf_branch_stack { 114 __u64 nr; 115 __u64 hw_idx; 116 struct perf_branch_entry entries[]; 117 }; 118 119 struct task_struct; 120 121 /* 122 * extra PMU register associated with an event 123 */ 124 struct hw_perf_event_extra { 125 u64 config; /* register value */ 126 unsigned int reg; /* register address or index */ 127 int alloc; /* extra register already allocated */ 128 int idx; /* index in shared_regs->regs[] */ 129 }; 130 131 /** 132 * struct hw_perf_event - performance event hardware details: 133 */ 134 struct hw_perf_event { 135 #ifdef CONFIG_PERF_EVENTS 136 union { 137 struct { /* hardware */ 138 u64 config; 139 u64 last_tag; 140 unsigned long config_base; 141 unsigned long event_base; 142 int event_base_rdpmc; 143 int idx; 144 int last_cpu; 145 int flags; 146 147 struct hw_perf_event_extra extra_reg; 148 struct hw_perf_event_extra branch_reg; 149 }; 150 struct { /* software */ 151 struct hrtimer hrtimer; 152 }; 153 struct { /* tracepoint */ 154 /* for tp_event->class */ 155 struct list_head tp_list; 156 }; 157 struct { /* amd_power */ 158 u64 pwr_acc; 159 u64 ptsc; 160 }; 161 #ifdef CONFIG_HAVE_HW_BREAKPOINT 162 struct { /* breakpoint */ 163 /* 164 * Crufty hack to avoid the chicken and egg 165 * problem hw_breakpoint has with context 166 * creation and event initalization. 167 */ 168 struct arch_hw_breakpoint info; 169 struct list_head bp_list; 170 }; 171 #endif 172 struct { /* amd_iommu */ 173 u8 iommu_bank; 174 u8 iommu_cntr; 175 u16 padding; 176 u64 conf; 177 u64 conf1; 178 }; 179 }; 180 /* 181 * If the event is a per task event, this will point to the task in 182 * question. See the comment in perf_event_alloc(). 183 */ 184 struct task_struct *target; 185 186 /* 187 * PMU would store hardware filter configuration 188 * here. 189 */ 190 void *addr_filters; 191 192 /* Last sync'ed generation of filters */ 193 unsigned long addr_filters_gen; 194 195 /* 196 * hw_perf_event::state flags; used to track the PERF_EF_* state. 197 */ 198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 200 #define PERF_HES_ARCH 0x04 201 202 int state; 203 204 /* 205 * The last observed hardware counter value, updated with a 206 * local64_cmpxchg() such that pmu::read() can be called nested. 207 */ 208 local64_t prev_count; 209 210 /* 211 * The period to start the next sample with. 212 */ 213 u64 sample_period; 214 215 union { 216 struct { /* Sampling */ 217 /* 218 * The period we started this sample with. 219 */ 220 u64 last_period; 221 222 /* 223 * However much is left of the current period; 224 * note that this is a full 64bit value and 225 * allows for generation of periods longer 226 * than hardware might allow. 227 */ 228 local64_t period_left; 229 }; 230 struct { /* Topdown events counting for context switch */ 231 u64 saved_metric; 232 u64 saved_slots; 233 }; 234 }; 235 236 /* 237 * State for throttling the event, see __perf_event_overflow() and 238 * perf_adjust_freq_unthr_context(). 239 */ 240 u64 interrupts_seq; 241 u64 interrupts; 242 243 /* 244 * State for freq target events, see __perf_event_overflow() and 245 * perf_adjust_freq_unthr_context(). 246 */ 247 u64 freq_time_stamp; 248 u64 freq_count_stamp; 249 #endif 250 }; 251 252 struct perf_event; 253 254 /* 255 * Common implementation detail of pmu::{start,commit,cancel}_txn 256 */ 257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 259 260 /** 261 * pmu::capabilities flags 262 */ 263 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 264 #define PERF_PMU_CAP_NO_NMI 0x0002 265 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 266 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 267 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 268 #define PERF_PMU_CAP_ITRACE 0x0020 269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 270 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 271 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 272 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 273 274 struct perf_output_handle; 275 276 /** 277 * struct pmu - generic performance monitoring unit 278 */ 279 struct pmu { 280 struct list_head entry; 281 282 struct module *module; 283 struct device *dev; 284 const struct attribute_group **attr_groups; 285 const struct attribute_group **attr_update; 286 const char *name; 287 int type; 288 289 /* 290 * various common per-pmu feature flags 291 */ 292 int capabilities; 293 294 int __percpu *pmu_disable_count; 295 struct perf_cpu_context __percpu *pmu_cpu_context; 296 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 297 int task_ctx_nr; 298 int hrtimer_interval_ms; 299 300 /* number of address filters this PMU can do */ 301 unsigned int nr_addr_filters; 302 303 /* 304 * Fully disable/enable this PMU, can be used to protect from the PMI 305 * as well as for lazy/batch writing of the MSRs. 306 */ 307 void (*pmu_enable) (struct pmu *pmu); /* optional */ 308 void (*pmu_disable) (struct pmu *pmu); /* optional */ 309 310 /* 311 * Try and initialize the event for this PMU. 312 * 313 * Returns: 314 * -ENOENT -- @event is not for this PMU 315 * 316 * -ENODEV -- @event is for this PMU but PMU not present 317 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 318 * -EINVAL -- @event is for this PMU but @event is not valid 319 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 320 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 321 * 322 * 0 -- @event is for this PMU and valid 323 * 324 * Other error return values are allowed. 325 */ 326 int (*event_init) (struct perf_event *event); 327 328 /* 329 * Notification that the event was mapped or unmapped. Called 330 * in the context of the mapping task. 331 */ 332 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 333 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 334 335 /* 336 * Flags for ->add()/->del()/ ->start()/->stop(). There are 337 * matching hw_perf_event::state flags. 338 */ 339 #define PERF_EF_START 0x01 /* start the counter when adding */ 340 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 341 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 342 343 /* 344 * Adds/Removes a counter to/from the PMU, can be done inside a 345 * transaction, see the ->*_txn() methods. 346 * 347 * The add/del callbacks will reserve all hardware resources required 348 * to service the event, this includes any counter constraint 349 * scheduling etc. 350 * 351 * Called with IRQs disabled and the PMU disabled on the CPU the event 352 * is on. 353 * 354 * ->add() called without PERF_EF_START should result in the same state 355 * as ->add() followed by ->stop(). 356 * 357 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 358 * ->stop() that must deal with already being stopped without 359 * PERF_EF_UPDATE. 360 */ 361 int (*add) (struct perf_event *event, int flags); 362 void (*del) (struct perf_event *event, int flags); 363 364 /* 365 * Starts/Stops a counter present on the PMU. 366 * 367 * The PMI handler should stop the counter when perf_event_overflow() 368 * returns !0. ->start() will be used to continue. 369 * 370 * Also used to change the sample period. 371 * 372 * Called with IRQs disabled and the PMU disabled on the CPU the event 373 * is on -- will be called from NMI context with the PMU generates 374 * NMIs. 375 * 376 * ->stop() with PERF_EF_UPDATE will read the counter and update 377 * period/count values like ->read() would. 378 * 379 * ->start() with PERF_EF_RELOAD will reprogram the counter 380 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 381 */ 382 void (*start) (struct perf_event *event, int flags); 383 void (*stop) (struct perf_event *event, int flags); 384 385 /* 386 * Updates the counter value of the event. 387 * 388 * For sampling capable PMUs this will also update the software period 389 * hw_perf_event::period_left field. 390 */ 391 void (*read) (struct perf_event *event); 392 393 /* 394 * Group events scheduling is treated as a transaction, add 395 * group events as a whole and perform one schedulability test. 396 * If the test fails, roll back the whole group 397 * 398 * Start the transaction, after this ->add() doesn't need to 399 * do schedulability tests. 400 * 401 * Optional. 402 */ 403 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 404 /* 405 * If ->start_txn() disabled the ->add() schedulability test 406 * then ->commit_txn() is required to perform one. On success 407 * the transaction is closed. On error the transaction is kept 408 * open until ->cancel_txn() is called. 409 * 410 * Optional. 411 */ 412 int (*commit_txn) (struct pmu *pmu); 413 /* 414 * Will cancel the transaction, assumes ->del() is called 415 * for each successful ->add() during the transaction. 416 * 417 * Optional. 418 */ 419 void (*cancel_txn) (struct pmu *pmu); 420 421 /* 422 * Will return the value for perf_event_mmap_page::index for this event, 423 * if no implementation is provided it will default to: event->hw.idx + 1. 424 */ 425 int (*event_idx) (struct perf_event *event); /*optional */ 426 427 /* 428 * context-switches callback 429 */ 430 void (*sched_task) (struct perf_event_context *ctx, 431 bool sched_in); 432 433 /* 434 * Kmem cache of PMU specific data 435 */ 436 struct kmem_cache *task_ctx_cache; 437 438 /* 439 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 440 * can be synchronized using this function. See Intel LBR callstack support 441 * implementation and Perf core context switch handling callbacks for usage 442 * examples. 443 */ 444 void (*swap_task_ctx) (struct perf_event_context *prev, 445 struct perf_event_context *next); 446 /* optional */ 447 448 /* 449 * Set up pmu-private data structures for an AUX area 450 */ 451 void *(*setup_aux) (struct perf_event *event, void **pages, 452 int nr_pages, bool overwrite); 453 /* optional */ 454 455 /* 456 * Free pmu-private AUX data structures 457 */ 458 void (*free_aux) (void *aux); /* optional */ 459 460 /* 461 * Take a snapshot of the AUX buffer without touching the event 462 * state, so that preempting ->start()/->stop() callbacks does 463 * not interfere with their logic. Called in PMI context. 464 * 465 * Returns the size of AUX data copied to the output handle. 466 * 467 * Optional. 468 */ 469 long (*snapshot_aux) (struct perf_event *event, 470 struct perf_output_handle *handle, 471 unsigned long size); 472 473 /* 474 * Validate address range filters: make sure the HW supports the 475 * requested configuration and number of filters; return 0 if the 476 * supplied filters are valid, -errno otherwise. 477 * 478 * Runs in the context of the ioctl()ing process and is not serialized 479 * with the rest of the PMU callbacks. 480 */ 481 int (*addr_filters_validate) (struct list_head *filters); 482 /* optional */ 483 484 /* 485 * Synchronize address range filter configuration: 486 * translate hw-agnostic filters into hardware configuration in 487 * event::hw::addr_filters. 488 * 489 * Runs as a part of filter sync sequence that is done in ->start() 490 * callback by calling perf_event_addr_filters_sync(). 491 * 492 * May (and should) traverse event::addr_filters::list, for which its 493 * caller provides necessary serialization. 494 */ 495 void (*addr_filters_sync) (struct perf_event *event); 496 /* optional */ 497 498 /* 499 * Check if event can be used for aux_output purposes for 500 * events of this PMU. 501 * 502 * Runs from perf_event_open(). Should return 0 for "no match" 503 * or non-zero for "match". 504 */ 505 int (*aux_output_match) (struct perf_event *event); 506 /* optional */ 507 508 /* 509 * Filter events for PMU-specific reasons. 510 */ 511 int (*filter_match) (struct perf_event *event); /* optional */ 512 513 /* 514 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 515 */ 516 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 517 }; 518 519 enum perf_addr_filter_action_t { 520 PERF_ADDR_FILTER_ACTION_STOP = 0, 521 PERF_ADDR_FILTER_ACTION_START, 522 PERF_ADDR_FILTER_ACTION_FILTER, 523 }; 524 525 /** 526 * struct perf_addr_filter - address range filter definition 527 * @entry: event's filter list linkage 528 * @path: object file's path for file-based filters 529 * @offset: filter range offset 530 * @size: filter range size (size==0 means single address trigger) 531 * @action: filter/start/stop 532 * 533 * This is a hardware-agnostic filter configuration as specified by the user. 534 */ 535 struct perf_addr_filter { 536 struct list_head entry; 537 struct path path; 538 unsigned long offset; 539 unsigned long size; 540 enum perf_addr_filter_action_t action; 541 }; 542 543 /** 544 * struct perf_addr_filters_head - container for address range filters 545 * @list: list of filters for this event 546 * @lock: spinlock that serializes accesses to the @list and event's 547 * (and its children's) filter generations. 548 * @nr_file_filters: number of file-based filters 549 * 550 * A child event will use parent's @list (and therefore @lock), so they are 551 * bundled together; see perf_event_addr_filters(). 552 */ 553 struct perf_addr_filters_head { 554 struct list_head list; 555 raw_spinlock_t lock; 556 unsigned int nr_file_filters; 557 }; 558 559 struct perf_addr_filter_range { 560 unsigned long start; 561 unsigned long size; 562 }; 563 564 /** 565 * enum perf_event_state - the states of an event: 566 */ 567 enum perf_event_state { 568 PERF_EVENT_STATE_DEAD = -4, 569 PERF_EVENT_STATE_EXIT = -3, 570 PERF_EVENT_STATE_ERROR = -2, 571 PERF_EVENT_STATE_OFF = -1, 572 PERF_EVENT_STATE_INACTIVE = 0, 573 PERF_EVENT_STATE_ACTIVE = 1, 574 }; 575 576 struct file; 577 struct perf_sample_data; 578 579 typedef void (*perf_overflow_handler_t)(struct perf_event *, 580 struct perf_sample_data *, 581 struct pt_regs *regs); 582 583 /* 584 * Event capabilities. For event_caps and groups caps. 585 * 586 * PERF_EV_CAP_SOFTWARE: Is a software event. 587 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 588 * from any CPU in the package where it is active. 589 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 590 * cannot be a group leader. If an event with this flag is detached from the 591 * group it is scheduled out and moved into an unrecoverable ERROR state. 592 */ 593 #define PERF_EV_CAP_SOFTWARE BIT(0) 594 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 595 #define PERF_EV_CAP_SIBLING BIT(2) 596 597 #define SWEVENT_HLIST_BITS 8 598 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 599 600 struct swevent_hlist { 601 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 602 struct rcu_head rcu_head; 603 }; 604 605 #define PERF_ATTACH_CONTEXT 0x01 606 #define PERF_ATTACH_GROUP 0x02 607 #define PERF_ATTACH_TASK 0x04 608 #define PERF_ATTACH_TASK_DATA 0x08 609 #define PERF_ATTACH_ITRACE 0x10 610 #define PERF_ATTACH_SCHED_CB 0x20 611 #define PERF_ATTACH_CHILD 0x40 612 613 struct perf_cgroup; 614 struct perf_buffer; 615 616 struct pmu_event_list { 617 raw_spinlock_t lock; 618 struct list_head list; 619 }; 620 621 #define for_each_sibling_event(sibling, event) \ 622 if ((event)->group_leader == (event)) \ 623 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 624 625 /** 626 * struct perf_event - performance event kernel representation: 627 */ 628 struct perf_event { 629 #ifdef CONFIG_PERF_EVENTS 630 /* 631 * entry onto perf_event_context::event_list; 632 * modifications require ctx->lock 633 * RCU safe iterations. 634 */ 635 struct list_head event_entry; 636 637 /* 638 * Locked for modification by both ctx->mutex and ctx->lock; holding 639 * either sufficies for read. 640 */ 641 struct list_head sibling_list; 642 struct list_head active_list; 643 /* 644 * Node on the pinned or flexible tree located at the event context; 645 */ 646 struct rb_node group_node; 647 u64 group_index; 648 /* 649 * We need storage to track the entries in perf_pmu_migrate_context; we 650 * cannot use the event_entry because of RCU and we want to keep the 651 * group in tact which avoids us using the other two entries. 652 */ 653 struct list_head migrate_entry; 654 655 struct hlist_node hlist_entry; 656 struct list_head active_entry; 657 int nr_siblings; 658 659 /* Not serialized. Only written during event initialization. */ 660 int event_caps; 661 /* The cumulative AND of all event_caps for events in this group. */ 662 int group_caps; 663 664 struct perf_event *group_leader; 665 struct pmu *pmu; 666 void *pmu_private; 667 668 enum perf_event_state state; 669 unsigned int attach_state; 670 local64_t count; 671 atomic64_t child_count; 672 673 /* 674 * These are the total time in nanoseconds that the event 675 * has been enabled (i.e. eligible to run, and the task has 676 * been scheduled in, if this is a per-task event) 677 * and running (scheduled onto the CPU), respectively. 678 */ 679 u64 total_time_enabled; 680 u64 total_time_running; 681 u64 tstamp; 682 683 /* 684 * timestamp shadows the actual context timing but it can 685 * be safely used in NMI interrupt context. It reflects the 686 * context time as it was when the event was last scheduled in. 687 * 688 * ctx_time already accounts for ctx->timestamp. Therefore to 689 * compute ctx_time for a sample, simply add perf_clock(). 690 */ 691 u64 shadow_ctx_time; 692 693 struct perf_event_attr attr; 694 u16 header_size; 695 u16 id_header_size; 696 u16 read_size; 697 struct hw_perf_event hw; 698 699 struct perf_event_context *ctx; 700 atomic_long_t refcount; 701 702 /* 703 * These accumulate total time (in nanoseconds) that children 704 * events have been enabled and running, respectively. 705 */ 706 atomic64_t child_total_time_enabled; 707 atomic64_t child_total_time_running; 708 709 /* 710 * Protect attach/detach and child_list: 711 */ 712 struct mutex child_mutex; 713 struct list_head child_list; 714 struct perf_event *parent; 715 716 int oncpu; 717 int cpu; 718 719 struct list_head owner_entry; 720 struct task_struct *owner; 721 722 /* mmap bits */ 723 struct mutex mmap_mutex; 724 atomic_t mmap_count; 725 726 struct perf_buffer *rb; 727 struct list_head rb_entry; 728 unsigned long rcu_batches; 729 int rcu_pending; 730 731 /* poll related */ 732 wait_queue_head_t waitq; 733 struct fasync_struct *fasync; 734 735 /* delayed work for NMIs and such */ 736 int pending_wakeup; 737 int pending_kill; 738 int pending_disable; 739 unsigned long pending_addr; /* SIGTRAP */ 740 struct irq_work pending; 741 742 atomic_t event_limit; 743 744 /* address range filters */ 745 struct perf_addr_filters_head addr_filters; 746 /* vma address array for file-based filders */ 747 struct perf_addr_filter_range *addr_filter_ranges; 748 unsigned long addr_filters_gen; 749 750 /* for aux_output events */ 751 struct perf_event *aux_event; 752 753 void (*destroy)(struct perf_event *); 754 struct rcu_head rcu_head; 755 756 struct pid_namespace *ns; 757 u64 id; 758 759 u64 (*clock)(void); 760 perf_overflow_handler_t overflow_handler; 761 void *overflow_handler_context; 762 #ifdef CONFIG_BPF_SYSCALL 763 perf_overflow_handler_t orig_overflow_handler; 764 struct bpf_prog *prog; 765 #endif 766 767 #ifdef CONFIG_EVENT_TRACING 768 struct trace_event_call *tp_event; 769 struct event_filter *filter; 770 #ifdef CONFIG_FUNCTION_TRACER 771 struct ftrace_ops ftrace_ops; 772 #endif 773 #endif 774 775 #ifdef CONFIG_CGROUP_PERF 776 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 777 #endif 778 779 #ifdef CONFIG_SECURITY 780 void *security; 781 #endif 782 struct list_head sb_list; 783 #endif /* CONFIG_PERF_EVENTS */ 784 }; 785 786 787 struct perf_event_groups { 788 struct rb_root tree; 789 u64 index; 790 }; 791 792 /** 793 * struct perf_event_context - event context structure 794 * 795 * Used as a container for task events and CPU events as well: 796 */ 797 struct perf_event_context { 798 struct pmu *pmu; 799 /* 800 * Protect the states of the events in the list, 801 * nr_active, and the list: 802 */ 803 raw_spinlock_t lock; 804 /* 805 * Protect the list of events. Locking either mutex or lock 806 * is sufficient to ensure the list doesn't change; to change 807 * the list you need to lock both the mutex and the spinlock. 808 */ 809 struct mutex mutex; 810 811 struct list_head active_ctx_list; 812 struct perf_event_groups pinned_groups; 813 struct perf_event_groups flexible_groups; 814 struct list_head event_list; 815 816 struct list_head pinned_active; 817 struct list_head flexible_active; 818 819 int nr_events; 820 int nr_active; 821 int is_active; 822 int nr_stat; 823 int nr_freq; 824 int rotate_disable; 825 /* 826 * Set when nr_events != nr_active, except tolerant to events not 827 * necessary to be active due to scheduling constraints, such as cgroups. 828 */ 829 int rotate_necessary; 830 refcount_t refcount; 831 struct task_struct *task; 832 833 /* 834 * Context clock, runs when context enabled. 835 */ 836 u64 time; 837 u64 timestamp; 838 839 /* 840 * These fields let us detect when two contexts have both 841 * been cloned (inherited) from a common ancestor. 842 */ 843 struct perf_event_context *parent_ctx; 844 u64 parent_gen; 845 u64 generation; 846 int pin_count; 847 #ifdef CONFIG_CGROUP_PERF 848 int nr_cgroups; /* cgroup evts */ 849 #endif 850 void *task_ctx_data; /* pmu specific data */ 851 struct rcu_head rcu_head; 852 }; 853 854 /* 855 * Number of contexts where an event can trigger: 856 * task, softirq, hardirq, nmi. 857 */ 858 #define PERF_NR_CONTEXTS 4 859 860 /** 861 * struct perf_event_cpu_context - per cpu event context structure 862 */ 863 struct perf_cpu_context { 864 struct perf_event_context ctx; 865 struct perf_event_context *task_ctx; 866 int active_oncpu; 867 int exclusive; 868 869 raw_spinlock_t hrtimer_lock; 870 struct hrtimer hrtimer; 871 ktime_t hrtimer_interval; 872 unsigned int hrtimer_active; 873 874 #ifdef CONFIG_CGROUP_PERF 875 struct perf_cgroup *cgrp; 876 struct list_head cgrp_cpuctx_entry; 877 #endif 878 879 struct list_head sched_cb_entry; 880 int sched_cb_usage; 881 882 int online; 883 /* 884 * Per-CPU storage for iterators used in visit_groups_merge. The default 885 * storage is of size 2 to hold the CPU and any CPU event iterators. 886 */ 887 int heap_size; 888 struct perf_event **heap; 889 struct perf_event *heap_default[2]; 890 }; 891 892 struct perf_output_handle { 893 struct perf_event *event; 894 struct perf_buffer *rb; 895 unsigned long wakeup; 896 unsigned long size; 897 u64 aux_flags; 898 union { 899 void *addr; 900 unsigned long head; 901 }; 902 int page; 903 }; 904 905 struct bpf_perf_event_data_kern { 906 bpf_user_pt_regs_t *regs; 907 struct perf_sample_data *data; 908 struct perf_event *event; 909 }; 910 911 #ifdef CONFIG_CGROUP_PERF 912 913 /* 914 * perf_cgroup_info keeps track of time_enabled for a cgroup. 915 * This is a per-cpu dynamically allocated data structure. 916 */ 917 struct perf_cgroup_info { 918 u64 time; 919 u64 timestamp; 920 }; 921 922 struct perf_cgroup { 923 struct cgroup_subsys_state css; 924 struct perf_cgroup_info __percpu *info; 925 }; 926 927 /* 928 * Must ensure cgroup is pinned (css_get) before calling 929 * this function. In other words, we cannot call this function 930 * if there is no cgroup event for the current CPU context. 931 */ 932 static inline struct perf_cgroup * 933 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 934 { 935 return container_of(task_css_check(task, perf_event_cgrp_id, 936 ctx ? lockdep_is_held(&ctx->lock) 937 : true), 938 struct perf_cgroup, css); 939 } 940 #endif /* CONFIG_CGROUP_PERF */ 941 942 #ifdef CONFIG_PERF_EVENTS 943 944 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 945 struct perf_event *event); 946 extern void perf_aux_output_end(struct perf_output_handle *handle, 947 unsigned long size); 948 extern int perf_aux_output_skip(struct perf_output_handle *handle, 949 unsigned long size); 950 extern void *perf_get_aux(struct perf_output_handle *handle); 951 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 952 extern void perf_event_itrace_started(struct perf_event *event); 953 954 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 955 extern void perf_pmu_unregister(struct pmu *pmu); 956 957 extern int perf_num_counters(void); 958 extern const char *perf_pmu_name(void); 959 extern void __perf_event_task_sched_in(struct task_struct *prev, 960 struct task_struct *task); 961 extern void __perf_event_task_sched_out(struct task_struct *prev, 962 struct task_struct *next); 963 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 964 extern void perf_event_exit_task(struct task_struct *child); 965 extern void perf_event_free_task(struct task_struct *task); 966 extern void perf_event_delayed_put(struct task_struct *task); 967 extern struct file *perf_event_get(unsigned int fd); 968 extern const struct perf_event *perf_get_event(struct file *file); 969 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 970 extern void perf_event_print_debug(void); 971 extern void perf_pmu_disable(struct pmu *pmu); 972 extern void perf_pmu_enable(struct pmu *pmu); 973 extern void perf_sched_cb_dec(struct pmu *pmu); 974 extern void perf_sched_cb_inc(struct pmu *pmu); 975 extern int perf_event_task_disable(void); 976 extern int perf_event_task_enable(void); 977 978 extern void perf_pmu_resched(struct pmu *pmu); 979 980 extern int perf_event_refresh(struct perf_event *event, int refresh); 981 extern void perf_event_update_userpage(struct perf_event *event); 982 extern int perf_event_release_kernel(struct perf_event *event); 983 extern struct perf_event * 984 perf_event_create_kernel_counter(struct perf_event_attr *attr, 985 int cpu, 986 struct task_struct *task, 987 perf_overflow_handler_t callback, 988 void *context); 989 extern void perf_pmu_migrate_context(struct pmu *pmu, 990 int src_cpu, int dst_cpu); 991 int perf_event_read_local(struct perf_event *event, u64 *value, 992 u64 *enabled, u64 *running); 993 extern u64 perf_event_read_value(struct perf_event *event, 994 u64 *enabled, u64 *running); 995 996 997 struct perf_sample_data { 998 /* 999 * Fields set by perf_sample_data_init(), group so as to 1000 * minimize the cachelines touched. 1001 */ 1002 u64 addr; 1003 struct perf_raw_record *raw; 1004 struct perf_branch_stack *br_stack; 1005 u64 period; 1006 union perf_sample_weight weight; 1007 u64 txn; 1008 union perf_mem_data_src data_src; 1009 1010 /* 1011 * The other fields, optionally {set,used} by 1012 * perf_{prepare,output}_sample(). 1013 */ 1014 u64 type; 1015 u64 ip; 1016 struct { 1017 u32 pid; 1018 u32 tid; 1019 } tid_entry; 1020 u64 time; 1021 u64 id; 1022 u64 stream_id; 1023 struct { 1024 u32 cpu; 1025 u32 reserved; 1026 } cpu_entry; 1027 struct perf_callchain_entry *callchain; 1028 u64 aux_size; 1029 1030 struct perf_regs regs_user; 1031 struct perf_regs regs_intr; 1032 u64 stack_user_size; 1033 1034 u64 phys_addr; 1035 u64 cgroup; 1036 u64 data_page_size; 1037 u64 code_page_size; 1038 } ____cacheline_aligned; 1039 1040 /* default value for data source */ 1041 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1042 PERF_MEM_S(LVL, NA) |\ 1043 PERF_MEM_S(SNOOP, NA) |\ 1044 PERF_MEM_S(LOCK, NA) |\ 1045 PERF_MEM_S(TLB, NA)) 1046 1047 static inline void perf_sample_data_init(struct perf_sample_data *data, 1048 u64 addr, u64 period) 1049 { 1050 /* remaining struct members initialized in perf_prepare_sample() */ 1051 data->addr = addr; 1052 data->raw = NULL; 1053 data->br_stack = NULL; 1054 data->period = period; 1055 data->weight.full = 0; 1056 data->data_src.val = PERF_MEM_NA; 1057 data->txn = 0; 1058 } 1059 1060 extern void perf_output_sample(struct perf_output_handle *handle, 1061 struct perf_event_header *header, 1062 struct perf_sample_data *data, 1063 struct perf_event *event); 1064 extern void perf_prepare_sample(struct perf_event_header *header, 1065 struct perf_sample_data *data, 1066 struct perf_event *event, 1067 struct pt_regs *regs); 1068 1069 extern int perf_event_overflow(struct perf_event *event, 1070 struct perf_sample_data *data, 1071 struct pt_regs *regs); 1072 1073 extern void perf_event_output_forward(struct perf_event *event, 1074 struct perf_sample_data *data, 1075 struct pt_regs *regs); 1076 extern void perf_event_output_backward(struct perf_event *event, 1077 struct perf_sample_data *data, 1078 struct pt_regs *regs); 1079 extern int perf_event_output(struct perf_event *event, 1080 struct perf_sample_data *data, 1081 struct pt_regs *regs); 1082 1083 static inline bool 1084 is_default_overflow_handler(struct perf_event *event) 1085 { 1086 if (likely(event->overflow_handler == perf_event_output_forward)) 1087 return true; 1088 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1089 return true; 1090 return false; 1091 } 1092 1093 extern void 1094 perf_event_header__init_id(struct perf_event_header *header, 1095 struct perf_sample_data *data, 1096 struct perf_event *event); 1097 extern void 1098 perf_event__output_id_sample(struct perf_event *event, 1099 struct perf_output_handle *handle, 1100 struct perf_sample_data *sample); 1101 1102 extern void 1103 perf_log_lost_samples(struct perf_event *event, u64 lost); 1104 1105 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1106 { 1107 struct perf_event_attr *attr = &event->attr; 1108 1109 return attr->exclude_idle || attr->exclude_user || 1110 attr->exclude_kernel || attr->exclude_hv || 1111 attr->exclude_guest || attr->exclude_host; 1112 } 1113 1114 static inline bool is_sampling_event(struct perf_event *event) 1115 { 1116 return event->attr.sample_period != 0; 1117 } 1118 1119 /* 1120 * Return 1 for a software event, 0 for a hardware event 1121 */ 1122 static inline int is_software_event(struct perf_event *event) 1123 { 1124 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1125 } 1126 1127 /* 1128 * Return 1 for event in sw context, 0 for event in hw context 1129 */ 1130 static inline int in_software_context(struct perf_event *event) 1131 { 1132 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1133 } 1134 1135 static inline int is_exclusive_pmu(struct pmu *pmu) 1136 { 1137 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1138 } 1139 1140 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1141 1142 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1143 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1144 1145 #ifndef perf_arch_fetch_caller_regs 1146 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1147 #endif 1148 1149 /* 1150 * When generating a perf sample in-line, instead of from an interrupt / 1151 * exception, we lack a pt_regs. This is typically used from software events 1152 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1153 * 1154 * We typically don't need a full set, but (for x86) do require: 1155 * - ip for PERF_SAMPLE_IP 1156 * - cs for user_mode() tests 1157 * - sp for PERF_SAMPLE_CALLCHAIN 1158 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1159 * 1160 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1161 * things like PERF_SAMPLE_REGS_INTR. 1162 */ 1163 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1164 { 1165 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1166 } 1167 1168 static __always_inline void 1169 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1170 { 1171 if (static_key_false(&perf_swevent_enabled[event_id])) 1172 __perf_sw_event(event_id, nr, regs, addr); 1173 } 1174 1175 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1176 1177 /* 1178 * 'Special' version for the scheduler, it hard assumes no recursion, 1179 * which is guaranteed by us not actually scheduling inside other swevents 1180 * because those disable preemption. 1181 */ 1182 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1183 { 1184 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1185 1186 perf_fetch_caller_regs(regs); 1187 ___perf_sw_event(event_id, nr, regs, addr); 1188 } 1189 1190 extern struct static_key_false perf_sched_events; 1191 1192 static __always_inline bool __perf_sw_enabled(int swevt) 1193 { 1194 return static_key_false(&perf_swevent_enabled[swevt]); 1195 } 1196 1197 static inline void perf_event_task_migrate(struct task_struct *task) 1198 { 1199 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1200 task->sched_migrated = 1; 1201 } 1202 1203 static inline void perf_event_task_sched_in(struct task_struct *prev, 1204 struct task_struct *task) 1205 { 1206 if (static_branch_unlikely(&perf_sched_events)) 1207 __perf_event_task_sched_in(prev, task); 1208 1209 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1210 task->sched_migrated) { 1211 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1212 task->sched_migrated = 0; 1213 } 1214 } 1215 1216 static inline void perf_event_task_sched_out(struct task_struct *prev, 1217 struct task_struct *next) 1218 { 1219 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1220 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1221 1222 #ifdef CONFIG_CGROUP_PERF 1223 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1224 perf_cgroup_from_task(prev, NULL) != 1225 perf_cgroup_from_task(next, NULL)) 1226 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1227 #endif 1228 1229 if (static_branch_unlikely(&perf_sched_events)) 1230 __perf_event_task_sched_out(prev, next); 1231 } 1232 1233 extern void perf_event_mmap(struct vm_area_struct *vma); 1234 1235 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1236 bool unregister, const char *sym); 1237 extern void perf_event_bpf_event(struct bpf_prog *prog, 1238 enum perf_bpf_event_type type, 1239 u16 flags); 1240 1241 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1242 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1243 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1244 1245 extern void perf_event_exec(void); 1246 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1247 extern void perf_event_namespaces(struct task_struct *tsk); 1248 extern void perf_event_fork(struct task_struct *tsk); 1249 extern void perf_event_text_poke(const void *addr, 1250 const void *old_bytes, size_t old_len, 1251 const void *new_bytes, size_t new_len); 1252 1253 /* Callchains */ 1254 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1255 1256 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1257 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1258 extern struct perf_callchain_entry * 1259 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1260 u32 max_stack, bool crosstask, bool add_mark); 1261 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1262 extern int get_callchain_buffers(int max_stack); 1263 extern void put_callchain_buffers(void); 1264 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1265 extern void put_callchain_entry(int rctx); 1266 1267 extern int sysctl_perf_event_max_stack; 1268 extern int sysctl_perf_event_max_contexts_per_stack; 1269 1270 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1271 { 1272 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1273 struct perf_callchain_entry *entry = ctx->entry; 1274 entry->ip[entry->nr++] = ip; 1275 ++ctx->contexts; 1276 return 0; 1277 } else { 1278 ctx->contexts_maxed = true; 1279 return -1; /* no more room, stop walking the stack */ 1280 } 1281 } 1282 1283 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1284 { 1285 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1286 struct perf_callchain_entry *entry = ctx->entry; 1287 entry->ip[entry->nr++] = ip; 1288 ++ctx->nr; 1289 return 0; 1290 } else { 1291 return -1; /* no more room, stop walking the stack */ 1292 } 1293 } 1294 1295 extern int sysctl_perf_event_paranoid; 1296 extern int sysctl_perf_event_mlock; 1297 extern int sysctl_perf_event_sample_rate; 1298 extern int sysctl_perf_cpu_time_max_percent; 1299 1300 extern void perf_sample_event_took(u64 sample_len_ns); 1301 1302 int perf_proc_update_handler(struct ctl_table *table, int write, 1303 void *buffer, size_t *lenp, loff_t *ppos); 1304 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1305 void *buffer, size_t *lenp, loff_t *ppos); 1306 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1307 void *buffer, size_t *lenp, loff_t *ppos); 1308 1309 /* Access to perf_event_open(2) syscall. */ 1310 #define PERF_SECURITY_OPEN 0 1311 1312 /* Finer grained perf_event_open(2) access control. */ 1313 #define PERF_SECURITY_CPU 1 1314 #define PERF_SECURITY_KERNEL 2 1315 #define PERF_SECURITY_TRACEPOINT 3 1316 1317 static inline int perf_is_paranoid(void) 1318 { 1319 return sysctl_perf_event_paranoid > -1; 1320 } 1321 1322 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1323 { 1324 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1325 return -EACCES; 1326 1327 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1328 } 1329 1330 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1331 { 1332 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1333 return -EACCES; 1334 1335 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1336 } 1337 1338 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1339 { 1340 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1341 return -EPERM; 1342 1343 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1344 } 1345 1346 extern void perf_event_init(void); 1347 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1348 int entry_size, struct pt_regs *regs, 1349 struct hlist_head *head, int rctx, 1350 struct task_struct *task); 1351 extern void perf_bp_event(struct perf_event *event, void *data); 1352 1353 #ifndef perf_misc_flags 1354 # define perf_misc_flags(regs) \ 1355 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1356 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1357 #endif 1358 #ifndef perf_arch_bpf_user_pt_regs 1359 # define perf_arch_bpf_user_pt_regs(regs) regs 1360 #endif 1361 1362 static inline bool has_branch_stack(struct perf_event *event) 1363 { 1364 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1365 } 1366 1367 static inline bool needs_branch_stack(struct perf_event *event) 1368 { 1369 return event->attr.branch_sample_type != 0; 1370 } 1371 1372 static inline bool has_aux(struct perf_event *event) 1373 { 1374 return event->pmu->setup_aux; 1375 } 1376 1377 static inline bool is_write_backward(struct perf_event *event) 1378 { 1379 return !!event->attr.write_backward; 1380 } 1381 1382 static inline bool has_addr_filter(struct perf_event *event) 1383 { 1384 return event->pmu->nr_addr_filters; 1385 } 1386 1387 /* 1388 * An inherited event uses parent's filters 1389 */ 1390 static inline struct perf_addr_filters_head * 1391 perf_event_addr_filters(struct perf_event *event) 1392 { 1393 struct perf_addr_filters_head *ifh = &event->addr_filters; 1394 1395 if (event->parent) 1396 ifh = &event->parent->addr_filters; 1397 1398 return ifh; 1399 } 1400 1401 extern void perf_event_addr_filters_sync(struct perf_event *event); 1402 1403 extern int perf_output_begin(struct perf_output_handle *handle, 1404 struct perf_sample_data *data, 1405 struct perf_event *event, unsigned int size); 1406 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1407 struct perf_sample_data *data, 1408 struct perf_event *event, 1409 unsigned int size); 1410 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1411 struct perf_sample_data *data, 1412 struct perf_event *event, 1413 unsigned int size); 1414 1415 extern void perf_output_end(struct perf_output_handle *handle); 1416 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1417 const void *buf, unsigned int len); 1418 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1419 unsigned int len); 1420 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1421 struct perf_output_handle *handle, 1422 unsigned long from, unsigned long to); 1423 extern int perf_swevent_get_recursion_context(void); 1424 extern void perf_swevent_put_recursion_context(int rctx); 1425 extern u64 perf_swevent_set_period(struct perf_event *event); 1426 extern void perf_event_enable(struct perf_event *event); 1427 extern void perf_event_disable(struct perf_event *event); 1428 extern void perf_event_disable_local(struct perf_event *event); 1429 extern void perf_event_disable_inatomic(struct perf_event *event); 1430 extern void perf_event_task_tick(void); 1431 extern int perf_event_account_interrupt(struct perf_event *event); 1432 extern int perf_event_period(struct perf_event *event, u64 value); 1433 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1434 #else /* !CONFIG_PERF_EVENTS: */ 1435 static inline void * 1436 perf_aux_output_begin(struct perf_output_handle *handle, 1437 struct perf_event *event) { return NULL; } 1438 static inline void 1439 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1440 { } 1441 static inline int 1442 perf_aux_output_skip(struct perf_output_handle *handle, 1443 unsigned long size) { return -EINVAL; } 1444 static inline void * 1445 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1446 static inline void 1447 perf_event_task_migrate(struct task_struct *task) { } 1448 static inline void 1449 perf_event_task_sched_in(struct task_struct *prev, 1450 struct task_struct *task) { } 1451 static inline void 1452 perf_event_task_sched_out(struct task_struct *prev, 1453 struct task_struct *next) { } 1454 static inline int perf_event_init_task(struct task_struct *child, 1455 u64 clone_flags) { return 0; } 1456 static inline void perf_event_exit_task(struct task_struct *child) { } 1457 static inline void perf_event_free_task(struct task_struct *task) { } 1458 static inline void perf_event_delayed_put(struct task_struct *task) { } 1459 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1460 static inline const struct perf_event *perf_get_event(struct file *file) 1461 { 1462 return ERR_PTR(-EINVAL); 1463 } 1464 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1465 { 1466 return ERR_PTR(-EINVAL); 1467 } 1468 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1469 u64 *enabled, u64 *running) 1470 { 1471 return -EINVAL; 1472 } 1473 static inline void perf_event_print_debug(void) { } 1474 static inline int perf_event_task_disable(void) { return -EINVAL; } 1475 static inline int perf_event_task_enable(void) { return -EINVAL; } 1476 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1477 { 1478 return -EINVAL; 1479 } 1480 1481 static inline void 1482 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1483 static inline void 1484 perf_bp_event(struct perf_event *event, void *data) { } 1485 1486 static inline int perf_register_guest_info_callbacks 1487 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1488 static inline int perf_unregister_guest_info_callbacks 1489 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1490 1491 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1492 1493 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1494 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1495 bool unregister, const char *sym) { } 1496 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1497 enum perf_bpf_event_type type, 1498 u16 flags) { } 1499 static inline void perf_event_exec(void) { } 1500 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1501 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1502 static inline void perf_event_fork(struct task_struct *tsk) { } 1503 static inline void perf_event_text_poke(const void *addr, 1504 const void *old_bytes, 1505 size_t old_len, 1506 const void *new_bytes, 1507 size_t new_len) { } 1508 static inline void perf_event_init(void) { } 1509 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1510 static inline void perf_swevent_put_recursion_context(int rctx) { } 1511 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1512 static inline void perf_event_enable(struct perf_event *event) { } 1513 static inline void perf_event_disable(struct perf_event *event) { } 1514 static inline int __perf_event_disable(void *info) { return -1; } 1515 static inline void perf_event_task_tick(void) { } 1516 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1517 static inline int perf_event_period(struct perf_event *event, u64 value) 1518 { 1519 return -EINVAL; 1520 } 1521 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1522 { 1523 return 0; 1524 } 1525 #endif 1526 1527 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1528 extern void perf_restore_debug_store(void); 1529 #else 1530 static inline void perf_restore_debug_store(void) { } 1531 #endif 1532 1533 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1534 { 1535 return frag->pad < sizeof(u64); 1536 } 1537 1538 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1539 1540 struct perf_pmu_events_attr { 1541 struct device_attribute attr; 1542 u64 id; 1543 const char *event_str; 1544 }; 1545 1546 struct perf_pmu_events_ht_attr { 1547 struct device_attribute attr; 1548 u64 id; 1549 const char *event_str_ht; 1550 const char *event_str_noht; 1551 }; 1552 1553 struct perf_pmu_events_hybrid_attr { 1554 struct device_attribute attr; 1555 u64 id; 1556 const char *event_str; 1557 u64 pmu_type; 1558 }; 1559 1560 struct perf_pmu_format_hybrid_attr { 1561 struct device_attribute attr; 1562 u64 pmu_type; 1563 }; 1564 1565 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1566 char *page); 1567 1568 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1569 static struct perf_pmu_events_attr _var = { \ 1570 .attr = __ATTR(_name, 0444, _show, NULL), \ 1571 .id = _id, \ 1572 }; 1573 1574 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1575 static struct perf_pmu_events_attr _var = { \ 1576 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1577 .id = 0, \ 1578 .event_str = _str, \ 1579 }; 1580 1581 #define PMU_FORMAT_ATTR(_name, _format) \ 1582 static ssize_t \ 1583 _name##_show(struct device *dev, \ 1584 struct device_attribute *attr, \ 1585 char *page) \ 1586 { \ 1587 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1588 return sprintf(page, _format "\n"); \ 1589 } \ 1590 \ 1591 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1592 1593 /* Performance counter hotplug functions */ 1594 #ifdef CONFIG_PERF_EVENTS 1595 int perf_event_init_cpu(unsigned int cpu); 1596 int perf_event_exit_cpu(unsigned int cpu); 1597 #else 1598 #define perf_event_init_cpu NULL 1599 #define perf_event_exit_cpu NULL 1600 #endif 1601 1602 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1603 struct perf_event_mmap_page *userpg, 1604 u64 now); 1605 1606 #ifdef CONFIG_MMU 1607 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1608 #endif 1609 1610 #endif /* _LINUX_PERF_EVENT_H */ 1611