xref: /linux-6.15/include/linux/perf_event.h (revision f7be3455)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 
58 	PERF_COUNT_HW_MAX,			/* non-ABI */
59 };
60 
61 /*
62  * Generalized hardware cache events:
63  *
64  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
65  *       { read, write, prefetch } x
66  *       { accesses, misses }
67  */
68 enum perf_hw_cache_id {
69 	PERF_COUNT_HW_CACHE_L1D			= 0,
70 	PERF_COUNT_HW_CACHE_L1I			= 1,
71 	PERF_COUNT_HW_CACHE_LL			= 2,
72 	PERF_COUNT_HW_CACHE_DTLB		= 3,
73 	PERF_COUNT_HW_CACHE_ITLB		= 4,
74 	PERF_COUNT_HW_CACHE_BPU			= 5,
75 	PERF_COUNT_HW_CACHE_NODE		= 6,
76 
77 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
78 };
79 
80 enum perf_hw_cache_op_id {
81 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
82 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
83 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
84 
85 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
86 };
87 
88 enum perf_hw_cache_op_result_id {
89 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
90 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
91 
92 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
93 };
94 
95 /*
96  * Special "software" events provided by the kernel, even if the hardware
97  * does not support performance events. These events measure various
98  * physical and sw events of the kernel (and allow the profiling of them as
99  * well):
100  */
101 enum perf_sw_ids {
102 	PERF_COUNT_SW_CPU_CLOCK			= 0,
103 	PERF_COUNT_SW_TASK_CLOCK		= 1,
104 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
105 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
106 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
107 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
108 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
109 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
110 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
111 
112 	PERF_COUNT_SW_MAX,			/* non-ABI */
113 };
114 
115 /*
116  * Bits that can be set in attr.sample_type to request information
117  * in the overflow packets.
118  */
119 enum perf_event_sample_format {
120 	PERF_SAMPLE_IP				= 1U << 0,
121 	PERF_SAMPLE_TID				= 1U << 1,
122 	PERF_SAMPLE_TIME			= 1U << 2,
123 	PERF_SAMPLE_ADDR			= 1U << 3,
124 	PERF_SAMPLE_READ			= 1U << 4,
125 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
126 	PERF_SAMPLE_ID				= 1U << 6,
127 	PERF_SAMPLE_CPU				= 1U << 7,
128 	PERF_SAMPLE_PERIOD			= 1U << 8,
129 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
130 	PERF_SAMPLE_RAW				= 1U << 10,
131 
132 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
133 };
134 
135 /*
136  * The format of the data returned by read() on a perf event fd,
137  * as specified by attr.read_format:
138  *
139  * struct read_format {
140  *	{ u64		value;
141  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
142  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
143  *	  { u64		id;           } && PERF_FORMAT_ID
144  *	} && !PERF_FORMAT_GROUP
145  *
146  *	{ u64		nr;
147  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
148  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
149  *	  { u64		value;
150  *	    { u64	id;           } && PERF_FORMAT_ID
151  *	  }		cntr[nr];
152  *	} && PERF_FORMAT_GROUP
153  * };
154  */
155 enum perf_event_read_format {
156 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
157 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
158 	PERF_FORMAT_ID				= 1U << 2,
159 	PERF_FORMAT_GROUP			= 1U << 3,
160 
161 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
162 };
163 
164 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
165 
166 /*
167  * Hardware event_id to monitor via a performance monitoring event:
168  */
169 struct perf_event_attr {
170 
171 	/*
172 	 * Major type: hardware/software/tracepoint/etc.
173 	 */
174 	__u32			type;
175 
176 	/*
177 	 * Size of the attr structure, for fwd/bwd compat.
178 	 */
179 	__u32			size;
180 
181 	/*
182 	 * Type specific configuration information.
183 	 */
184 	__u64			config;
185 
186 	union {
187 		__u64		sample_period;
188 		__u64		sample_freq;
189 	};
190 
191 	__u64			sample_type;
192 	__u64			read_format;
193 
194 	__u64			disabled       :  1, /* off by default        */
195 				inherit	       :  1, /* children inherit it   */
196 				pinned	       :  1, /* must always be on PMU */
197 				exclusive      :  1, /* only group on PMU     */
198 				exclude_user   :  1, /* don't count user      */
199 				exclude_kernel :  1, /* ditto kernel          */
200 				exclude_hv     :  1, /* ditto hypervisor      */
201 				exclude_idle   :  1, /* don't count when idle */
202 				mmap           :  1, /* include mmap data     */
203 				comm	       :  1, /* include comm data     */
204 				freq           :  1, /* use freq, not period  */
205 				inherit_stat   :  1, /* per task counts       */
206 				enable_on_exec :  1, /* next exec enables     */
207 				task           :  1, /* trace fork/exit       */
208 				watermark      :  1, /* wakeup_watermark      */
209 				/*
210 				 * precise_ip:
211 				 *
212 				 *  0 - SAMPLE_IP can have arbitrary skid
213 				 *  1 - SAMPLE_IP must have constant skid
214 				 *  2 - SAMPLE_IP requested to have 0 skid
215 				 *  3 - SAMPLE_IP must have 0 skid
216 				 *
217 				 *  See also PERF_RECORD_MISC_EXACT_IP
218 				 */
219 				precise_ip     :  2, /* skid constraint       */
220 				mmap_data      :  1, /* non-exec mmap data    */
221 				sample_id_all  :  1, /* sample_type all events */
222 
223 				exclude_host   :  1, /* don't count in host   */
224 				exclude_guest  :  1, /* don't count in guest  */
225 
226 				__reserved_1   : 43;
227 
228 	union {
229 		__u32		wakeup_events;	  /* wakeup every n events */
230 		__u32		wakeup_watermark; /* bytes before wakeup   */
231 	};
232 
233 	__u32			bp_type;
234 	union {
235 		__u64		bp_addr;
236 		__u64		config1; /* extension of config */
237 	};
238 	union {
239 		__u64		bp_len;
240 		__u64		config2; /* extension of config1 */
241 	};
242 };
243 
244 /*
245  * Ioctls that can be done on a perf event fd:
246  */
247 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
248 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
249 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
250 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
251 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
252 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
253 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
254 
255 enum perf_event_ioc_flags {
256 	PERF_IOC_FLAG_GROUP		= 1U << 0,
257 };
258 
259 /*
260  * Structure of the page that can be mapped via mmap
261  */
262 struct perf_event_mmap_page {
263 	__u32	version;		/* version number of this structure */
264 	__u32	compat_version;		/* lowest version this is compat with */
265 
266 	/*
267 	 * Bits needed to read the hw events in user-space.
268 	 *
269 	 *   u32 seq;
270 	 *   s64 count;
271 	 *
272 	 *   do {
273 	 *     seq = pc->lock;
274 	 *
275 	 *     barrier()
276 	 *     if (pc->index) {
277 	 *       count = pmc_read(pc->index - 1);
278 	 *       count += pc->offset;
279 	 *     } else
280 	 *       goto regular_read;
281 	 *
282 	 *     barrier();
283 	 *   } while (pc->lock != seq);
284 	 *
285 	 * NOTE: for obvious reason this only works on self-monitoring
286 	 *       processes.
287 	 */
288 	__u32	lock;			/* seqlock for synchronization */
289 	__u32	index;			/* hardware event identifier */
290 	__s64	offset;			/* add to hardware event value */
291 	__u64	time_enabled;		/* time event active */
292 	__u64	time_running;		/* time event on cpu */
293 
294 		/*
295 		 * Hole for extension of the self monitor capabilities
296 		 */
297 
298 	__u64	__reserved[123];	/* align to 1k */
299 
300 	/*
301 	 * Control data for the mmap() data buffer.
302 	 *
303 	 * User-space reading the @data_head value should issue an rmb(), on
304 	 * SMP capable platforms, after reading this value -- see
305 	 * perf_event_wakeup().
306 	 *
307 	 * When the mapping is PROT_WRITE the @data_tail value should be
308 	 * written by userspace to reflect the last read data. In this case
309 	 * the kernel will not over-write unread data.
310 	 */
311 	__u64   data_head;		/* head in the data section */
312 	__u64	data_tail;		/* user-space written tail */
313 };
314 
315 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
316 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
317 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
318 #define PERF_RECORD_MISC_USER			(2 << 0)
319 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
320 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
321 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
322 
323 /*
324  * Indicates that the content of PERF_SAMPLE_IP points to
325  * the actual instruction that triggered the event. See also
326  * perf_event_attr::precise_ip.
327  */
328 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
329 /*
330  * Reserve the last bit to indicate some extended misc field
331  */
332 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
333 
334 struct perf_event_header {
335 	__u32	type;
336 	__u16	misc;
337 	__u16	size;
338 };
339 
340 enum perf_event_type {
341 
342 	/*
343 	 * If perf_event_attr.sample_id_all is set then all event types will
344 	 * have the sample_type selected fields related to where/when
345 	 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
346 	 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
347 	 * the perf_event_header and the fields already present for the existing
348 	 * fields, i.e. at the end of the payload. That way a newer perf.data
349 	 * file will be supported by older perf tools, with these new optional
350 	 * fields being ignored.
351 	 *
352 	 * The MMAP events record the PROT_EXEC mappings so that we can
353 	 * correlate userspace IPs to code. They have the following structure:
354 	 *
355 	 * struct {
356 	 *	struct perf_event_header	header;
357 	 *
358 	 *	u32				pid, tid;
359 	 *	u64				addr;
360 	 *	u64				len;
361 	 *	u64				pgoff;
362 	 *	char				filename[];
363 	 * };
364 	 */
365 	PERF_RECORD_MMAP			= 1,
366 
367 	/*
368 	 * struct {
369 	 *	struct perf_event_header	header;
370 	 *	u64				id;
371 	 *	u64				lost;
372 	 * };
373 	 */
374 	PERF_RECORD_LOST			= 2,
375 
376 	/*
377 	 * struct {
378 	 *	struct perf_event_header	header;
379 	 *
380 	 *	u32				pid, tid;
381 	 *	char				comm[];
382 	 * };
383 	 */
384 	PERF_RECORD_COMM			= 3,
385 
386 	/*
387 	 * struct {
388 	 *	struct perf_event_header	header;
389 	 *	u32				pid, ppid;
390 	 *	u32				tid, ptid;
391 	 *	u64				time;
392 	 * };
393 	 */
394 	PERF_RECORD_EXIT			= 4,
395 
396 	/*
397 	 * struct {
398 	 *	struct perf_event_header	header;
399 	 *	u64				time;
400 	 *	u64				id;
401 	 *	u64				stream_id;
402 	 * };
403 	 */
404 	PERF_RECORD_THROTTLE			= 5,
405 	PERF_RECORD_UNTHROTTLE			= 6,
406 
407 	/*
408 	 * struct {
409 	 *	struct perf_event_header	header;
410 	 *	u32				pid, ppid;
411 	 *	u32				tid, ptid;
412 	 *	u64				time;
413 	 * };
414 	 */
415 	PERF_RECORD_FORK			= 7,
416 
417 	/*
418 	 * struct {
419 	 *	struct perf_event_header	header;
420 	 *	u32				pid, tid;
421 	 *
422 	 *	struct read_format		values;
423 	 * };
424 	 */
425 	PERF_RECORD_READ			= 8,
426 
427 	/*
428 	 * struct {
429 	 *	struct perf_event_header	header;
430 	 *
431 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
432 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
433 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
434 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
435 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
436 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
437 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
438 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
439 	 *
440 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
441 	 *
442 	 *	{ u64			nr,
443 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
444 	 *
445 	 *	#
446 	 *	# The RAW record below is opaque data wrt the ABI
447 	 *	#
448 	 *	# That is, the ABI doesn't make any promises wrt to
449 	 *	# the stability of its content, it may vary depending
450 	 *	# on event, hardware, kernel version and phase of
451 	 *	# the moon.
452 	 *	#
453 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
454 	 *	#
455 	 *
456 	 *	{ u32			size;
457 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
458 	 * };
459 	 */
460 	PERF_RECORD_SAMPLE			= 9,
461 
462 	PERF_RECORD_MAX,			/* non-ABI */
463 };
464 
465 enum perf_callchain_context {
466 	PERF_CONTEXT_HV			= (__u64)-32,
467 	PERF_CONTEXT_KERNEL		= (__u64)-128,
468 	PERF_CONTEXT_USER		= (__u64)-512,
469 
470 	PERF_CONTEXT_GUEST		= (__u64)-2048,
471 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
472 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
473 
474 	PERF_CONTEXT_MAX		= (__u64)-4095,
475 };
476 
477 #define PERF_FLAG_FD_NO_GROUP		(1U << 0)
478 #define PERF_FLAG_FD_OUTPUT		(1U << 1)
479 #define PERF_FLAG_PID_CGROUP		(1U << 2) /* pid=cgroup id, per-cpu mode only */
480 
481 #ifdef __KERNEL__
482 /*
483  * Kernel-internal data types and definitions:
484  */
485 
486 #ifdef CONFIG_PERF_EVENTS
487 # include <linux/cgroup.h>
488 # include <asm/perf_event.h>
489 # include <asm/local64.h>
490 #endif
491 
492 struct perf_guest_info_callbacks {
493 	int				(*is_in_guest)(void);
494 	int				(*is_user_mode)(void);
495 	unsigned long			(*get_guest_ip)(void);
496 };
497 
498 #ifdef CONFIG_HAVE_HW_BREAKPOINT
499 #include <asm/hw_breakpoint.h>
500 #endif
501 
502 #include <linux/list.h>
503 #include <linux/mutex.h>
504 #include <linux/rculist.h>
505 #include <linux/rcupdate.h>
506 #include <linux/spinlock.h>
507 #include <linux/hrtimer.h>
508 #include <linux/fs.h>
509 #include <linux/pid_namespace.h>
510 #include <linux/workqueue.h>
511 #include <linux/ftrace.h>
512 #include <linux/cpu.h>
513 #include <linux/irq_work.h>
514 #include <linux/jump_label.h>
515 #include <linux/atomic.h>
516 #include <asm/local.h>
517 
518 #define PERF_MAX_STACK_DEPTH		255
519 
520 struct perf_callchain_entry {
521 	__u64				nr;
522 	__u64				ip[PERF_MAX_STACK_DEPTH];
523 };
524 
525 struct perf_raw_record {
526 	u32				size;
527 	void				*data;
528 };
529 
530 struct perf_branch_entry {
531 	__u64				from;
532 	__u64				to;
533 	__u64				flags;
534 };
535 
536 struct perf_branch_stack {
537 	__u64				nr;
538 	struct perf_branch_entry	entries[0];
539 };
540 
541 struct task_struct;
542 
543 /*
544  * extra PMU register associated with an event
545  */
546 struct hw_perf_event_extra {
547 	u64		config;	/* register value */
548 	unsigned int	reg;	/* register address or index */
549 	int		alloc;	/* extra register already allocated */
550 	int		idx;	/* index in shared_regs->regs[] */
551 };
552 
553 /**
554  * struct hw_perf_event - performance event hardware details:
555  */
556 struct hw_perf_event {
557 #ifdef CONFIG_PERF_EVENTS
558 	union {
559 		struct { /* hardware */
560 			u64		config;
561 			u64		last_tag;
562 			unsigned long	config_base;
563 			unsigned long	event_base;
564 			int		idx;
565 			int		last_cpu;
566 			struct hw_perf_event_extra extra_reg;
567 		};
568 		struct { /* software */
569 			struct hrtimer	hrtimer;
570 		};
571 #ifdef CONFIG_HAVE_HW_BREAKPOINT
572 		struct { /* breakpoint */
573 			struct arch_hw_breakpoint	info;
574 			struct list_head		bp_list;
575 			/*
576 			 * Crufty hack to avoid the chicken and egg
577 			 * problem hw_breakpoint has with context
578 			 * creation and event initalization.
579 			 */
580 			struct task_struct		*bp_target;
581 		};
582 #endif
583 	};
584 	int				state;
585 	local64_t			prev_count;
586 	u64				sample_period;
587 	u64				last_period;
588 	local64_t			period_left;
589 	u64				interrupts;
590 
591 	u64				freq_time_stamp;
592 	u64				freq_count_stamp;
593 #endif
594 };
595 
596 /*
597  * hw_perf_event::state flags
598  */
599 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
600 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
601 #define PERF_HES_ARCH		0x04
602 
603 struct perf_event;
604 
605 /*
606  * Common implementation detail of pmu::{start,commit,cancel}_txn
607  */
608 #define PERF_EVENT_TXN 0x1
609 
610 /**
611  * struct pmu - generic performance monitoring unit
612  */
613 struct pmu {
614 	struct list_head		entry;
615 
616 	struct device			*dev;
617 	char				*name;
618 	int				type;
619 
620 	int * __percpu			pmu_disable_count;
621 	struct perf_cpu_context * __percpu pmu_cpu_context;
622 	int				task_ctx_nr;
623 
624 	/*
625 	 * Fully disable/enable this PMU, can be used to protect from the PMI
626 	 * as well as for lazy/batch writing of the MSRs.
627 	 */
628 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
629 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
630 
631 	/*
632 	 * Try and initialize the event for this PMU.
633 	 * Should return -ENOENT when the @event doesn't match this PMU.
634 	 */
635 	int (*event_init)		(struct perf_event *event);
636 
637 #define PERF_EF_START	0x01		/* start the counter when adding    */
638 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
639 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
640 
641 	/*
642 	 * Adds/Removes a counter to/from the PMU, can be done inside
643 	 * a transaction, see the ->*_txn() methods.
644 	 */
645 	int  (*add)			(struct perf_event *event, int flags);
646 	void (*del)			(struct perf_event *event, int flags);
647 
648 	/*
649 	 * Starts/Stops a counter present on the PMU. The PMI handler
650 	 * should stop the counter when perf_event_overflow() returns
651 	 * !0. ->start() will be used to continue.
652 	 */
653 	void (*start)			(struct perf_event *event, int flags);
654 	void (*stop)			(struct perf_event *event, int flags);
655 
656 	/*
657 	 * Updates the counter value of the event.
658 	 */
659 	void (*read)			(struct perf_event *event);
660 
661 	/*
662 	 * Group events scheduling is treated as a transaction, add
663 	 * group events as a whole and perform one schedulability test.
664 	 * If the test fails, roll back the whole group
665 	 *
666 	 * Start the transaction, after this ->add() doesn't need to
667 	 * do schedulability tests.
668 	 */
669 	void (*start_txn)		(struct pmu *pmu); /* optional */
670 	/*
671 	 * If ->start_txn() disabled the ->add() schedulability test
672 	 * then ->commit_txn() is required to perform one. On success
673 	 * the transaction is closed. On error the transaction is kept
674 	 * open until ->cancel_txn() is called.
675 	 */
676 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
677 	/*
678 	 * Will cancel the transaction, assumes ->del() is called
679 	 * for each successful ->add() during the transaction.
680 	 */
681 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
682 };
683 
684 /**
685  * enum perf_event_active_state - the states of a event
686  */
687 enum perf_event_active_state {
688 	PERF_EVENT_STATE_ERROR		= -2,
689 	PERF_EVENT_STATE_OFF		= -1,
690 	PERF_EVENT_STATE_INACTIVE	=  0,
691 	PERF_EVENT_STATE_ACTIVE		=  1,
692 };
693 
694 struct file;
695 struct perf_sample_data;
696 
697 typedef void (*perf_overflow_handler_t)(struct perf_event *,
698 					struct perf_sample_data *,
699 					struct pt_regs *regs);
700 
701 enum perf_group_flag {
702 	PERF_GROUP_SOFTWARE		= 0x1,
703 };
704 
705 #define SWEVENT_HLIST_BITS		8
706 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
707 
708 struct swevent_hlist {
709 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
710 	struct rcu_head			rcu_head;
711 };
712 
713 #define PERF_ATTACH_CONTEXT	0x01
714 #define PERF_ATTACH_GROUP	0x02
715 #define PERF_ATTACH_TASK	0x04
716 
717 #ifdef CONFIG_CGROUP_PERF
718 /*
719  * perf_cgroup_info keeps track of time_enabled for a cgroup.
720  * This is a per-cpu dynamically allocated data structure.
721  */
722 struct perf_cgroup_info {
723 	u64				time;
724 	u64				timestamp;
725 };
726 
727 struct perf_cgroup {
728 	struct				cgroup_subsys_state css;
729 	struct				perf_cgroup_info *info;	/* timing info, one per cpu */
730 };
731 #endif
732 
733 struct ring_buffer;
734 
735 /**
736  * struct perf_event - performance event kernel representation:
737  */
738 struct perf_event {
739 #ifdef CONFIG_PERF_EVENTS
740 	struct list_head		group_entry;
741 	struct list_head		event_entry;
742 	struct list_head		sibling_list;
743 	struct hlist_node		hlist_entry;
744 	int				nr_siblings;
745 	int				group_flags;
746 	struct perf_event		*group_leader;
747 	struct pmu			*pmu;
748 
749 	enum perf_event_active_state	state;
750 	unsigned int			attach_state;
751 	local64_t			count;
752 	atomic64_t			child_count;
753 
754 	/*
755 	 * These are the total time in nanoseconds that the event
756 	 * has been enabled (i.e. eligible to run, and the task has
757 	 * been scheduled in, if this is a per-task event)
758 	 * and running (scheduled onto the CPU), respectively.
759 	 *
760 	 * They are computed from tstamp_enabled, tstamp_running and
761 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
762 	 */
763 	u64				total_time_enabled;
764 	u64				total_time_running;
765 
766 	/*
767 	 * These are timestamps used for computing total_time_enabled
768 	 * and total_time_running when the event is in INACTIVE or
769 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
770 	 * in time.
771 	 * tstamp_enabled: the notional time when the event was enabled
772 	 * tstamp_running: the notional time when the event was scheduled on
773 	 * tstamp_stopped: in INACTIVE state, the notional time when the
774 	 *	event was scheduled off.
775 	 */
776 	u64				tstamp_enabled;
777 	u64				tstamp_running;
778 	u64				tstamp_stopped;
779 
780 	/*
781 	 * timestamp shadows the actual context timing but it can
782 	 * be safely used in NMI interrupt context. It reflects the
783 	 * context time as it was when the event was last scheduled in.
784 	 *
785 	 * ctx_time already accounts for ctx->timestamp. Therefore to
786 	 * compute ctx_time for a sample, simply add perf_clock().
787 	 */
788 	u64				shadow_ctx_time;
789 
790 	struct perf_event_attr		attr;
791 	u16				header_size;
792 	u16				id_header_size;
793 	u16				read_size;
794 	struct hw_perf_event		hw;
795 
796 	struct perf_event_context	*ctx;
797 	struct file			*filp;
798 
799 	/*
800 	 * These accumulate total time (in nanoseconds) that children
801 	 * events have been enabled and running, respectively.
802 	 */
803 	atomic64_t			child_total_time_enabled;
804 	atomic64_t			child_total_time_running;
805 
806 	/*
807 	 * Protect attach/detach and child_list:
808 	 */
809 	struct mutex			child_mutex;
810 	struct list_head		child_list;
811 	struct perf_event		*parent;
812 
813 	int				oncpu;
814 	int				cpu;
815 
816 	struct list_head		owner_entry;
817 	struct task_struct		*owner;
818 
819 	/* mmap bits */
820 	struct mutex			mmap_mutex;
821 	atomic_t			mmap_count;
822 	int				mmap_locked;
823 	struct user_struct		*mmap_user;
824 	struct ring_buffer		*rb;
825 
826 	/* poll related */
827 	wait_queue_head_t		waitq;
828 	struct fasync_struct		*fasync;
829 
830 	/* delayed work for NMIs and such */
831 	int				pending_wakeup;
832 	int				pending_kill;
833 	int				pending_disable;
834 	struct irq_work			pending;
835 
836 	atomic_t			event_limit;
837 
838 	void (*destroy)(struct perf_event *);
839 	struct rcu_head			rcu_head;
840 
841 	struct pid_namespace		*ns;
842 	u64				id;
843 
844 	perf_overflow_handler_t		overflow_handler;
845 	void				*overflow_handler_context;
846 
847 #ifdef CONFIG_EVENT_TRACING
848 	struct ftrace_event_call	*tp_event;
849 	struct event_filter		*filter;
850 #endif
851 
852 #ifdef CONFIG_CGROUP_PERF
853 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
854 	int				cgrp_defer_enabled;
855 #endif
856 
857 #endif /* CONFIG_PERF_EVENTS */
858 };
859 
860 enum perf_event_context_type {
861 	task_context,
862 	cpu_context,
863 };
864 
865 /**
866  * struct perf_event_context - event context structure
867  *
868  * Used as a container for task events and CPU events as well:
869  */
870 struct perf_event_context {
871 	struct pmu			*pmu;
872 	enum perf_event_context_type	type;
873 	/*
874 	 * Protect the states of the events in the list,
875 	 * nr_active, and the list:
876 	 */
877 	raw_spinlock_t			lock;
878 	/*
879 	 * Protect the list of events.  Locking either mutex or lock
880 	 * is sufficient to ensure the list doesn't change; to change
881 	 * the list you need to lock both the mutex and the spinlock.
882 	 */
883 	struct mutex			mutex;
884 
885 	struct list_head		pinned_groups;
886 	struct list_head		flexible_groups;
887 	struct list_head		event_list;
888 	int				nr_events;
889 	int				nr_active;
890 	int				is_active;
891 	int				nr_stat;
892 	int				rotate_disable;
893 	atomic_t			refcount;
894 	struct task_struct		*task;
895 
896 	/*
897 	 * Context clock, runs when context enabled.
898 	 */
899 	u64				time;
900 	u64				timestamp;
901 
902 	/*
903 	 * These fields let us detect when two contexts have both
904 	 * been cloned (inherited) from a common ancestor.
905 	 */
906 	struct perf_event_context	*parent_ctx;
907 	u64				parent_gen;
908 	u64				generation;
909 	int				pin_count;
910 	int				nr_cgroups; /* cgroup events present */
911 	struct rcu_head			rcu_head;
912 };
913 
914 /*
915  * Number of contexts where an event can trigger:
916  *	task, softirq, hardirq, nmi.
917  */
918 #define PERF_NR_CONTEXTS	4
919 
920 /**
921  * struct perf_event_cpu_context - per cpu event context structure
922  */
923 struct perf_cpu_context {
924 	struct perf_event_context	ctx;
925 	struct perf_event_context	*task_ctx;
926 	int				active_oncpu;
927 	int				exclusive;
928 	struct list_head		rotation_list;
929 	int				jiffies_interval;
930 	struct pmu			*active_pmu;
931 	struct perf_cgroup		*cgrp;
932 };
933 
934 struct perf_output_handle {
935 	struct perf_event		*event;
936 	struct ring_buffer		*rb;
937 	unsigned long			wakeup;
938 	unsigned long			size;
939 	void				*addr;
940 	int				page;
941 };
942 
943 #ifdef CONFIG_PERF_EVENTS
944 
945 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
946 extern void perf_pmu_unregister(struct pmu *pmu);
947 
948 extern int perf_num_counters(void);
949 extern const char *perf_pmu_name(void);
950 extern void __perf_event_task_sched_in(struct task_struct *prev,
951 				       struct task_struct *task);
952 extern void __perf_event_task_sched_out(struct task_struct *prev,
953 					struct task_struct *next);
954 extern int perf_event_init_task(struct task_struct *child);
955 extern void perf_event_exit_task(struct task_struct *child);
956 extern void perf_event_free_task(struct task_struct *task);
957 extern void perf_event_delayed_put(struct task_struct *task);
958 extern void perf_event_print_debug(void);
959 extern void perf_pmu_disable(struct pmu *pmu);
960 extern void perf_pmu_enable(struct pmu *pmu);
961 extern int perf_event_task_disable(void);
962 extern int perf_event_task_enable(void);
963 extern int perf_event_refresh(struct perf_event *event, int refresh);
964 extern void perf_event_update_userpage(struct perf_event *event);
965 extern int perf_event_release_kernel(struct perf_event *event);
966 extern struct perf_event *
967 perf_event_create_kernel_counter(struct perf_event_attr *attr,
968 				int cpu,
969 				struct task_struct *task,
970 				perf_overflow_handler_t callback,
971 				void *context);
972 extern u64 perf_event_read_value(struct perf_event *event,
973 				 u64 *enabled, u64 *running);
974 
975 struct perf_sample_data {
976 	u64				type;
977 
978 	u64				ip;
979 	struct {
980 		u32	pid;
981 		u32	tid;
982 	}				tid_entry;
983 	u64				time;
984 	u64				addr;
985 	u64				id;
986 	u64				stream_id;
987 	struct {
988 		u32	cpu;
989 		u32	reserved;
990 	}				cpu_entry;
991 	u64				period;
992 	struct perf_callchain_entry	*callchain;
993 	struct perf_raw_record		*raw;
994 };
995 
996 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
997 {
998 	data->addr = addr;
999 	data->raw  = NULL;
1000 }
1001 
1002 extern void perf_output_sample(struct perf_output_handle *handle,
1003 			       struct perf_event_header *header,
1004 			       struct perf_sample_data *data,
1005 			       struct perf_event *event);
1006 extern void perf_prepare_sample(struct perf_event_header *header,
1007 				struct perf_sample_data *data,
1008 				struct perf_event *event,
1009 				struct pt_regs *regs);
1010 
1011 extern int perf_event_overflow(struct perf_event *event,
1012 				 struct perf_sample_data *data,
1013 				 struct pt_regs *regs);
1014 
1015 static inline bool is_sampling_event(struct perf_event *event)
1016 {
1017 	return event->attr.sample_period != 0;
1018 }
1019 
1020 /*
1021  * Return 1 for a software event, 0 for a hardware event
1022  */
1023 static inline int is_software_event(struct perf_event *event)
1024 {
1025 	return event->pmu->task_ctx_nr == perf_sw_context;
1026 }
1027 
1028 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1029 
1030 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1031 
1032 #ifndef perf_arch_fetch_caller_regs
1033 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1034 #endif
1035 
1036 /*
1037  * Take a snapshot of the regs. Skip ip and frame pointer to
1038  * the nth caller. We only need a few of the regs:
1039  * - ip for PERF_SAMPLE_IP
1040  * - cs for user_mode() tests
1041  * - bp for callchains
1042  * - eflags, for future purposes, just in case
1043  */
1044 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1045 {
1046 	memset(regs, 0, sizeof(*regs));
1047 
1048 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1049 }
1050 
1051 static __always_inline void
1052 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1053 {
1054 	struct pt_regs hot_regs;
1055 
1056 	if (static_branch(&perf_swevent_enabled[event_id])) {
1057 		if (!regs) {
1058 			perf_fetch_caller_regs(&hot_regs);
1059 			regs = &hot_regs;
1060 		}
1061 		__perf_sw_event(event_id, nr, regs, addr);
1062 	}
1063 }
1064 
1065 extern struct jump_label_key perf_sched_events;
1066 
1067 static inline void perf_event_task_sched_in(struct task_struct *prev,
1068 					    struct task_struct *task)
1069 {
1070 	if (static_branch(&perf_sched_events))
1071 		__perf_event_task_sched_in(prev, task);
1072 }
1073 
1074 static inline void perf_event_task_sched_out(struct task_struct *prev,
1075 					     struct task_struct *next)
1076 {
1077 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1078 
1079 	if (static_branch(&perf_sched_events))
1080 		__perf_event_task_sched_out(prev, next);
1081 }
1082 
1083 extern void perf_event_mmap(struct vm_area_struct *vma);
1084 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1085 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1086 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1087 
1088 extern void perf_event_comm(struct task_struct *tsk);
1089 extern void perf_event_fork(struct task_struct *tsk);
1090 
1091 /* Callchains */
1092 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1093 
1094 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1095 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1096 
1097 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1098 {
1099 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1100 		entry->ip[entry->nr++] = ip;
1101 }
1102 
1103 extern int sysctl_perf_event_paranoid;
1104 extern int sysctl_perf_event_mlock;
1105 extern int sysctl_perf_event_sample_rate;
1106 
1107 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1108 		void __user *buffer, size_t *lenp,
1109 		loff_t *ppos);
1110 
1111 static inline bool perf_paranoid_tracepoint_raw(void)
1112 {
1113 	return sysctl_perf_event_paranoid > -1;
1114 }
1115 
1116 static inline bool perf_paranoid_cpu(void)
1117 {
1118 	return sysctl_perf_event_paranoid > 0;
1119 }
1120 
1121 static inline bool perf_paranoid_kernel(void)
1122 {
1123 	return sysctl_perf_event_paranoid > 1;
1124 }
1125 
1126 extern void perf_event_init(void);
1127 extern void perf_tp_event(u64 addr, u64 count, void *record,
1128 			  int entry_size, struct pt_regs *regs,
1129 			  struct hlist_head *head, int rctx);
1130 extern void perf_bp_event(struct perf_event *event, void *data);
1131 
1132 #ifndef perf_misc_flags
1133 # define perf_misc_flags(regs) \
1134 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1135 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1136 #endif
1137 
1138 extern int perf_output_begin(struct perf_output_handle *handle,
1139 			     struct perf_event *event, unsigned int size);
1140 extern void perf_output_end(struct perf_output_handle *handle);
1141 extern void perf_output_copy(struct perf_output_handle *handle,
1142 			     const void *buf, unsigned int len);
1143 extern int perf_swevent_get_recursion_context(void);
1144 extern void perf_swevent_put_recursion_context(int rctx);
1145 extern void perf_event_enable(struct perf_event *event);
1146 extern void perf_event_disable(struct perf_event *event);
1147 extern void perf_event_task_tick(void);
1148 #else
1149 static inline void
1150 perf_event_task_sched_in(struct task_struct *prev,
1151 			 struct task_struct *task)			{ }
1152 static inline void
1153 perf_event_task_sched_out(struct task_struct *prev,
1154 			  struct task_struct *next)			{ }
1155 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1156 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1157 static inline void perf_event_free_task(struct task_struct *task)	{ }
1158 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1159 static inline void perf_event_print_debug(void)				{ }
1160 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1161 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1162 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1163 {
1164 	return -EINVAL;
1165 }
1166 
1167 static inline void
1168 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1169 static inline void
1170 perf_bp_event(struct perf_event *event, void *data)			{ }
1171 
1172 static inline int perf_register_guest_info_callbacks
1173 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1174 static inline int perf_unregister_guest_info_callbacks
1175 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1176 
1177 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1178 static inline void perf_event_comm(struct task_struct *tsk)		{ }
1179 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1180 static inline void perf_event_init(void)				{ }
1181 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1182 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1183 static inline void perf_event_enable(struct perf_event *event)		{ }
1184 static inline void perf_event_disable(struct perf_event *event)		{ }
1185 static inline void perf_event_task_tick(void)				{ }
1186 #endif
1187 
1188 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1189 
1190 /*
1191  * This has to have a higher priority than migration_notifier in sched.c.
1192  */
1193 #define perf_cpu_notifier(fn)						\
1194 do {									\
1195 	static struct notifier_block fn##_nb __cpuinitdata =		\
1196 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1197 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1198 		(void *)(unsigned long)smp_processor_id());		\
1199 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1200 		(void *)(unsigned long)smp_processor_id());		\
1201 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1202 		(void *)(unsigned long)smp_processor_id());		\
1203 	register_cpu_notifier(&fn##_nb);				\
1204 } while (0)
1205 
1206 #endif /* __KERNEL__ */
1207 #endif /* _LINUX_PERF_EVENT_H */
1208