xref: /linux-6.15/include/linux/perf_event.h (revision f08046cb)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/jump_label_ratelimit.h>
53 #include <linux/atomic.h>
54 #include <linux/sysfs.h>
55 #include <linux/perf_regs.h>
56 #include <linux/cgroup.h>
57 #include <linux/refcount.h>
58 #include <asm/local.h>
59 
60 struct perf_callchain_entry {
61 	__u64				nr;
62 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63 };
64 
65 struct perf_callchain_entry_ctx {
66 	struct perf_callchain_entry *entry;
67 	u32			    max_stack;
68 	u32			    nr;
69 	short			    contexts;
70 	bool			    contexts_maxed;
71 };
72 
73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 				     unsigned long off, unsigned long len);
75 
76 struct perf_raw_frag {
77 	union {
78 		struct perf_raw_frag	*next;
79 		unsigned long		pad;
80 	};
81 	perf_copy_f			copy;
82 	void				*data;
83 	u32				size;
84 } __packed;
85 
86 struct perf_raw_record {
87 	struct perf_raw_frag		frag;
88 	u32				size;
89 };
90 
91 /*
92  * branch stack layout:
93  *  nr: number of taken branches stored in entries[]
94  *
95  * Note that nr can vary from sample to sample
96  * branches (to, from) are stored from most recent
97  * to least recent, i.e., entries[0] contains the most
98  * recent branch.
99  */
100 struct perf_branch_stack {
101 	__u64				nr;
102 	struct perf_branch_entry	entries[0];
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 			int		flags;
132 
133 			struct hw_perf_event_extra extra_reg;
134 			struct hw_perf_event_extra branch_reg;
135 		};
136 		struct { /* software */
137 			struct hrtimer	hrtimer;
138 		};
139 		struct { /* tracepoint */
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 		struct { /* amd_power */
144 			u64	pwr_acc;
145 			u64	ptsc;
146 		};
147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
148 		struct { /* breakpoint */
149 			/*
150 			 * Crufty hack to avoid the chicken and egg
151 			 * problem hw_breakpoint has with context
152 			 * creation and event initalization.
153 			 */
154 			struct arch_hw_breakpoint	info;
155 			struct list_head		bp_list;
156 		};
157 #endif
158 		struct { /* amd_iommu */
159 			u8	iommu_bank;
160 			u8	iommu_cntr;
161 			u16	padding;
162 			u64	conf;
163 			u64	conf1;
164 		};
165 	};
166 	/*
167 	 * If the event is a per task event, this will point to the task in
168 	 * question. See the comment in perf_event_alloc().
169 	 */
170 	struct task_struct		*target;
171 
172 	/*
173 	 * PMU would store hardware filter configuration
174 	 * here.
175 	 */
176 	void				*addr_filters;
177 
178 	/* Last sync'ed generation of filters */
179 	unsigned long			addr_filters_gen;
180 
181 /*
182  * hw_perf_event::state flags; used to track the PERF_EF_* state.
183  */
184 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
185 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
186 #define PERF_HES_ARCH		0x04
187 
188 	int				state;
189 
190 	/*
191 	 * The last observed hardware counter value, updated with a
192 	 * local64_cmpxchg() such that pmu::read() can be called nested.
193 	 */
194 	local64_t			prev_count;
195 
196 	/*
197 	 * The period to start the next sample with.
198 	 */
199 	u64				sample_period;
200 
201 	/*
202 	 * The period we started this sample with.
203 	 */
204 	u64				last_period;
205 
206 	/*
207 	 * However much is left of the current period; note that this is
208 	 * a full 64bit value and allows for generation of periods longer
209 	 * than hardware might allow.
210 	 */
211 	local64_t			period_left;
212 
213 	/*
214 	 * State for throttling the event, see __perf_event_overflow() and
215 	 * perf_adjust_freq_unthr_context().
216 	 */
217 	u64                             interrupts_seq;
218 	u64				interrupts;
219 
220 	/*
221 	 * State for freq target events, see __perf_event_overflow() and
222 	 * perf_adjust_freq_unthr_context().
223 	 */
224 	u64				freq_time_stamp;
225 	u64				freq_count_stamp;
226 #endif
227 };
228 
229 struct perf_event;
230 
231 /*
232  * Common implementation detail of pmu::{start,commit,cancel}_txn
233  */
234 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
235 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
236 
237 /**
238  * pmu::capabilities flags
239  */
240 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
241 #define PERF_PMU_CAP_NO_NMI			0x02
242 #define PERF_PMU_CAP_AUX_NO_SG			0x04
243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
244 #define PERF_PMU_CAP_EXCLUSIVE			0x10
245 #define PERF_PMU_CAP_ITRACE			0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
247 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
248 
249 /**
250  * struct pmu - generic performance monitoring unit
251  */
252 struct pmu {
253 	struct list_head		entry;
254 
255 	struct module			*module;
256 	struct device			*dev;
257 	const struct attribute_group	**attr_groups;
258 	const char			*name;
259 	int				type;
260 
261 	/*
262 	 * various common per-pmu feature flags
263 	 */
264 	int				capabilities;
265 
266 	int __percpu			*pmu_disable_count;
267 	struct perf_cpu_context __percpu *pmu_cpu_context;
268 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
269 	int				task_ctx_nr;
270 	int				hrtimer_interval_ms;
271 
272 	/* number of address filters this PMU can do */
273 	unsigned int			nr_addr_filters;
274 
275 	/*
276 	 * Fully disable/enable this PMU, can be used to protect from the PMI
277 	 * as well as for lazy/batch writing of the MSRs.
278 	 */
279 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
280 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
281 
282 	/*
283 	 * Try and initialize the event for this PMU.
284 	 *
285 	 * Returns:
286 	 *  -ENOENT	-- @event is not for this PMU
287 	 *
288 	 *  -ENODEV	-- @event is for this PMU but PMU not present
289 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
290 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
291 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
292 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
293 	 *
294 	 *  0		-- @event is for this PMU and valid
295 	 *
296 	 * Other error return values are allowed.
297 	 */
298 	int (*event_init)		(struct perf_event *event);
299 
300 	/*
301 	 * Notification that the event was mapped or unmapped.  Called
302 	 * in the context of the mapping task.
303 	 */
304 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
305 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
306 
307 	/*
308 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
309 	 * matching hw_perf_event::state flags.
310 	 */
311 #define PERF_EF_START	0x01		/* start the counter when adding    */
312 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
313 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
314 
315 	/*
316 	 * Adds/Removes a counter to/from the PMU, can be done inside a
317 	 * transaction, see the ->*_txn() methods.
318 	 *
319 	 * The add/del callbacks will reserve all hardware resources required
320 	 * to service the event, this includes any counter constraint
321 	 * scheduling etc.
322 	 *
323 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
324 	 * is on.
325 	 *
326 	 * ->add() called without PERF_EF_START should result in the same state
327 	 *  as ->add() followed by ->stop().
328 	 *
329 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
330 	 *  ->stop() that must deal with already being stopped without
331 	 *  PERF_EF_UPDATE.
332 	 */
333 	int  (*add)			(struct perf_event *event, int flags);
334 	void (*del)			(struct perf_event *event, int flags);
335 
336 	/*
337 	 * Starts/Stops a counter present on the PMU.
338 	 *
339 	 * The PMI handler should stop the counter when perf_event_overflow()
340 	 * returns !0. ->start() will be used to continue.
341 	 *
342 	 * Also used to change the sample period.
343 	 *
344 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
345 	 * is on -- will be called from NMI context with the PMU generates
346 	 * NMIs.
347 	 *
348 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
349 	 *  period/count values like ->read() would.
350 	 *
351 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
352 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
353 	 */
354 	void (*start)			(struct perf_event *event, int flags);
355 	void (*stop)			(struct perf_event *event, int flags);
356 
357 	/*
358 	 * Updates the counter value of the event.
359 	 *
360 	 * For sampling capable PMUs this will also update the software period
361 	 * hw_perf_event::period_left field.
362 	 */
363 	void (*read)			(struct perf_event *event);
364 
365 	/*
366 	 * Group events scheduling is treated as a transaction, add
367 	 * group events as a whole and perform one schedulability test.
368 	 * If the test fails, roll back the whole group
369 	 *
370 	 * Start the transaction, after this ->add() doesn't need to
371 	 * do schedulability tests.
372 	 *
373 	 * Optional.
374 	 */
375 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
376 	/*
377 	 * If ->start_txn() disabled the ->add() schedulability test
378 	 * then ->commit_txn() is required to perform one. On success
379 	 * the transaction is closed. On error the transaction is kept
380 	 * open until ->cancel_txn() is called.
381 	 *
382 	 * Optional.
383 	 */
384 	int  (*commit_txn)		(struct pmu *pmu);
385 	/*
386 	 * Will cancel the transaction, assumes ->del() is called
387 	 * for each successful ->add() during the transaction.
388 	 *
389 	 * Optional.
390 	 */
391 	void (*cancel_txn)		(struct pmu *pmu);
392 
393 	/*
394 	 * Will return the value for perf_event_mmap_page::index for this event,
395 	 * if no implementation is provided it will default to: event->hw.idx + 1.
396 	 */
397 	int (*event_idx)		(struct perf_event *event); /*optional */
398 
399 	/*
400 	 * context-switches callback
401 	 */
402 	void (*sched_task)		(struct perf_event_context *ctx,
403 					bool sched_in);
404 	/*
405 	 * PMU specific data size
406 	 */
407 	size_t				task_ctx_size;
408 
409 
410 	/*
411 	 * Set up pmu-private data structures for an AUX area
412 	 */
413 	void *(*setup_aux)		(struct perf_event *event, void **pages,
414 					 int nr_pages, bool overwrite);
415 					/* optional */
416 
417 	/*
418 	 * Free pmu-private AUX data structures
419 	 */
420 	void (*free_aux)		(void *aux); /* optional */
421 
422 	/*
423 	 * Validate address range filters: make sure the HW supports the
424 	 * requested configuration and number of filters; return 0 if the
425 	 * supplied filters are valid, -errno otherwise.
426 	 *
427 	 * Runs in the context of the ioctl()ing process and is not serialized
428 	 * with the rest of the PMU callbacks.
429 	 */
430 	int (*addr_filters_validate)	(struct list_head *filters);
431 					/* optional */
432 
433 	/*
434 	 * Synchronize address range filter configuration:
435 	 * translate hw-agnostic filters into hardware configuration in
436 	 * event::hw::addr_filters.
437 	 *
438 	 * Runs as a part of filter sync sequence that is done in ->start()
439 	 * callback by calling perf_event_addr_filters_sync().
440 	 *
441 	 * May (and should) traverse event::addr_filters::list, for which its
442 	 * caller provides necessary serialization.
443 	 */
444 	void (*addr_filters_sync)	(struct perf_event *event);
445 					/* optional */
446 
447 	/*
448 	 * Filter events for PMU-specific reasons.
449 	 */
450 	int (*filter_match)		(struct perf_event *event); /* optional */
451 };
452 
453 enum perf_addr_filter_action_t {
454 	PERF_ADDR_FILTER_ACTION_STOP = 0,
455 	PERF_ADDR_FILTER_ACTION_START,
456 	PERF_ADDR_FILTER_ACTION_FILTER,
457 };
458 
459 /**
460  * struct perf_addr_filter - address range filter definition
461  * @entry:	event's filter list linkage
462  * @inode:	object file's inode for file-based filters
463  * @offset:	filter range offset
464  * @size:	filter range size (size==0 means single address trigger)
465  * @action:	filter/start/stop
466  *
467  * This is a hardware-agnostic filter configuration as specified by the user.
468  */
469 struct perf_addr_filter {
470 	struct list_head	entry;
471 	struct path		path;
472 	unsigned long		offset;
473 	unsigned long		size;
474 	enum perf_addr_filter_action_t	action;
475 };
476 
477 /**
478  * struct perf_addr_filters_head - container for address range filters
479  * @list:	list of filters for this event
480  * @lock:	spinlock that serializes accesses to the @list and event's
481  *		(and its children's) filter generations.
482  * @nr_file_filters:	number of file-based filters
483  *
484  * A child event will use parent's @list (and therefore @lock), so they are
485  * bundled together; see perf_event_addr_filters().
486  */
487 struct perf_addr_filters_head {
488 	struct list_head	list;
489 	raw_spinlock_t		lock;
490 	unsigned int		nr_file_filters;
491 };
492 
493 /**
494  * enum perf_event_state - the states of an event:
495  */
496 enum perf_event_state {
497 	PERF_EVENT_STATE_DEAD		= -4,
498 	PERF_EVENT_STATE_EXIT		= -3,
499 	PERF_EVENT_STATE_ERROR		= -2,
500 	PERF_EVENT_STATE_OFF		= -1,
501 	PERF_EVENT_STATE_INACTIVE	=  0,
502 	PERF_EVENT_STATE_ACTIVE		=  1,
503 };
504 
505 struct file;
506 struct perf_sample_data;
507 
508 typedef void (*perf_overflow_handler_t)(struct perf_event *,
509 					struct perf_sample_data *,
510 					struct pt_regs *regs);
511 
512 /*
513  * Event capabilities. For event_caps and groups caps.
514  *
515  * PERF_EV_CAP_SOFTWARE: Is a software event.
516  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
517  * from any CPU in the package where it is active.
518  */
519 #define PERF_EV_CAP_SOFTWARE		BIT(0)
520 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
521 
522 #define SWEVENT_HLIST_BITS		8
523 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
524 
525 struct swevent_hlist {
526 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
527 	struct rcu_head			rcu_head;
528 };
529 
530 #define PERF_ATTACH_CONTEXT	0x01
531 #define PERF_ATTACH_GROUP	0x02
532 #define PERF_ATTACH_TASK	0x04
533 #define PERF_ATTACH_TASK_DATA	0x08
534 #define PERF_ATTACH_ITRACE	0x10
535 
536 struct perf_cgroup;
537 struct ring_buffer;
538 
539 struct pmu_event_list {
540 	raw_spinlock_t		lock;
541 	struct list_head	list;
542 };
543 
544 #define for_each_sibling_event(sibling, event)			\
545 	if ((event)->group_leader == (event))			\
546 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
547 
548 /**
549  * struct perf_event - performance event kernel representation:
550  */
551 struct perf_event {
552 #ifdef CONFIG_PERF_EVENTS
553 	/*
554 	 * entry onto perf_event_context::event_list;
555 	 *   modifications require ctx->lock
556 	 *   RCU safe iterations.
557 	 */
558 	struct list_head		event_entry;
559 
560 	/*
561 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
562 	 * either sufficies for read.
563 	 */
564 	struct list_head		sibling_list;
565 	struct list_head		active_list;
566 	/*
567 	 * Node on the pinned or flexible tree located at the event context;
568 	 */
569 	struct rb_node			group_node;
570 	u64				group_index;
571 	/*
572 	 * We need storage to track the entries in perf_pmu_migrate_context; we
573 	 * cannot use the event_entry because of RCU and we want to keep the
574 	 * group in tact which avoids us using the other two entries.
575 	 */
576 	struct list_head		migrate_entry;
577 
578 	struct hlist_node		hlist_entry;
579 	struct list_head		active_entry;
580 	int				nr_siblings;
581 
582 	/* Not serialized. Only written during event initialization. */
583 	int				event_caps;
584 	/* The cumulative AND of all event_caps for events in this group. */
585 	int				group_caps;
586 
587 	struct perf_event		*group_leader;
588 	struct pmu			*pmu;
589 	void				*pmu_private;
590 
591 	enum perf_event_state		state;
592 	unsigned int			attach_state;
593 	local64_t			count;
594 	atomic64_t			child_count;
595 
596 	/*
597 	 * These are the total time in nanoseconds that the event
598 	 * has been enabled (i.e. eligible to run, and the task has
599 	 * been scheduled in, if this is a per-task event)
600 	 * and running (scheduled onto the CPU), respectively.
601 	 */
602 	u64				total_time_enabled;
603 	u64				total_time_running;
604 	u64				tstamp;
605 
606 	/*
607 	 * timestamp shadows the actual context timing but it can
608 	 * be safely used in NMI interrupt context. It reflects the
609 	 * context time as it was when the event was last scheduled in.
610 	 *
611 	 * ctx_time already accounts for ctx->timestamp. Therefore to
612 	 * compute ctx_time for a sample, simply add perf_clock().
613 	 */
614 	u64				shadow_ctx_time;
615 
616 	struct perf_event_attr		attr;
617 	u16				header_size;
618 	u16				id_header_size;
619 	u16				read_size;
620 	struct hw_perf_event		hw;
621 
622 	struct perf_event_context	*ctx;
623 	atomic_long_t			refcount;
624 
625 	/*
626 	 * These accumulate total time (in nanoseconds) that children
627 	 * events have been enabled and running, respectively.
628 	 */
629 	atomic64_t			child_total_time_enabled;
630 	atomic64_t			child_total_time_running;
631 
632 	/*
633 	 * Protect attach/detach and child_list:
634 	 */
635 	struct mutex			child_mutex;
636 	struct list_head		child_list;
637 	struct perf_event		*parent;
638 
639 	int				oncpu;
640 	int				cpu;
641 
642 	struct list_head		owner_entry;
643 	struct task_struct		*owner;
644 
645 	/* mmap bits */
646 	struct mutex			mmap_mutex;
647 	atomic_t			mmap_count;
648 
649 	struct ring_buffer		*rb;
650 	struct list_head		rb_entry;
651 	unsigned long			rcu_batches;
652 	int				rcu_pending;
653 
654 	/* poll related */
655 	wait_queue_head_t		waitq;
656 	struct fasync_struct		*fasync;
657 
658 	/* delayed work for NMIs and such */
659 	int				pending_wakeup;
660 	int				pending_kill;
661 	int				pending_disable;
662 	struct irq_work			pending;
663 
664 	atomic_t			event_limit;
665 
666 	/* address range filters */
667 	struct perf_addr_filters_head	addr_filters;
668 	/* vma address array for file-based filders */
669 	unsigned long			*addr_filters_offs;
670 	unsigned long			addr_filters_gen;
671 
672 	void (*destroy)(struct perf_event *);
673 	struct rcu_head			rcu_head;
674 
675 	struct pid_namespace		*ns;
676 	u64				id;
677 
678 	u64				(*clock)(void);
679 	perf_overflow_handler_t		overflow_handler;
680 	void				*overflow_handler_context;
681 #ifdef CONFIG_BPF_SYSCALL
682 	perf_overflow_handler_t		orig_overflow_handler;
683 	struct bpf_prog			*prog;
684 #endif
685 
686 #ifdef CONFIG_EVENT_TRACING
687 	struct trace_event_call		*tp_event;
688 	struct event_filter		*filter;
689 #ifdef CONFIG_FUNCTION_TRACER
690 	struct ftrace_ops               ftrace_ops;
691 #endif
692 #endif
693 
694 #ifdef CONFIG_CGROUP_PERF
695 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
696 #endif
697 
698 	struct list_head		sb_list;
699 #endif /* CONFIG_PERF_EVENTS */
700 };
701 
702 
703 struct perf_event_groups {
704 	struct rb_root	tree;
705 	u64		index;
706 };
707 
708 /**
709  * struct perf_event_context - event context structure
710  *
711  * Used as a container for task events and CPU events as well:
712  */
713 struct perf_event_context {
714 	struct pmu			*pmu;
715 	/*
716 	 * Protect the states of the events in the list,
717 	 * nr_active, and the list:
718 	 */
719 	raw_spinlock_t			lock;
720 	/*
721 	 * Protect the list of events.  Locking either mutex or lock
722 	 * is sufficient to ensure the list doesn't change; to change
723 	 * the list you need to lock both the mutex and the spinlock.
724 	 */
725 	struct mutex			mutex;
726 
727 	struct list_head		active_ctx_list;
728 	struct perf_event_groups	pinned_groups;
729 	struct perf_event_groups	flexible_groups;
730 	struct list_head		event_list;
731 
732 	struct list_head		pinned_active;
733 	struct list_head		flexible_active;
734 
735 	int				nr_events;
736 	int				nr_active;
737 	int				is_active;
738 	int				nr_stat;
739 	int				nr_freq;
740 	int				rotate_disable;
741 	refcount_t			refcount;
742 	struct task_struct		*task;
743 
744 	/*
745 	 * Context clock, runs when context enabled.
746 	 */
747 	u64				time;
748 	u64				timestamp;
749 
750 	/*
751 	 * These fields let us detect when two contexts have both
752 	 * been cloned (inherited) from a common ancestor.
753 	 */
754 	struct perf_event_context	*parent_ctx;
755 	u64				parent_gen;
756 	u64				generation;
757 	int				pin_count;
758 #ifdef CONFIG_CGROUP_PERF
759 	int				nr_cgroups;	 /* cgroup evts */
760 #endif
761 	void				*task_ctx_data; /* pmu specific data */
762 	struct rcu_head			rcu_head;
763 };
764 
765 /*
766  * Number of contexts where an event can trigger:
767  *	task, softirq, hardirq, nmi.
768  */
769 #define PERF_NR_CONTEXTS	4
770 
771 /**
772  * struct perf_event_cpu_context - per cpu event context structure
773  */
774 struct perf_cpu_context {
775 	struct perf_event_context	ctx;
776 	struct perf_event_context	*task_ctx;
777 	int				active_oncpu;
778 	int				exclusive;
779 
780 	raw_spinlock_t			hrtimer_lock;
781 	struct hrtimer			hrtimer;
782 	ktime_t				hrtimer_interval;
783 	unsigned int			hrtimer_active;
784 
785 #ifdef CONFIG_CGROUP_PERF
786 	struct perf_cgroup		*cgrp;
787 	struct list_head		cgrp_cpuctx_entry;
788 #endif
789 
790 	struct list_head		sched_cb_entry;
791 	int				sched_cb_usage;
792 
793 	int				online;
794 };
795 
796 struct perf_output_handle {
797 	struct perf_event		*event;
798 	struct ring_buffer		*rb;
799 	unsigned long			wakeup;
800 	unsigned long			size;
801 	u64				aux_flags;
802 	union {
803 		void			*addr;
804 		unsigned long		head;
805 	};
806 	int				page;
807 };
808 
809 struct bpf_perf_event_data_kern {
810 	bpf_user_pt_regs_t *regs;
811 	struct perf_sample_data *data;
812 	struct perf_event *event;
813 };
814 
815 #ifdef CONFIG_CGROUP_PERF
816 
817 /*
818  * perf_cgroup_info keeps track of time_enabled for a cgroup.
819  * This is a per-cpu dynamically allocated data structure.
820  */
821 struct perf_cgroup_info {
822 	u64				time;
823 	u64				timestamp;
824 };
825 
826 struct perf_cgroup {
827 	struct cgroup_subsys_state	css;
828 	struct perf_cgroup_info	__percpu *info;
829 };
830 
831 /*
832  * Must ensure cgroup is pinned (css_get) before calling
833  * this function. In other words, we cannot call this function
834  * if there is no cgroup event for the current CPU context.
835  */
836 static inline struct perf_cgroup *
837 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
838 {
839 	return container_of(task_css_check(task, perf_event_cgrp_id,
840 					   ctx ? lockdep_is_held(&ctx->lock)
841 					       : true),
842 			    struct perf_cgroup, css);
843 }
844 #endif /* CONFIG_CGROUP_PERF */
845 
846 #ifdef CONFIG_PERF_EVENTS
847 
848 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
849 				   struct perf_event *event);
850 extern void perf_aux_output_end(struct perf_output_handle *handle,
851 				unsigned long size);
852 extern int perf_aux_output_skip(struct perf_output_handle *handle,
853 				unsigned long size);
854 extern void *perf_get_aux(struct perf_output_handle *handle);
855 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
856 extern void perf_event_itrace_started(struct perf_event *event);
857 
858 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
859 extern void perf_pmu_unregister(struct pmu *pmu);
860 
861 extern int perf_num_counters(void);
862 extern const char *perf_pmu_name(void);
863 extern void __perf_event_task_sched_in(struct task_struct *prev,
864 				       struct task_struct *task);
865 extern void __perf_event_task_sched_out(struct task_struct *prev,
866 					struct task_struct *next);
867 extern int perf_event_init_task(struct task_struct *child);
868 extern void perf_event_exit_task(struct task_struct *child);
869 extern void perf_event_free_task(struct task_struct *task);
870 extern void perf_event_delayed_put(struct task_struct *task);
871 extern struct file *perf_event_get(unsigned int fd);
872 extern const struct perf_event *perf_get_event(struct file *file);
873 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
874 extern void perf_event_print_debug(void);
875 extern void perf_pmu_disable(struct pmu *pmu);
876 extern void perf_pmu_enable(struct pmu *pmu);
877 extern void perf_sched_cb_dec(struct pmu *pmu);
878 extern void perf_sched_cb_inc(struct pmu *pmu);
879 extern int perf_event_task_disable(void);
880 extern int perf_event_task_enable(void);
881 extern int perf_event_refresh(struct perf_event *event, int refresh);
882 extern void perf_event_update_userpage(struct perf_event *event);
883 extern int perf_event_release_kernel(struct perf_event *event);
884 extern struct perf_event *
885 perf_event_create_kernel_counter(struct perf_event_attr *attr,
886 				int cpu,
887 				struct task_struct *task,
888 				perf_overflow_handler_t callback,
889 				void *context);
890 extern void perf_pmu_migrate_context(struct pmu *pmu,
891 				int src_cpu, int dst_cpu);
892 int perf_event_read_local(struct perf_event *event, u64 *value,
893 			  u64 *enabled, u64 *running);
894 extern u64 perf_event_read_value(struct perf_event *event,
895 				 u64 *enabled, u64 *running);
896 
897 
898 struct perf_sample_data {
899 	/*
900 	 * Fields set by perf_sample_data_init(), group so as to
901 	 * minimize the cachelines touched.
902 	 */
903 	u64				addr;
904 	struct perf_raw_record		*raw;
905 	struct perf_branch_stack	*br_stack;
906 	u64				period;
907 	u64				weight;
908 	u64				txn;
909 	union  perf_mem_data_src	data_src;
910 
911 	/*
912 	 * The other fields, optionally {set,used} by
913 	 * perf_{prepare,output}_sample().
914 	 */
915 	u64				type;
916 	u64				ip;
917 	struct {
918 		u32	pid;
919 		u32	tid;
920 	}				tid_entry;
921 	u64				time;
922 	u64				id;
923 	u64				stream_id;
924 	struct {
925 		u32	cpu;
926 		u32	reserved;
927 	}				cpu_entry;
928 	struct perf_callchain_entry	*callchain;
929 
930 	/*
931 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
932 	 * on arch details.
933 	 */
934 	struct perf_regs		regs_user;
935 	struct pt_regs			regs_user_copy;
936 
937 	struct perf_regs		regs_intr;
938 	u64				stack_user_size;
939 
940 	u64				phys_addr;
941 } ____cacheline_aligned;
942 
943 /* default value for data source */
944 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
945 		    PERF_MEM_S(LVL, NA)   |\
946 		    PERF_MEM_S(SNOOP, NA) |\
947 		    PERF_MEM_S(LOCK, NA)  |\
948 		    PERF_MEM_S(TLB, NA))
949 
950 static inline void perf_sample_data_init(struct perf_sample_data *data,
951 					 u64 addr, u64 period)
952 {
953 	/* remaining struct members initialized in perf_prepare_sample() */
954 	data->addr = addr;
955 	data->raw  = NULL;
956 	data->br_stack = NULL;
957 	data->period = period;
958 	data->weight = 0;
959 	data->data_src.val = PERF_MEM_NA;
960 	data->txn = 0;
961 }
962 
963 extern void perf_output_sample(struct perf_output_handle *handle,
964 			       struct perf_event_header *header,
965 			       struct perf_sample_data *data,
966 			       struct perf_event *event);
967 extern void perf_prepare_sample(struct perf_event_header *header,
968 				struct perf_sample_data *data,
969 				struct perf_event *event,
970 				struct pt_regs *regs);
971 
972 extern int perf_event_overflow(struct perf_event *event,
973 				 struct perf_sample_data *data,
974 				 struct pt_regs *regs);
975 
976 extern void perf_event_output_forward(struct perf_event *event,
977 				     struct perf_sample_data *data,
978 				     struct pt_regs *regs);
979 extern void perf_event_output_backward(struct perf_event *event,
980 				       struct perf_sample_data *data,
981 				       struct pt_regs *regs);
982 extern int perf_event_output(struct perf_event *event,
983 			     struct perf_sample_data *data,
984 			     struct pt_regs *regs);
985 
986 static inline bool
987 is_default_overflow_handler(struct perf_event *event)
988 {
989 	if (likely(event->overflow_handler == perf_event_output_forward))
990 		return true;
991 	if (unlikely(event->overflow_handler == perf_event_output_backward))
992 		return true;
993 	return false;
994 }
995 
996 extern void
997 perf_event_header__init_id(struct perf_event_header *header,
998 			   struct perf_sample_data *data,
999 			   struct perf_event *event);
1000 extern void
1001 perf_event__output_id_sample(struct perf_event *event,
1002 			     struct perf_output_handle *handle,
1003 			     struct perf_sample_data *sample);
1004 
1005 extern void
1006 perf_log_lost_samples(struct perf_event *event, u64 lost);
1007 
1008 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1009 {
1010 	struct perf_event_attr *attr = &event->attr;
1011 
1012 	return attr->exclude_idle || attr->exclude_user ||
1013 	       attr->exclude_kernel || attr->exclude_hv ||
1014 	       attr->exclude_guest || attr->exclude_host;
1015 }
1016 
1017 static inline bool is_sampling_event(struct perf_event *event)
1018 {
1019 	return event->attr.sample_period != 0;
1020 }
1021 
1022 /*
1023  * Return 1 for a software event, 0 for a hardware event
1024  */
1025 static inline int is_software_event(struct perf_event *event)
1026 {
1027 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1028 }
1029 
1030 /*
1031  * Return 1 for event in sw context, 0 for event in hw context
1032  */
1033 static inline int in_software_context(struct perf_event *event)
1034 {
1035 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1036 }
1037 
1038 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1039 
1040 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1041 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1042 
1043 #ifndef perf_arch_fetch_caller_regs
1044 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1045 #endif
1046 
1047 /*
1048  * Take a snapshot of the regs. Skip ip and frame pointer to
1049  * the nth caller. We only need a few of the regs:
1050  * - ip for PERF_SAMPLE_IP
1051  * - cs for user_mode() tests
1052  * - bp for callchains
1053  * - eflags, for future purposes, just in case
1054  */
1055 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1056 {
1057 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1058 }
1059 
1060 static __always_inline void
1061 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1062 {
1063 	if (static_key_false(&perf_swevent_enabled[event_id]))
1064 		__perf_sw_event(event_id, nr, regs, addr);
1065 }
1066 
1067 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1068 
1069 /*
1070  * 'Special' version for the scheduler, it hard assumes no recursion,
1071  * which is guaranteed by us not actually scheduling inside other swevents
1072  * because those disable preemption.
1073  */
1074 static __always_inline void
1075 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1076 {
1077 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1078 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1079 
1080 		perf_fetch_caller_regs(regs);
1081 		___perf_sw_event(event_id, nr, regs, addr);
1082 	}
1083 }
1084 
1085 extern struct static_key_false perf_sched_events;
1086 
1087 static __always_inline bool
1088 perf_sw_migrate_enabled(void)
1089 {
1090 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1091 		return true;
1092 	return false;
1093 }
1094 
1095 static inline void perf_event_task_migrate(struct task_struct *task)
1096 {
1097 	if (perf_sw_migrate_enabled())
1098 		task->sched_migrated = 1;
1099 }
1100 
1101 static inline void perf_event_task_sched_in(struct task_struct *prev,
1102 					    struct task_struct *task)
1103 {
1104 	if (static_branch_unlikely(&perf_sched_events))
1105 		__perf_event_task_sched_in(prev, task);
1106 
1107 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1108 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1109 
1110 		perf_fetch_caller_regs(regs);
1111 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1112 		task->sched_migrated = 0;
1113 	}
1114 }
1115 
1116 static inline void perf_event_task_sched_out(struct task_struct *prev,
1117 					     struct task_struct *next)
1118 {
1119 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1120 
1121 	if (static_branch_unlikely(&perf_sched_events))
1122 		__perf_event_task_sched_out(prev, next);
1123 }
1124 
1125 extern void perf_event_mmap(struct vm_area_struct *vma);
1126 
1127 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1128 			       bool unregister, const char *sym);
1129 extern void perf_event_bpf_event(struct bpf_prog *prog,
1130 				 enum perf_bpf_event_type type,
1131 				 u16 flags);
1132 
1133 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1134 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1135 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1136 
1137 extern void perf_event_exec(void);
1138 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1139 extern void perf_event_namespaces(struct task_struct *tsk);
1140 extern void perf_event_fork(struct task_struct *tsk);
1141 
1142 /* Callchains */
1143 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1144 
1145 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1146 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1147 extern struct perf_callchain_entry *
1148 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1149 		   u32 max_stack, bool crosstask, bool add_mark);
1150 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1151 extern int get_callchain_buffers(int max_stack);
1152 extern void put_callchain_buffers(void);
1153 
1154 extern int sysctl_perf_event_max_stack;
1155 extern int sysctl_perf_event_max_contexts_per_stack;
1156 
1157 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1158 {
1159 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1160 		struct perf_callchain_entry *entry = ctx->entry;
1161 		entry->ip[entry->nr++] = ip;
1162 		++ctx->contexts;
1163 		return 0;
1164 	} else {
1165 		ctx->contexts_maxed = true;
1166 		return -1; /* no more room, stop walking the stack */
1167 	}
1168 }
1169 
1170 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1171 {
1172 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1173 		struct perf_callchain_entry *entry = ctx->entry;
1174 		entry->ip[entry->nr++] = ip;
1175 		++ctx->nr;
1176 		return 0;
1177 	} else {
1178 		return -1; /* no more room, stop walking the stack */
1179 	}
1180 }
1181 
1182 extern int sysctl_perf_event_paranoid;
1183 extern int sysctl_perf_event_mlock;
1184 extern int sysctl_perf_event_sample_rate;
1185 extern int sysctl_perf_cpu_time_max_percent;
1186 
1187 extern void perf_sample_event_took(u64 sample_len_ns);
1188 
1189 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1190 		void __user *buffer, size_t *lenp,
1191 		loff_t *ppos);
1192 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1193 		void __user *buffer, size_t *lenp,
1194 		loff_t *ppos);
1195 
1196 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1197 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1198 
1199 static inline bool perf_paranoid_tracepoint_raw(void)
1200 {
1201 	return sysctl_perf_event_paranoid > -1;
1202 }
1203 
1204 static inline bool perf_paranoid_cpu(void)
1205 {
1206 	return sysctl_perf_event_paranoid > 0;
1207 }
1208 
1209 static inline bool perf_paranoid_kernel(void)
1210 {
1211 	return sysctl_perf_event_paranoid > 1;
1212 }
1213 
1214 extern void perf_event_init(void);
1215 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1216 			  int entry_size, struct pt_regs *regs,
1217 			  struct hlist_head *head, int rctx,
1218 			  struct task_struct *task);
1219 extern void perf_bp_event(struct perf_event *event, void *data);
1220 
1221 #ifndef perf_misc_flags
1222 # define perf_misc_flags(regs) \
1223 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1224 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1225 #endif
1226 #ifndef perf_arch_bpf_user_pt_regs
1227 # define perf_arch_bpf_user_pt_regs(regs) regs
1228 #endif
1229 
1230 static inline bool has_branch_stack(struct perf_event *event)
1231 {
1232 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1233 }
1234 
1235 static inline bool needs_branch_stack(struct perf_event *event)
1236 {
1237 	return event->attr.branch_sample_type != 0;
1238 }
1239 
1240 static inline bool has_aux(struct perf_event *event)
1241 {
1242 	return event->pmu->setup_aux;
1243 }
1244 
1245 static inline bool is_write_backward(struct perf_event *event)
1246 {
1247 	return !!event->attr.write_backward;
1248 }
1249 
1250 static inline bool has_addr_filter(struct perf_event *event)
1251 {
1252 	return event->pmu->nr_addr_filters;
1253 }
1254 
1255 /*
1256  * An inherited event uses parent's filters
1257  */
1258 static inline struct perf_addr_filters_head *
1259 perf_event_addr_filters(struct perf_event *event)
1260 {
1261 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1262 
1263 	if (event->parent)
1264 		ifh = &event->parent->addr_filters;
1265 
1266 	return ifh;
1267 }
1268 
1269 extern void perf_event_addr_filters_sync(struct perf_event *event);
1270 
1271 extern int perf_output_begin(struct perf_output_handle *handle,
1272 			     struct perf_event *event, unsigned int size);
1273 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1274 				    struct perf_event *event,
1275 				    unsigned int size);
1276 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1277 				      struct perf_event *event,
1278 				      unsigned int size);
1279 
1280 extern void perf_output_end(struct perf_output_handle *handle);
1281 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1282 			     const void *buf, unsigned int len);
1283 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1284 				     unsigned int len);
1285 extern int perf_swevent_get_recursion_context(void);
1286 extern void perf_swevent_put_recursion_context(int rctx);
1287 extern u64 perf_swevent_set_period(struct perf_event *event);
1288 extern void perf_event_enable(struct perf_event *event);
1289 extern void perf_event_disable(struct perf_event *event);
1290 extern void perf_event_disable_local(struct perf_event *event);
1291 extern void perf_event_disable_inatomic(struct perf_event *event);
1292 extern void perf_event_task_tick(void);
1293 extern int perf_event_account_interrupt(struct perf_event *event);
1294 #else /* !CONFIG_PERF_EVENTS: */
1295 static inline void *
1296 perf_aux_output_begin(struct perf_output_handle *handle,
1297 		      struct perf_event *event)				{ return NULL; }
1298 static inline void
1299 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1300 									{ }
1301 static inline int
1302 perf_aux_output_skip(struct perf_output_handle *handle,
1303 		     unsigned long size)				{ return -EINVAL; }
1304 static inline void *
1305 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1306 static inline void
1307 perf_event_task_migrate(struct task_struct *task)			{ }
1308 static inline void
1309 perf_event_task_sched_in(struct task_struct *prev,
1310 			 struct task_struct *task)			{ }
1311 static inline void
1312 perf_event_task_sched_out(struct task_struct *prev,
1313 			  struct task_struct *next)			{ }
1314 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1315 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1316 static inline void perf_event_free_task(struct task_struct *task)	{ }
1317 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1318 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1319 static inline const struct perf_event *perf_get_event(struct file *file)
1320 {
1321 	return ERR_PTR(-EINVAL);
1322 }
1323 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1324 {
1325 	return ERR_PTR(-EINVAL);
1326 }
1327 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1328 					u64 *enabled, u64 *running)
1329 {
1330 	return -EINVAL;
1331 }
1332 static inline void perf_event_print_debug(void)				{ }
1333 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1334 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1335 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1336 {
1337 	return -EINVAL;
1338 }
1339 
1340 static inline void
1341 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1342 static inline void
1343 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1344 static inline void
1345 perf_bp_event(struct perf_event *event, void *data)			{ }
1346 
1347 static inline int perf_register_guest_info_callbacks
1348 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1349 static inline int perf_unregister_guest_info_callbacks
1350 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1351 
1352 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1353 
1354 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1355 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1356 				      bool unregister, const char *sym)	{ }
1357 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1358 					enum perf_bpf_event_type type,
1359 					u16 flags)			{ }
1360 static inline void perf_event_exec(void)				{ }
1361 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1362 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1363 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1364 static inline void perf_event_init(void)				{ }
1365 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1366 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1367 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1368 static inline void perf_event_enable(struct perf_event *event)		{ }
1369 static inline void perf_event_disable(struct perf_event *event)		{ }
1370 static inline int __perf_event_disable(void *info)			{ return -1; }
1371 static inline void perf_event_task_tick(void)				{ }
1372 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1373 #endif
1374 
1375 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1376 extern void perf_restore_debug_store(void);
1377 #else
1378 static inline void perf_restore_debug_store(void)			{ }
1379 #endif
1380 
1381 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1382 {
1383 	return frag->pad < sizeof(u64);
1384 }
1385 
1386 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1387 
1388 struct perf_pmu_events_attr {
1389 	struct device_attribute attr;
1390 	u64 id;
1391 	const char *event_str;
1392 };
1393 
1394 struct perf_pmu_events_ht_attr {
1395 	struct device_attribute			attr;
1396 	u64					id;
1397 	const char				*event_str_ht;
1398 	const char				*event_str_noht;
1399 };
1400 
1401 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1402 			      char *page);
1403 
1404 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1405 static struct perf_pmu_events_attr _var = {				\
1406 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1407 	.id   =  _id,							\
1408 };
1409 
1410 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1411 static struct perf_pmu_events_attr _var = {				    \
1412 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1413 	.id		= 0,						    \
1414 	.event_str	= _str,						    \
1415 };
1416 
1417 #define PMU_FORMAT_ATTR(_name, _format)					\
1418 static ssize_t								\
1419 _name##_show(struct device *dev,					\
1420 			       struct device_attribute *attr,		\
1421 			       char *page)				\
1422 {									\
1423 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1424 	return sprintf(page, _format "\n");				\
1425 }									\
1426 									\
1427 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1428 
1429 /* Performance counter hotplug functions */
1430 #ifdef CONFIG_PERF_EVENTS
1431 int perf_event_init_cpu(unsigned int cpu);
1432 int perf_event_exit_cpu(unsigned int cpu);
1433 #else
1434 #define perf_event_init_cpu	NULL
1435 #define perf_event_exit_cpu	NULL
1436 #endif
1437 
1438 #endif /* _LINUX_PERF_EVENT_H */
1439