1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/jump_label_ratelimit.h> 53 #include <linux/atomic.h> 54 #include <linux/sysfs.h> 55 #include <linux/perf_regs.h> 56 #include <linux/cgroup.h> 57 #include <linux/refcount.h> 58 #include <asm/local.h> 59 60 struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63 }; 64 65 struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71 }; 72 73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76 struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84 } __packed; 85 86 struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89 }; 90 91 /* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100 struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147 #ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157 #endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181 /* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186 #define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226 #endif 227 }; 228 229 struct perf_event; 230 231 /* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237 /** 238 * pmu::capabilities flags 239 */ 240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 241 #define PERF_PMU_CAP_NO_NMI 0x02 242 #define PERF_PMU_CAP_AUX_NO_SG 0x04 243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 244 #define PERF_PMU_CAP_EXCLUSIVE 0x10 245 #define PERF_PMU_CAP_ITRACE 0x20 246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 248 249 /** 250 * struct pmu - generic performance monitoring unit 251 */ 252 struct pmu { 253 struct list_head entry; 254 255 struct module *module; 256 struct device *dev; 257 const struct attribute_group **attr_groups; 258 const char *name; 259 int type; 260 261 /* 262 * various common per-pmu feature flags 263 */ 264 int capabilities; 265 266 int __percpu *pmu_disable_count; 267 struct perf_cpu_context __percpu *pmu_cpu_context; 268 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 269 int task_ctx_nr; 270 int hrtimer_interval_ms; 271 272 /* number of address filters this PMU can do */ 273 unsigned int nr_addr_filters; 274 275 /* 276 * Fully disable/enable this PMU, can be used to protect from the PMI 277 * as well as for lazy/batch writing of the MSRs. 278 */ 279 void (*pmu_enable) (struct pmu *pmu); /* optional */ 280 void (*pmu_disable) (struct pmu *pmu); /* optional */ 281 282 /* 283 * Try and initialize the event for this PMU. 284 * 285 * Returns: 286 * -ENOENT -- @event is not for this PMU 287 * 288 * -ENODEV -- @event is for this PMU but PMU not present 289 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 290 * -EINVAL -- @event is for this PMU but @event is not valid 291 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 292 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 293 * 294 * 0 -- @event is for this PMU and valid 295 * 296 * Other error return values are allowed. 297 */ 298 int (*event_init) (struct perf_event *event); 299 300 /* 301 * Notification that the event was mapped or unmapped. Called 302 * in the context of the mapping task. 303 */ 304 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 306 307 /* 308 * Flags for ->add()/->del()/ ->start()/->stop(). There are 309 * matching hw_perf_event::state flags. 310 */ 311 #define PERF_EF_START 0x01 /* start the counter when adding */ 312 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 313 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 314 315 /* 316 * Adds/Removes a counter to/from the PMU, can be done inside a 317 * transaction, see the ->*_txn() methods. 318 * 319 * The add/del callbacks will reserve all hardware resources required 320 * to service the event, this includes any counter constraint 321 * scheduling etc. 322 * 323 * Called with IRQs disabled and the PMU disabled on the CPU the event 324 * is on. 325 * 326 * ->add() called without PERF_EF_START should result in the same state 327 * as ->add() followed by ->stop(). 328 * 329 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 330 * ->stop() that must deal with already being stopped without 331 * PERF_EF_UPDATE. 332 */ 333 int (*add) (struct perf_event *event, int flags); 334 void (*del) (struct perf_event *event, int flags); 335 336 /* 337 * Starts/Stops a counter present on the PMU. 338 * 339 * The PMI handler should stop the counter when perf_event_overflow() 340 * returns !0. ->start() will be used to continue. 341 * 342 * Also used to change the sample period. 343 * 344 * Called with IRQs disabled and the PMU disabled on the CPU the event 345 * is on -- will be called from NMI context with the PMU generates 346 * NMIs. 347 * 348 * ->stop() with PERF_EF_UPDATE will read the counter and update 349 * period/count values like ->read() would. 350 * 351 * ->start() with PERF_EF_RELOAD will reprogram the the counter 352 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 353 */ 354 void (*start) (struct perf_event *event, int flags); 355 void (*stop) (struct perf_event *event, int flags); 356 357 /* 358 * Updates the counter value of the event. 359 * 360 * For sampling capable PMUs this will also update the software period 361 * hw_perf_event::period_left field. 362 */ 363 void (*read) (struct perf_event *event); 364 365 /* 366 * Group events scheduling is treated as a transaction, add 367 * group events as a whole and perform one schedulability test. 368 * If the test fails, roll back the whole group 369 * 370 * Start the transaction, after this ->add() doesn't need to 371 * do schedulability tests. 372 * 373 * Optional. 374 */ 375 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 376 /* 377 * If ->start_txn() disabled the ->add() schedulability test 378 * then ->commit_txn() is required to perform one. On success 379 * the transaction is closed. On error the transaction is kept 380 * open until ->cancel_txn() is called. 381 * 382 * Optional. 383 */ 384 int (*commit_txn) (struct pmu *pmu); 385 /* 386 * Will cancel the transaction, assumes ->del() is called 387 * for each successful ->add() during the transaction. 388 * 389 * Optional. 390 */ 391 void (*cancel_txn) (struct pmu *pmu); 392 393 /* 394 * Will return the value for perf_event_mmap_page::index for this event, 395 * if no implementation is provided it will default to: event->hw.idx + 1. 396 */ 397 int (*event_idx) (struct perf_event *event); /*optional */ 398 399 /* 400 * context-switches callback 401 */ 402 void (*sched_task) (struct perf_event_context *ctx, 403 bool sched_in); 404 /* 405 * PMU specific data size 406 */ 407 size_t task_ctx_size; 408 409 410 /* 411 * Set up pmu-private data structures for an AUX area 412 */ 413 void *(*setup_aux) (struct perf_event *event, void **pages, 414 int nr_pages, bool overwrite); 415 /* optional */ 416 417 /* 418 * Free pmu-private AUX data structures 419 */ 420 void (*free_aux) (void *aux); /* optional */ 421 422 /* 423 * Validate address range filters: make sure the HW supports the 424 * requested configuration and number of filters; return 0 if the 425 * supplied filters are valid, -errno otherwise. 426 * 427 * Runs in the context of the ioctl()ing process and is not serialized 428 * with the rest of the PMU callbacks. 429 */ 430 int (*addr_filters_validate) (struct list_head *filters); 431 /* optional */ 432 433 /* 434 * Synchronize address range filter configuration: 435 * translate hw-agnostic filters into hardware configuration in 436 * event::hw::addr_filters. 437 * 438 * Runs as a part of filter sync sequence that is done in ->start() 439 * callback by calling perf_event_addr_filters_sync(). 440 * 441 * May (and should) traverse event::addr_filters::list, for which its 442 * caller provides necessary serialization. 443 */ 444 void (*addr_filters_sync) (struct perf_event *event); 445 /* optional */ 446 447 /* 448 * Filter events for PMU-specific reasons. 449 */ 450 int (*filter_match) (struct perf_event *event); /* optional */ 451 }; 452 453 enum perf_addr_filter_action_t { 454 PERF_ADDR_FILTER_ACTION_STOP = 0, 455 PERF_ADDR_FILTER_ACTION_START, 456 PERF_ADDR_FILTER_ACTION_FILTER, 457 }; 458 459 /** 460 * struct perf_addr_filter - address range filter definition 461 * @entry: event's filter list linkage 462 * @inode: object file's inode for file-based filters 463 * @offset: filter range offset 464 * @size: filter range size (size==0 means single address trigger) 465 * @action: filter/start/stop 466 * 467 * This is a hardware-agnostic filter configuration as specified by the user. 468 */ 469 struct perf_addr_filter { 470 struct list_head entry; 471 struct path path; 472 unsigned long offset; 473 unsigned long size; 474 enum perf_addr_filter_action_t action; 475 }; 476 477 /** 478 * struct perf_addr_filters_head - container for address range filters 479 * @list: list of filters for this event 480 * @lock: spinlock that serializes accesses to the @list and event's 481 * (and its children's) filter generations. 482 * @nr_file_filters: number of file-based filters 483 * 484 * A child event will use parent's @list (and therefore @lock), so they are 485 * bundled together; see perf_event_addr_filters(). 486 */ 487 struct perf_addr_filters_head { 488 struct list_head list; 489 raw_spinlock_t lock; 490 unsigned int nr_file_filters; 491 }; 492 493 /** 494 * enum perf_event_state - the states of an event: 495 */ 496 enum perf_event_state { 497 PERF_EVENT_STATE_DEAD = -4, 498 PERF_EVENT_STATE_EXIT = -3, 499 PERF_EVENT_STATE_ERROR = -2, 500 PERF_EVENT_STATE_OFF = -1, 501 PERF_EVENT_STATE_INACTIVE = 0, 502 PERF_EVENT_STATE_ACTIVE = 1, 503 }; 504 505 struct file; 506 struct perf_sample_data; 507 508 typedef void (*perf_overflow_handler_t)(struct perf_event *, 509 struct perf_sample_data *, 510 struct pt_regs *regs); 511 512 /* 513 * Event capabilities. For event_caps and groups caps. 514 * 515 * PERF_EV_CAP_SOFTWARE: Is a software event. 516 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 517 * from any CPU in the package where it is active. 518 */ 519 #define PERF_EV_CAP_SOFTWARE BIT(0) 520 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 521 522 #define SWEVENT_HLIST_BITS 8 523 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 524 525 struct swevent_hlist { 526 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 527 struct rcu_head rcu_head; 528 }; 529 530 #define PERF_ATTACH_CONTEXT 0x01 531 #define PERF_ATTACH_GROUP 0x02 532 #define PERF_ATTACH_TASK 0x04 533 #define PERF_ATTACH_TASK_DATA 0x08 534 #define PERF_ATTACH_ITRACE 0x10 535 536 struct perf_cgroup; 537 struct ring_buffer; 538 539 struct pmu_event_list { 540 raw_spinlock_t lock; 541 struct list_head list; 542 }; 543 544 #define for_each_sibling_event(sibling, event) \ 545 if ((event)->group_leader == (event)) \ 546 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 547 548 /** 549 * struct perf_event - performance event kernel representation: 550 */ 551 struct perf_event { 552 #ifdef CONFIG_PERF_EVENTS 553 /* 554 * entry onto perf_event_context::event_list; 555 * modifications require ctx->lock 556 * RCU safe iterations. 557 */ 558 struct list_head event_entry; 559 560 /* 561 * Locked for modification by both ctx->mutex and ctx->lock; holding 562 * either sufficies for read. 563 */ 564 struct list_head sibling_list; 565 struct list_head active_list; 566 /* 567 * Node on the pinned or flexible tree located at the event context; 568 */ 569 struct rb_node group_node; 570 u64 group_index; 571 /* 572 * We need storage to track the entries in perf_pmu_migrate_context; we 573 * cannot use the event_entry because of RCU and we want to keep the 574 * group in tact which avoids us using the other two entries. 575 */ 576 struct list_head migrate_entry; 577 578 struct hlist_node hlist_entry; 579 struct list_head active_entry; 580 int nr_siblings; 581 582 /* Not serialized. Only written during event initialization. */ 583 int event_caps; 584 /* The cumulative AND of all event_caps for events in this group. */ 585 int group_caps; 586 587 struct perf_event *group_leader; 588 struct pmu *pmu; 589 void *pmu_private; 590 591 enum perf_event_state state; 592 unsigned int attach_state; 593 local64_t count; 594 atomic64_t child_count; 595 596 /* 597 * These are the total time in nanoseconds that the event 598 * has been enabled (i.e. eligible to run, and the task has 599 * been scheduled in, if this is a per-task event) 600 * and running (scheduled onto the CPU), respectively. 601 */ 602 u64 total_time_enabled; 603 u64 total_time_running; 604 u64 tstamp; 605 606 /* 607 * timestamp shadows the actual context timing but it can 608 * be safely used in NMI interrupt context. It reflects the 609 * context time as it was when the event was last scheduled in. 610 * 611 * ctx_time already accounts for ctx->timestamp. Therefore to 612 * compute ctx_time for a sample, simply add perf_clock(). 613 */ 614 u64 shadow_ctx_time; 615 616 struct perf_event_attr attr; 617 u16 header_size; 618 u16 id_header_size; 619 u16 read_size; 620 struct hw_perf_event hw; 621 622 struct perf_event_context *ctx; 623 atomic_long_t refcount; 624 625 /* 626 * These accumulate total time (in nanoseconds) that children 627 * events have been enabled and running, respectively. 628 */ 629 atomic64_t child_total_time_enabled; 630 atomic64_t child_total_time_running; 631 632 /* 633 * Protect attach/detach and child_list: 634 */ 635 struct mutex child_mutex; 636 struct list_head child_list; 637 struct perf_event *parent; 638 639 int oncpu; 640 int cpu; 641 642 struct list_head owner_entry; 643 struct task_struct *owner; 644 645 /* mmap bits */ 646 struct mutex mmap_mutex; 647 atomic_t mmap_count; 648 649 struct ring_buffer *rb; 650 struct list_head rb_entry; 651 unsigned long rcu_batches; 652 int rcu_pending; 653 654 /* poll related */ 655 wait_queue_head_t waitq; 656 struct fasync_struct *fasync; 657 658 /* delayed work for NMIs and such */ 659 int pending_wakeup; 660 int pending_kill; 661 int pending_disable; 662 struct irq_work pending; 663 664 atomic_t event_limit; 665 666 /* address range filters */ 667 struct perf_addr_filters_head addr_filters; 668 /* vma address array for file-based filders */ 669 unsigned long *addr_filters_offs; 670 unsigned long addr_filters_gen; 671 672 void (*destroy)(struct perf_event *); 673 struct rcu_head rcu_head; 674 675 struct pid_namespace *ns; 676 u64 id; 677 678 u64 (*clock)(void); 679 perf_overflow_handler_t overflow_handler; 680 void *overflow_handler_context; 681 #ifdef CONFIG_BPF_SYSCALL 682 perf_overflow_handler_t orig_overflow_handler; 683 struct bpf_prog *prog; 684 #endif 685 686 #ifdef CONFIG_EVENT_TRACING 687 struct trace_event_call *tp_event; 688 struct event_filter *filter; 689 #ifdef CONFIG_FUNCTION_TRACER 690 struct ftrace_ops ftrace_ops; 691 #endif 692 #endif 693 694 #ifdef CONFIG_CGROUP_PERF 695 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 696 #endif 697 698 struct list_head sb_list; 699 #endif /* CONFIG_PERF_EVENTS */ 700 }; 701 702 703 struct perf_event_groups { 704 struct rb_root tree; 705 u64 index; 706 }; 707 708 /** 709 * struct perf_event_context - event context structure 710 * 711 * Used as a container for task events and CPU events as well: 712 */ 713 struct perf_event_context { 714 struct pmu *pmu; 715 /* 716 * Protect the states of the events in the list, 717 * nr_active, and the list: 718 */ 719 raw_spinlock_t lock; 720 /* 721 * Protect the list of events. Locking either mutex or lock 722 * is sufficient to ensure the list doesn't change; to change 723 * the list you need to lock both the mutex and the spinlock. 724 */ 725 struct mutex mutex; 726 727 struct list_head active_ctx_list; 728 struct perf_event_groups pinned_groups; 729 struct perf_event_groups flexible_groups; 730 struct list_head event_list; 731 732 struct list_head pinned_active; 733 struct list_head flexible_active; 734 735 int nr_events; 736 int nr_active; 737 int is_active; 738 int nr_stat; 739 int nr_freq; 740 int rotate_disable; 741 refcount_t refcount; 742 struct task_struct *task; 743 744 /* 745 * Context clock, runs when context enabled. 746 */ 747 u64 time; 748 u64 timestamp; 749 750 /* 751 * These fields let us detect when two contexts have both 752 * been cloned (inherited) from a common ancestor. 753 */ 754 struct perf_event_context *parent_ctx; 755 u64 parent_gen; 756 u64 generation; 757 int pin_count; 758 #ifdef CONFIG_CGROUP_PERF 759 int nr_cgroups; /* cgroup evts */ 760 #endif 761 void *task_ctx_data; /* pmu specific data */ 762 struct rcu_head rcu_head; 763 }; 764 765 /* 766 * Number of contexts where an event can trigger: 767 * task, softirq, hardirq, nmi. 768 */ 769 #define PERF_NR_CONTEXTS 4 770 771 /** 772 * struct perf_event_cpu_context - per cpu event context structure 773 */ 774 struct perf_cpu_context { 775 struct perf_event_context ctx; 776 struct perf_event_context *task_ctx; 777 int active_oncpu; 778 int exclusive; 779 780 raw_spinlock_t hrtimer_lock; 781 struct hrtimer hrtimer; 782 ktime_t hrtimer_interval; 783 unsigned int hrtimer_active; 784 785 #ifdef CONFIG_CGROUP_PERF 786 struct perf_cgroup *cgrp; 787 struct list_head cgrp_cpuctx_entry; 788 #endif 789 790 struct list_head sched_cb_entry; 791 int sched_cb_usage; 792 793 int online; 794 }; 795 796 struct perf_output_handle { 797 struct perf_event *event; 798 struct ring_buffer *rb; 799 unsigned long wakeup; 800 unsigned long size; 801 u64 aux_flags; 802 union { 803 void *addr; 804 unsigned long head; 805 }; 806 int page; 807 }; 808 809 struct bpf_perf_event_data_kern { 810 bpf_user_pt_regs_t *regs; 811 struct perf_sample_data *data; 812 struct perf_event *event; 813 }; 814 815 #ifdef CONFIG_CGROUP_PERF 816 817 /* 818 * perf_cgroup_info keeps track of time_enabled for a cgroup. 819 * This is a per-cpu dynamically allocated data structure. 820 */ 821 struct perf_cgroup_info { 822 u64 time; 823 u64 timestamp; 824 }; 825 826 struct perf_cgroup { 827 struct cgroup_subsys_state css; 828 struct perf_cgroup_info __percpu *info; 829 }; 830 831 /* 832 * Must ensure cgroup is pinned (css_get) before calling 833 * this function. In other words, we cannot call this function 834 * if there is no cgroup event for the current CPU context. 835 */ 836 static inline struct perf_cgroup * 837 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 838 { 839 return container_of(task_css_check(task, perf_event_cgrp_id, 840 ctx ? lockdep_is_held(&ctx->lock) 841 : true), 842 struct perf_cgroup, css); 843 } 844 #endif /* CONFIG_CGROUP_PERF */ 845 846 #ifdef CONFIG_PERF_EVENTS 847 848 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 849 struct perf_event *event); 850 extern void perf_aux_output_end(struct perf_output_handle *handle, 851 unsigned long size); 852 extern int perf_aux_output_skip(struct perf_output_handle *handle, 853 unsigned long size); 854 extern void *perf_get_aux(struct perf_output_handle *handle); 855 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 856 extern void perf_event_itrace_started(struct perf_event *event); 857 858 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 859 extern void perf_pmu_unregister(struct pmu *pmu); 860 861 extern int perf_num_counters(void); 862 extern const char *perf_pmu_name(void); 863 extern void __perf_event_task_sched_in(struct task_struct *prev, 864 struct task_struct *task); 865 extern void __perf_event_task_sched_out(struct task_struct *prev, 866 struct task_struct *next); 867 extern int perf_event_init_task(struct task_struct *child); 868 extern void perf_event_exit_task(struct task_struct *child); 869 extern void perf_event_free_task(struct task_struct *task); 870 extern void perf_event_delayed_put(struct task_struct *task); 871 extern struct file *perf_event_get(unsigned int fd); 872 extern const struct perf_event *perf_get_event(struct file *file); 873 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 874 extern void perf_event_print_debug(void); 875 extern void perf_pmu_disable(struct pmu *pmu); 876 extern void perf_pmu_enable(struct pmu *pmu); 877 extern void perf_sched_cb_dec(struct pmu *pmu); 878 extern void perf_sched_cb_inc(struct pmu *pmu); 879 extern int perf_event_task_disable(void); 880 extern int perf_event_task_enable(void); 881 extern int perf_event_refresh(struct perf_event *event, int refresh); 882 extern void perf_event_update_userpage(struct perf_event *event); 883 extern int perf_event_release_kernel(struct perf_event *event); 884 extern struct perf_event * 885 perf_event_create_kernel_counter(struct perf_event_attr *attr, 886 int cpu, 887 struct task_struct *task, 888 perf_overflow_handler_t callback, 889 void *context); 890 extern void perf_pmu_migrate_context(struct pmu *pmu, 891 int src_cpu, int dst_cpu); 892 int perf_event_read_local(struct perf_event *event, u64 *value, 893 u64 *enabled, u64 *running); 894 extern u64 perf_event_read_value(struct perf_event *event, 895 u64 *enabled, u64 *running); 896 897 898 struct perf_sample_data { 899 /* 900 * Fields set by perf_sample_data_init(), group so as to 901 * minimize the cachelines touched. 902 */ 903 u64 addr; 904 struct perf_raw_record *raw; 905 struct perf_branch_stack *br_stack; 906 u64 period; 907 u64 weight; 908 u64 txn; 909 union perf_mem_data_src data_src; 910 911 /* 912 * The other fields, optionally {set,used} by 913 * perf_{prepare,output}_sample(). 914 */ 915 u64 type; 916 u64 ip; 917 struct { 918 u32 pid; 919 u32 tid; 920 } tid_entry; 921 u64 time; 922 u64 id; 923 u64 stream_id; 924 struct { 925 u32 cpu; 926 u32 reserved; 927 } cpu_entry; 928 struct perf_callchain_entry *callchain; 929 930 /* 931 * regs_user may point to task_pt_regs or to regs_user_copy, depending 932 * on arch details. 933 */ 934 struct perf_regs regs_user; 935 struct pt_regs regs_user_copy; 936 937 struct perf_regs regs_intr; 938 u64 stack_user_size; 939 940 u64 phys_addr; 941 } ____cacheline_aligned; 942 943 /* default value for data source */ 944 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 945 PERF_MEM_S(LVL, NA) |\ 946 PERF_MEM_S(SNOOP, NA) |\ 947 PERF_MEM_S(LOCK, NA) |\ 948 PERF_MEM_S(TLB, NA)) 949 950 static inline void perf_sample_data_init(struct perf_sample_data *data, 951 u64 addr, u64 period) 952 { 953 /* remaining struct members initialized in perf_prepare_sample() */ 954 data->addr = addr; 955 data->raw = NULL; 956 data->br_stack = NULL; 957 data->period = period; 958 data->weight = 0; 959 data->data_src.val = PERF_MEM_NA; 960 data->txn = 0; 961 } 962 963 extern void perf_output_sample(struct perf_output_handle *handle, 964 struct perf_event_header *header, 965 struct perf_sample_data *data, 966 struct perf_event *event); 967 extern void perf_prepare_sample(struct perf_event_header *header, 968 struct perf_sample_data *data, 969 struct perf_event *event, 970 struct pt_regs *regs); 971 972 extern int perf_event_overflow(struct perf_event *event, 973 struct perf_sample_data *data, 974 struct pt_regs *regs); 975 976 extern void perf_event_output_forward(struct perf_event *event, 977 struct perf_sample_data *data, 978 struct pt_regs *regs); 979 extern void perf_event_output_backward(struct perf_event *event, 980 struct perf_sample_data *data, 981 struct pt_regs *regs); 982 extern int perf_event_output(struct perf_event *event, 983 struct perf_sample_data *data, 984 struct pt_regs *regs); 985 986 static inline bool 987 is_default_overflow_handler(struct perf_event *event) 988 { 989 if (likely(event->overflow_handler == perf_event_output_forward)) 990 return true; 991 if (unlikely(event->overflow_handler == perf_event_output_backward)) 992 return true; 993 return false; 994 } 995 996 extern void 997 perf_event_header__init_id(struct perf_event_header *header, 998 struct perf_sample_data *data, 999 struct perf_event *event); 1000 extern void 1001 perf_event__output_id_sample(struct perf_event *event, 1002 struct perf_output_handle *handle, 1003 struct perf_sample_data *sample); 1004 1005 extern void 1006 perf_log_lost_samples(struct perf_event *event, u64 lost); 1007 1008 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1009 { 1010 struct perf_event_attr *attr = &event->attr; 1011 1012 return attr->exclude_idle || attr->exclude_user || 1013 attr->exclude_kernel || attr->exclude_hv || 1014 attr->exclude_guest || attr->exclude_host; 1015 } 1016 1017 static inline bool is_sampling_event(struct perf_event *event) 1018 { 1019 return event->attr.sample_period != 0; 1020 } 1021 1022 /* 1023 * Return 1 for a software event, 0 for a hardware event 1024 */ 1025 static inline int is_software_event(struct perf_event *event) 1026 { 1027 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1028 } 1029 1030 /* 1031 * Return 1 for event in sw context, 0 for event in hw context 1032 */ 1033 static inline int in_software_context(struct perf_event *event) 1034 { 1035 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1036 } 1037 1038 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1039 1040 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1041 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1042 1043 #ifndef perf_arch_fetch_caller_regs 1044 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1045 #endif 1046 1047 /* 1048 * Take a snapshot of the regs. Skip ip and frame pointer to 1049 * the nth caller. We only need a few of the regs: 1050 * - ip for PERF_SAMPLE_IP 1051 * - cs for user_mode() tests 1052 * - bp for callchains 1053 * - eflags, for future purposes, just in case 1054 */ 1055 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1056 { 1057 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1058 } 1059 1060 static __always_inline void 1061 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1062 { 1063 if (static_key_false(&perf_swevent_enabled[event_id])) 1064 __perf_sw_event(event_id, nr, regs, addr); 1065 } 1066 1067 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1068 1069 /* 1070 * 'Special' version for the scheduler, it hard assumes no recursion, 1071 * which is guaranteed by us not actually scheduling inside other swevents 1072 * because those disable preemption. 1073 */ 1074 static __always_inline void 1075 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1076 { 1077 if (static_key_false(&perf_swevent_enabled[event_id])) { 1078 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1079 1080 perf_fetch_caller_regs(regs); 1081 ___perf_sw_event(event_id, nr, regs, addr); 1082 } 1083 } 1084 1085 extern struct static_key_false perf_sched_events; 1086 1087 static __always_inline bool 1088 perf_sw_migrate_enabled(void) 1089 { 1090 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1091 return true; 1092 return false; 1093 } 1094 1095 static inline void perf_event_task_migrate(struct task_struct *task) 1096 { 1097 if (perf_sw_migrate_enabled()) 1098 task->sched_migrated = 1; 1099 } 1100 1101 static inline void perf_event_task_sched_in(struct task_struct *prev, 1102 struct task_struct *task) 1103 { 1104 if (static_branch_unlikely(&perf_sched_events)) 1105 __perf_event_task_sched_in(prev, task); 1106 1107 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1108 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1109 1110 perf_fetch_caller_regs(regs); 1111 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1112 task->sched_migrated = 0; 1113 } 1114 } 1115 1116 static inline void perf_event_task_sched_out(struct task_struct *prev, 1117 struct task_struct *next) 1118 { 1119 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1120 1121 if (static_branch_unlikely(&perf_sched_events)) 1122 __perf_event_task_sched_out(prev, next); 1123 } 1124 1125 extern void perf_event_mmap(struct vm_area_struct *vma); 1126 1127 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1128 bool unregister, const char *sym); 1129 extern void perf_event_bpf_event(struct bpf_prog *prog, 1130 enum perf_bpf_event_type type, 1131 u16 flags); 1132 1133 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1134 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1135 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1136 1137 extern void perf_event_exec(void); 1138 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1139 extern void perf_event_namespaces(struct task_struct *tsk); 1140 extern void perf_event_fork(struct task_struct *tsk); 1141 1142 /* Callchains */ 1143 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1144 1145 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1146 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1147 extern struct perf_callchain_entry * 1148 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1149 u32 max_stack, bool crosstask, bool add_mark); 1150 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1151 extern int get_callchain_buffers(int max_stack); 1152 extern void put_callchain_buffers(void); 1153 1154 extern int sysctl_perf_event_max_stack; 1155 extern int sysctl_perf_event_max_contexts_per_stack; 1156 1157 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1158 { 1159 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1160 struct perf_callchain_entry *entry = ctx->entry; 1161 entry->ip[entry->nr++] = ip; 1162 ++ctx->contexts; 1163 return 0; 1164 } else { 1165 ctx->contexts_maxed = true; 1166 return -1; /* no more room, stop walking the stack */ 1167 } 1168 } 1169 1170 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1171 { 1172 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1173 struct perf_callchain_entry *entry = ctx->entry; 1174 entry->ip[entry->nr++] = ip; 1175 ++ctx->nr; 1176 return 0; 1177 } else { 1178 return -1; /* no more room, stop walking the stack */ 1179 } 1180 } 1181 1182 extern int sysctl_perf_event_paranoid; 1183 extern int sysctl_perf_event_mlock; 1184 extern int sysctl_perf_event_sample_rate; 1185 extern int sysctl_perf_cpu_time_max_percent; 1186 1187 extern void perf_sample_event_took(u64 sample_len_ns); 1188 1189 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1190 void __user *buffer, size_t *lenp, 1191 loff_t *ppos); 1192 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1193 void __user *buffer, size_t *lenp, 1194 loff_t *ppos); 1195 1196 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1197 void __user *buffer, size_t *lenp, loff_t *ppos); 1198 1199 static inline bool perf_paranoid_tracepoint_raw(void) 1200 { 1201 return sysctl_perf_event_paranoid > -1; 1202 } 1203 1204 static inline bool perf_paranoid_cpu(void) 1205 { 1206 return sysctl_perf_event_paranoid > 0; 1207 } 1208 1209 static inline bool perf_paranoid_kernel(void) 1210 { 1211 return sysctl_perf_event_paranoid > 1; 1212 } 1213 1214 extern void perf_event_init(void); 1215 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1216 int entry_size, struct pt_regs *regs, 1217 struct hlist_head *head, int rctx, 1218 struct task_struct *task); 1219 extern void perf_bp_event(struct perf_event *event, void *data); 1220 1221 #ifndef perf_misc_flags 1222 # define perf_misc_flags(regs) \ 1223 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1224 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1225 #endif 1226 #ifndef perf_arch_bpf_user_pt_regs 1227 # define perf_arch_bpf_user_pt_regs(regs) regs 1228 #endif 1229 1230 static inline bool has_branch_stack(struct perf_event *event) 1231 { 1232 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1233 } 1234 1235 static inline bool needs_branch_stack(struct perf_event *event) 1236 { 1237 return event->attr.branch_sample_type != 0; 1238 } 1239 1240 static inline bool has_aux(struct perf_event *event) 1241 { 1242 return event->pmu->setup_aux; 1243 } 1244 1245 static inline bool is_write_backward(struct perf_event *event) 1246 { 1247 return !!event->attr.write_backward; 1248 } 1249 1250 static inline bool has_addr_filter(struct perf_event *event) 1251 { 1252 return event->pmu->nr_addr_filters; 1253 } 1254 1255 /* 1256 * An inherited event uses parent's filters 1257 */ 1258 static inline struct perf_addr_filters_head * 1259 perf_event_addr_filters(struct perf_event *event) 1260 { 1261 struct perf_addr_filters_head *ifh = &event->addr_filters; 1262 1263 if (event->parent) 1264 ifh = &event->parent->addr_filters; 1265 1266 return ifh; 1267 } 1268 1269 extern void perf_event_addr_filters_sync(struct perf_event *event); 1270 1271 extern int perf_output_begin(struct perf_output_handle *handle, 1272 struct perf_event *event, unsigned int size); 1273 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1274 struct perf_event *event, 1275 unsigned int size); 1276 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1277 struct perf_event *event, 1278 unsigned int size); 1279 1280 extern void perf_output_end(struct perf_output_handle *handle); 1281 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1282 const void *buf, unsigned int len); 1283 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1284 unsigned int len); 1285 extern int perf_swevent_get_recursion_context(void); 1286 extern void perf_swevent_put_recursion_context(int rctx); 1287 extern u64 perf_swevent_set_period(struct perf_event *event); 1288 extern void perf_event_enable(struct perf_event *event); 1289 extern void perf_event_disable(struct perf_event *event); 1290 extern void perf_event_disable_local(struct perf_event *event); 1291 extern void perf_event_disable_inatomic(struct perf_event *event); 1292 extern void perf_event_task_tick(void); 1293 extern int perf_event_account_interrupt(struct perf_event *event); 1294 #else /* !CONFIG_PERF_EVENTS: */ 1295 static inline void * 1296 perf_aux_output_begin(struct perf_output_handle *handle, 1297 struct perf_event *event) { return NULL; } 1298 static inline void 1299 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1300 { } 1301 static inline int 1302 perf_aux_output_skip(struct perf_output_handle *handle, 1303 unsigned long size) { return -EINVAL; } 1304 static inline void * 1305 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1306 static inline void 1307 perf_event_task_migrate(struct task_struct *task) { } 1308 static inline void 1309 perf_event_task_sched_in(struct task_struct *prev, 1310 struct task_struct *task) { } 1311 static inline void 1312 perf_event_task_sched_out(struct task_struct *prev, 1313 struct task_struct *next) { } 1314 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1315 static inline void perf_event_exit_task(struct task_struct *child) { } 1316 static inline void perf_event_free_task(struct task_struct *task) { } 1317 static inline void perf_event_delayed_put(struct task_struct *task) { } 1318 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1319 static inline const struct perf_event *perf_get_event(struct file *file) 1320 { 1321 return ERR_PTR(-EINVAL); 1322 } 1323 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1324 { 1325 return ERR_PTR(-EINVAL); 1326 } 1327 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1328 u64 *enabled, u64 *running) 1329 { 1330 return -EINVAL; 1331 } 1332 static inline void perf_event_print_debug(void) { } 1333 static inline int perf_event_task_disable(void) { return -EINVAL; } 1334 static inline int perf_event_task_enable(void) { return -EINVAL; } 1335 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1336 { 1337 return -EINVAL; 1338 } 1339 1340 static inline void 1341 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1342 static inline void 1343 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1344 static inline void 1345 perf_bp_event(struct perf_event *event, void *data) { } 1346 1347 static inline int perf_register_guest_info_callbacks 1348 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1349 static inline int perf_unregister_guest_info_callbacks 1350 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1351 1352 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1353 1354 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1355 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1356 bool unregister, const char *sym) { } 1357 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1358 enum perf_bpf_event_type type, 1359 u16 flags) { } 1360 static inline void perf_event_exec(void) { } 1361 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1362 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1363 static inline void perf_event_fork(struct task_struct *tsk) { } 1364 static inline void perf_event_init(void) { } 1365 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1366 static inline void perf_swevent_put_recursion_context(int rctx) { } 1367 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1368 static inline void perf_event_enable(struct perf_event *event) { } 1369 static inline void perf_event_disable(struct perf_event *event) { } 1370 static inline int __perf_event_disable(void *info) { return -1; } 1371 static inline void perf_event_task_tick(void) { } 1372 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1373 #endif 1374 1375 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1376 extern void perf_restore_debug_store(void); 1377 #else 1378 static inline void perf_restore_debug_store(void) { } 1379 #endif 1380 1381 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1382 { 1383 return frag->pad < sizeof(u64); 1384 } 1385 1386 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1387 1388 struct perf_pmu_events_attr { 1389 struct device_attribute attr; 1390 u64 id; 1391 const char *event_str; 1392 }; 1393 1394 struct perf_pmu_events_ht_attr { 1395 struct device_attribute attr; 1396 u64 id; 1397 const char *event_str_ht; 1398 const char *event_str_noht; 1399 }; 1400 1401 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1402 char *page); 1403 1404 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1405 static struct perf_pmu_events_attr _var = { \ 1406 .attr = __ATTR(_name, 0444, _show, NULL), \ 1407 .id = _id, \ 1408 }; 1409 1410 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1411 static struct perf_pmu_events_attr _var = { \ 1412 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1413 .id = 0, \ 1414 .event_str = _str, \ 1415 }; 1416 1417 #define PMU_FORMAT_ATTR(_name, _format) \ 1418 static ssize_t \ 1419 _name##_show(struct device *dev, \ 1420 struct device_attribute *attr, \ 1421 char *page) \ 1422 { \ 1423 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1424 return sprintf(page, _format "\n"); \ 1425 } \ 1426 \ 1427 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1428 1429 /* Performance counter hotplug functions */ 1430 #ifdef CONFIG_PERF_EVENTS 1431 int perf_event_init_cpu(unsigned int cpu); 1432 int perf_event_exit_cpu(unsigned int cpu); 1433 #else 1434 #define perf_event_init_cpu NULL 1435 #define perf_event_exit_cpu NULL 1436 #endif 1437 1438 #endif /* _LINUX_PERF_EVENT_H */ 1439