1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 #define PERF_GUEST_ACTIVE 0x01 30 #define PERF_GUEST_USER 0x02 31 32 struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36 }; 37 38 #ifdef CONFIG_HAVE_HW_BREAKPOINT 39 #include <asm/hw_breakpoint.h> 40 #endif 41 42 #include <linux/list.h> 43 #include <linux/mutex.h> 44 #include <linux/rculist.h> 45 #include <linux/rcupdate.h> 46 #include <linux/spinlock.h> 47 #include <linux/hrtimer.h> 48 #include <linux/fs.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/workqueue.h> 51 #include <linux/ftrace.h> 52 #include <linux/cpu.h> 53 #include <linux/irq_work.h> 54 #include <linux/static_key.h> 55 #include <linux/jump_label_ratelimit.h> 56 #include <linux/atomic.h> 57 #include <linux/sysfs.h> 58 #include <linux/perf_regs.h> 59 #include <linux/cgroup.h> 60 #include <linux/refcount.h> 61 #include <linux/security.h> 62 #include <linux/static_call.h> 63 #include <asm/local.h> 64 65 struct perf_callchain_entry { 66 __u64 nr; 67 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 68 }; 69 70 struct perf_callchain_entry_ctx { 71 struct perf_callchain_entry *entry; 72 u32 max_stack; 73 u32 nr; 74 short contexts; 75 bool contexts_maxed; 76 }; 77 78 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 79 unsigned long off, unsigned long len); 80 81 struct perf_raw_frag { 82 union { 83 struct perf_raw_frag *next; 84 unsigned long pad; 85 }; 86 perf_copy_f copy; 87 void *data; 88 u32 size; 89 } __packed; 90 91 struct perf_raw_record { 92 struct perf_raw_frag frag; 93 u32 size; 94 }; 95 96 /* 97 * branch stack layout: 98 * nr: number of taken branches stored in entries[] 99 * hw_idx: The low level index of raw branch records 100 * for the most recent branch. 101 * -1ULL means invalid/unknown. 102 * 103 * Note that nr can vary from sample to sample 104 * branches (to, from) are stored from most recent 105 * to least recent, i.e., entries[0] contains the most 106 * recent branch. 107 * The entries[] is an abstraction of raw branch records, 108 * which may not be stored in age order in HW, e.g. Intel LBR. 109 * The hw_idx is to expose the low level index of raw 110 * branch record for the most recent branch aka entries[0]. 111 * The hw_idx index is between -1 (unknown) and max depth, 112 * which can be retrieved in /sys/devices/cpu/caps/branches. 113 * For the architectures whose raw branch records are 114 * already stored in age order, the hw_idx should be 0. 115 */ 116 struct perf_branch_stack { 117 __u64 nr; 118 __u64 hw_idx; 119 struct perf_branch_entry entries[]; 120 }; 121 122 struct task_struct; 123 124 /* 125 * extra PMU register associated with an event 126 */ 127 struct hw_perf_event_extra { 128 u64 config; /* register value */ 129 unsigned int reg; /* register address or index */ 130 int alloc; /* extra register already allocated */ 131 int idx; /* index in shared_regs->regs[] */ 132 }; 133 134 /** 135 * hw_perf_event::flag values 136 * 137 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 138 * usage. 139 */ 140 #define PERF_EVENT_FLAG_ARCH 0x0000ffff 141 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 142 143 /** 144 * struct hw_perf_event - performance event hardware details: 145 */ 146 struct hw_perf_event { 147 #ifdef CONFIG_PERF_EVENTS 148 union { 149 struct { /* hardware */ 150 u64 config; 151 u64 last_tag; 152 unsigned long config_base; 153 unsigned long event_base; 154 int event_base_rdpmc; 155 int idx; 156 int last_cpu; 157 int flags; 158 159 struct hw_perf_event_extra extra_reg; 160 struct hw_perf_event_extra branch_reg; 161 }; 162 struct { /* software */ 163 struct hrtimer hrtimer; 164 }; 165 struct { /* tracepoint */ 166 /* for tp_event->class */ 167 struct list_head tp_list; 168 }; 169 struct { /* amd_power */ 170 u64 pwr_acc; 171 u64 ptsc; 172 }; 173 #ifdef CONFIG_HAVE_HW_BREAKPOINT 174 struct { /* breakpoint */ 175 /* 176 * Crufty hack to avoid the chicken and egg 177 * problem hw_breakpoint has with context 178 * creation and event initalization. 179 */ 180 struct arch_hw_breakpoint info; 181 struct list_head bp_list; 182 }; 183 #endif 184 struct { /* amd_iommu */ 185 u8 iommu_bank; 186 u8 iommu_cntr; 187 u16 padding; 188 u64 conf; 189 u64 conf1; 190 }; 191 }; 192 /* 193 * If the event is a per task event, this will point to the task in 194 * question. See the comment in perf_event_alloc(). 195 */ 196 struct task_struct *target; 197 198 /* 199 * PMU would store hardware filter configuration 200 * here. 201 */ 202 void *addr_filters; 203 204 /* Last sync'ed generation of filters */ 205 unsigned long addr_filters_gen; 206 207 /* 208 * hw_perf_event::state flags; used to track the PERF_EF_* state. 209 */ 210 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 211 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 212 #define PERF_HES_ARCH 0x04 213 214 int state; 215 216 /* 217 * The last observed hardware counter value, updated with a 218 * local64_cmpxchg() such that pmu::read() can be called nested. 219 */ 220 local64_t prev_count; 221 222 /* 223 * The period to start the next sample with. 224 */ 225 u64 sample_period; 226 227 union { 228 struct { /* Sampling */ 229 /* 230 * The period we started this sample with. 231 */ 232 u64 last_period; 233 234 /* 235 * However much is left of the current period; 236 * note that this is a full 64bit value and 237 * allows for generation of periods longer 238 * than hardware might allow. 239 */ 240 local64_t period_left; 241 }; 242 struct { /* Topdown events counting for context switch */ 243 u64 saved_metric; 244 u64 saved_slots; 245 }; 246 }; 247 248 /* 249 * State for throttling the event, see __perf_event_overflow() and 250 * perf_adjust_freq_unthr_context(). 251 */ 252 u64 interrupts_seq; 253 u64 interrupts; 254 255 /* 256 * State for freq target events, see __perf_event_overflow() and 257 * perf_adjust_freq_unthr_context(). 258 */ 259 u64 freq_time_stamp; 260 u64 freq_count_stamp; 261 #endif 262 }; 263 264 struct perf_event; 265 266 /* 267 * Common implementation detail of pmu::{start,commit,cancel}_txn 268 */ 269 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 270 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 271 272 /** 273 * pmu::capabilities flags 274 */ 275 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 276 #define PERF_PMU_CAP_NO_NMI 0x0002 277 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 278 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 279 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 280 #define PERF_PMU_CAP_ITRACE 0x0020 281 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 282 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 283 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 284 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 285 286 struct perf_output_handle; 287 288 /** 289 * struct pmu - generic performance monitoring unit 290 */ 291 struct pmu { 292 struct list_head entry; 293 294 struct module *module; 295 struct device *dev; 296 const struct attribute_group **attr_groups; 297 const struct attribute_group **attr_update; 298 const char *name; 299 int type; 300 301 /* 302 * various common per-pmu feature flags 303 */ 304 int capabilities; 305 306 int __percpu *pmu_disable_count; 307 struct perf_cpu_context __percpu *pmu_cpu_context; 308 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 309 int task_ctx_nr; 310 int hrtimer_interval_ms; 311 312 /* number of address filters this PMU can do */ 313 unsigned int nr_addr_filters; 314 315 /* 316 * Fully disable/enable this PMU, can be used to protect from the PMI 317 * as well as for lazy/batch writing of the MSRs. 318 */ 319 void (*pmu_enable) (struct pmu *pmu); /* optional */ 320 void (*pmu_disable) (struct pmu *pmu); /* optional */ 321 322 /* 323 * Try and initialize the event for this PMU. 324 * 325 * Returns: 326 * -ENOENT -- @event is not for this PMU 327 * 328 * -ENODEV -- @event is for this PMU but PMU not present 329 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 330 * -EINVAL -- @event is for this PMU but @event is not valid 331 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 332 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 333 * 334 * 0 -- @event is for this PMU and valid 335 * 336 * Other error return values are allowed. 337 */ 338 int (*event_init) (struct perf_event *event); 339 340 /* 341 * Notification that the event was mapped or unmapped. Called 342 * in the context of the mapping task. 343 */ 344 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 345 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 346 347 /* 348 * Flags for ->add()/->del()/ ->start()/->stop(). There are 349 * matching hw_perf_event::state flags. 350 */ 351 #define PERF_EF_START 0x01 /* start the counter when adding */ 352 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 353 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 354 355 /* 356 * Adds/Removes a counter to/from the PMU, can be done inside a 357 * transaction, see the ->*_txn() methods. 358 * 359 * The add/del callbacks will reserve all hardware resources required 360 * to service the event, this includes any counter constraint 361 * scheduling etc. 362 * 363 * Called with IRQs disabled and the PMU disabled on the CPU the event 364 * is on. 365 * 366 * ->add() called without PERF_EF_START should result in the same state 367 * as ->add() followed by ->stop(). 368 * 369 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 370 * ->stop() that must deal with already being stopped without 371 * PERF_EF_UPDATE. 372 */ 373 int (*add) (struct perf_event *event, int flags); 374 void (*del) (struct perf_event *event, int flags); 375 376 /* 377 * Starts/Stops a counter present on the PMU. 378 * 379 * The PMI handler should stop the counter when perf_event_overflow() 380 * returns !0. ->start() will be used to continue. 381 * 382 * Also used to change the sample period. 383 * 384 * Called with IRQs disabled and the PMU disabled on the CPU the event 385 * is on -- will be called from NMI context with the PMU generates 386 * NMIs. 387 * 388 * ->stop() with PERF_EF_UPDATE will read the counter and update 389 * period/count values like ->read() would. 390 * 391 * ->start() with PERF_EF_RELOAD will reprogram the counter 392 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 393 */ 394 void (*start) (struct perf_event *event, int flags); 395 void (*stop) (struct perf_event *event, int flags); 396 397 /* 398 * Updates the counter value of the event. 399 * 400 * For sampling capable PMUs this will also update the software period 401 * hw_perf_event::period_left field. 402 */ 403 void (*read) (struct perf_event *event); 404 405 /* 406 * Group events scheduling is treated as a transaction, add 407 * group events as a whole and perform one schedulability test. 408 * If the test fails, roll back the whole group 409 * 410 * Start the transaction, after this ->add() doesn't need to 411 * do schedulability tests. 412 * 413 * Optional. 414 */ 415 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 416 /* 417 * If ->start_txn() disabled the ->add() schedulability test 418 * then ->commit_txn() is required to perform one. On success 419 * the transaction is closed. On error the transaction is kept 420 * open until ->cancel_txn() is called. 421 * 422 * Optional. 423 */ 424 int (*commit_txn) (struct pmu *pmu); 425 /* 426 * Will cancel the transaction, assumes ->del() is called 427 * for each successful ->add() during the transaction. 428 * 429 * Optional. 430 */ 431 void (*cancel_txn) (struct pmu *pmu); 432 433 /* 434 * Will return the value for perf_event_mmap_page::index for this event, 435 * if no implementation is provided it will default to: event->hw.idx + 1. 436 */ 437 int (*event_idx) (struct perf_event *event); /*optional */ 438 439 /* 440 * context-switches callback 441 */ 442 void (*sched_task) (struct perf_event_context *ctx, 443 bool sched_in); 444 445 /* 446 * Kmem cache of PMU specific data 447 */ 448 struct kmem_cache *task_ctx_cache; 449 450 /* 451 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 452 * can be synchronized using this function. See Intel LBR callstack support 453 * implementation and Perf core context switch handling callbacks for usage 454 * examples. 455 */ 456 void (*swap_task_ctx) (struct perf_event_context *prev, 457 struct perf_event_context *next); 458 /* optional */ 459 460 /* 461 * Set up pmu-private data structures for an AUX area 462 */ 463 void *(*setup_aux) (struct perf_event *event, void **pages, 464 int nr_pages, bool overwrite); 465 /* optional */ 466 467 /* 468 * Free pmu-private AUX data structures 469 */ 470 void (*free_aux) (void *aux); /* optional */ 471 472 /* 473 * Take a snapshot of the AUX buffer without touching the event 474 * state, so that preempting ->start()/->stop() callbacks does 475 * not interfere with their logic. Called in PMI context. 476 * 477 * Returns the size of AUX data copied to the output handle. 478 * 479 * Optional. 480 */ 481 long (*snapshot_aux) (struct perf_event *event, 482 struct perf_output_handle *handle, 483 unsigned long size); 484 485 /* 486 * Validate address range filters: make sure the HW supports the 487 * requested configuration and number of filters; return 0 if the 488 * supplied filters are valid, -errno otherwise. 489 * 490 * Runs in the context of the ioctl()ing process and is not serialized 491 * with the rest of the PMU callbacks. 492 */ 493 int (*addr_filters_validate) (struct list_head *filters); 494 /* optional */ 495 496 /* 497 * Synchronize address range filter configuration: 498 * translate hw-agnostic filters into hardware configuration in 499 * event::hw::addr_filters. 500 * 501 * Runs as a part of filter sync sequence that is done in ->start() 502 * callback by calling perf_event_addr_filters_sync(). 503 * 504 * May (and should) traverse event::addr_filters::list, for which its 505 * caller provides necessary serialization. 506 */ 507 void (*addr_filters_sync) (struct perf_event *event); 508 /* optional */ 509 510 /* 511 * Check if event can be used for aux_output purposes for 512 * events of this PMU. 513 * 514 * Runs from perf_event_open(). Should return 0 for "no match" 515 * or non-zero for "match". 516 */ 517 int (*aux_output_match) (struct perf_event *event); 518 /* optional */ 519 520 /* 521 * Filter events for PMU-specific reasons. 522 */ 523 int (*filter_match) (struct perf_event *event); /* optional */ 524 525 /* 526 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 527 */ 528 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 529 }; 530 531 enum perf_addr_filter_action_t { 532 PERF_ADDR_FILTER_ACTION_STOP = 0, 533 PERF_ADDR_FILTER_ACTION_START, 534 PERF_ADDR_FILTER_ACTION_FILTER, 535 }; 536 537 /** 538 * struct perf_addr_filter - address range filter definition 539 * @entry: event's filter list linkage 540 * @path: object file's path for file-based filters 541 * @offset: filter range offset 542 * @size: filter range size (size==0 means single address trigger) 543 * @action: filter/start/stop 544 * 545 * This is a hardware-agnostic filter configuration as specified by the user. 546 */ 547 struct perf_addr_filter { 548 struct list_head entry; 549 struct path path; 550 unsigned long offset; 551 unsigned long size; 552 enum perf_addr_filter_action_t action; 553 }; 554 555 /** 556 * struct perf_addr_filters_head - container for address range filters 557 * @list: list of filters for this event 558 * @lock: spinlock that serializes accesses to the @list and event's 559 * (and its children's) filter generations. 560 * @nr_file_filters: number of file-based filters 561 * 562 * A child event will use parent's @list (and therefore @lock), so they are 563 * bundled together; see perf_event_addr_filters(). 564 */ 565 struct perf_addr_filters_head { 566 struct list_head list; 567 raw_spinlock_t lock; 568 unsigned int nr_file_filters; 569 }; 570 571 struct perf_addr_filter_range { 572 unsigned long start; 573 unsigned long size; 574 }; 575 576 /** 577 * enum perf_event_state - the states of an event: 578 */ 579 enum perf_event_state { 580 PERF_EVENT_STATE_DEAD = -4, 581 PERF_EVENT_STATE_EXIT = -3, 582 PERF_EVENT_STATE_ERROR = -2, 583 PERF_EVENT_STATE_OFF = -1, 584 PERF_EVENT_STATE_INACTIVE = 0, 585 PERF_EVENT_STATE_ACTIVE = 1, 586 }; 587 588 struct file; 589 struct perf_sample_data; 590 591 typedef void (*perf_overflow_handler_t)(struct perf_event *, 592 struct perf_sample_data *, 593 struct pt_regs *regs); 594 595 /* 596 * Event capabilities. For event_caps and groups caps. 597 * 598 * PERF_EV_CAP_SOFTWARE: Is a software event. 599 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 600 * from any CPU in the package where it is active. 601 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 602 * cannot be a group leader. If an event with this flag is detached from the 603 * group it is scheduled out and moved into an unrecoverable ERROR state. 604 */ 605 #define PERF_EV_CAP_SOFTWARE BIT(0) 606 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 607 #define PERF_EV_CAP_SIBLING BIT(2) 608 609 #define SWEVENT_HLIST_BITS 8 610 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 611 612 struct swevent_hlist { 613 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 614 struct rcu_head rcu_head; 615 }; 616 617 #define PERF_ATTACH_CONTEXT 0x01 618 #define PERF_ATTACH_GROUP 0x02 619 #define PERF_ATTACH_TASK 0x04 620 #define PERF_ATTACH_TASK_DATA 0x08 621 #define PERF_ATTACH_ITRACE 0x10 622 #define PERF_ATTACH_SCHED_CB 0x20 623 #define PERF_ATTACH_CHILD 0x40 624 625 struct bpf_prog; 626 struct perf_cgroup; 627 struct perf_buffer; 628 629 struct pmu_event_list { 630 raw_spinlock_t lock; 631 struct list_head list; 632 }; 633 634 #define for_each_sibling_event(sibling, event) \ 635 if ((event)->group_leader == (event)) \ 636 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 637 638 /** 639 * struct perf_event - performance event kernel representation: 640 */ 641 struct perf_event { 642 #ifdef CONFIG_PERF_EVENTS 643 /* 644 * entry onto perf_event_context::event_list; 645 * modifications require ctx->lock 646 * RCU safe iterations. 647 */ 648 struct list_head event_entry; 649 650 /* 651 * Locked for modification by both ctx->mutex and ctx->lock; holding 652 * either sufficies for read. 653 */ 654 struct list_head sibling_list; 655 struct list_head active_list; 656 /* 657 * Node on the pinned or flexible tree located at the event context; 658 */ 659 struct rb_node group_node; 660 u64 group_index; 661 /* 662 * We need storage to track the entries in perf_pmu_migrate_context; we 663 * cannot use the event_entry because of RCU and we want to keep the 664 * group in tact which avoids us using the other two entries. 665 */ 666 struct list_head migrate_entry; 667 668 struct hlist_node hlist_entry; 669 struct list_head active_entry; 670 int nr_siblings; 671 672 /* Not serialized. Only written during event initialization. */ 673 int event_caps; 674 /* The cumulative AND of all event_caps for events in this group. */ 675 int group_caps; 676 677 struct perf_event *group_leader; 678 struct pmu *pmu; 679 void *pmu_private; 680 681 enum perf_event_state state; 682 unsigned int attach_state; 683 local64_t count; 684 atomic64_t child_count; 685 686 /* 687 * These are the total time in nanoseconds that the event 688 * has been enabled (i.e. eligible to run, and the task has 689 * been scheduled in, if this is a per-task event) 690 * and running (scheduled onto the CPU), respectively. 691 */ 692 u64 total_time_enabled; 693 u64 total_time_running; 694 u64 tstamp; 695 696 /* 697 * timestamp shadows the actual context timing but it can 698 * be safely used in NMI interrupt context. It reflects the 699 * context time as it was when the event was last scheduled in, 700 * or when ctx_sched_in failed to schedule the event because we 701 * run out of PMC. 702 * 703 * ctx_time already accounts for ctx->timestamp. Therefore to 704 * compute ctx_time for a sample, simply add perf_clock(). 705 */ 706 u64 shadow_ctx_time; 707 708 struct perf_event_attr attr; 709 u16 header_size; 710 u16 id_header_size; 711 u16 read_size; 712 struct hw_perf_event hw; 713 714 struct perf_event_context *ctx; 715 atomic_long_t refcount; 716 717 /* 718 * These accumulate total time (in nanoseconds) that children 719 * events have been enabled and running, respectively. 720 */ 721 atomic64_t child_total_time_enabled; 722 atomic64_t child_total_time_running; 723 724 /* 725 * Protect attach/detach and child_list: 726 */ 727 struct mutex child_mutex; 728 struct list_head child_list; 729 struct perf_event *parent; 730 731 int oncpu; 732 int cpu; 733 734 struct list_head owner_entry; 735 struct task_struct *owner; 736 737 /* mmap bits */ 738 struct mutex mmap_mutex; 739 atomic_t mmap_count; 740 741 struct perf_buffer *rb; 742 struct list_head rb_entry; 743 unsigned long rcu_batches; 744 int rcu_pending; 745 746 /* poll related */ 747 wait_queue_head_t waitq; 748 struct fasync_struct *fasync; 749 750 /* delayed work for NMIs and such */ 751 int pending_wakeup; 752 int pending_kill; 753 int pending_disable; 754 unsigned long pending_addr; /* SIGTRAP */ 755 struct irq_work pending; 756 757 atomic_t event_limit; 758 759 /* address range filters */ 760 struct perf_addr_filters_head addr_filters; 761 /* vma address array for file-based filders */ 762 struct perf_addr_filter_range *addr_filter_ranges; 763 unsigned long addr_filters_gen; 764 765 /* for aux_output events */ 766 struct perf_event *aux_event; 767 768 void (*destroy)(struct perf_event *); 769 struct rcu_head rcu_head; 770 771 struct pid_namespace *ns; 772 u64 id; 773 774 u64 (*clock)(void); 775 perf_overflow_handler_t overflow_handler; 776 void *overflow_handler_context; 777 #ifdef CONFIG_BPF_SYSCALL 778 perf_overflow_handler_t orig_overflow_handler; 779 struct bpf_prog *prog; 780 u64 bpf_cookie; 781 #endif 782 783 #ifdef CONFIG_EVENT_TRACING 784 struct trace_event_call *tp_event; 785 struct event_filter *filter; 786 #ifdef CONFIG_FUNCTION_TRACER 787 struct ftrace_ops ftrace_ops; 788 #endif 789 #endif 790 791 #ifdef CONFIG_CGROUP_PERF 792 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 793 #endif 794 795 #ifdef CONFIG_SECURITY 796 void *security; 797 #endif 798 struct list_head sb_list; 799 #endif /* CONFIG_PERF_EVENTS */ 800 }; 801 802 803 struct perf_event_groups { 804 struct rb_root tree; 805 u64 index; 806 }; 807 808 /** 809 * struct perf_event_context - event context structure 810 * 811 * Used as a container for task events and CPU events as well: 812 */ 813 struct perf_event_context { 814 struct pmu *pmu; 815 /* 816 * Protect the states of the events in the list, 817 * nr_active, and the list: 818 */ 819 raw_spinlock_t lock; 820 /* 821 * Protect the list of events. Locking either mutex or lock 822 * is sufficient to ensure the list doesn't change; to change 823 * the list you need to lock both the mutex and the spinlock. 824 */ 825 struct mutex mutex; 826 827 struct list_head active_ctx_list; 828 struct perf_event_groups pinned_groups; 829 struct perf_event_groups flexible_groups; 830 struct list_head event_list; 831 832 struct list_head pinned_active; 833 struct list_head flexible_active; 834 835 int nr_events; 836 int nr_active; 837 int nr_user; 838 int is_active; 839 int nr_stat; 840 int nr_freq; 841 int rotate_disable; 842 /* 843 * Set when nr_events != nr_active, except tolerant to events not 844 * necessary to be active due to scheduling constraints, such as cgroups. 845 */ 846 int rotate_necessary; 847 refcount_t refcount; 848 struct task_struct *task; 849 850 /* 851 * Context clock, runs when context enabled. 852 */ 853 u64 time; 854 u64 timestamp; 855 856 /* 857 * These fields let us detect when two contexts have both 858 * been cloned (inherited) from a common ancestor. 859 */ 860 struct perf_event_context *parent_ctx; 861 u64 parent_gen; 862 u64 generation; 863 int pin_count; 864 #ifdef CONFIG_CGROUP_PERF 865 int nr_cgroups; /* cgroup evts */ 866 #endif 867 void *task_ctx_data; /* pmu specific data */ 868 struct rcu_head rcu_head; 869 }; 870 871 /* 872 * Number of contexts where an event can trigger: 873 * task, softirq, hardirq, nmi. 874 */ 875 #define PERF_NR_CONTEXTS 4 876 877 /** 878 * struct perf_event_cpu_context - per cpu event context structure 879 */ 880 struct perf_cpu_context { 881 struct perf_event_context ctx; 882 struct perf_event_context *task_ctx; 883 int active_oncpu; 884 int exclusive; 885 886 raw_spinlock_t hrtimer_lock; 887 struct hrtimer hrtimer; 888 ktime_t hrtimer_interval; 889 unsigned int hrtimer_active; 890 891 #ifdef CONFIG_CGROUP_PERF 892 struct perf_cgroup *cgrp; 893 struct list_head cgrp_cpuctx_entry; 894 #endif 895 896 struct list_head sched_cb_entry; 897 int sched_cb_usage; 898 899 int online; 900 /* 901 * Per-CPU storage for iterators used in visit_groups_merge. The default 902 * storage is of size 2 to hold the CPU and any CPU event iterators. 903 */ 904 int heap_size; 905 struct perf_event **heap; 906 struct perf_event *heap_default[2]; 907 }; 908 909 struct perf_output_handle { 910 struct perf_event *event; 911 struct perf_buffer *rb; 912 unsigned long wakeup; 913 unsigned long size; 914 u64 aux_flags; 915 union { 916 void *addr; 917 unsigned long head; 918 }; 919 int page; 920 }; 921 922 struct bpf_perf_event_data_kern { 923 bpf_user_pt_regs_t *regs; 924 struct perf_sample_data *data; 925 struct perf_event *event; 926 }; 927 928 #ifdef CONFIG_CGROUP_PERF 929 930 /* 931 * perf_cgroup_info keeps track of time_enabled for a cgroup. 932 * This is a per-cpu dynamically allocated data structure. 933 */ 934 struct perf_cgroup_info { 935 u64 time; 936 u64 timestamp; 937 }; 938 939 struct perf_cgroup { 940 struct cgroup_subsys_state css; 941 struct perf_cgroup_info __percpu *info; 942 }; 943 944 /* 945 * Must ensure cgroup is pinned (css_get) before calling 946 * this function. In other words, we cannot call this function 947 * if there is no cgroup event for the current CPU context. 948 */ 949 static inline struct perf_cgroup * 950 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 951 { 952 return container_of(task_css_check(task, perf_event_cgrp_id, 953 ctx ? lockdep_is_held(&ctx->lock) 954 : true), 955 struct perf_cgroup, css); 956 } 957 #endif /* CONFIG_CGROUP_PERF */ 958 959 #ifdef CONFIG_PERF_EVENTS 960 961 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 962 struct perf_event *event); 963 extern void perf_aux_output_end(struct perf_output_handle *handle, 964 unsigned long size); 965 extern int perf_aux_output_skip(struct perf_output_handle *handle, 966 unsigned long size); 967 extern void *perf_get_aux(struct perf_output_handle *handle); 968 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 969 extern void perf_event_itrace_started(struct perf_event *event); 970 971 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 972 extern void perf_pmu_unregister(struct pmu *pmu); 973 974 extern void __perf_event_task_sched_in(struct task_struct *prev, 975 struct task_struct *task); 976 extern void __perf_event_task_sched_out(struct task_struct *prev, 977 struct task_struct *next); 978 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 979 extern void perf_event_exit_task(struct task_struct *child); 980 extern void perf_event_free_task(struct task_struct *task); 981 extern void perf_event_delayed_put(struct task_struct *task); 982 extern struct file *perf_event_get(unsigned int fd); 983 extern const struct perf_event *perf_get_event(struct file *file); 984 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 985 extern void perf_event_print_debug(void); 986 extern void perf_pmu_disable(struct pmu *pmu); 987 extern void perf_pmu_enable(struct pmu *pmu); 988 extern void perf_sched_cb_dec(struct pmu *pmu); 989 extern void perf_sched_cb_inc(struct pmu *pmu); 990 extern int perf_event_task_disable(void); 991 extern int perf_event_task_enable(void); 992 993 extern void perf_pmu_resched(struct pmu *pmu); 994 995 extern int perf_event_refresh(struct perf_event *event, int refresh); 996 extern void perf_event_update_userpage(struct perf_event *event); 997 extern int perf_event_release_kernel(struct perf_event *event); 998 extern struct perf_event * 999 perf_event_create_kernel_counter(struct perf_event_attr *attr, 1000 int cpu, 1001 struct task_struct *task, 1002 perf_overflow_handler_t callback, 1003 void *context); 1004 extern void perf_pmu_migrate_context(struct pmu *pmu, 1005 int src_cpu, int dst_cpu); 1006 int perf_event_read_local(struct perf_event *event, u64 *value, 1007 u64 *enabled, u64 *running); 1008 extern u64 perf_event_read_value(struct perf_event *event, 1009 u64 *enabled, u64 *running); 1010 1011 1012 struct perf_sample_data { 1013 /* 1014 * Fields set by perf_sample_data_init(), group so as to 1015 * minimize the cachelines touched. 1016 */ 1017 u64 addr; 1018 struct perf_raw_record *raw; 1019 struct perf_branch_stack *br_stack; 1020 u64 period; 1021 union perf_sample_weight weight; 1022 u64 txn; 1023 union perf_mem_data_src data_src; 1024 1025 /* 1026 * The other fields, optionally {set,used} by 1027 * perf_{prepare,output}_sample(). 1028 */ 1029 u64 type; 1030 u64 ip; 1031 struct { 1032 u32 pid; 1033 u32 tid; 1034 } tid_entry; 1035 u64 time; 1036 u64 id; 1037 u64 stream_id; 1038 struct { 1039 u32 cpu; 1040 u32 reserved; 1041 } cpu_entry; 1042 struct perf_callchain_entry *callchain; 1043 u64 aux_size; 1044 1045 struct perf_regs regs_user; 1046 struct perf_regs regs_intr; 1047 u64 stack_user_size; 1048 1049 u64 phys_addr; 1050 u64 cgroup; 1051 u64 data_page_size; 1052 u64 code_page_size; 1053 } ____cacheline_aligned; 1054 1055 /* default value for data source */ 1056 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1057 PERF_MEM_S(LVL, NA) |\ 1058 PERF_MEM_S(SNOOP, NA) |\ 1059 PERF_MEM_S(LOCK, NA) |\ 1060 PERF_MEM_S(TLB, NA)) 1061 1062 static inline void perf_sample_data_init(struct perf_sample_data *data, 1063 u64 addr, u64 period) 1064 { 1065 /* remaining struct members initialized in perf_prepare_sample() */ 1066 data->addr = addr; 1067 data->raw = NULL; 1068 data->br_stack = NULL; 1069 data->period = period; 1070 data->weight.full = 0; 1071 data->data_src.val = PERF_MEM_NA; 1072 data->txn = 0; 1073 } 1074 1075 extern void perf_output_sample(struct perf_output_handle *handle, 1076 struct perf_event_header *header, 1077 struct perf_sample_data *data, 1078 struct perf_event *event); 1079 extern void perf_prepare_sample(struct perf_event_header *header, 1080 struct perf_sample_data *data, 1081 struct perf_event *event, 1082 struct pt_regs *regs); 1083 1084 extern int perf_event_overflow(struct perf_event *event, 1085 struct perf_sample_data *data, 1086 struct pt_regs *regs); 1087 1088 extern void perf_event_output_forward(struct perf_event *event, 1089 struct perf_sample_data *data, 1090 struct pt_regs *regs); 1091 extern void perf_event_output_backward(struct perf_event *event, 1092 struct perf_sample_data *data, 1093 struct pt_regs *regs); 1094 extern int perf_event_output(struct perf_event *event, 1095 struct perf_sample_data *data, 1096 struct pt_regs *regs); 1097 1098 static inline bool 1099 is_default_overflow_handler(struct perf_event *event) 1100 { 1101 if (likely(event->overflow_handler == perf_event_output_forward)) 1102 return true; 1103 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1104 return true; 1105 return false; 1106 } 1107 1108 extern void 1109 perf_event_header__init_id(struct perf_event_header *header, 1110 struct perf_sample_data *data, 1111 struct perf_event *event); 1112 extern void 1113 perf_event__output_id_sample(struct perf_event *event, 1114 struct perf_output_handle *handle, 1115 struct perf_sample_data *sample); 1116 1117 extern void 1118 perf_log_lost_samples(struct perf_event *event, u64 lost); 1119 1120 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1121 { 1122 struct perf_event_attr *attr = &event->attr; 1123 1124 return attr->exclude_idle || attr->exclude_user || 1125 attr->exclude_kernel || attr->exclude_hv || 1126 attr->exclude_guest || attr->exclude_host; 1127 } 1128 1129 static inline bool is_sampling_event(struct perf_event *event) 1130 { 1131 return event->attr.sample_period != 0; 1132 } 1133 1134 /* 1135 * Return 1 for a software event, 0 for a hardware event 1136 */ 1137 static inline int is_software_event(struct perf_event *event) 1138 { 1139 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1140 } 1141 1142 /* 1143 * Return 1 for event in sw context, 0 for event in hw context 1144 */ 1145 static inline int in_software_context(struct perf_event *event) 1146 { 1147 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1148 } 1149 1150 static inline int is_exclusive_pmu(struct pmu *pmu) 1151 { 1152 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1153 } 1154 1155 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1156 1157 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1158 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1159 1160 #ifndef perf_arch_fetch_caller_regs 1161 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1162 #endif 1163 1164 /* 1165 * When generating a perf sample in-line, instead of from an interrupt / 1166 * exception, we lack a pt_regs. This is typically used from software events 1167 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1168 * 1169 * We typically don't need a full set, but (for x86) do require: 1170 * - ip for PERF_SAMPLE_IP 1171 * - cs for user_mode() tests 1172 * - sp for PERF_SAMPLE_CALLCHAIN 1173 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1174 * 1175 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1176 * things like PERF_SAMPLE_REGS_INTR. 1177 */ 1178 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1179 { 1180 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1181 } 1182 1183 static __always_inline void 1184 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1185 { 1186 if (static_key_false(&perf_swevent_enabled[event_id])) 1187 __perf_sw_event(event_id, nr, regs, addr); 1188 } 1189 1190 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1191 1192 /* 1193 * 'Special' version for the scheduler, it hard assumes no recursion, 1194 * which is guaranteed by us not actually scheduling inside other swevents 1195 * because those disable preemption. 1196 */ 1197 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1198 { 1199 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1200 1201 perf_fetch_caller_regs(regs); 1202 ___perf_sw_event(event_id, nr, regs, addr); 1203 } 1204 1205 extern struct static_key_false perf_sched_events; 1206 1207 static __always_inline bool __perf_sw_enabled(int swevt) 1208 { 1209 return static_key_false(&perf_swevent_enabled[swevt]); 1210 } 1211 1212 static inline void perf_event_task_migrate(struct task_struct *task) 1213 { 1214 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1215 task->sched_migrated = 1; 1216 } 1217 1218 static inline void perf_event_task_sched_in(struct task_struct *prev, 1219 struct task_struct *task) 1220 { 1221 if (static_branch_unlikely(&perf_sched_events)) 1222 __perf_event_task_sched_in(prev, task); 1223 1224 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1225 task->sched_migrated) { 1226 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1227 task->sched_migrated = 0; 1228 } 1229 } 1230 1231 static inline void perf_event_task_sched_out(struct task_struct *prev, 1232 struct task_struct *next) 1233 { 1234 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1235 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1236 1237 #ifdef CONFIG_CGROUP_PERF 1238 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1239 perf_cgroup_from_task(prev, NULL) != 1240 perf_cgroup_from_task(next, NULL)) 1241 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1242 #endif 1243 1244 if (static_branch_unlikely(&perf_sched_events)) 1245 __perf_event_task_sched_out(prev, next); 1246 } 1247 1248 extern void perf_event_mmap(struct vm_area_struct *vma); 1249 1250 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1251 bool unregister, const char *sym); 1252 extern void perf_event_bpf_event(struct bpf_prog *prog, 1253 enum perf_bpf_event_type type, 1254 u16 flags); 1255 1256 #ifdef CONFIG_GUEST_PERF_EVENTS 1257 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1258 1259 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1260 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1261 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1262 1263 static inline unsigned int perf_guest_state(void) 1264 { 1265 return static_call(__perf_guest_state)(); 1266 } 1267 static inline unsigned long perf_guest_get_ip(void) 1268 { 1269 return static_call(__perf_guest_get_ip)(); 1270 } 1271 static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1272 { 1273 return static_call(__perf_guest_handle_intel_pt_intr)(); 1274 } 1275 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1276 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1277 #else 1278 static inline unsigned int perf_guest_state(void) { return 0; } 1279 static inline unsigned long perf_guest_get_ip(void) { return 0; } 1280 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1281 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1282 1283 extern void perf_event_exec(void); 1284 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1285 extern void perf_event_namespaces(struct task_struct *tsk); 1286 extern void perf_event_fork(struct task_struct *tsk); 1287 extern void perf_event_text_poke(const void *addr, 1288 const void *old_bytes, size_t old_len, 1289 const void *new_bytes, size_t new_len); 1290 1291 /* Callchains */ 1292 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1293 1294 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1295 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1296 extern struct perf_callchain_entry * 1297 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1298 u32 max_stack, bool crosstask, bool add_mark); 1299 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1300 extern int get_callchain_buffers(int max_stack); 1301 extern void put_callchain_buffers(void); 1302 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1303 extern void put_callchain_entry(int rctx); 1304 1305 extern int sysctl_perf_event_max_stack; 1306 extern int sysctl_perf_event_max_contexts_per_stack; 1307 1308 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1309 { 1310 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1311 struct perf_callchain_entry *entry = ctx->entry; 1312 entry->ip[entry->nr++] = ip; 1313 ++ctx->contexts; 1314 return 0; 1315 } else { 1316 ctx->contexts_maxed = true; 1317 return -1; /* no more room, stop walking the stack */ 1318 } 1319 } 1320 1321 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1322 { 1323 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1324 struct perf_callchain_entry *entry = ctx->entry; 1325 entry->ip[entry->nr++] = ip; 1326 ++ctx->nr; 1327 return 0; 1328 } else { 1329 return -1; /* no more room, stop walking the stack */ 1330 } 1331 } 1332 1333 extern int sysctl_perf_event_paranoid; 1334 extern int sysctl_perf_event_mlock; 1335 extern int sysctl_perf_event_sample_rate; 1336 extern int sysctl_perf_cpu_time_max_percent; 1337 1338 extern void perf_sample_event_took(u64 sample_len_ns); 1339 1340 int perf_proc_update_handler(struct ctl_table *table, int write, 1341 void *buffer, size_t *lenp, loff_t *ppos); 1342 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1343 void *buffer, size_t *lenp, loff_t *ppos); 1344 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1345 void *buffer, size_t *lenp, loff_t *ppos); 1346 1347 /* Access to perf_event_open(2) syscall. */ 1348 #define PERF_SECURITY_OPEN 0 1349 1350 /* Finer grained perf_event_open(2) access control. */ 1351 #define PERF_SECURITY_CPU 1 1352 #define PERF_SECURITY_KERNEL 2 1353 #define PERF_SECURITY_TRACEPOINT 3 1354 1355 static inline int perf_is_paranoid(void) 1356 { 1357 return sysctl_perf_event_paranoid > -1; 1358 } 1359 1360 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1361 { 1362 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1363 return -EACCES; 1364 1365 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1366 } 1367 1368 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1369 { 1370 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1371 return -EACCES; 1372 1373 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1374 } 1375 1376 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1377 { 1378 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1379 return -EPERM; 1380 1381 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1382 } 1383 1384 extern void perf_event_init(void); 1385 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1386 int entry_size, struct pt_regs *regs, 1387 struct hlist_head *head, int rctx, 1388 struct task_struct *task); 1389 extern void perf_bp_event(struct perf_event *event, void *data); 1390 1391 #ifndef perf_misc_flags 1392 # define perf_misc_flags(regs) \ 1393 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1394 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1395 #endif 1396 #ifndef perf_arch_bpf_user_pt_regs 1397 # define perf_arch_bpf_user_pt_regs(regs) regs 1398 #endif 1399 1400 static inline bool has_branch_stack(struct perf_event *event) 1401 { 1402 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1403 } 1404 1405 static inline bool needs_branch_stack(struct perf_event *event) 1406 { 1407 return event->attr.branch_sample_type != 0; 1408 } 1409 1410 static inline bool has_aux(struct perf_event *event) 1411 { 1412 return event->pmu->setup_aux; 1413 } 1414 1415 static inline bool is_write_backward(struct perf_event *event) 1416 { 1417 return !!event->attr.write_backward; 1418 } 1419 1420 static inline bool has_addr_filter(struct perf_event *event) 1421 { 1422 return event->pmu->nr_addr_filters; 1423 } 1424 1425 /* 1426 * An inherited event uses parent's filters 1427 */ 1428 static inline struct perf_addr_filters_head * 1429 perf_event_addr_filters(struct perf_event *event) 1430 { 1431 struct perf_addr_filters_head *ifh = &event->addr_filters; 1432 1433 if (event->parent) 1434 ifh = &event->parent->addr_filters; 1435 1436 return ifh; 1437 } 1438 1439 extern void perf_event_addr_filters_sync(struct perf_event *event); 1440 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1441 1442 extern int perf_output_begin(struct perf_output_handle *handle, 1443 struct perf_sample_data *data, 1444 struct perf_event *event, unsigned int size); 1445 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1446 struct perf_sample_data *data, 1447 struct perf_event *event, 1448 unsigned int size); 1449 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1450 struct perf_sample_data *data, 1451 struct perf_event *event, 1452 unsigned int size); 1453 1454 extern void perf_output_end(struct perf_output_handle *handle); 1455 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1456 const void *buf, unsigned int len); 1457 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1458 unsigned int len); 1459 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1460 struct perf_output_handle *handle, 1461 unsigned long from, unsigned long to); 1462 extern int perf_swevent_get_recursion_context(void); 1463 extern void perf_swevent_put_recursion_context(int rctx); 1464 extern u64 perf_swevent_set_period(struct perf_event *event); 1465 extern void perf_event_enable(struct perf_event *event); 1466 extern void perf_event_disable(struct perf_event *event); 1467 extern void perf_event_disable_local(struct perf_event *event); 1468 extern void perf_event_disable_inatomic(struct perf_event *event); 1469 extern void perf_event_task_tick(void); 1470 extern int perf_event_account_interrupt(struct perf_event *event); 1471 extern int perf_event_period(struct perf_event *event, u64 value); 1472 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1473 #else /* !CONFIG_PERF_EVENTS: */ 1474 static inline void * 1475 perf_aux_output_begin(struct perf_output_handle *handle, 1476 struct perf_event *event) { return NULL; } 1477 static inline void 1478 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1479 { } 1480 static inline int 1481 perf_aux_output_skip(struct perf_output_handle *handle, 1482 unsigned long size) { return -EINVAL; } 1483 static inline void * 1484 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1485 static inline void 1486 perf_event_task_migrate(struct task_struct *task) { } 1487 static inline void 1488 perf_event_task_sched_in(struct task_struct *prev, 1489 struct task_struct *task) { } 1490 static inline void 1491 perf_event_task_sched_out(struct task_struct *prev, 1492 struct task_struct *next) { } 1493 static inline int perf_event_init_task(struct task_struct *child, 1494 u64 clone_flags) { return 0; } 1495 static inline void perf_event_exit_task(struct task_struct *child) { } 1496 static inline void perf_event_free_task(struct task_struct *task) { } 1497 static inline void perf_event_delayed_put(struct task_struct *task) { } 1498 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1499 static inline const struct perf_event *perf_get_event(struct file *file) 1500 { 1501 return ERR_PTR(-EINVAL); 1502 } 1503 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1504 { 1505 return ERR_PTR(-EINVAL); 1506 } 1507 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1508 u64 *enabled, u64 *running) 1509 { 1510 return -EINVAL; 1511 } 1512 static inline void perf_event_print_debug(void) { } 1513 static inline int perf_event_task_disable(void) { return -EINVAL; } 1514 static inline int perf_event_task_enable(void) { return -EINVAL; } 1515 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1516 { 1517 return -EINVAL; 1518 } 1519 1520 static inline void 1521 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1522 static inline void 1523 perf_bp_event(struct perf_event *event, void *data) { } 1524 1525 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1526 1527 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1528 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1529 bool unregister, const char *sym) { } 1530 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1531 enum perf_bpf_event_type type, 1532 u16 flags) { } 1533 static inline void perf_event_exec(void) { } 1534 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1535 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1536 static inline void perf_event_fork(struct task_struct *tsk) { } 1537 static inline void perf_event_text_poke(const void *addr, 1538 const void *old_bytes, 1539 size_t old_len, 1540 const void *new_bytes, 1541 size_t new_len) { } 1542 static inline void perf_event_init(void) { } 1543 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1544 static inline void perf_swevent_put_recursion_context(int rctx) { } 1545 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1546 static inline void perf_event_enable(struct perf_event *event) { } 1547 static inline void perf_event_disable(struct perf_event *event) { } 1548 static inline int __perf_event_disable(void *info) { return -1; } 1549 static inline void perf_event_task_tick(void) { } 1550 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1551 static inline int perf_event_period(struct perf_event *event, u64 value) 1552 { 1553 return -EINVAL; 1554 } 1555 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1556 { 1557 return 0; 1558 } 1559 #endif 1560 1561 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1562 extern void perf_restore_debug_store(void); 1563 #else 1564 static inline void perf_restore_debug_store(void) { } 1565 #endif 1566 1567 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1568 { 1569 return frag->pad < sizeof(u64); 1570 } 1571 1572 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1573 1574 struct perf_pmu_events_attr { 1575 struct device_attribute attr; 1576 u64 id; 1577 const char *event_str; 1578 }; 1579 1580 struct perf_pmu_events_ht_attr { 1581 struct device_attribute attr; 1582 u64 id; 1583 const char *event_str_ht; 1584 const char *event_str_noht; 1585 }; 1586 1587 struct perf_pmu_events_hybrid_attr { 1588 struct device_attribute attr; 1589 u64 id; 1590 const char *event_str; 1591 u64 pmu_type; 1592 }; 1593 1594 struct perf_pmu_format_hybrid_attr { 1595 struct device_attribute attr; 1596 u64 pmu_type; 1597 }; 1598 1599 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1600 char *page); 1601 1602 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1603 static struct perf_pmu_events_attr _var = { \ 1604 .attr = __ATTR(_name, 0444, _show, NULL), \ 1605 .id = _id, \ 1606 }; 1607 1608 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1609 static struct perf_pmu_events_attr _var = { \ 1610 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1611 .id = 0, \ 1612 .event_str = _str, \ 1613 }; 1614 1615 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1616 (&((struct perf_pmu_events_attr[]) { \ 1617 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1618 .id = _id, } \ 1619 })[0].attr.attr) 1620 1621 #define PMU_FORMAT_ATTR(_name, _format) \ 1622 static ssize_t \ 1623 _name##_show(struct device *dev, \ 1624 struct device_attribute *attr, \ 1625 char *page) \ 1626 { \ 1627 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1628 return sprintf(page, _format "\n"); \ 1629 } \ 1630 \ 1631 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1632 1633 /* Performance counter hotplug functions */ 1634 #ifdef CONFIG_PERF_EVENTS 1635 int perf_event_init_cpu(unsigned int cpu); 1636 int perf_event_exit_cpu(unsigned int cpu); 1637 #else 1638 #define perf_event_init_cpu NULL 1639 #define perf_event_exit_cpu NULL 1640 #endif 1641 1642 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1643 struct perf_event_mmap_page *userpg, 1644 u64 now); 1645 1646 #ifdef CONFIG_MMU 1647 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1648 #endif 1649 1650 /* 1651 * Snapshot branch stack on software events. 1652 * 1653 * Branch stack can be very useful in understanding software events. For 1654 * example, when a long function, e.g. sys_perf_event_open, returns an 1655 * errno, it is not obvious why the function failed. Branch stack could 1656 * provide very helpful information in this type of scenarios. 1657 * 1658 * On software event, it is necessary to stop the hardware branch recorder 1659 * fast. Otherwise, the hardware register/buffer will be flushed with 1660 * entries of the triggering event. Therefore, static call is used to 1661 * stop the hardware recorder. 1662 */ 1663 1664 /* 1665 * cnt is the number of entries allocated for entries. 1666 * Return number of entries copied to . 1667 */ 1668 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1669 unsigned int cnt); 1670 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1671 1672 #endif /* _LINUX_PERF_EVENT_H */ 1673