xref: /linux-6.15/include/linux/perf_event.h (revision f034cc13)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <asm/hw_breakpoint.h>
40 #endif
41 
42 #include <linux/list.h>
43 #include <linux/mutex.h>
44 #include <linux/rculist.h>
45 #include <linux/rcupdate.h>
46 #include <linux/spinlock.h>
47 #include <linux/hrtimer.h>
48 #include <linux/fs.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/workqueue.h>
51 #include <linux/ftrace.h>
52 #include <linux/cpu.h>
53 #include <linux/irq_work.h>
54 #include <linux/static_key.h>
55 #include <linux/jump_label_ratelimit.h>
56 #include <linux/atomic.h>
57 #include <linux/sysfs.h>
58 #include <linux/perf_regs.h>
59 #include <linux/cgroup.h>
60 #include <linux/refcount.h>
61 #include <linux/security.h>
62 #include <linux/static_call.h>
63 #include <asm/local.h>
64 
65 struct perf_callchain_entry {
66 	__u64				nr;
67 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
68 };
69 
70 struct perf_callchain_entry_ctx {
71 	struct perf_callchain_entry *entry;
72 	u32			    max_stack;
73 	u32			    nr;
74 	short			    contexts;
75 	bool			    contexts_maxed;
76 };
77 
78 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
79 				     unsigned long off, unsigned long len);
80 
81 struct perf_raw_frag {
82 	union {
83 		struct perf_raw_frag	*next;
84 		unsigned long		pad;
85 	};
86 	perf_copy_f			copy;
87 	void				*data;
88 	u32				size;
89 } __packed;
90 
91 struct perf_raw_record {
92 	struct perf_raw_frag		frag;
93 	u32				size;
94 };
95 
96 /*
97  * branch stack layout:
98  *  nr: number of taken branches stored in entries[]
99  *  hw_idx: The low level index of raw branch records
100  *          for the most recent branch.
101  *          -1ULL means invalid/unknown.
102  *
103  * Note that nr can vary from sample to sample
104  * branches (to, from) are stored from most recent
105  * to least recent, i.e., entries[0] contains the most
106  * recent branch.
107  * The entries[] is an abstraction of raw branch records,
108  * which may not be stored in age order in HW, e.g. Intel LBR.
109  * The hw_idx is to expose the low level index of raw
110  * branch record for the most recent branch aka entries[0].
111  * The hw_idx index is between -1 (unknown) and max depth,
112  * which can be retrieved in /sys/devices/cpu/caps/branches.
113  * For the architectures whose raw branch records are
114  * already stored in age order, the hw_idx should be 0.
115  */
116 struct perf_branch_stack {
117 	__u64				nr;
118 	__u64				hw_idx;
119 	struct perf_branch_entry	entries[];
120 };
121 
122 struct task_struct;
123 
124 /*
125  * extra PMU register associated with an event
126  */
127 struct hw_perf_event_extra {
128 	u64		config;	/* register value */
129 	unsigned int	reg;	/* register address or index */
130 	int		alloc;	/* extra register already allocated */
131 	int		idx;	/* index in shared_regs->regs[] */
132 };
133 
134 /**
135  * hw_perf_event::flag values
136  *
137  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
138  * usage.
139  */
140 #define PERF_EVENT_FLAG_ARCH			0x0000ffff
141 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
142 
143 /**
144  * struct hw_perf_event - performance event hardware details:
145  */
146 struct hw_perf_event {
147 #ifdef CONFIG_PERF_EVENTS
148 	union {
149 		struct { /* hardware */
150 			u64		config;
151 			u64		last_tag;
152 			unsigned long	config_base;
153 			unsigned long	event_base;
154 			int		event_base_rdpmc;
155 			int		idx;
156 			int		last_cpu;
157 			int		flags;
158 
159 			struct hw_perf_event_extra extra_reg;
160 			struct hw_perf_event_extra branch_reg;
161 		};
162 		struct { /* software */
163 			struct hrtimer	hrtimer;
164 		};
165 		struct { /* tracepoint */
166 			/* for tp_event->class */
167 			struct list_head	tp_list;
168 		};
169 		struct { /* amd_power */
170 			u64	pwr_acc;
171 			u64	ptsc;
172 		};
173 #ifdef CONFIG_HAVE_HW_BREAKPOINT
174 		struct { /* breakpoint */
175 			/*
176 			 * Crufty hack to avoid the chicken and egg
177 			 * problem hw_breakpoint has with context
178 			 * creation and event initalization.
179 			 */
180 			struct arch_hw_breakpoint	info;
181 			struct list_head		bp_list;
182 		};
183 #endif
184 		struct { /* amd_iommu */
185 			u8	iommu_bank;
186 			u8	iommu_cntr;
187 			u16	padding;
188 			u64	conf;
189 			u64	conf1;
190 		};
191 	};
192 	/*
193 	 * If the event is a per task event, this will point to the task in
194 	 * question. See the comment in perf_event_alloc().
195 	 */
196 	struct task_struct		*target;
197 
198 	/*
199 	 * PMU would store hardware filter configuration
200 	 * here.
201 	 */
202 	void				*addr_filters;
203 
204 	/* Last sync'ed generation of filters */
205 	unsigned long			addr_filters_gen;
206 
207 /*
208  * hw_perf_event::state flags; used to track the PERF_EF_* state.
209  */
210 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
211 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
212 #define PERF_HES_ARCH		0x04
213 
214 	int				state;
215 
216 	/*
217 	 * The last observed hardware counter value, updated with a
218 	 * local64_cmpxchg() such that pmu::read() can be called nested.
219 	 */
220 	local64_t			prev_count;
221 
222 	/*
223 	 * The period to start the next sample with.
224 	 */
225 	u64				sample_period;
226 
227 	union {
228 		struct { /* Sampling */
229 			/*
230 			 * The period we started this sample with.
231 			 */
232 			u64				last_period;
233 
234 			/*
235 			 * However much is left of the current period;
236 			 * note that this is a full 64bit value and
237 			 * allows for generation of periods longer
238 			 * than hardware might allow.
239 			 */
240 			local64_t			period_left;
241 		};
242 		struct { /* Topdown events counting for context switch */
243 			u64				saved_metric;
244 			u64				saved_slots;
245 		};
246 	};
247 
248 	/*
249 	 * State for throttling the event, see __perf_event_overflow() and
250 	 * perf_adjust_freq_unthr_context().
251 	 */
252 	u64                             interrupts_seq;
253 	u64				interrupts;
254 
255 	/*
256 	 * State for freq target events, see __perf_event_overflow() and
257 	 * perf_adjust_freq_unthr_context().
258 	 */
259 	u64				freq_time_stamp;
260 	u64				freq_count_stamp;
261 #endif
262 };
263 
264 struct perf_event;
265 
266 /*
267  * Common implementation detail of pmu::{start,commit,cancel}_txn
268  */
269 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
270 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
271 
272 /**
273  * pmu::capabilities flags
274  */
275 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
276 #define PERF_PMU_CAP_NO_NMI			0x0002
277 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
278 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
279 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
280 #define PERF_PMU_CAP_ITRACE			0x0020
281 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x0040
282 #define PERF_PMU_CAP_NO_EXCLUDE			0x0080
283 #define PERF_PMU_CAP_AUX_OUTPUT			0x0100
284 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0200
285 
286 struct perf_output_handle;
287 
288 /**
289  * struct pmu - generic performance monitoring unit
290  */
291 struct pmu {
292 	struct list_head		entry;
293 
294 	struct module			*module;
295 	struct device			*dev;
296 	const struct attribute_group	**attr_groups;
297 	const struct attribute_group	**attr_update;
298 	const char			*name;
299 	int				type;
300 
301 	/*
302 	 * various common per-pmu feature flags
303 	 */
304 	int				capabilities;
305 
306 	int __percpu			*pmu_disable_count;
307 	struct perf_cpu_context __percpu *pmu_cpu_context;
308 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
309 	int				task_ctx_nr;
310 	int				hrtimer_interval_ms;
311 
312 	/* number of address filters this PMU can do */
313 	unsigned int			nr_addr_filters;
314 
315 	/*
316 	 * Fully disable/enable this PMU, can be used to protect from the PMI
317 	 * as well as for lazy/batch writing of the MSRs.
318 	 */
319 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
320 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
321 
322 	/*
323 	 * Try and initialize the event for this PMU.
324 	 *
325 	 * Returns:
326 	 *  -ENOENT	-- @event is not for this PMU
327 	 *
328 	 *  -ENODEV	-- @event is for this PMU but PMU not present
329 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
330 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
331 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
332 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
333 	 *
334 	 *  0		-- @event is for this PMU and valid
335 	 *
336 	 * Other error return values are allowed.
337 	 */
338 	int (*event_init)		(struct perf_event *event);
339 
340 	/*
341 	 * Notification that the event was mapped or unmapped.  Called
342 	 * in the context of the mapping task.
343 	 */
344 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
345 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
346 
347 	/*
348 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
349 	 * matching hw_perf_event::state flags.
350 	 */
351 #define PERF_EF_START	0x01		/* start the counter when adding    */
352 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
353 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
354 
355 	/*
356 	 * Adds/Removes a counter to/from the PMU, can be done inside a
357 	 * transaction, see the ->*_txn() methods.
358 	 *
359 	 * The add/del callbacks will reserve all hardware resources required
360 	 * to service the event, this includes any counter constraint
361 	 * scheduling etc.
362 	 *
363 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
364 	 * is on.
365 	 *
366 	 * ->add() called without PERF_EF_START should result in the same state
367 	 *  as ->add() followed by ->stop().
368 	 *
369 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
370 	 *  ->stop() that must deal with already being stopped without
371 	 *  PERF_EF_UPDATE.
372 	 */
373 	int  (*add)			(struct perf_event *event, int flags);
374 	void (*del)			(struct perf_event *event, int flags);
375 
376 	/*
377 	 * Starts/Stops a counter present on the PMU.
378 	 *
379 	 * The PMI handler should stop the counter when perf_event_overflow()
380 	 * returns !0. ->start() will be used to continue.
381 	 *
382 	 * Also used to change the sample period.
383 	 *
384 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
385 	 * is on -- will be called from NMI context with the PMU generates
386 	 * NMIs.
387 	 *
388 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
389 	 *  period/count values like ->read() would.
390 	 *
391 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
392 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
393 	 */
394 	void (*start)			(struct perf_event *event, int flags);
395 	void (*stop)			(struct perf_event *event, int flags);
396 
397 	/*
398 	 * Updates the counter value of the event.
399 	 *
400 	 * For sampling capable PMUs this will also update the software period
401 	 * hw_perf_event::period_left field.
402 	 */
403 	void (*read)			(struct perf_event *event);
404 
405 	/*
406 	 * Group events scheduling is treated as a transaction, add
407 	 * group events as a whole and perform one schedulability test.
408 	 * If the test fails, roll back the whole group
409 	 *
410 	 * Start the transaction, after this ->add() doesn't need to
411 	 * do schedulability tests.
412 	 *
413 	 * Optional.
414 	 */
415 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
416 	/*
417 	 * If ->start_txn() disabled the ->add() schedulability test
418 	 * then ->commit_txn() is required to perform one. On success
419 	 * the transaction is closed. On error the transaction is kept
420 	 * open until ->cancel_txn() is called.
421 	 *
422 	 * Optional.
423 	 */
424 	int  (*commit_txn)		(struct pmu *pmu);
425 	/*
426 	 * Will cancel the transaction, assumes ->del() is called
427 	 * for each successful ->add() during the transaction.
428 	 *
429 	 * Optional.
430 	 */
431 	void (*cancel_txn)		(struct pmu *pmu);
432 
433 	/*
434 	 * Will return the value for perf_event_mmap_page::index for this event,
435 	 * if no implementation is provided it will default to: event->hw.idx + 1.
436 	 */
437 	int (*event_idx)		(struct perf_event *event); /*optional */
438 
439 	/*
440 	 * context-switches callback
441 	 */
442 	void (*sched_task)		(struct perf_event_context *ctx,
443 					bool sched_in);
444 
445 	/*
446 	 * Kmem cache of PMU specific data
447 	 */
448 	struct kmem_cache		*task_ctx_cache;
449 
450 	/*
451 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
452 	 * can be synchronized using this function. See Intel LBR callstack support
453 	 * implementation and Perf core context switch handling callbacks for usage
454 	 * examples.
455 	 */
456 	void (*swap_task_ctx)		(struct perf_event_context *prev,
457 					 struct perf_event_context *next);
458 					/* optional */
459 
460 	/*
461 	 * Set up pmu-private data structures for an AUX area
462 	 */
463 	void *(*setup_aux)		(struct perf_event *event, void **pages,
464 					 int nr_pages, bool overwrite);
465 					/* optional */
466 
467 	/*
468 	 * Free pmu-private AUX data structures
469 	 */
470 	void (*free_aux)		(void *aux); /* optional */
471 
472 	/*
473 	 * Take a snapshot of the AUX buffer without touching the event
474 	 * state, so that preempting ->start()/->stop() callbacks does
475 	 * not interfere with their logic. Called in PMI context.
476 	 *
477 	 * Returns the size of AUX data copied to the output handle.
478 	 *
479 	 * Optional.
480 	 */
481 	long (*snapshot_aux)		(struct perf_event *event,
482 					 struct perf_output_handle *handle,
483 					 unsigned long size);
484 
485 	/*
486 	 * Validate address range filters: make sure the HW supports the
487 	 * requested configuration and number of filters; return 0 if the
488 	 * supplied filters are valid, -errno otherwise.
489 	 *
490 	 * Runs in the context of the ioctl()ing process and is not serialized
491 	 * with the rest of the PMU callbacks.
492 	 */
493 	int (*addr_filters_validate)	(struct list_head *filters);
494 					/* optional */
495 
496 	/*
497 	 * Synchronize address range filter configuration:
498 	 * translate hw-agnostic filters into hardware configuration in
499 	 * event::hw::addr_filters.
500 	 *
501 	 * Runs as a part of filter sync sequence that is done in ->start()
502 	 * callback by calling perf_event_addr_filters_sync().
503 	 *
504 	 * May (and should) traverse event::addr_filters::list, for which its
505 	 * caller provides necessary serialization.
506 	 */
507 	void (*addr_filters_sync)	(struct perf_event *event);
508 					/* optional */
509 
510 	/*
511 	 * Check if event can be used for aux_output purposes for
512 	 * events of this PMU.
513 	 *
514 	 * Runs from perf_event_open(). Should return 0 for "no match"
515 	 * or non-zero for "match".
516 	 */
517 	int (*aux_output_match)		(struct perf_event *event);
518 					/* optional */
519 
520 	/*
521 	 * Filter events for PMU-specific reasons.
522 	 */
523 	int (*filter_match)		(struct perf_event *event); /* optional */
524 
525 	/*
526 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
527 	 */
528 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
529 };
530 
531 enum perf_addr_filter_action_t {
532 	PERF_ADDR_FILTER_ACTION_STOP = 0,
533 	PERF_ADDR_FILTER_ACTION_START,
534 	PERF_ADDR_FILTER_ACTION_FILTER,
535 };
536 
537 /**
538  * struct perf_addr_filter - address range filter definition
539  * @entry:	event's filter list linkage
540  * @path:	object file's path for file-based filters
541  * @offset:	filter range offset
542  * @size:	filter range size (size==0 means single address trigger)
543  * @action:	filter/start/stop
544  *
545  * This is a hardware-agnostic filter configuration as specified by the user.
546  */
547 struct perf_addr_filter {
548 	struct list_head	entry;
549 	struct path		path;
550 	unsigned long		offset;
551 	unsigned long		size;
552 	enum perf_addr_filter_action_t	action;
553 };
554 
555 /**
556  * struct perf_addr_filters_head - container for address range filters
557  * @list:	list of filters for this event
558  * @lock:	spinlock that serializes accesses to the @list and event's
559  *		(and its children's) filter generations.
560  * @nr_file_filters:	number of file-based filters
561  *
562  * A child event will use parent's @list (and therefore @lock), so they are
563  * bundled together; see perf_event_addr_filters().
564  */
565 struct perf_addr_filters_head {
566 	struct list_head	list;
567 	raw_spinlock_t		lock;
568 	unsigned int		nr_file_filters;
569 };
570 
571 struct perf_addr_filter_range {
572 	unsigned long		start;
573 	unsigned long		size;
574 };
575 
576 /**
577  * enum perf_event_state - the states of an event:
578  */
579 enum perf_event_state {
580 	PERF_EVENT_STATE_DEAD		= -4,
581 	PERF_EVENT_STATE_EXIT		= -3,
582 	PERF_EVENT_STATE_ERROR		= -2,
583 	PERF_EVENT_STATE_OFF		= -1,
584 	PERF_EVENT_STATE_INACTIVE	=  0,
585 	PERF_EVENT_STATE_ACTIVE		=  1,
586 };
587 
588 struct file;
589 struct perf_sample_data;
590 
591 typedef void (*perf_overflow_handler_t)(struct perf_event *,
592 					struct perf_sample_data *,
593 					struct pt_regs *regs);
594 
595 /*
596  * Event capabilities. For event_caps and groups caps.
597  *
598  * PERF_EV_CAP_SOFTWARE: Is a software event.
599  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
600  * from any CPU in the package where it is active.
601  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
602  * cannot be a group leader. If an event with this flag is detached from the
603  * group it is scheduled out and moved into an unrecoverable ERROR state.
604  */
605 #define PERF_EV_CAP_SOFTWARE		BIT(0)
606 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
607 #define PERF_EV_CAP_SIBLING		BIT(2)
608 
609 #define SWEVENT_HLIST_BITS		8
610 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
611 
612 struct swevent_hlist {
613 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
614 	struct rcu_head			rcu_head;
615 };
616 
617 #define PERF_ATTACH_CONTEXT	0x01
618 #define PERF_ATTACH_GROUP	0x02
619 #define PERF_ATTACH_TASK	0x04
620 #define PERF_ATTACH_TASK_DATA	0x08
621 #define PERF_ATTACH_ITRACE	0x10
622 #define PERF_ATTACH_SCHED_CB	0x20
623 #define PERF_ATTACH_CHILD	0x40
624 
625 struct bpf_prog;
626 struct perf_cgroup;
627 struct perf_buffer;
628 
629 struct pmu_event_list {
630 	raw_spinlock_t		lock;
631 	struct list_head	list;
632 };
633 
634 #define for_each_sibling_event(sibling, event)			\
635 	if ((event)->group_leader == (event))			\
636 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
637 
638 /**
639  * struct perf_event - performance event kernel representation:
640  */
641 struct perf_event {
642 #ifdef CONFIG_PERF_EVENTS
643 	/*
644 	 * entry onto perf_event_context::event_list;
645 	 *   modifications require ctx->lock
646 	 *   RCU safe iterations.
647 	 */
648 	struct list_head		event_entry;
649 
650 	/*
651 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
652 	 * either sufficies for read.
653 	 */
654 	struct list_head		sibling_list;
655 	struct list_head		active_list;
656 	/*
657 	 * Node on the pinned or flexible tree located at the event context;
658 	 */
659 	struct rb_node			group_node;
660 	u64				group_index;
661 	/*
662 	 * We need storage to track the entries in perf_pmu_migrate_context; we
663 	 * cannot use the event_entry because of RCU and we want to keep the
664 	 * group in tact which avoids us using the other two entries.
665 	 */
666 	struct list_head		migrate_entry;
667 
668 	struct hlist_node		hlist_entry;
669 	struct list_head		active_entry;
670 	int				nr_siblings;
671 
672 	/* Not serialized. Only written during event initialization. */
673 	int				event_caps;
674 	/* The cumulative AND of all event_caps for events in this group. */
675 	int				group_caps;
676 
677 	struct perf_event		*group_leader;
678 	struct pmu			*pmu;
679 	void				*pmu_private;
680 
681 	enum perf_event_state		state;
682 	unsigned int			attach_state;
683 	local64_t			count;
684 	atomic64_t			child_count;
685 
686 	/*
687 	 * These are the total time in nanoseconds that the event
688 	 * has been enabled (i.e. eligible to run, and the task has
689 	 * been scheduled in, if this is a per-task event)
690 	 * and running (scheduled onto the CPU), respectively.
691 	 */
692 	u64				total_time_enabled;
693 	u64				total_time_running;
694 	u64				tstamp;
695 
696 	/*
697 	 * timestamp shadows the actual context timing but it can
698 	 * be safely used in NMI interrupt context. It reflects the
699 	 * context time as it was when the event was last scheduled in,
700 	 * or when ctx_sched_in failed to schedule the event because we
701 	 * run out of PMC.
702 	 *
703 	 * ctx_time already accounts for ctx->timestamp. Therefore to
704 	 * compute ctx_time for a sample, simply add perf_clock().
705 	 */
706 	u64				shadow_ctx_time;
707 
708 	struct perf_event_attr		attr;
709 	u16				header_size;
710 	u16				id_header_size;
711 	u16				read_size;
712 	struct hw_perf_event		hw;
713 
714 	struct perf_event_context	*ctx;
715 	atomic_long_t			refcount;
716 
717 	/*
718 	 * These accumulate total time (in nanoseconds) that children
719 	 * events have been enabled and running, respectively.
720 	 */
721 	atomic64_t			child_total_time_enabled;
722 	atomic64_t			child_total_time_running;
723 
724 	/*
725 	 * Protect attach/detach and child_list:
726 	 */
727 	struct mutex			child_mutex;
728 	struct list_head		child_list;
729 	struct perf_event		*parent;
730 
731 	int				oncpu;
732 	int				cpu;
733 
734 	struct list_head		owner_entry;
735 	struct task_struct		*owner;
736 
737 	/* mmap bits */
738 	struct mutex			mmap_mutex;
739 	atomic_t			mmap_count;
740 
741 	struct perf_buffer		*rb;
742 	struct list_head		rb_entry;
743 	unsigned long			rcu_batches;
744 	int				rcu_pending;
745 
746 	/* poll related */
747 	wait_queue_head_t		waitq;
748 	struct fasync_struct		*fasync;
749 
750 	/* delayed work for NMIs and such */
751 	int				pending_wakeup;
752 	int				pending_kill;
753 	int				pending_disable;
754 	unsigned long			pending_addr;	/* SIGTRAP */
755 	struct irq_work			pending;
756 
757 	atomic_t			event_limit;
758 
759 	/* address range filters */
760 	struct perf_addr_filters_head	addr_filters;
761 	/* vma address array for file-based filders */
762 	struct perf_addr_filter_range	*addr_filter_ranges;
763 	unsigned long			addr_filters_gen;
764 
765 	/* for aux_output events */
766 	struct perf_event		*aux_event;
767 
768 	void (*destroy)(struct perf_event *);
769 	struct rcu_head			rcu_head;
770 
771 	struct pid_namespace		*ns;
772 	u64				id;
773 
774 	u64				(*clock)(void);
775 	perf_overflow_handler_t		overflow_handler;
776 	void				*overflow_handler_context;
777 #ifdef CONFIG_BPF_SYSCALL
778 	perf_overflow_handler_t		orig_overflow_handler;
779 	struct bpf_prog			*prog;
780 	u64				bpf_cookie;
781 #endif
782 
783 #ifdef CONFIG_EVENT_TRACING
784 	struct trace_event_call		*tp_event;
785 	struct event_filter		*filter;
786 #ifdef CONFIG_FUNCTION_TRACER
787 	struct ftrace_ops               ftrace_ops;
788 #endif
789 #endif
790 
791 #ifdef CONFIG_CGROUP_PERF
792 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
793 #endif
794 
795 #ifdef CONFIG_SECURITY
796 	void *security;
797 #endif
798 	struct list_head		sb_list;
799 #endif /* CONFIG_PERF_EVENTS */
800 };
801 
802 
803 struct perf_event_groups {
804 	struct rb_root	tree;
805 	u64		index;
806 };
807 
808 /**
809  * struct perf_event_context - event context structure
810  *
811  * Used as a container for task events and CPU events as well:
812  */
813 struct perf_event_context {
814 	struct pmu			*pmu;
815 	/*
816 	 * Protect the states of the events in the list,
817 	 * nr_active, and the list:
818 	 */
819 	raw_spinlock_t			lock;
820 	/*
821 	 * Protect the list of events.  Locking either mutex or lock
822 	 * is sufficient to ensure the list doesn't change; to change
823 	 * the list you need to lock both the mutex and the spinlock.
824 	 */
825 	struct mutex			mutex;
826 
827 	struct list_head		active_ctx_list;
828 	struct perf_event_groups	pinned_groups;
829 	struct perf_event_groups	flexible_groups;
830 	struct list_head		event_list;
831 
832 	struct list_head		pinned_active;
833 	struct list_head		flexible_active;
834 
835 	int				nr_events;
836 	int				nr_active;
837 	int				nr_user;
838 	int				is_active;
839 	int				nr_stat;
840 	int				nr_freq;
841 	int				rotate_disable;
842 	/*
843 	 * Set when nr_events != nr_active, except tolerant to events not
844 	 * necessary to be active due to scheduling constraints, such as cgroups.
845 	 */
846 	int				rotate_necessary;
847 	refcount_t			refcount;
848 	struct task_struct		*task;
849 
850 	/*
851 	 * Context clock, runs when context enabled.
852 	 */
853 	u64				time;
854 	u64				timestamp;
855 
856 	/*
857 	 * These fields let us detect when two contexts have both
858 	 * been cloned (inherited) from a common ancestor.
859 	 */
860 	struct perf_event_context	*parent_ctx;
861 	u64				parent_gen;
862 	u64				generation;
863 	int				pin_count;
864 #ifdef CONFIG_CGROUP_PERF
865 	int				nr_cgroups;	 /* cgroup evts */
866 #endif
867 	void				*task_ctx_data; /* pmu specific data */
868 	struct rcu_head			rcu_head;
869 };
870 
871 /*
872  * Number of contexts where an event can trigger:
873  *	task, softirq, hardirq, nmi.
874  */
875 #define PERF_NR_CONTEXTS	4
876 
877 /**
878  * struct perf_event_cpu_context - per cpu event context structure
879  */
880 struct perf_cpu_context {
881 	struct perf_event_context	ctx;
882 	struct perf_event_context	*task_ctx;
883 	int				active_oncpu;
884 	int				exclusive;
885 
886 	raw_spinlock_t			hrtimer_lock;
887 	struct hrtimer			hrtimer;
888 	ktime_t				hrtimer_interval;
889 	unsigned int			hrtimer_active;
890 
891 #ifdef CONFIG_CGROUP_PERF
892 	struct perf_cgroup		*cgrp;
893 	struct list_head		cgrp_cpuctx_entry;
894 #endif
895 
896 	struct list_head		sched_cb_entry;
897 	int				sched_cb_usage;
898 
899 	int				online;
900 	/*
901 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
902 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
903 	 */
904 	int				heap_size;
905 	struct perf_event		**heap;
906 	struct perf_event		*heap_default[2];
907 };
908 
909 struct perf_output_handle {
910 	struct perf_event		*event;
911 	struct perf_buffer		*rb;
912 	unsigned long			wakeup;
913 	unsigned long			size;
914 	u64				aux_flags;
915 	union {
916 		void			*addr;
917 		unsigned long		head;
918 	};
919 	int				page;
920 };
921 
922 struct bpf_perf_event_data_kern {
923 	bpf_user_pt_regs_t *regs;
924 	struct perf_sample_data *data;
925 	struct perf_event *event;
926 };
927 
928 #ifdef CONFIG_CGROUP_PERF
929 
930 /*
931  * perf_cgroup_info keeps track of time_enabled for a cgroup.
932  * This is a per-cpu dynamically allocated data structure.
933  */
934 struct perf_cgroup_info {
935 	u64				time;
936 	u64				timestamp;
937 };
938 
939 struct perf_cgroup {
940 	struct cgroup_subsys_state	css;
941 	struct perf_cgroup_info	__percpu *info;
942 };
943 
944 /*
945  * Must ensure cgroup is pinned (css_get) before calling
946  * this function. In other words, we cannot call this function
947  * if there is no cgroup event for the current CPU context.
948  */
949 static inline struct perf_cgroup *
950 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
951 {
952 	return container_of(task_css_check(task, perf_event_cgrp_id,
953 					   ctx ? lockdep_is_held(&ctx->lock)
954 					       : true),
955 			    struct perf_cgroup, css);
956 }
957 #endif /* CONFIG_CGROUP_PERF */
958 
959 #ifdef CONFIG_PERF_EVENTS
960 
961 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
962 				   struct perf_event *event);
963 extern void perf_aux_output_end(struct perf_output_handle *handle,
964 				unsigned long size);
965 extern int perf_aux_output_skip(struct perf_output_handle *handle,
966 				unsigned long size);
967 extern void *perf_get_aux(struct perf_output_handle *handle);
968 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
969 extern void perf_event_itrace_started(struct perf_event *event);
970 
971 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
972 extern void perf_pmu_unregister(struct pmu *pmu);
973 
974 extern void __perf_event_task_sched_in(struct task_struct *prev,
975 				       struct task_struct *task);
976 extern void __perf_event_task_sched_out(struct task_struct *prev,
977 					struct task_struct *next);
978 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
979 extern void perf_event_exit_task(struct task_struct *child);
980 extern void perf_event_free_task(struct task_struct *task);
981 extern void perf_event_delayed_put(struct task_struct *task);
982 extern struct file *perf_event_get(unsigned int fd);
983 extern const struct perf_event *perf_get_event(struct file *file);
984 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
985 extern void perf_event_print_debug(void);
986 extern void perf_pmu_disable(struct pmu *pmu);
987 extern void perf_pmu_enable(struct pmu *pmu);
988 extern void perf_sched_cb_dec(struct pmu *pmu);
989 extern void perf_sched_cb_inc(struct pmu *pmu);
990 extern int perf_event_task_disable(void);
991 extern int perf_event_task_enable(void);
992 
993 extern void perf_pmu_resched(struct pmu *pmu);
994 
995 extern int perf_event_refresh(struct perf_event *event, int refresh);
996 extern void perf_event_update_userpage(struct perf_event *event);
997 extern int perf_event_release_kernel(struct perf_event *event);
998 extern struct perf_event *
999 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1000 				int cpu,
1001 				struct task_struct *task,
1002 				perf_overflow_handler_t callback,
1003 				void *context);
1004 extern void perf_pmu_migrate_context(struct pmu *pmu,
1005 				int src_cpu, int dst_cpu);
1006 int perf_event_read_local(struct perf_event *event, u64 *value,
1007 			  u64 *enabled, u64 *running);
1008 extern u64 perf_event_read_value(struct perf_event *event,
1009 				 u64 *enabled, u64 *running);
1010 
1011 
1012 struct perf_sample_data {
1013 	/*
1014 	 * Fields set by perf_sample_data_init(), group so as to
1015 	 * minimize the cachelines touched.
1016 	 */
1017 	u64				addr;
1018 	struct perf_raw_record		*raw;
1019 	struct perf_branch_stack	*br_stack;
1020 	u64				period;
1021 	union perf_sample_weight	weight;
1022 	u64				txn;
1023 	union  perf_mem_data_src	data_src;
1024 
1025 	/*
1026 	 * The other fields, optionally {set,used} by
1027 	 * perf_{prepare,output}_sample().
1028 	 */
1029 	u64				type;
1030 	u64				ip;
1031 	struct {
1032 		u32	pid;
1033 		u32	tid;
1034 	}				tid_entry;
1035 	u64				time;
1036 	u64				id;
1037 	u64				stream_id;
1038 	struct {
1039 		u32	cpu;
1040 		u32	reserved;
1041 	}				cpu_entry;
1042 	struct perf_callchain_entry	*callchain;
1043 	u64				aux_size;
1044 
1045 	struct perf_regs		regs_user;
1046 	struct perf_regs		regs_intr;
1047 	u64				stack_user_size;
1048 
1049 	u64				phys_addr;
1050 	u64				cgroup;
1051 	u64				data_page_size;
1052 	u64				code_page_size;
1053 } ____cacheline_aligned;
1054 
1055 /* default value for data source */
1056 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1057 		    PERF_MEM_S(LVL, NA)   |\
1058 		    PERF_MEM_S(SNOOP, NA) |\
1059 		    PERF_MEM_S(LOCK, NA)  |\
1060 		    PERF_MEM_S(TLB, NA))
1061 
1062 static inline void perf_sample_data_init(struct perf_sample_data *data,
1063 					 u64 addr, u64 period)
1064 {
1065 	/* remaining struct members initialized in perf_prepare_sample() */
1066 	data->addr = addr;
1067 	data->raw  = NULL;
1068 	data->br_stack = NULL;
1069 	data->period = period;
1070 	data->weight.full = 0;
1071 	data->data_src.val = PERF_MEM_NA;
1072 	data->txn = 0;
1073 }
1074 
1075 extern void perf_output_sample(struct perf_output_handle *handle,
1076 			       struct perf_event_header *header,
1077 			       struct perf_sample_data *data,
1078 			       struct perf_event *event);
1079 extern void perf_prepare_sample(struct perf_event_header *header,
1080 				struct perf_sample_data *data,
1081 				struct perf_event *event,
1082 				struct pt_regs *regs);
1083 
1084 extern int perf_event_overflow(struct perf_event *event,
1085 				 struct perf_sample_data *data,
1086 				 struct pt_regs *regs);
1087 
1088 extern void perf_event_output_forward(struct perf_event *event,
1089 				     struct perf_sample_data *data,
1090 				     struct pt_regs *regs);
1091 extern void perf_event_output_backward(struct perf_event *event,
1092 				       struct perf_sample_data *data,
1093 				       struct pt_regs *regs);
1094 extern int perf_event_output(struct perf_event *event,
1095 			     struct perf_sample_data *data,
1096 			     struct pt_regs *regs);
1097 
1098 static inline bool
1099 is_default_overflow_handler(struct perf_event *event)
1100 {
1101 	if (likely(event->overflow_handler == perf_event_output_forward))
1102 		return true;
1103 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1104 		return true;
1105 	return false;
1106 }
1107 
1108 extern void
1109 perf_event_header__init_id(struct perf_event_header *header,
1110 			   struct perf_sample_data *data,
1111 			   struct perf_event *event);
1112 extern void
1113 perf_event__output_id_sample(struct perf_event *event,
1114 			     struct perf_output_handle *handle,
1115 			     struct perf_sample_data *sample);
1116 
1117 extern void
1118 perf_log_lost_samples(struct perf_event *event, u64 lost);
1119 
1120 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1121 {
1122 	struct perf_event_attr *attr = &event->attr;
1123 
1124 	return attr->exclude_idle || attr->exclude_user ||
1125 	       attr->exclude_kernel || attr->exclude_hv ||
1126 	       attr->exclude_guest || attr->exclude_host;
1127 }
1128 
1129 static inline bool is_sampling_event(struct perf_event *event)
1130 {
1131 	return event->attr.sample_period != 0;
1132 }
1133 
1134 /*
1135  * Return 1 for a software event, 0 for a hardware event
1136  */
1137 static inline int is_software_event(struct perf_event *event)
1138 {
1139 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1140 }
1141 
1142 /*
1143  * Return 1 for event in sw context, 0 for event in hw context
1144  */
1145 static inline int in_software_context(struct perf_event *event)
1146 {
1147 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1148 }
1149 
1150 static inline int is_exclusive_pmu(struct pmu *pmu)
1151 {
1152 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1153 }
1154 
1155 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1156 
1157 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1158 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1159 
1160 #ifndef perf_arch_fetch_caller_regs
1161 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1162 #endif
1163 
1164 /*
1165  * When generating a perf sample in-line, instead of from an interrupt /
1166  * exception, we lack a pt_regs. This is typically used from software events
1167  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1168  *
1169  * We typically don't need a full set, but (for x86) do require:
1170  * - ip for PERF_SAMPLE_IP
1171  * - cs for user_mode() tests
1172  * - sp for PERF_SAMPLE_CALLCHAIN
1173  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1174  *
1175  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1176  * things like PERF_SAMPLE_REGS_INTR.
1177  */
1178 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1179 {
1180 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1181 }
1182 
1183 static __always_inline void
1184 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1185 {
1186 	if (static_key_false(&perf_swevent_enabled[event_id]))
1187 		__perf_sw_event(event_id, nr, regs, addr);
1188 }
1189 
1190 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1191 
1192 /*
1193  * 'Special' version for the scheduler, it hard assumes no recursion,
1194  * which is guaranteed by us not actually scheduling inside other swevents
1195  * because those disable preemption.
1196  */
1197 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1198 {
1199 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1200 
1201 	perf_fetch_caller_regs(regs);
1202 	___perf_sw_event(event_id, nr, regs, addr);
1203 }
1204 
1205 extern struct static_key_false perf_sched_events;
1206 
1207 static __always_inline bool __perf_sw_enabled(int swevt)
1208 {
1209 	return static_key_false(&perf_swevent_enabled[swevt]);
1210 }
1211 
1212 static inline void perf_event_task_migrate(struct task_struct *task)
1213 {
1214 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1215 		task->sched_migrated = 1;
1216 }
1217 
1218 static inline void perf_event_task_sched_in(struct task_struct *prev,
1219 					    struct task_struct *task)
1220 {
1221 	if (static_branch_unlikely(&perf_sched_events))
1222 		__perf_event_task_sched_in(prev, task);
1223 
1224 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1225 	    task->sched_migrated) {
1226 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1227 		task->sched_migrated = 0;
1228 	}
1229 }
1230 
1231 static inline void perf_event_task_sched_out(struct task_struct *prev,
1232 					     struct task_struct *next)
1233 {
1234 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1235 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1236 
1237 #ifdef CONFIG_CGROUP_PERF
1238 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1239 	    perf_cgroup_from_task(prev, NULL) !=
1240 	    perf_cgroup_from_task(next, NULL))
1241 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1242 #endif
1243 
1244 	if (static_branch_unlikely(&perf_sched_events))
1245 		__perf_event_task_sched_out(prev, next);
1246 }
1247 
1248 extern void perf_event_mmap(struct vm_area_struct *vma);
1249 
1250 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1251 			       bool unregister, const char *sym);
1252 extern void perf_event_bpf_event(struct bpf_prog *prog,
1253 				 enum perf_bpf_event_type type,
1254 				 u16 flags);
1255 
1256 #ifdef CONFIG_GUEST_PERF_EVENTS
1257 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1258 
1259 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1260 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1261 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1262 
1263 static inline unsigned int perf_guest_state(void)
1264 {
1265 	return static_call(__perf_guest_state)();
1266 }
1267 static inline unsigned long perf_guest_get_ip(void)
1268 {
1269 	return static_call(__perf_guest_get_ip)();
1270 }
1271 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1272 {
1273 	return static_call(__perf_guest_handle_intel_pt_intr)();
1274 }
1275 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1276 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1277 #else
1278 static inline unsigned int perf_guest_state(void)		 { return 0; }
1279 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1280 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1281 #endif /* CONFIG_GUEST_PERF_EVENTS */
1282 
1283 extern void perf_event_exec(void);
1284 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1285 extern void perf_event_namespaces(struct task_struct *tsk);
1286 extern void perf_event_fork(struct task_struct *tsk);
1287 extern void perf_event_text_poke(const void *addr,
1288 				 const void *old_bytes, size_t old_len,
1289 				 const void *new_bytes, size_t new_len);
1290 
1291 /* Callchains */
1292 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1293 
1294 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1295 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1296 extern struct perf_callchain_entry *
1297 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1298 		   u32 max_stack, bool crosstask, bool add_mark);
1299 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1300 extern int get_callchain_buffers(int max_stack);
1301 extern void put_callchain_buffers(void);
1302 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1303 extern void put_callchain_entry(int rctx);
1304 
1305 extern int sysctl_perf_event_max_stack;
1306 extern int sysctl_perf_event_max_contexts_per_stack;
1307 
1308 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1309 {
1310 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1311 		struct perf_callchain_entry *entry = ctx->entry;
1312 		entry->ip[entry->nr++] = ip;
1313 		++ctx->contexts;
1314 		return 0;
1315 	} else {
1316 		ctx->contexts_maxed = true;
1317 		return -1; /* no more room, stop walking the stack */
1318 	}
1319 }
1320 
1321 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1322 {
1323 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1324 		struct perf_callchain_entry *entry = ctx->entry;
1325 		entry->ip[entry->nr++] = ip;
1326 		++ctx->nr;
1327 		return 0;
1328 	} else {
1329 		return -1; /* no more room, stop walking the stack */
1330 	}
1331 }
1332 
1333 extern int sysctl_perf_event_paranoid;
1334 extern int sysctl_perf_event_mlock;
1335 extern int sysctl_perf_event_sample_rate;
1336 extern int sysctl_perf_cpu_time_max_percent;
1337 
1338 extern void perf_sample_event_took(u64 sample_len_ns);
1339 
1340 int perf_proc_update_handler(struct ctl_table *table, int write,
1341 		void *buffer, size_t *lenp, loff_t *ppos);
1342 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1343 		void *buffer, size_t *lenp, loff_t *ppos);
1344 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1345 		void *buffer, size_t *lenp, loff_t *ppos);
1346 
1347 /* Access to perf_event_open(2) syscall. */
1348 #define PERF_SECURITY_OPEN		0
1349 
1350 /* Finer grained perf_event_open(2) access control. */
1351 #define PERF_SECURITY_CPU		1
1352 #define PERF_SECURITY_KERNEL		2
1353 #define PERF_SECURITY_TRACEPOINT	3
1354 
1355 static inline int perf_is_paranoid(void)
1356 {
1357 	return sysctl_perf_event_paranoid > -1;
1358 }
1359 
1360 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1361 {
1362 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1363 		return -EACCES;
1364 
1365 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1366 }
1367 
1368 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1369 {
1370 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1371 		return -EACCES;
1372 
1373 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1374 }
1375 
1376 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1377 {
1378 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1379 		return -EPERM;
1380 
1381 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1382 }
1383 
1384 extern void perf_event_init(void);
1385 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1386 			  int entry_size, struct pt_regs *regs,
1387 			  struct hlist_head *head, int rctx,
1388 			  struct task_struct *task);
1389 extern void perf_bp_event(struct perf_event *event, void *data);
1390 
1391 #ifndef perf_misc_flags
1392 # define perf_misc_flags(regs) \
1393 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1394 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1395 #endif
1396 #ifndef perf_arch_bpf_user_pt_regs
1397 # define perf_arch_bpf_user_pt_regs(regs) regs
1398 #endif
1399 
1400 static inline bool has_branch_stack(struct perf_event *event)
1401 {
1402 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1403 }
1404 
1405 static inline bool needs_branch_stack(struct perf_event *event)
1406 {
1407 	return event->attr.branch_sample_type != 0;
1408 }
1409 
1410 static inline bool has_aux(struct perf_event *event)
1411 {
1412 	return event->pmu->setup_aux;
1413 }
1414 
1415 static inline bool is_write_backward(struct perf_event *event)
1416 {
1417 	return !!event->attr.write_backward;
1418 }
1419 
1420 static inline bool has_addr_filter(struct perf_event *event)
1421 {
1422 	return event->pmu->nr_addr_filters;
1423 }
1424 
1425 /*
1426  * An inherited event uses parent's filters
1427  */
1428 static inline struct perf_addr_filters_head *
1429 perf_event_addr_filters(struct perf_event *event)
1430 {
1431 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1432 
1433 	if (event->parent)
1434 		ifh = &event->parent->addr_filters;
1435 
1436 	return ifh;
1437 }
1438 
1439 extern void perf_event_addr_filters_sync(struct perf_event *event);
1440 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1441 
1442 extern int perf_output_begin(struct perf_output_handle *handle,
1443 			     struct perf_sample_data *data,
1444 			     struct perf_event *event, unsigned int size);
1445 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1446 				     struct perf_sample_data *data,
1447 				     struct perf_event *event,
1448 				     unsigned int size);
1449 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1450 				      struct perf_sample_data *data,
1451 				      struct perf_event *event,
1452 				      unsigned int size);
1453 
1454 extern void perf_output_end(struct perf_output_handle *handle);
1455 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1456 			     const void *buf, unsigned int len);
1457 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1458 				     unsigned int len);
1459 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1460 				 struct perf_output_handle *handle,
1461 				 unsigned long from, unsigned long to);
1462 extern int perf_swevent_get_recursion_context(void);
1463 extern void perf_swevent_put_recursion_context(int rctx);
1464 extern u64 perf_swevent_set_period(struct perf_event *event);
1465 extern void perf_event_enable(struct perf_event *event);
1466 extern void perf_event_disable(struct perf_event *event);
1467 extern void perf_event_disable_local(struct perf_event *event);
1468 extern void perf_event_disable_inatomic(struct perf_event *event);
1469 extern void perf_event_task_tick(void);
1470 extern int perf_event_account_interrupt(struct perf_event *event);
1471 extern int perf_event_period(struct perf_event *event, u64 value);
1472 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1473 #else /* !CONFIG_PERF_EVENTS: */
1474 static inline void *
1475 perf_aux_output_begin(struct perf_output_handle *handle,
1476 		      struct perf_event *event)				{ return NULL; }
1477 static inline void
1478 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1479 									{ }
1480 static inline int
1481 perf_aux_output_skip(struct perf_output_handle *handle,
1482 		     unsigned long size)				{ return -EINVAL; }
1483 static inline void *
1484 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1485 static inline void
1486 perf_event_task_migrate(struct task_struct *task)			{ }
1487 static inline void
1488 perf_event_task_sched_in(struct task_struct *prev,
1489 			 struct task_struct *task)			{ }
1490 static inline void
1491 perf_event_task_sched_out(struct task_struct *prev,
1492 			  struct task_struct *next)			{ }
1493 static inline int perf_event_init_task(struct task_struct *child,
1494 				       u64 clone_flags)			{ return 0; }
1495 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1496 static inline void perf_event_free_task(struct task_struct *task)	{ }
1497 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1498 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1499 static inline const struct perf_event *perf_get_event(struct file *file)
1500 {
1501 	return ERR_PTR(-EINVAL);
1502 }
1503 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1504 {
1505 	return ERR_PTR(-EINVAL);
1506 }
1507 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1508 					u64 *enabled, u64 *running)
1509 {
1510 	return -EINVAL;
1511 }
1512 static inline void perf_event_print_debug(void)				{ }
1513 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1514 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1515 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1516 {
1517 	return -EINVAL;
1518 }
1519 
1520 static inline void
1521 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1522 static inline void
1523 perf_bp_event(struct perf_event *event, void *data)			{ }
1524 
1525 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1526 
1527 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1528 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1529 				      bool unregister, const char *sym)	{ }
1530 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1531 					enum perf_bpf_event_type type,
1532 					u16 flags)			{ }
1533 static inline void perf_event_exec(void)				{ }
1534 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1535 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1536 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1537 static inline void perf_event_text_poke(const void *addr,
1538 					const void *old_bytes,
1539 					size_t old_len,
1540 					const void *new_bytes,
1541 					size_t new_len)			{ }
1542 static inline void perf_event_init(void)				{ }
1543 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1544 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1545 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1546 static inline void perf_event_enable(struct perf_event *event)		{ }
1547 static inline void perf_event_disable(struct perf_event *event)		{ }
1548 static inline int __perf_event_disable(void *info)			{ return -1; }
1549 static inline void perf_event_task_tick(void)				{ }
1550 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1551 static inline int perf_event_period(struct perf_event *event, u64 value)
1552 {
1553 	return -EINVAL;
1554 }
1555 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1556 {
1557 	return 0;
1558 }
1559 #endif
1560 
1561 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1562 extern void perf_restore_debug_store(void);
1563 #else
1564 static inline void perf_restore_debug_store(void)			{ }
1565 #endif
1566 
1567 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1568 {
1569 	return frag->pad < sizeof(u64);
1570 }
1571 
1572 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1573 
1574 struct perf_pmu_events_attr {
1575 	struct device_attribute attr;
1576 	u64 id;
1577 	const char *event_str;
1578 };
1579 
1580 struct perf_pmu_events_ht_attr {
1581 	struct device_attribute			attr;
1582 	u64					id;
1583 	const char				*event_str_ht;
1584 	const char				*event_str_noht;
1585 };
1586 
1587 struct perf_pmu_events_hybrid_attr {
1588 	struct device_attribute			attr;
1589 	u64					id;
1590 	const char				*event_str;
1591 	u64					pmu_type;
1592 };
1593 
1594 struct perf_pmu_format_hybrid_attr {
1595 	struct device_attribute			attr;
1596 	u64					pmu_type;
1597 };
1598 
1599 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1600 			      char *page);
1601 
1602 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1603 static struct perf_pmu_events_attr _var = {				\
1604 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1605 	.id   =  _id,							\
1606 };
1607 
1608 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1609 static struct perf_pmu_events_attr _var = {				    \
1610 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1611 	.id		= 0,						    \
1612 	.event_str	= _str,						    \
1613 };
1614 
1615 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1616 	(&((struct perf_pmu_events_attr[]) {				\
1617 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1618 		  .id = _id, }						\
1619 	})[0].attr.attr)
1620 
1621 #define PMU_FORMAT_ATTR(_name, _format)					\
1622 static ssize_t								\
1623 _name##_show(struct device *dev,					\
1624 			       struct device_attribute *attr,		\
1625 			       char *page)				\
1626 {									\
1627 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1628 	return sprintf(page, _format "\n");				\
1629 }									\
1630 									\
1631 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1632 
1633 /* Performance counter hotplug functions */
1634 #ifdef CONFIG_PERF_EVENTS
1635 int perf_event_init_cpu(unsigned int cpu);
1636 int perf_event_exit_cpu(unsigned int cpu);
1637 #else
1638 #define perf_event_init_cpu	NULL
1639 #define perf_event_exit_cpu	NULL
1640 #endif
1641 
1642 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1643 					     struct perf_event_mmap_page *userpg,
1644 					     u64 now);
1645 
1646 #ifdef CONFIG_MMU
1647 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1648 #endif
1649 
1650 /*
1651  * Snapshot branch stack on software events.
1652  *
1653  * Branch stack can be very useful in understanding software events. For
1654  * example, when a long function, e.g. sys_perf_event_open, returns an
1655  * errno, it is not obvious why the function failed. Branch stack could
1656  * provide very helpful information in this type of scenarios.
1657  *
1658  * On software event, it is necessary to stop the hardware branch recorder
1659  * fast. Otherwise, the hardware register/buffer will be flushed with
1660  * entries of the triggering event. Therefore, static call is used to
1661  * stop the hardware recorder.
1662  */
1663 
1664 /*
1665  * cnt is the number of entries allocated for entries.
1666  * Return number of entries copied to .
1667  */
1668 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1669 					   unsigned int cnt);
1670 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1671 
1672 #endif /* _LINUX_PERF_EVENT_H */
1673