1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/jump_label_ratelimit.h> 53 #include <linux/atomic.h> 54 #include <linux/sysfs.h> 55 #include <linux/perf_regs.h> 56 #include <linux/workqueue.h> 57 #include <linux/cgroup.h> 58 #include <asm/local.h> 59 60 struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63 }; 64 65 struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71 }; 72 73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76 struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84 } __packed; 85 86 struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89 }; 90 91 /* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100 struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147 #ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157 #endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181 /* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186 #define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226 #endif 227 }; 228 229 struct perf_event; 230 231 /* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237 /** 238 * pmu::capabilities flags 239 */ 240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 241 #define PERF_PMU_CAP_NO_NMI 0x02 242 #define PERF_PMU_CAP_AUX_NO_SG 0x04 243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 244 #define PERF_PMU_CAP_EXCLUSIVE 0x10 245 #define PERF_PMU_CAP_ITRACE 0x20 246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 248 /** 249 * struct pmu - generic performance monitoring unit 250 */ 251 struct pmu { 252 struct list_head entry; 253 254 struct module *module; 255 struct device *dev; 256 const struct attribute_group **attr_groups; 257 const char *name; 258 int type; 259 260 /* 261 * various common per-pmu feature flags 262 */ 263 int capabilities; 264 265 int __percpu *pmu_disable_count; 266 struct perf_cpu_context __percpu *pmu_cpu_context; 267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 268 int task_ctx_nr; 269 int hrtimer_interval_ms; 270 271 /* number of address filters this PMU can do */ 272 unsigned int nr_addr_filters; 273 274 /* 275 * Fully disable/enable this PMU, can be used to protect from the PMI 276 * as well as for lazy/batch writing of the MSRs. 277 */ 278 void (*pmu_enable) (struct pmu *pmu); /* optional */ 279 void (*pmu_disable) (struct pmu *pmu); /* optional */ 280 281 /* 282 * Try and initialize the event for this PMU. 283 * 284 * Returns: 285 * -ENOENT -- @event is not for this PMU 286 * 287 * -ENODEV -- @event is for this PMU but PMU not present 288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 289 * -EINVAL -- @event is for this PMU but @event is not valid 290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 292 * 293 * 0 -- @event is for this PMU and valid 294 * 295 * Other error return values are allowed. 296 */ 297 int (*event_init) (struct perf_event *event); 298 299 /* 300 * Notification that the event was mapped or unmapped. Called 301 * in the context of the mapping task. 302 */ 303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 306 /* 307 * Flags for ->add()/->del()/ ->start()/->stop(). There are 308 * matching hw_perf_event::state flags. 309 */ 310 #define PERF_EF_START 0x01 /* start the counter when adding */ 311 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 312 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 313 314 /* 315 * Adds/Removes a counter to/from the PMU, can be done inside a 316 * transaction, see the ->*_txn() methods. 317 * 318 * The add/del callbacks will reserve all hardware resources required 319 * to service the event, this includes any counter constraint 320 * scheduling etc. 321 * 322 * Called with IRQs disabled and the PMU disabled on the CPU the event 323 * is on. 324 * 325 * ->add() called without PERF_EF_START should result in the same state 326 * as ->add() followed by ->stop(). 327 * 328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 329 * ->stop() that must deal with already being stopped without 330 * PERF_EF_UPDATE. 331 */ 332 int (*add) (struct perf_event *event, int flags); 333 void (*del) (struct perf_event *event, int flags); 334 335 /* 336 * Starts/Stops a counter present on the PMU. 337 * 338 * The PMI handler should stop the counter when perf_event_overflow() 339 * returns !0. ->start() will be used to continue. 340 * 341 * Also used to change the sample period. 342 * 343 * Called with IRQs disabled and the PMU disabled on the CPU the event 344 * is on -- will be called from NMI context with the PMU generates 345 * NMIs. 346 * 347 * ->stop() with PERF_EF_UPDATE will read the counter and update 348 * period/count values like ->read() would. 349 * 350 * ->start() with PERF_EF_RELOAD will reprogram the the counter 351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 352 */ 353 void (*start) (struct perf_event *event, int flags); 354 void (*stop) (struct perf_event *event, int flags); 355 356 /* 357 * Updates the counter value of the event. 358 * 359 * For sampling capable PMUs this will also update the software period 360 * hw_perf_event::period_left field. 361 */ 362 void (*read) (struct perf_event *event); 363 364 /* 365 * Group events scheduling is treated as a transaction, add 366 * group events as a whole and perform one schedulability test. 367 * If the test fails, roll back the whole group 368 * 369 * Start the transaction, after this ->add() doesn't need to 370 * do schedulability tests. 371 * 372 * Optional. 373 */ 374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 375 /* 376 * If ->start_txn() disabled the ->add() schedulability test 377 * then ->commit_txn() is required to perform one. On success 378 * the transaction is closed. On error the transaction is kept 379 * open until ->cancel_txn() is called. 380 * 381 * Optional. 382 */ 383 int (*commit_txn) (struct pmu *pmu); 384 /* 385 * Will cancel the transaction, assumes ->del() is called 386 * for each successful ->add() during the transaction. 387 * 388 * Optional. 389 */ 390 void (*cancel_txn) (struct pmu *pmu); 391 392 /* 393 * Will return the value for perf_event_mmap_page::index for this event, 394 * if no implementation is provided it will default to: event->hw.idx + 1. 395 */ 396 int (*event_idx) (struct perf_event *event); /*optional */ 397 398 /* 399 * context-switches callback 400 */ 401 void (*sched_task) (struct perf_event_context *ctx, 402 bool sched_in); 403 /* 404 * PMU specific data size 405 */ 406 size_t task_ctx_size; 407 408 409 /* 410 * Set up pmu-private data structures for an AUX area 411 */ 412 void *(*setup_aux) (int cpu, void **pages, 413 int nr_pages, bool overwrite); 414 /* optional */ 415 416 /* 417 * Free pmu-private AUX data structures 418 */ 419 void (*free_aux) (void *aux); /* optional */ 420 421 /* 422 * Validate address range filters: make sure the HW supports the 423 * requested configuration and number of filters; return 0 if the 424 * supplied filters are valid, -errno otherwise. 425 * 426 * Runs in the context of the ioctl()ing process and is not serialized 427 * with the rest of the PMU callbacks. 428 */ 429 int (*addr_filters_validate) (struct list_head *filters); 430 /* optional */ 431 432 /* 433 * Synchronize address range filter configuration: 434 * translate hw-agnostic filters into hardware configuration in 435 * event::hw::addr_filters. 436 * 437 * Runs as a part of filter sync sequence that is done in ->start() 438 * callback by calling perf_event_addr_filters_sync(). 439 * 440 * May (and should) traverse event::addr_filters::list, for which its 441 * caller provides necessary serialization. 442 */ 443 void (*addr_filters_sync) (struct perf_event *event); 444 /* optional */ 445 446 /* 447 * Filter events for PMU-specific reasons. 448 */ 449 int (*filter_match) (struct perf_event *event); /* optional */ 450 451 /* 452 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 453 */ 454 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 455 }; 456 457 enum perf_addr_filter_action_t { 458 PERF_ADDR_FILTER_ACTION_STOP = 0, 459 PERF_ADDR_FILTER_ACTION_START, 460 PERF_ADDR_FILTER_ACTION_FILTER, 461 }; 462 463 /** 464 * struct perf_addr_filter - address range filter definition 465 * @entry: event's filter list linkage 466 * @inode: object file's inode for file-based filters 467 * @offset: filter range offset 468 * @size: filter range size (size==0 means single address trigger) 469 * @action: filter/start/stop 470 * 471 * This is a hardware-agnostic filter configuration as specified by the user. 472 */ 473 struct perf_addr_filter { 474 struct list_head entry; 475 struct path path; 476 unsigned long offset; 477 unsigned long size; 478 enum perf_addr_filter_action_t action; 479 }; 480 481 /** 482 * struct perf_addr_filters_head - container for address range filters 483 * @list: list of filters for this event 484 * @lock: spinlock that serializes accesses to the @list and event's 485 * (and its children's) filter generations. 486 * @nr_file_filters: number of file-based filters 487 * 488 * A child event will use parent's @list (and therefore @lock), so they are 489 * bundled together; see perf_event_addr_filters(). 490 */ 491 struct perf_addr_filters_head { 492 struct list_head list; 493 raw_spinlock_t lock; 494 unsigned int nr_file_filters; 495 }; 496 497 /** 498 * enum perf_event_state - the states of an event: 499 */ 500 enum perf_event_state { 501 PERF_EVENT_STATE_DEAD = -4, 502 PERF_EVENT_STATE_EXIT = -3, 503 PERF_EVENT_STATE_ERROR = -2, 504 PERF_EVENT_STATE_OFF = -1, 505 PERF_EVENT_STATE_INACTIVE = 0, 506 PERF_EVENT_STATE_ACTIVE = 1, 507 }; 508 509 struct file; 510 struct perf_sample_data; 511 512 typedef void (*perf_overflow_handler_t)(struct perf_event *, 513 struct perf_sample_data *, 514 struct pt_regs *regs); 515 516 /* 517 * Event capabilities. For event_caps and groups caps. 518 * 519 * PERF_EV_CAP_SOFTWARE: Is a software event. 520 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 521 * from any CPU in the package where it is active. 522 */ 523 #define PERF_EV_CAP_SOFTWARE BIT(0) 524 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 525 526 #define SWEVENT_HLIST_BITS 8 527 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 528 529 struct swevent_hlist { 530 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 531 struct rcu_head rcu_head; 532 }; 533 534 #define PERF_ATTACH_CONTEXT 0x01 535 #define PERF_ATTACH_GROUP 0x02 536 #define PERF_ATTACH_TASK 0x04 537 #define PERF_ATTACH_TASK_DATA 0x08 538 #define PERF_ATTACH_ITRACE 0x10 539 540 struct perf_cgroup; 541 struct ring_buffer; 542 543 struct pmu_event_list { 544 raw_spinlock_t lock; 545 struct list_head list; 546 }; 547 548 #define for_each_sibling_event(sibling, event) \ 549 if ((event)->group_leader == (event)) \ 550 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 551 552 /** 553 * struct perf_event - performance event kernel representation: 554 */ 555 struct perf_event { 556 #ifdef CONFIG_PERF_EVENTS 557 /* 558 * entry onto perf_event_context::event_list; 559 * modifications require ctx->lock 560 * RCU safe iterations. 561 */ 562 struct list_head event_entry; 563 564 /* 565 * Locked for modification by both ctx->mutex and ctx->lock; holding 566 * either sufficies for read. 567 */ 568 struct list_head sibling_list; 569 struct list_head active_list; 570 /* 571 * Node on the pinned or flexible tree located at the event context; 572 */ 573 struct rb_node group_node; 574 u64 group_index; 575 /* 576 * We need storage to track the entries in perf_pmu_migrate_context; we 577 * cannot use the event_entry because of RCU and we want to keep the 578 * group in tact which avoids us using the other two entries. 579 */ 580 struct list_head migrate_entry; 581 582 struct hlist_node hlist_entry; 583 struct list_head active_entry; 584 int nr_siblings; 585 586 /* Not serialized. Only written during event initialization. */ 587 int event_caps; 588 /* The cumulative AND of all event_caps for events in this group. */ 589 int group_caps; 590 591 struct perf_event *group_leader; 592 struct pmu *pmu; 593 void *pmu_private; 594 595 enum perf_event_state state; 596 unsigned int attach_state; 597 local64_t count; 598 atomic64_t child_count; 599 600 /* 601 * These are the total time in nanoseconds that the event 602 * has been enabled (i.e. eligible to run, and the task has 603 * been scheduled in, if this is a per-task event) 604 * and running (scheduled onto the CPU), respectively. 605 */ 606 u64 total_time_enabled; 607 u64 total_time_running; 608 u64 tstamp; 609 610 /* 611 * timestamp shadows the actual context timing but it can 612 * be safely used in NMI interrupt context. It reflects the 613 * context time as it was when the event was last scheduled in. 614 * 615 * ctx_time already accounts for ctx->timestamp. Therefore to 616 * compute ctx_time for a sample, simply add perf_clock(). 617 */ 618 u64 shadow_ctx_time; 619 620 struct perf_event_attr attr; 621 u16 header_size; 622 u16 id_header_size; 623 u16 read_size; 624 struct hw_perf_event hw; 625 626 struct perf_event_context *ctx; 627 atomic_long_t refcount; 628 629 /* 630 * These accumulate total time (in nanoseconds) that children 631 * events have been enabled and running, respectively. 632 */ 633 atomic64_t child_total_time_enabled; 634 atomic64_t child_total_time_running; 635 636 /* 637 * Protect attach/detach and child_list: 638 */ 639 struct mutex child_mutex; 640 struct list_head child_list; 641 struct perf_event *parent; 642 643 int oncpu; 644 int cpu; 645 646 struct list_head owner_entry; 647 struct task_struct *owner; 648 649 /* mmap bits */ 650 struct mutex mmap_mutex; 651 atomic_t mmap_count; 652 653 struct ring_buffer *rb; 654 struct list_head rb_entry; 655 unsigned long rcu_batches; 656 int rcu_pending; 657 658 /* poll related */ 659 wait_queue_head_t waitq; 660 struct fasync_struct *fasync; 661 662 /* delayed work for NMIs and such */ 663 int pending_wakeup; 664 int pending_kill; 665 int pending_disable; 666 struct irq_work pending; 667 668 atomic_t event_limit; 669 670 /* address range filters */ 671 struct perf_addr_filters_head addr_filters; 672 /* vma address array for file-based filders */ 673 unsigned long *addr_filters_offs; 674 unsigned long addr_filters_gen; 675 676 void (*destroy)(struct perf_event *); 677 struct rcu_head rcu_head; 678 679 struct pid_namespace *ns; 680 u64 id; 681 682 u64 (*clock)(void); 683 perf_overflow_handler_t overflow_handler; 684 void *overflow_handler_context; 685 #ifdef CONFIG_BPF_SYSCALL 686 perf_overflow_handler_t orig_overflow_handler; 687 struct bpf_prog *prog; 688 #endif 689 690 #ifdef CONFIG_EVENT_TRACING 691 struct trace_event_call *tp_event; 692 struct event_filter *filter; 693 #ifdef CONFIG_FUNCTION_TRACER 694 struct ftrace_ops ftrace_ops; 695 #endif 696 #endif 697 698 #ifdef CONFIG_CGROUP_PERF 699 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 700 #endif 701 702 struct list_head sb_list; 703 #endif /* CONFIG_PERF_EVENTS */ 704 }; 705 706 707 struct perf_event_groups { 708 struct rb_root tree; 709 u64 index; 710 }; 711 712 /** 713 * struct perf_event_context - event context structure 714 * 715 * Used as a container for task events and CPU events as well: 716 */ 717 struct perf_event_context { 718 struct pmu *pmu; 719 /* 720 * Protect the states of the events in the list, 721 * nr_active, and the list: 722 */ 723 raw_spinlock_t lock; 724 /* 725 * Protect the list of events. Locking either mutex or lock 726 * is sufficient to ensure the list doesn't change; to change 727 * the list you need to lock both the mutex and the spinlock. 728 */ 729 struct mutex mutex; 730 731 struct list_head active_ctx_list; 732 struct perf_event_groups pinned_groups; 733 struct perf_event_groups flexible_groups; 734 struct list_head event_list; 735 736 struct list_head pinned_active; 737 struct list_head flexible_active; 738 739 int nr_events; 740 int nr_active; 741 int is_active; 742 int nr_stat; 743 int nr_freq; 744 int rotate_disable; 745 atomic_t refcount; 746 struct task_struct *task; 747 748 /* 749 * Context clock, runs when context enabled. 750 */ 751 u64 time; 752 u64 timestamp; 753 754 /* 755 * These fields let us detect when two contexts have both 756 * been cloned (inherited) from a common ancestor. 757 */ 758 struct perf_event_context *parent_ctx; 759 u64 parent_gen; 760 u64 generation; 761 int pin_count; 762 #ifdef CONFIG_CGROUP_PERF 763 int nr_cgroups; /* cgroup evts */ 764 #endif 765 void *task_ctx_data; /* pmu specific data */ 766 struct rcu_head rcu_head; 767 }; 768 769 /* 770 * Number of contexts where an event can trigger: 771 * task, softirq, hardirq, nmi. 772 */ 773 #define PERF_NR_CONTEXTS 4 774 775 /** 776 * struct perf_event_cpu_context - per cpu event context structure 777 */ 778 struct perf_cpu_context { 779 struct perf_event_context ctx; 780 struct perf_event_context *task_ctx; 781 int active_oncpu; 782 int exclusive; 783 784 raw_spinlock_t hrtimer_lock; 785 struct hrtimer hrtimer; 786 ktime_t hrtimer_interval; 787 unsigned int hrtimer_active; 788 789 #ifdef CONFIG_CGROUP_PERF 790 struct perf_cgroup *cgrp; 791 struct list_head cgrp_cpuctx_entry; 792 #endif 793 794 struct list_head sched_cb_entry; 795 int sched_cb_usage; 796 797 int online; 798 }; 799 800 struct perf_output_handle { 801 struct perf_event *event; 802 struct ring_buffer *rb; 803 unsigned long wakeup; 804 unsigned long size; 805 u64 aux_flags; 806 union { 807 void *addr; 808 unsigned long head; 809 }; 810 int page; 811 }; 812 813 struct bpf_perf_event_data_kern { 814 bpf_user_pt_regs_t *regs; 815 struct perf_sample_data *data; 816 struct perf_event *event; 817 }; 818 819 #ifdef CONFIG_CGROUP_PERF 820 821 /* 822 * perf_cgroup_info keeps track of time_enabled for a cgroup. 823 * This is a per-cpu dynamically allocated data structure. 824 */ 825 struct perf_cgroup_info { 826 u64 time; 827 u64 timestamp; 828 }; 829 830 struct perf_cgroup { 831 struct cgroup_subsys_state css; 832 struct perf_cgroup_info __percpu *info; 833 }; 834 835 /* 836 * Must ensure cgroup is pinned (css_get) before calling 837 * this function. In other words, we cannot call this function 838 * if there is no cgroup event for the current CPU context. 839 */ 840 static inline struct perf_cgroup * 841 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 842 { 843 return container_of(task_css_check(task, perf_event_cgrp_id, 844 ctx ? lockdep_is_held(&ctx->lock) 845 : true), 846 struct perf_cgroup, css); 847 } 848 #endif /* CONFIG_CGROUP_PERF */ 849 850 #ifdef CONFIG_PERF_EVENTS 851 852 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 853 struct perf_event *event); 854 extern void perf_aux_output_end(struct perf_output_handle *handle, 855 unsigned long size); 856 extern int perf_aux_output_skip(struct perf_output_handle *handle, 857 unsigned long size); 858 extern void *perf_get_aux(struct perf_output_handle *handle); 859 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 860 extern void perf_event_itrace_started(struct perf_event *event); 861 862 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 863 extern void perf_pmu_unregister(struct pmu *pmu); 864 865 extern int perf_num_counters(void); 866 extern const char *perf_pmu_name(void); 867 extern void __perf_event_task_sched_in(struct task_struct *prev, 868 struct task_struct *task); 869 extern void __perf_event_task_sched_out(struct task_struct *prev, 870 struct task_struct *next); 871 extern int perf_event_init_task(struct task_struct *child); 872 extern void perf_event_exit_task(struct task_struct *child); 873 extern void perf_event_free_task(struct task_struct *task); 874 extern void perf_event_delayed_put(struct task_struct *task); 875 extern struct file *perf_event_get(unsigned int fd); 876 extern const struct perf_event *perf_get_event(struct file *file); 877 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 878 extern void perf_event_print_debug(void); 879 extern void perf_pmu_disable(struct pmu *pmu); 880 extern void perf_pmu_enable(struct pmu *pmu); 881 extern void perf_sched_cb_dec(struct pmu *pmu); 882 extern void perf_sched_cb_inc(struct pmu *pmu); 883 extern int perf_event_task_disable(void); 884 extern int perf_event_task_enable(void); 885 extern int perf_event_refresh(struct perf_event *event, int refresh); 886 extern void perf_event_update_userpage(struct perf_event *event); 887 extern int perf_event_release_kernel(struct perf_event *event); 888 extern struct perf_event * 889 perf_event_create_kernel_counter(struct perf_event_attr *attr, 890 int cpu, 891 struct task_struct *task, 892 perf_overflow_handler_t callback, 893 void *context); 894 extern void perf_pmu_migrate_context(struct pmu *pmu, 895 int src_cpu, int dst_cpu); 896 int perf_event_read_local(struct perf_event *event, u64 *value, 897 u64 *enabled, u64 *running); 898 extern u64 perf_event_read_value(struct perf_event *event, 899 u64 *enabled, u64 *running); 900 901 902 struct perf_sample_data { 903 /* 904 * Fields set by perf_sample_data_init(), group so as to 905 * minimize the cachelines touched. 906 */ 907 u64 addr; 908 struct perf_raw_record *raw; 909 struct perf_branch_stack *br_stack; 910 u64 period; 911 u64 weight; 912 u64 txn; 913 union perf_mem_data_src data_src; 914 915 /* 916 * The other fields, optionally {set,used} by 917 * perf_{prepare,output}_sample(). 918 */ 919 u64 type; 920 u64 ip; 921 struct { 922 u32 pid; 923 u32 tid; 924 } tid_entry; 925 u64 time; 926 u64 id; 927 u64 stream_id; 928 struct { 929 u32 cpu; 930 u32 reserved; 931 } cpu_entry; 932 struct perf_callchain_entry *callchain; 933 934 /* 935 * regs_user may point to task_pt_regs or to regs_user_copy, depending 936 * on arch details. 937 */ 938 struct perf_regs regs_user; 939 struct pt_regs regs_user_copy; 940 941 struct perf_regs regs_intr; 942 u64 stack_user_size; 943 944 u64 phys_addr; 945 } ____cacheline_aligned; 946 947 /* default value for data source */ 948 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 949 PERF_MEM_S(LVL, NA) |\ 950 PERF_MEM_S(SNOOP, NA) |\ 951 PERF_MEM_S(LOCK, NA) |\ 952 PERF_MEM_S(TLB, NA)) 953 954 static inline void perf_sample_data_init(struct perf_sample_data *data, 955 u64 addr, u64 period) 956 { 957 /* remaining struct members initialized in perf_prepare_sample() */ 958 data->addr = addr; 959 data->raw = NULL; 960 data->br_stack = NULL; 961 data->period = period; 962 data->weight = 0; 963 data->data_src.val = PERF_MEM_NA; 964 data->txn = 0; 965 } 966 967 extern void perf_output_sample(struct perf_output_handle *handle, 968 struct perf_event_header *header, 969 struct perf_sample_data *data, 970 struct perf_event *event); 971 extern void perf_prepare_sample(struct perf_event_header *header, 972 struct perf_sample_data *data, 973 struct perf_event *event, 974 struct pt_regs *regs); 975 976 extern int perf_event_overflow(struct perf_event *event, 977 struct perf_sample_data *data, 978 struct pt_regs *regs); 979 980 extern void perf_event_output_forward(struct perf_event *event, 981 struct perf_sample_data *data, 982 struct pt_regs *regs); 983 extern void perf_event_output_backward(struct perf_event *event, 984 struct perf_sample_data *data, 985 struct pt_regs *regs); 986 extern void perf_event_output(struct perf_event *event, 987 struct perf_sample_data *data, 988 struct pt_regs *regs); 989 990 static inline bool 991 is_default_overflow_handler(struct perf_event *event) 992 { 993 if (likely(event->overflow_handler == perf_event_output_forward)) 994 return true; 995 if (unlikely(event->overflow_handler == perf_event_output_backward)) 996 return true; 997 return false; 998 } 999 1000 extern void 1001 perf_event_header__init_id(struct perf_event_header *header, 1002 struct perf_sample_data *data, 1003 struct perf_event *event); 1004 extern void 1005 perf_event__output_id_sample(struct perf_event *event, 1006 struct perf_output_handle *handle, 1007 struct perf_sample_data *sample); 1008 1009 extern void 1010 perf_log_lost_samples(struct perf_event *event, u64 lost); 1011 1012 static inline bool is_sampling_event(struct perf_event *event) 1013 { 1014 return event->attr.sample_period != 0; 1015 } 1016 1017 /* 1018 * Return 1 for a software event, 0 for a hardware event 1019 */ 1020 static inline int is_software_event(struct perf_event *event) 1021 { 1022 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1023 } 1024 1025 /* 1026 * Return 1 for event in sw context, 0 for event in hw context 1027 */ 1028 static inline int in_software_context(struct perf_event *event) 1029 { 1030 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1031 } 1032 1033 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1034 1035 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1036 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1037 1038 #ifndef perf_arch_fetch_caller_regs 1039 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1040 #endif 1041 1042 /* 1043 * Take a snapshot of the regs. Skip ip and frame pointer to 1044 * the nth caller. We only need a few of the regs: 1045 * - ip for PERF_SAMPLE_IP 1046 * - cs for user_mode() tests 1047 * - bp for callchains 1048 * - eflags, for future purposes, just in case 1049 */ 1050 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1051 { 1052 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1053 } 1054 1055 static __always_inline void 1056 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1057 { 1058 if (static_key_false(&perf_swevent_enabled[event_id])) 1059 __perf_sw_event(event_id, nr, regs, addr); 1060 } 1061 1062 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1063 1064 /* 1065 * 'Special' version for the scheduler, it hard assumes no recursion, 1066 * which is guaranteed by us not actually scheduling inside other swevents 1067 * because those disable preemption. 1068 */ 1069 static __always_inline void 1070 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1071 { 1072 if (static_key_false(&perf_swevent_enabled[event_id])) { 1073 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1074 1075 perf_fetch_caller_regs(regs); 1076 ___perf_sw_event(event_id, nr, regs, addr); 1077 } 1078 } 1079 1080 extern struct static_key_false perf_sched_events; 1081 1082 static __always_inline bool 1083 perf_sw_migrate_enabled(void) 1084 { 1085 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1086 return true; 1087 return false; 1088 } 1089 1090 static inline void perf_event_task_migrate(struct task_struct *task) 1091 { 1092 if (perf_sw_migrate_enabled()) 1093 task->sched_migrated = 1; 1094 } 1095 1096 static inline void perf_event_task_sched_in(struct task_struct *prev, 1097 struct task_struct *task) 1098 { 1099 if (static_branch_unlikely(&perf_sched_events)) 1100 __perf_event_task_sched_in(prev, task); 1101 1102 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1103 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1104 1105 perf_fetch_caller_regs(regs); 1106 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1107 task->sched_migrated = 0; 1108 } 1109 } 1110 1111 static inline void perf_event_task_sched_out(struct task_struct *prev, 1112 struct task_struct *next) 1113 { 1114 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1115 1116 if (static_branch_unlikely(&perf_sched_events)) 1117 __perf_event_task_sched_out(prev, next); 1118 } 1119 1120 extern void perf_event_mmap(struct vm_area_struct *vma); 1121 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1122 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1123 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1124 1125 extern void perf_event_exec(void); 1126 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1127 extern void perf_event_namespaces(struct task_struct *tsk); 1128 extern void perf_event_fork(struct task_struct *tsk); 1129 1130 /* Callchains */ 1131 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1132 1133 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1134 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1135 extern struct perf_callchain_entry * 1136 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1137 u32 max_stack, bool crosstask, bool add_mark); 1138 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1139 extern int get_callchain_buffers(int max_stack); 1140 extern void put_callchain_buffers(void); 1141 1142 extern int sysctl_perf_event_max_stack; 1143 extern int sysctl_perf_event_max_contexts_per_stack; 1144 1145 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1146 { 1147 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1148 struct perf_callchain_entry *entry = ctx->entry; 1149 entry->ip[entry->nr++] = ip; 1150 ++ctx->contexts; 1151 return 0; 1152 } else { 1153 ctx->contexts_maxed = true; 1154 return -1; /* no more room, stop walking the stack */ 1155 } 1156 } 1157 1158 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1159 { 1160 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1161 struct perf_callchain_entry *entry = ctx->entry; 1162 entry->ip[entry->nr++] = ip; 1163 ++ctx->nr; 1164 return 0; 1165 } else { 1166 return -1; /* no more room, stop walking the stack */ 1167 } 1168 } 1169 1170 extern int sysctl_perf_event_paranoid; 1171 extern int sysctl_perf_event_mlock; 1172 extern int sysctl_perf_event_sample_rate; 1173 extern int sysctl_perf_cpu_time_max_percent; 1174 1175 extern void perf_sample_event_took(u64 sample_len_ns); 1176 1177 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1178 void __user *buffer, size_t *lenp, 1179 loff_t *ppos); 1180 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1181 void __user *buffer, size_t *lenp, 1182 loff_t *ppos); 1183 1184 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1185 void __user *buffer, size_t *lenp, loff_t *ppos); 1186 1187 static inline bool perf_paranoid_tracepoint_raw(void) 1188 { 1189 return sysctl_perf_event_paranoid > -1; 1190 } 1191 1192 static inline bool perf_paranoid_cpu(void) 1193 { 1194 return sysctl_perf_event_paranoid > 0; 1195 } 1196 1197 static inline bool perf_paranoid_kernel(void) 1198 { 1199 return sysctl_perf_event_paranoid > 1; 1200 } 1201 1202 extern void perf_event_init(void); 1203 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1204 int entry_size, struct pt_regs *regs, 1205 struct hlist_head *head, int rctx, 1206 struct task_struct *task); 1207 extern void perf_bp_event(struct perf_event *event, void *data); 1208 1209 #ifndef perf_misc_flags 1210 # define perf_misc_flags(regs) \ 1211 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1212 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1213 #endif 1214 #ifndef perf_arch_bpf_user_pt_regs 1215 # define perf_arch_bpf_user_pt_regs(regs) regs 1216 #endif 1217 1218 static inline bool has_branch_stack(struct perf_event *event) 1219 { 1220 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1221 } 1222 1223 static inline bool needs_branch_stack(struct perf_event *event) 1224 { 1225 return event->attr.branch_sample_type != 0; 1226 } 1227 1228 static inline bool has_aux(struct perf_event *event) 1229 { 1230 return event->pmu->setup_aux; 1231 } 1232 1233 static inline bool is_write_backward(struct perf_event *event) 1234 { 1235 return !!event->attr.write_backward; 1236 } 1237 1238 static inline bool has_addr_filter(struct perf_event *event) 1239 { 1240 return event->pmu->nr_addr_filters; 1241 } 1242 1243 /* 1244 * An inherited event uses parent's filters 1245 */ 1246 static inline struct perf_addr_filters_head * 1247 perf_event_addr_filters(struct perf_event *event) 1248 { 1249 struct perf_addr_filters_head *ifh = &event->addr_filters; 1250 1251 if (event->parent) 1252 ifh = &event->parent->addr_filters; 1253 1254 return ifh; 1255 } 1256 1257 extern void perf_event_addr_filters_sync(struct perf_event *event); 1258 1259 extern int perf_output_begin(struct perf_output_handle *handle, 1260 struct perf_event *event, unsigned int size); 1261 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1262 struct perf_event *event, 1263 unsigned int size); 1264 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1265 struct perf_event *event, 1266 unsigned int size); 1267 1268 extern void perf_output_end(struct perf_output_handle *handle); 1269 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1270 const void *buf, unsigned int len); 1271 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1272 unsigned int len); 1273 extern int perf_swevent_get_recursion_context(void); 1274 extern void perf_swevent_put_recursion_context(int rctx); 1275 extern u64 perf_swevent_set_period(struct perf_event *event); 1276 extern void perf_event_enable(struct perf_event *event); 1277 extern void perf_event_disable(struct perf_event *event); 1278 extern void perf_event_disable_local(struct perf_event *event); 1279 extern void perf_event_disable_inatomic(struct perf_event *event); 1280 extern void perf_event_task_tick(void); 1281 extern int perf_event_account_interrupt(struct perf_event *event); 1282 #else /* !CONFIG_PERF_EVENTS: */ 1283 static inline void * 1284 perf_aux_output_begin(struct perf_output_handle *handle, 1285 struct perf_event *event) { return NULL; } 1286 static inline void 1287 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1288 { } 1289 static inline int 1290 perf_aux_output_skip(struct perf_output_handle *handle, 1291 unsigned long size) { return -EINVAL; } 1292 static inline void * 1293 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1294 static inline void 1295 perf_event_task_migrate(struct task_struct *task) { } 1296 static inline void 1297 perf_event_task_sched_in(struct task_struct *prev, 1298 struct task_struct *task) { } 1299 static inline void 1300 perf_event_task_sched_out(struct task_struct *prev, 1301 struct task_struct *next) { } 1302 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1303 static inline void perf_event_exit_task(struct task_struct *child) { } 1304 static inline void perf_event_free_task(struct task_struct *task) { } 1305 static inline void perf_event_delayed_put(struct task_struct *task) { } 1306 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1307 static inline const struct perf_event *perf_get_event(struct file *file) 1308 { 1309 return ERR_PTR(-EINVAL); 1310 } 1311 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1312 { 1313 return ERR_PTR(-EINVAL); 1314 } 1315 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1316 u64 *enabled, u64 *running) 1317 { 1318 return -EINVAL; 1319 } 1320 static inline void perf_event_print_debug(void) { } 1321 static inline int perf_event_task_disable(void) { return -EINVAL; } 1322 static inline int perf_event_task_enable(void) { return -EINVAL; } 1323 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1324 { 1325 return -EINVAL; 1326 } 1327 1328 static inline void 1329 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1330 static inline void 1331 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1332 static inline void 1333 perf_bp_event(struct perf_event *event, void *data) { } 1334 1335 static inline int perf_register_guest_info_callbacks 1336 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1337 static inline int perf_unregister_guest_info_callbacks 1338 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1339 1340 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1341 static inline void perf_event_exec(void) { } 1342 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1343 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1344 static inline void perf_event_fork(struct task_struct *tsk) { } 1345 static inline void perf_event_init(void) { } 1346 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1347 static inline void perf_swevent_put_recursion_context(int rctx) { } 1348 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1349 static inline void perf_event_enable(struct perf_event *event) { } 1350 static inline void perf_event_disable(struct perf_event *event) { } 1351 static inline int __perf_event_disable(void *info) { return -1; } 1352 static inline void perf_event_task_tick(void) { } 1353 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1354 #endif 1355 1356 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1357 extern void perf_restore_debug_store(void); 1358 #else 1359 static inline void perf_restore_debug_store(void) { } 1360 #endif 1361 1362 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1363 { 1364 return frag->pad < sizeof(u64); 1365 } 1366 1367 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1368 1369 struct perf_pmu_events_attr { 1370 struct device_attribute attr; 1371 u64 id; 1372 const char *event_str; 1373 }; 1374 1375 struct perf_pmu_events_ht_attr { 1376 struct device_attribute attr; 1377 u64 id; 1378 const char *event_str_ht; 1379 const char *event_str_noht; 1380 }; 1381 1382 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1383 char *page); 1384 1385 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1386 static struct perf_pmu_events_attr _var = { \ 1387 .attr = __ATTR(_name, 0444, _show, NULL), \ 1388 .id = _id, \ 1389 }; 1390 1391 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1392 static struct perf_pmu_events_attr _var = { \ 1393 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1394 .id = 0, \ 1395 .event_str = _str, \ 1396 }; 1397 1398 #define PMU_FORMAT_ATTR(_name, _format) \ 1399 static ssize_t \ 1400 _name##_show(struct device *dev, \ 1401 struct device_attribute *attr, \ 1402 char *page) \ 1403 { \ 1404 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1405 return sprintf(page, _format "\n"); \ 1406 } \ 1407 \ 1408 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1409 1410 /* Performance counter hotplug functions */ 1411 #ifdef CONFIG_PERF_EVENTS 1412 int perf_event_init_cpu(unsigned int cpu); 1413 int perf_event_exit_cpu(unsigned int cpu); 1414 #else 1415 #define perf_event_init_cpu NULL 1416 #define perf_event_exit_cpu NULL 1417 #endif 1418 1419 #endif /* _LINUX_PERF_EVENT_H */ 1420