xref: /linux-6.15/include/linux/perf_event.h (revision e907bf3c)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/jump_label_ratelimit.h>
53 #include <linux/atomic.h>
54 #include <linux/sysfs.h>
55 #include <linux/perf_regs.h>
56 #include <linux/workqueue.h>
57 #include <linux/cgroup.h>
58 #include <asm/local.h>
59 
60 struct perf_callchain_entry {
61 	__u64				nr;
62 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63 };
64 
65 struct perf_callchain_entry_ctx {
66 	struct perf_callchain_entry *entry;
67 	u32			    max_stack;
68 	u32			    nr;
69 	short			    contexts;
70 	bool			    contexts_maxed;
71 };
72 
73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 				     unsigned long off, unsigned long len);
75 
76 struct perf_raw_frag {
77 	union {
78 		struct perf_raw_frag	*next;
79 		unsigned long		pad;
80 	};
81 	perf_copy_f			copy;
82 	void				*data;
83 	u32				size;
84 } __packed;
85 
86 struct perf_raw_record {
87 	struct perf_raw_frag		frag;
88 	u32				size;
89 };
90 
91 /*
92  * branch stack layout:
93  *  nr: number of taken branches stored in entries[]
94  *
95  * Note that nr can vary from sample to sample
96  * branches (to, from) are stored from most recent
97  * to least recent, i.e., entries[0] contains the most
98  * recent branch.
99  */
100 struct perf_branch_stack {
101 	__u64				nr;
102 	struct perf_branch_entry	entries[0];
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 			int		flags;
132 
133 			struct hw_perf_event_extra extra_reg;
134 			struct hw_perf_event_extra branch_reg;
135 		};
136 		struct { /* software */
137 			struct hrtimer	hrtimer;
138 		};
139 		struct { /* tracepoint */
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 		struct { /* amd_power */
144 			u64	pwr_acc;
145 			u64	ptsc;
146 		};
147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
148 		struct { /* breakpoint */
149 			/*
150 			 * Crufty hack to avoid the chicken and egg
151 			 * problem hw_breakpoint has with context
152 			 * creation and event initalization.
153 			 */
154 			struct arch_hw_breakpoint	info;
155 			struct list_head		bp_list;
156 		};
157 #endif
158 		struct { /* amd_iommu */
159 			u8	iommu_bank;
160 			u8	iommu_cntr;
161 			u16	padding;
162 			u64	conf;
163 			u64	conf1;
164 		};
165 	};
166 	/*
167 	 * If the event is a per task event, this will point to the task in
168 	 * question. See the comment in perf_event_alloc().
169 	 */
170 	struct task_struct		*target;
171 
172 	/*
173 	 * PMU would store hardware filter configuration
174 	 * here.
175 	 */
176 	void				*addr_filters;
177 
178 	/* Last sync'ed generation of filters */
179 	unsigned long			addr_filters_gen;
180 
181 /*
182  * hw_perf_event::state flags; used to track the PERF_EF_* state.
183  */
184 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
185 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
186 #define PERF_HES_ARCH		0x04
187 
188 	int				state;
189 
190 	/*
191 	 * The last observed hardware counter value, updated with a
192 	 * local64_cmpxchg() such that pmu::read() can be called nested.
193 	 */
194 	local64_t			prev_count;
195 
196 	/*
197 	 * The period to start the next sample with.
198 	 */
199 	u64				sample_period;
200 
201 	/*
202 	 * The period we started this sample with.
203 	 */
204 	u64				last_period;
205 
206 	/*
207 	 * However much is left of the current period; note that this is
208 	 * a full 64bit value and allows for generation of periods longer
209 	 * than hardware might allow.
210 	 */
211 	local64_t			period_left;
212 
213 	/*
214 	 * State for throttling the event, see __perf_event_overflow() and
215 	 * perf_adjust_freq_unthr_context().
216 	 */
217 	u64                             interrupts_seq;
218 	u64				interrupts;
219 
220 	/*
221 	 * State for freq target events, see __perf_event_overflow() and
222 	 * perf_adjust_freq_unthr_context().
223 	 */
224 	u64				freq_time_stamp;
225 	u64				freq_count_stamp;
226 #endif
227 };
228 
229 struct perf_event;
230 
231 /*
232  * Common implementation detail of pmu::{start,commit,cancel}_txn
233  */
234 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
235 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
236 
237 /**
238  * pmu::capabilities flags
239  */
240 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
241 #define PERF_PMU_CAP_NO_NMI			0x02
242 #define PERF_PMU_CAP_AUX_NO_SG			0x04
243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
244 #define PERF_PMU_CAP_EXCLUSIVE			0x10
245 #define PERF_PMU_CAP_ITRACE			0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
247 
248 /**
249  * struct pmu - generic performance monitoring unit
250  */
251 struct pmu {
252 	struct list_head		entry;
253 
254 	struct module			*module;
255 	struct device			*dev;
256 	const struct attribute_group	**attr_groups;
257 	const char			*name;
258 	int				type;
259 
260 	/*
261 	 * various common per-pmu feature flags
262 	 */
263 	int				capabilities;
264 
265 	int __percpu			*pmu_disable_count;
266 	struct perf_cpu_context __percpu *pmu_cpu_context;
267 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 	int				task_ctx_nr;
269 	int				hrtimer_interval_ms;
270 
271 	/* number of address filters this PMU can do */
272 	unsigned int			nr_addr_filters;
273 
274 	/*
275 	 * Fully disable/enable this PMU, can be used to protect from the PMI
276 	 * as well as for lazy/batch writing of the MSRs.
277 	 */
278 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
279 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
280 
281 	/*
282 	 * Try and initialize the event for this PMU.
283 	 *
284 	 * Returns:
285 	 *  -ENOENT	-- @event is not for this PMU
286 	 *
287 	 *  -ENODEV	-- @event is for this PMU but PMU not present
288 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
289 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
290 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
292 	 *
293 	 *  0		-- @event is for this PMU and valid
294 	 *
295 	 * Other error return values are allowed.
296 	 */
297 	int (*event_init)		(struct perf_event *event);
298 
299 	/*
300 	 * Notification that the event was mapped or unmapped.  Called
301 	 * in the context of the mapping task.
302 	 */
303 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
304 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
305 
306 	/*
307 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 	 * matching hw_perf_event::state flags.
309 	 */
310 #define PERF_EF_START	0x01		/* start the counter when adding    */
311 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
312 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
313 
314 	/*
315 	 * Adds/Removes a counter to/from the PMU, can be done inside a
316 	 * transaction, see the ->*_txn() methods.
317 	 *
318 	 * The add/del callbacks will reserve all hardware resources required
319 	 * to service the event, this includes any counter constraint
320 	 * scheduling etc.
321 	 *
322 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 	 * is on.
324 	 *
325 	 * ->add() called without PERF_EF_START should result in the same state
326 	 *  as ->add() followed by ->stop().
327 	 *
328 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 	 *  ->stop() that must deal with already being stopped without
330 	 *  PERF_EF_UPDATE.
331 	 */
332 	int  (*add)			(struct perf_event *event, int flags);
333 	void (*del)			(struct perf_event *event, int flags);
334 
335 	/*
336 	 * Starts/Stops a counter present on the PMU.
337 	 *
338 	 * The PMI handler should stop the counter when perf_event_overflow()
339 	 * returns !0. ->start() will be used to continue.
340 	 *
341 	 * Also used to change the sample period.
342 	 *
343 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 	 * is on -- will be called from NMI context with the PMU generates
345 	 * NMIs.
346 	 *
347 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 	 *  period/count values like ->read() would.
349 	 *
350 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 	 */
353 	void (*start)			(struct perf_event *event, int flags);
354 	void (*stop)			(struct perf_event *event, int flags);
355 
356 	/*
357 	 * Updates the counter value of the event.
358 	 *
359 	 * For sampling capable PMUs this will also update the software period
360 	 * hw_perf_event::period_left field.
361 	 */
362 	void (*read)			(struct perf_event *event);
363 
364 	/*
365 	 * Group events scheduling is treated as a transaction, add
366 	 * group events as a whole and perform one schedulability test.
367 	 * If the test fails, roll back the whole group
368 	 *
369 	 * Start the transaction, after this ->add() doesn't need to
370 	 * do schedulability tests.
371 	 *
372 	 * Optional.
373 	 */
374 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
375 	/*
376 	 * If ->start_txn() disabled the ->add() schedulability test
377 	 * then ->commit_txn() is required to perform one. On success
378 	 * the transaction is closed. On error the transaction is kept
379 	 * open until ->cancel_txn() is called.
380 	 *
381 	 * Optional.
382 	 */
383 	int  (*commit_txn)		(struct pmu *pmu);
384 	/*
385 	 * Will cancel the transaction, assumes ->del() is called
386 	 * for each successful ->add() during the transaction.
387 	 *
388 	 * Optional.
389 	 */
390 	void (*cancel_txn)		(struct pmu *pmu);
391 
392 	/*
393 	 * Will return the value for perf_event_mmap_page::index for this event,
394 	 * if no implementation is provided it will default to: event->hw.idx + 1.
395 	 */
396 	int (*event_idx)		(struct perf_event *event); /*optional */
397 
398 	/*
399 	 * context-switches callback
400 	 */
401 	void (*sched_task)		(struct perf_event_context *ctx,
402 					bool sched_in);
403 	/*
404 	 * PMU specific data size
405 	 */
406 	size_t				task_ctx_size;
407 
408 
409 	/*
410 	 * Set up pmu-private data structures for an AUX area
411 	 */
412 	void *(*setup_aux)		(int cpu, void **pages,
413 					 int nr_pages, bool overwrite);
414 					/* optional */
415 
416 	/*
417 	 * Free pmu-private AUX data structures
418 	 */
419 	void (*free_aux)		(void *aux); /* optional */
420 
421 	/*
422 	 * Validate address range filters: make sure the HW supports the
423 	 * requested configuration and number of filters; return 0 if the
424 	 * supplied filters are valid, -errno otherwise.
425 	 *
426 	 * Runs in the context of the ioctl()ing process and is not serialized
427 	 * with the rest of the PMU callbacks.
428 	 */
429 	int (*addr_filters_validate)	(struct list_head *filters);
430 					/* optional */
431 
432 	/*
433 	 * Synchronize address range filter configuration:
434 	 * translate hw-agnostic filters into hardware configuration in
435 	 * event::hw::addr_filters.
436 	 *
437 	 * Runs as a part of filter sync sequence that is done in ->start()
438 	 * callback by calling perf_event_addr_filters_sync().
439 	 *
440 	 * May (and should) traverse event::addr_filters::list, for which its
441 	 * caller provides necessary serialization.
442 	 */
443 	void (*addr_filters_sync)	(struct perf_event *event);
444 					/* optional */
445 
446 	/*
447 	 * Filter events for PMU-specific reasons.
448 	 */
449 	int (*filter_match)		(struct perf_event *event); /* optional */
450 
451 	/*
452 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
453 	 */
454 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
455 };
456 
457 enum perf_addr_filter_action_t {
458 	PERF_ADDR_FILTER_ACTION_STOP = 0,
459 	PERF_ADDR_FILTER_ACTION_START,
460 	PERF_ADDR_FILTER_ACTION_FILTER,
461 };
462 
463 /**
464  * struct perf_addr_filter - address range filter definition
465  * @entry:	event's filter list linkage
466  * @inode:	object file's inode for file-based filters
467  * @offset:	filter range offset
468  * @size:	filter range size (size==0 means single address trigger)
469  * @action:	filter/start/stop
470  *
471  * This is a hardware-agnostic filter configuration as specified by the user.
472  */
473 struct perf_addr_filter {
474 	struct list_head	entry;
475 	struct path		path;
476 	unsigned long		offset;
477 	unsigned long		size;
478 	enum perf_addr_filter_action_t	action;
479 };
480 
481 /**
482  * struct perf_addr_filters_head - container for address range filters
483  * @list:	list of filters for this event
484  * @lock:	spinlock that serializes accesses to the @list and event's
485  *		(and its children's) filter generations.
486  * @nr_file_filters:	number of file-based filters
487  *
488  * A child event will use parent's @list (and therefore @lock), so they are
489  * bundled together; see perf_event_addr_filters().
490  */
491 struct perf_addr_filters_head {
492 	struct list_head	list;
493 	raw_spinlock_t		lock;
494 	unsigned int		nr_file_filters;
495 };
496 
497 /**
498  * enum perf_event_state - the states of an event:
499  */
500 enum perf_event_state {
501 	PERF_EVENT_STATE_DEAD		= -4,
502 	PERF_EVENT_STATE_EXIT		= -3,
503 	PERF_EVENT_STATE_ERROR		= -2,
504 	PERF_EVENT_STATE_OFF		= -1,
505 	PERF_EVENT_STATE_INACTIVE	=  0,
506 	PERF_EVENT_STATE_ACTIVE		=  1,
507 };
508 
509 struct file;
510 struct perf_sample_data;
511 
512 typedef void (*perf_overflow_handler_t)(struct perf_event *,
513 					struct perf_sample_data *,
514 					struct pt_regs *regs);
515 
516 /*
517  * Event capabilities. For event_caps and groups caps.
518  *
519  * PERF_EV_CAP_SOFTWARE: Is a software event.
520  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
521  * from any CPU in the package where it is active.
522  */
523 #define PERF_EV_CAP_SOFTWARE		BIT(0)
524 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
525 
526 #define SWEVENT_HLIST_BITS		8
527 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
528 
529 struct swevent_hlist {
530 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
531 	struct rcu_head			rcu_head;
532 };
533 
534 #define PERF_ATTACH_CONTEXT	0x01
535 #define PERF_ATTACH_GROUP	0x02
536 #define PERF_ATTACH_TASK	0x04
537 #define PERF_ATTACH_TASK_DATA	0x08
538 #define PERF_ATTACH_ITRACE	0x10
539 
540 struct perf_cgroup;
541 struct ring_buffer;
542 
543 struct pmu_event_list {
544 	raw_spinlock_t		lock;
545 	struct list_head	list;
546 };
547 
548 #define for_each_sibling_event(sibling, event)			\
549 	if ((event)->group_leader == (event))			\
550 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
551 
552 /**
553  * struct perf_event - performance event kernel representation:
554  */
555 struct perf_event {
556 #ifdef CONFIG_PERF_EVENTS
557 	/*
558 	 * entry onto perf_event_context::event_list;
559 	 *   modifications require ctx->lock
560 	 *   RCU safe iterations.
561 	 */
562 	struct list_head		event_entry;
563 
564 	/*
565 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
566 	 * either sufficies for read.
567 	 */
568 	struct list_head		sibling_list;
569 	struct list_head		active_list;
570 	/*
571 	 * Node on the pinned or flexible tree located at the event context;
572 	 */
573 	struct rb_node			group_node;
574 	u64				group_index;
575 	/*
576 	 * We need storage to track the entries in perf_pmu_migrate_context; we
577 	 * cannot use the event_entry because of RCU and we want to keep the
578 	 * group in tact which avoids us using the other two entries.
579 	 */
580 	struct list_head		migrate_entry;
581 
582 	struct hlist_node		hlist_entry;
583 	struct list_head		active_entry;
584 	int				nr_siblings;
585 
586 	/* Not serialized. Only written during event initialization. */
587 	int				event_caps;
588 	/* The cumulative AND of all event_caps for events in this group. */
589 	int				group_caps;
590 
591 	struct perf_event		*group_leader;
592 	struct pmu			*pmu;
593 	void				*pmu_private;
594 
595 	enum perf_event_state		state;
596 	unsigned int			attach_state;
597 	local64_t			count;
598 	atomic64_t			child_count;
599 
600 	/*
601 	 * These are the total time in nanoseconds that the event
602 	 * has been enabled (i.e. eligible to run, and the task has
603 	 * been scheduled in, if this is a per-task event)
604 	 * and running (scheduled onto the CPU), respectively.
605 	 */
606 	u64				total_time_enabled;
607 	u64				total_time_running;
608 	u64				tstamp;
609 
610 	/*
611 	 * timestamp shadows the actual context timing but it can
612 	 * be safely used in NMI interrupt context. It reflects the
613 	 * context time as it was when the event was last scheduled in.
614 	 *
615 	 * ctx_time already accounts for ctx->timestamp. Therefore to
616 	 * compute ctx_time for a sample, simply add perf_clock().
617 	 */
618 	u64				shadow_ctx_time;
619 
620 	struct perf_event_attr		attr;
621 	u16				header_size;
622 	u16				id_header_size;
623 	u16				read_size;
624 	struct hw_perf_event		hw;
625 
626 	struct perf_event_context	*ctx;
627 	atomic_long_t			refcount;
628 
629 	/*
630 	 * These accumulate total time (in nanoseconds) that children
631 	 * events have been enabled and running, respectively.
632 	 */
633 	atomic64_t			child_total_time_enabled;
634 	atomic64_t			child_total_time_running;
635 
636 	/*
637 	 * Protect attach/detach and child_list:
638 	 */
639 	struct mutex			child_mutex;
640 	struct list_head		child_list;
641 	struct perf_event		*parent;
642 
643 	int				oncpu;
644 	int				cpu;
645 
646 	struct list_head		owner_entry;
647 	struct task_struct		*owner;
648 
649 	/* mmap bits */
650 	struct mutex			mmap_mutex;
651 	atomic_t			mmap_count;
652 
653 	struct ring_buffer		*rb;
654 	struct list_head		rb_entry;
655 	unsigned long			rcu_batches;
656 	int				rcu_pending;
657 
658 	/* poll related */
659 	wait_queue_head_t		waitq;
660 	struct fasync_struct		*fasync;
661 
662 	/* delayed work for NMIs and such */
663 	int				pending_wakeup;
664 	int				pending_kill;
665 	int				pending_disable;
666 	struct irq_work			pending;
667 
668 	atomic_t			event_limit;
669 
670 	/* address range filters */
671 	struct perf_addr_filters_head	addr_filters;
672 	/* vma address array for file-based filders */
673 	unsigned long			*addr_filters_offs;
674 	unsigned long			addr_filters_gen;
675 
676 	void (*destroy)(struct perf_event *);
677 	struct rcu_head			rcu_head;
678 
679 	struct pid_namespace		*ns;
680 	u64				id;
681 
682 	u64				(*clock)(void);
683 	perf_overflow_handler_t		overflow_handler;
684 	void				*overflow_handler_context;
685 #ifdef CONFIG_BPF_SYSCALL
686 	perf_overflow_handler_t		orig_overflow_handler;
687 	struct bpf_prog			*prog;
688 #endif
689 
690 #ifdef CONFIG_EVENT_TRACING
691 	struct trace_event_call		*tp_event;
692 	struct event_filter		*filter;
693 #ifdef CONFIG_FUNCTION_TRACER
694 	struct ftrace_ops               ftrace_ops;
695 #endif
696 #endif
697 
698 #ifdef CONFIG_CGROUP_PERF
699 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
700 #endif
701 
702 	struct list_head		sb_list;
703 #endif /* CONFIG_PERF_EVENTS */
704 };
705 
706 
707 struct perf_event_groups {
708 	struct rb_root	tree;
709 	u64		index;
710 };
711 
712 /**
713  * struct perf_event_context - event context structure
714  *
715  * Used as a container for task events and CPU events as well:
716  */
717 struct perf_event_context {
718 	struct pmu			*pmu;
719 	/*
720 	 * Protect the states of the events in the list,
721 	 * nr_active, and the list:
722 	 */
723 	raw_spinlock_t			lock;
724 	/*
725 	 * Protect the list of events.  Locking either mutex or lock
726 	 * is sufficient to ensure the list doesn't change; to change
727 	 * the list you need to lock both the mutex and the spinlock.
728 	 */
729 	struct mutex			mutex;
730 
731 	struct list_head		active_ctx_list;
732 	struct perf_event_groups	pinned_groups;
733 	struct perf_event_groups	flexible_groups;
734 	struct list_head		event_list;
735 
736 	struct list_head		pinned_active;
737 	struct list_head		flexible_active;
738 
739 	int				nr_events;
740 	int				nr_active;
741 	int				is_active;
742 	int				nr_stat;
743 	int				nr_freq;
744 	int				rotate_disable;
745 	atomic_t			refcount;
746 	struct task_struct		*task;
747 
748 	/*
749 	 * Context clock, runs when context enabled.
750 	 */
751 	u64				time;
752 	u64				timestamp;
753 
754 	/*
755 	 * These fields let us detect when two contexts have both
756 	 * been cloned (inherited) from a common ancestor.
757 	 */
758 	struct perf_event_context	*parent_ctx;
759 	u64				parent_gen;
760 	u64				generation;
761 	int				pin_count;
762 #ifdef CONFIG_CGROUP_PERF
763 	int				nr_cgroups;	 /* cgroup evts */
764 #endif
765 	void				*task_ctx_data; /* pmu specific data */
766 	struct rcu_head			rcu_head;
767 };
768 
769 /*
770  * Number of contexts where an event can trigger:
771  *	task, softirq, hardirq, nmi.
772  */
773 #define PERF_NR_CONTEXTS	4
774 
775 /**
776  * struct perf_event_cpu_context - per cpu event context structure
777  */
778 struct perf_cpu_context {
779 	struct perf_event_context	ctx;
780 	struct perf_event_context	*task_ctx;
781 	int				active_oncpu;
782 	int				exclusive;
783 
784 	raw_spinlock_t			hrtimer_lock;
785 	struct hrtimer			hrtimer;
786 	ktime_t				hrtimer_interval;
787 	unsigned int			hrtimer_active;
788 
789 #ifdef CONFIG_CGROUP_PERF
790 	struct perf_cgroup		*cgrp;
791 	struct list_head		cgrp_cpuctx_entry;
792 #endif
793 
794 	struct list_head		sched_cb_entry;
795 	int				sched_cb_usage;
796 
797 	int				online;
798 };
799 
800 struct perf_output_handle {
801 	struct perf_event		*event;
802 	struct ring_buffer		*rb;
803 	unsigned long			wakeup;
804 	unsigned long			size;
805 	u64				aux_flags;
806 	union {
807 		void			*addr;
808 		unsigned long		head;
809 	};
810 	int				page;
811 };
812 
813 struct bpf_perf_event_data_kern {
814 	bpf_user_pt_regs_t *regs;
815 	struct perf_sample_data *data;
816 	struct perf_event *event;
817 };
818 
819 #ifdef CONFIG_CGROUP_PERF
820 
821 /*
822  * perf_cgroup_info keeps track of time_enabled for a cgroup.
823  * This is a per-cpu dynamically allocated data structure.
824  */
825 struct perf_cgroup_info {
826 	u64				time;
827 	u64				timestamp;
828 };
829 
830 struct perf_cgroup {
831 	struct cgroup_subsys_state	css;
832 	struct perf_cgroup_info	__percpu *info;
833 };
834 
835 /*
836  * Must ensure cgroup is pinned (css_get) before calling
837  * this function. In other words, we cannot call this function
838  * if there is no cgroup event for the current CPU context.
839  */
840 static inline struct perf_cgroup *
841 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
842 {
843 	return container_of(task_css_check(task, perf_event_cgrp_id,
844 					   ctx ? lockdep_is_held(&ctx->lock)
845 					       : true),
846 			    struct perf_cgroup, css);
847 }
848 #endif /* CONFIG_CGROUP_PERF */
849 
850 #ifdef CONFIG_PERF_EVENTS
851 
852 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
853 				   struct perf_event *event);
854 extern void perf_aux_output_end(struct perf_output_handle *handle,
855 				unsigned long size);
856 extern int perf_aux_output_skip(struct perf_output_handle *handle,
857 				unsigned long size);
858 extern void *perf_get_aux(struct perf_output_handle *handle);
859 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
860 extern void perf_event_itrace_started(struct perf_event *event);
861 
862 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
863 extern void perf_pmu_unregister(struct pmu *pmu);
864 
865 extern int perf_num_counters(void);
866 extern const char *perf_pmu_name(void);
867 extern void __perf_event_task_sched_in(struct task_struct *prev,
868 				       struct task_struct *task);
869 extern void __perf_event_task_sched_out(struct task_struct *prev,
870 					struct task_struct *next);
871 extern int perf_event_init_task(struct task_struct *child);
872 extern void perf_event_exit_task(struct task_struct *child);
873 extern void perf_event_free_task(struct task_struct *task);
874 extern void perf_event_delayed_put(struct task_struct *task);
875 extern struct file *perf_event_get(unsigned int fd);
876 extern const struct perf_event *perf_get_event(struct file *file);
877 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
878 extern void perf_event_print_debug(void);
879 extern void perf_pmu_disable(struct pmu *pmu);
880 extern void perf_pmu_enable(struct pmu *pmu);
881 extern void perf_sched_cb_dec(struct pmu *pmu);
882 extern void perf_sched_cb_inc(struct pmu *pmu);
883 extern int perf_event_task_disable(void);
884 extern int perf_event_task_enable(void);
885 extern int perf_event_refresh(struct perf_event *event, int refresh);
886 extern void perf_event_update_userpage(struct perf_event *event);
887 extern int perf_event_release_kernel(struct perf_event *event);
888 extern struct perf_event *
889 perf_event_create_kernel_counter(struct perf_event_attr *attr,
890 				int cpu,
891 				struct task_struct *task,
892 				perf_overflow_handler_t callback,
893 				void *context);
894 extern void perf_pmu_migrate_context(struct pmu *pmu,
895 				int src_cpu, int dst_cpu);
896 int perf_event_read_local(struct perf_event *event, u64 *value,
897 			  u64 *enabled, u64 *running);
898 extern u64 perf_event_read_value(struct perf_event *event,
899 				 u64 *enabled, u64 *running);
900 
901 
902 struct perf_sample_data {
903 	/*
904 	 * Fields set by perf_sample_data_init(), group so as to
905 	 * minimize the cachelines touched.
906 	 */
907 	u64				addr;
908 	struct perf_raw_record		*raw;
909 	struct perf_branch_stack	*br_stack;
910 	u64				period;
911 	u64				weight;
912 	u64				txn;
913 	union  perf_mem_data_src	data_src;
914 
915 	/*
916 	 * The other fields, optionally {set,used} by
917 	 * perf_{prepare,output}_sample().
918 	 */
919 	u64				type;
920 	u64				ip;
921 	struct {
922 		u32	pid;
923 		u32	tid;
924 	}				tid_entry;
925 	u64				time;
926 	u64				id;
927 	u64				stream_id;
928 	struct {
929 		u32	cpu;
930 		u32	reserved;
931 	}				cpu_entry;
932 	struct perf_callchain_entry	*callchain;
933 
934 	/*
935 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
936 	 * on arch details.
937 	 */
938 	struct perf_regs		regs_user;
939 	struct pt_regs			regs_user_copy;
940 
941 	struct perf_regs		regs_intr;
942 	u64				stack_user_size;
943 
944 	u64				phys_addr;
945 } ____cacheline_aligned;
946 
947 /* default value for data source */
948 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
949 		    PERF_MEM_S(LVL, NA)   |\
950 		    PERF_MEM_S(SNOOP, NA) |\
951 		    PERF_MEM_S(LOCK, NA)  |\
952 		    PERF_MEM_S(TLB, NA))
953 
954 static inline void perf_sample_data_init(struct perf_sample_data *data,
955 					 u64 addr, u64 period)
956 {
957 	/* remaining struct members initialized in perf_prepare_sample() */
958 	data->addr = addr;
959 	data->raw  = NULL;
960 	data->br_stack = NULL;
961 	data->period = period;
962 	data->weight = 0;
963 	data->data_src.val = PERF_MEM_NA;
964 	data->txn = 0;
965 }
966 
967 extern void perf_output_sample(struct perf_output_handle *handle,
968 			       struct perf_event_header *header,
969 			       struct perf_sample_data *data,
970 			       struct perf_event *event);
971 extern void perf_prepare_sample(struct perf_event_header *header,
972 				struct perf_sample_data *data,
973 				struct perf_event *event,
974 				struct pt_regs *regs);
975 
976 extern int perf_event_overflow(struct perf_event *event,
977 				 struct perf_sample_data *data,
978 				 struct pt_regs *regs);
979 
980 extern void perf_event_output_forward(struct perf_event *event,
981 				     struct perf_sample_data *data,
982 				     struct pt_regs *regs);
983 extern void perf_event_output_backward(struct perf_event *event,
984 				       struct perf_sample_data *data,
985 				       struct pt_regs *regs);
986 extern void perf_event_output(struct perf_event *event,
987 			      struct perf_sample_data *data,
988 			      struct pt_regs *regs);
989 
990 static inline bool
991 is_default_overflow_handler(struct perf_event *event)
992 {
993 	if (likely(event->overflow_handler == perf_event_output_forward))
994 		return true;
995 	if (unlikely(event->overflow_handler == perf_event_output_backward))
996 		return true;
997 	return false;
998 }
999 
1000 extern void
1001 perf_event_header__init_id(struct perf_event_header *header,
1002 			   struct perf_sample_data *data,
1003 			   struct perf_event *event);
1004 extern void
1005 perf_event__output_id_sample(struct perf_event *event,
1006 			     struct perf_output_handle *handle,
1007 			     struct perf_sample_data *sample);
1008 
1009 extern void
1010 perf_log_lost_samples(struct perf_event *event, u64 lost);
1011 
1012 static inline bool is_sampling_event(struct perf_event *event)
1013 {
1014 	return event->attr.sample_period != 0;
1015 }
1016 
1017 /*
1018  * Return 1 for a software event, 0 for a hardware event
1019  */
1020 static inline int is_software_event(struct perf_event *event)
1021 {
1022 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1023 }
1024 
1025 /*
1026  * Return 1 for event in sw context, 0 for event in hw context
1027  */
1028 static inline int in_software_context(struct perf_event *event)
1029 {
1030 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1031 }
1032 
1033 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1034 
1035 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1036 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1037 
1038 #ifndef perf_arch_fetch_caller_regs
1039 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1040 #endif
1041 
1042 /*
1043  * Take a snapshot of the regs. Skip ip and frame pointer to
1044  * the nth caller. We only need a few of the regs:
1045  * - ip for PERF_SAMPLE_IP
1046  * - cs for user_mode() tests
1047  * - bp for callchains
1048  * - eflags, for future purposes, just in case
1049  */
1050 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1051 {
1052 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1053 }
1054 
1055 static __always_inline void
1056 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1057 {
1058 	if (static_key_false(&perf_swevent_enabled[event_id]))
1059 		__perf_sw_event(event_id, nr, regs, addr);
1060 }
1061 
1062 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1063 
1064 /*
1065  * 'Special' version for the scheduler, it hard assumes no recursion,
1066  * which is guaranteed by us not actually scheduling inside other swevents
1067  * because those disable preemption.
1068  */
1069 static __always_inline void
1070 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1071 {
1072 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1073 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1074 
1075 		perf_fetch_caller_regs(regs);
1076 		___perf_sw_event(event_id, nr, regs, addr);
1077 	}
1078 }
1079 
1080 extern struct static_key_false perf_sched_events;
1081 
1082 static __always_inline bool
1083 perf_sw_migrate_enabled(void)
1084 {
1085 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1086 		return true;
1087 	return false;
1088 }
1089 
1090 static inline void perf_event_task_migrate(struct task_struct *task)
1091 {
1092 	if (perf_sw_migrate_enabled())
1093 		task->sched_migrated = 1;
1094 }
1095 
1096 static inline void perf_event_task_sched_in(struct task_struct *prev,
1097 					    struct task_struct *task)
1098 {
1099 	if (static_branch_unlikely(&perf_sched_events))
1100 		__perf_event_task_sched_in(prev, task);
1101 
1102 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1103 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1104 
1105 		perf_fetch_caller_regs(regs);
1106 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1107 		task->sched_migrated = 0;
1108 	}
1109 }
1110 
1111 static inline void perf_event_task_sched_out(struct task_struct *prev,
1112 					     struct task_struct *next)
1113 {
1114 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1115 
1116 	if (static_branch_unlikely(&perf_sched_events))
1117 		__perf_event_task_sched_out(prev, next);
1118 }
1119 
1120 extern void perf_event_mmap(struct vm_area_struct *vma);
1121 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1122 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1123 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1124 
1125 extern void perf_event_exec(void);
1126 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1127 extern void perf_event_namespaces(struct task_struct *tsk);
1128 extern void perf_event_fork(struct task_struct *tsk);
1129 
1130 /* Callchains */
1131 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1132 
1133 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1134 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1135 extern struct perf_callchain_entry *
1136 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1137 		   u32 max_stack, bool crosstask, bool add_mark);
1138 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1139 extern int get_callchain_buffers(int max_stack);
1140 extern void put_callchain_buffers(void);
1141 
1142 extern int sysctl_perf_event_max_stack;
1143 extern int sysctl_perf_event_max_contexts_per_stack;
1144 
1145 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1146 {
1147 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1148 		struct perf_callchain_entry *entry = ctx->entry;
1149 		entry->ip[entry->nr++] = ip;
1150 		++ctx->contexts;
1151 		return 0;
1152 	} else {
1153 		ctx->contexts_maxed = true;
1154 		return -1; /* no more room, stop walking the stack */
1155 	}
1156 }
1157 
1158 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1159 {
1160 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1161 		struct perf_callchain_entry *entry = ctx->entry;
1162 		entry->ip[entry->nr++] = ip;
1163 		++ctx->nr;
1164 		return 0;
1165 	} else {
1166 		return -1; /* no more room, stop walking the stack */
1167 	}
1168 }
1169 
1170 extern int sysctl_perf_event_paranoid;
1171 extern int sysctl_perf_event_mlock;
1172 extern int sysctl_perf_event_sample_rate;
1173 extern int sysctl_perf_cpu_time_max_percent;
1174 
1175 extern void perf_sample_event_took(u64 sample_len_ns);
1176 
1177 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1178 		void __user *buffer, size_t *lenp,
1179 		loff_t *ppos);
1180 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1181 		void __user *buffer, size_t *lenp,
1182 		loff_t *ppos);
1183 
1184 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1185 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1186 
1187 static inline bool perf_paranoid_tracepoint_raw(void)
1188 {
1189 	return sysctl_perf_event_paranoid > -1;
1190 }
1191 
1192 static inline bool perf_paranoid_cpu(void)
1193 {
1194 	return sysctl_perf_event_paranoid > 0;
1195 }
1196 
1197 static inline bool perf_paranoid_kernel(void)
1198 {
1199 	return sysctl_perf_event_paranoid > 1;
1200 }
1201 
1202 extern void perf_event_init(void);
1203 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1204 			  int entry_size, struct pt_regs *regs,
1205 			  struct hlist_head *head, int rctx,
1206 			  struct task_struct *task);
1207 extern void perf_bp_event(struct perf_event *event, void *data);
1208 
1209 #ifndef perf_misc_flags
1210 # define perf_misc_flags(regs) \
1211 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1212 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1213 #endif
1214 #ifndef perf_arch_bpf_user_pt_regs
1215 # define perf_arch_bpf_user_pt_regs(regs) regs
1216 #endif
1217 
1218 static inline bool has_branch_stack(struct perf_event *event)
1219 {
1220 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1221 }
1222 
1223 static inline bool needs_branch_stack(struct perf_event *event)
1224 {
1225 	return event->attr.branch_sample_type != 0;
1226 }
1227 
1228 static inline bool has_aux(struct perf_event *event)
1229 {
1230 	return event->pmu->setup_aux;
1231 }
1232 
1233 static inline bool is_write_backward(struct perf_event *event)
1234 {
1235 	return !!event->attr.write_backward;
1236 }
1237 
1238 static inline bool has_addr_filter(struct perf_event *event)
1239 {
1240 	return event->pmu->nr_addr_filters;
1241 }
1242 
1243 /*
1244  * An inherited event uses parent's filters
1245  */
1246 static inline struct perf_addr_filters_head *
1247 perf_event_addr_filters(struct perf_event *event)
1248 {
1249 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1250 
1251 	if (event->parent)
1252 		ifh = &event->parent->addr_filters;
1253 
1254 	return ifh;
1255 }
1256 
1257 extern void perf_event_addr_filters_sync(struct perf_event *event);
1258 
1259 extern int perf_output_begin(struct perf_output_handle *handle,
1260 			     struct perf_event *event, unsigned int size);
1261 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1262 				    struct perf_event *event,
1263 				    unsigned int size);
1264 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1265 				      struct perf_event *event,
1266 				      unsigned int size);
1267 
1268 extern void perf_output_end(struct perf_output_handle *handle);
1269 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1270 			     const void *buf, unsigned int len);
1271 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1272 				     unsigned int len);
1273 extern int perf_swevent_get_recursion_context(void);
1274 extern void perf_swevent_put_recursion_context(int rctx);
1275 extern u64 perf_swevent_set_period(struct perf_event *event);
1276 extern void perf_event_enable(struct perf_event *event);
1277 extern void perf_event_disable(struct perf_event *event);
1278 extern void perf_event_disable_local(struct perf_event *event);
1279 extern void perf_event_disable_inatomic(struct perf_event *event);
1280 extern void perf_event_task_tick(void);
1281 extern int perf_event_account_interrupt(struct perf_event *event);
1282 #else /* !CONFIG_PERF_EVENTS: */
1283 static inline void *
1284 perf_aux_output_begin(struct perf_output_handle *handle,
1285 		      struct perf_event *event)				{ return NULL; }
1286 static inline void
1287 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1288 									{ }
1289 static inline int
1290 perf_aux_output_skip(struct perf_output_handle *handle,
1291 		     unsigned long size)				{ return -EINVAL; }
1292 static inline void *
1293 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1294 static inline void
1295 perf_event_task_migrate(struct task_struct *task)			{ }
1296 static inline void
1297 perf_event_task_sched_in(struct task_struct *prev,
1298 			 struct task_struct *task)			{ }
1299 static inline void
1300 perf_event_task_sched_out(struct task_struct *prev,
1301 			  struct task_struct *next)			{ }
1302 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1303 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1304 static inline void perf_event_free_task(struct task_struct *task)	{ }
1305 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1306 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1307 static inline const struct perf_event *perf_get_event(struct file *file)
1308 {
1309 	return ERR_PTR(-EINVAL);
1310 }
1311 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1312 {
1313 	return ERR_PTR(-EINVAL);
1314 }
1315 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1316 					u64 *enabled, u64 *running)
1317 {
1318 	return -EINVAL;
1319 }
1320 static inline void perf_event_print_debug(void)				{ }
1321 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1322 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1323 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1324 {
1325 	return -EINVAL;
1326 }
1327 
1328 static inline void
1329 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1330 static inline void
1331 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1332 static inline void
1333 perf_bp_event(struct perf_event *event, void *data)			{ }
1334 
1335 static inline int perf_register_guest_info_callbacks
1336 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1337 static inline int perf_unregister_guest_info_callbacks
1338 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1339 
1340 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1341 static inline void perf_event_exec(void)				{ }
1342 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1343 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1344 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1345 static inline void perf_event_init(void)				{ }
1346 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1347 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1348 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1349 static inline void perf_event_enable(struct perf_event *event)		{ }
1350 static inline void perf_event_disable(struct perf_event *event)		{ }
1351 static inline int __perf_event_disable(void *info)			{ return -1; }
1352 static inline void perf_event_task_tick(void)				{ }
1353 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1354 #endif
1355 
1356 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1357 extern void perf_restore_debug_store(void);
1358 #else
1359 static inline void perf_restore_debug_store(void)			{ }
1360 #endif
1361 
1362 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1363 {
1364 	return frag->pad < sizeof(u64);
1365 }
1366 
1367 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1368 
1369 struct perf_pmu_events_attr {
1370 	struct device_attribute attr;
1371 	u64 id;
1372 	const char *event_str;
1373 };
1374 
1375 struct perf_pmu_events_ht_attr {
1376 	struct device_attribute			attr;
1377 	u64					id;
1378 	const char				*event_str_ht;
1379 	const char				*event_str_noht;
1380 };
1381 
1382 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1383 			      char *page);
1384 
1385 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1386 static struct perf_pmu_events_attr _var = {				\
1387 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1388 	.id   =  _id,							\
1389 };
1390 
1391 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1392 static struct perf_pmu_events_attr _var = {				    \
1393 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1394 	.id		= 0,						    \
1395 	.event_str	= _str,						    \
1396 };
1397 
1398 #define PMU_FORMAT_ATTR(_name, _format)					\
1399 static ssize_t								\
1400 _name##_show(struct device *dev,					\
1401 			       struct device_attribute *attr,		\
1402 			       char *page)				\
1403 {									\
1404 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1405 	return sprintf(page, _format "\n");				\
1406 }									\
1407 									\
1408 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1409 
1410 /* Performance counter hotplug functions */
1411 #ifdef CONFIG_PERF_EVENTS
1412 int perf_event_init_cpu(unsigned int cpu);
1413 int perf_event_exit_cpu(unsigned int cpu);
1414 #else
1415 #define perf_event_init_cpu	NULL
1416 #define perf_event_exit_cpu	NULL
1417 #endif
1418 
1419 #endif /* _LINUX_PERF_EVENT_H */
1420