1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/types.h> 18 #include <linux/ioctl.h> 19 #include <asm/byteorder.h> 20 21 /* 22 * User-space ABI bits: 23 */ 24 25 /* 26 * attr.type 27 */ 28 enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37 }; 38 39 /* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44 enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60 }; 61 62 /* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69 enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79 }; 80 81 enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87 }; 88 89 enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94 }; 95 96 /* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102 enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 113 PERF_COUNT_SW_MAX, /* non-ABI */ 114 }; 115 116 /* 117 * Bits that can be set in attr.sample_type to request information 118 * in the overflow packets. 119 */ 120 enum perf_event_sample_format { 121 PERF_SAMPLE_IP = 1U << 0, 122 PERF_SAMPLE_TID = 1U << 1, 123 PERF_SAMPLE_TIME = 1U << 2, 124 PERF_SAMPLE_ADDR = 1U << 3, 125 PERF_SAMPLE_READ = 1U << 4, 126 PERF_SAMPLE_CALLCHAIN = 1U << 5, 127 PERF_SAMPLE_ID = 1U << 6, 128 PERF_SAMPLE_CPU = 1U << 7, 129 PERF_SAMPLE_PERIOD = 1U << 8, 130 PERF_SAMPLE_STREAM_ID = 1U << 9, 131 PERF_SAMPLE_RAW = 1U << 10, 132 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 133 134 PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */ 135 }; 136 137 /* 138 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 139 * 140 * If the user does not pass priv level information via branch_sample_type, 141 * the kernel uses the event's priv level. Branch and event priv levels do 142 * not have to match. Branch priv level is checked for permissions. 143 * 144 * The branch types can be combined, however BRANCH_ANY covers all types 145 * of branches and therefore it supersedes all the other types. 146 */ 147 enum perf_branch_sample_type { 148 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */ 149 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */ 150 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */ 151 152 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */ 153 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */ 154 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */ 155 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */ 156 157 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */ 158 }; 159 160 #define PERF_SAMPLE_BRANCH_PLM_ALL \ 161 (PERF_SAMPLE_BRANCH_USER|\ 162 PERF_SAMPLE_BRANCH_KERNEL|\ 163 PERF_SAMPLE_BRANCH_HV) 164 165 /* 166 * The format of the data returned by read() on a perf event fd, 167 * as specified by attr.read_format: 168 * 169 * struct read_format { 170 * { u64 value; 171 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 172 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 173 * { u64 id; } && PERF_FORMAT_ID 174 * } && !PERF_FORMAT_GROUP 175 * 176 * { u64 nr; 177 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 178 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 179 * { u64 value; 180 * { u64 id; } && PERF_FORMAT_ID 181 * } cntr[nr]; 182 * } && PERF_FORMAT_GROUP 183 * }; 184 */ 185 enum perf_event_read_format { 186 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 187 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 188 PERF_FORMAT_ID = 1U << 2, 189 PERF_FORMAT_GROUP = 1U << 3, 190 191 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 192 }; 193 194 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 195 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 196 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 197 198 /* 199 * Hardware event_id to monitor via a performance monitoring event: 200 */ 201 struct perf_event_attr { 202 203 /* 204 * Major type: hardware/software/tracepoint/etc. 205 */ 206 __u32 type; 207 208 /* 209 * Size of the attr structure, for fwd/bwd compat. 210 */ 211 __u32 size; 212 213 /* 214 * Type specific configuration information. 215 */ 216 __u64 config; 217 218 union { 219 __u64 sample_period; 220 __u64 sample_freq; 221 }; 222 223 __u64 sample_type; 224 __u64 read_format; 225 226 __u64 disabled : 1, /* off by default */ 227 inherit : 1, /* children inherit it */ 228 pinned : 1, /* must always be on PMU */ 229 exclusive : 1, /* only group on PMU */ 230 exclude_user : 1, /* don't count user */ 231 exclude_kernel : 1, /* ditto kernel */ 232 exclude_hv : 1, /* ditto hypervisor */ 233 exclude_idle : 1, /* don't count when idle */ 234 mmap : 1, /* include mmap data */ 235 comm : 1, /* include comm data */ 236 freq : 1, /* use freq, not period */ 237 inherit_stat : 1, /* per task counts */ 238 enable_on_exec : 1, /* next exec enables */ 239 task : 1, /* trace fork/exit */ 240 watermark : 1, /* wakeup_watermark */ 241 /* 242 * precise_ip: 243 * 244 * 0 - SAMPLE_IP can have arbitrary skid 245 * 1 - SAMPLE_IP must have constant skid 246 * 2 - SAMPLE_IP requested to have 0 skid 247 * 3 - SAMPLE_IP must have 0 skid 248 * 249 * See also PERF_RECORD_MISC_EXACT_IP 250 */ 251 precise_ip : 2, /* skid constraint */ 252 mmap_data : 1, /* non-exec mmap data */ 253 sample_id_all : 1, /* sample_type all events */ 254 255 exclude_host : 1, /* don't count in host */ 256 exclude_guest : 1, /* don't count in guest */ 257 258 __reserved_1 : 43; 259 260 union { 261 __u32 wakeup_events; /* wakeup every n events */ 262 __u32 wakeup_watermark; /* bytes before wakeup */ 263 }; 264 265 __u32 bp_type; 266 union { 267 __u64 bp_addr; 268 __u64 config1; /* extension of config */ 269 }; 270 union { 271 __u64 bp_len; 272 __u64 config2; /* extension of config1 */ 273 }; 274 __u64 branch_sample_type; /* enum branch_sample_type */ 275 }; 276 277 /* 278 * Ioctls that can be done on a perf event fd: 279 */ 280 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 281 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 282 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 283 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 284 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 285 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 286 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 287 288 enum perf_event_ioc_flags { 289 PERF_IOC_FLAG_GROUP = 1U << 0, 290 }; 291 292 /* 293 * Structure of the page that can be mapped via mmap 294 */ 295 struct perf_event_mmap_page { 296 __u32 version; /* version number of this structure */ 297 __u32 compat_version; /* lowest version this is compat with */ 298 299 /* 300 * Bits needed to read the hw events in user-space. 301 * 302 * u32 seq, time_mult, time_shift, idx, width; 303 * u64 count, enabled, running; 304 * u64 cyc, time_offset; 305 * s64 pmc = 0; 306 * 307 * do { 308 * seq = pc->lock; 309 * barrier() 310 * 311 * enabled = pc->time_enabled; 312 * running = pc->time_running; 313 * 314 * if (pc->cap_usr_time && enabled != running) { 315 * cyc = rdtsc(); 316 * time_offset = pc->time_offset; 317 * time_mult = pc->time_mult; 318 * time_shift = pc->time_shift; 319 * } 320 * 321 * idx = pc->index; 322 * count = pc->offset; 323 * if (pc->cap_usr_rdpmc && idx) { 324 * width = pc->pmc_width; 325 * pmc = rdpmc(idx - 1); 326 * } 327 * 328 * barrier(); 329 * } while (pc->lock != seq); 330 * 331 * NOTE: for obvious reason this only works on self-monitoring 332 * processes. 333 */ 334 __u32 lock; /* seqlock for synchronization */ 335 __u32 index; /* hardware event identifier */ 336 __s64 offset; /* add to hardware event value */ 337 __u64 time_enabled; /* time event active */ 338 __u64 time_running; /* time event on cpu */ 339 union { 340 __u64 capabilities; 341 __u64 cap_usr_time : 1, 342 cap_usr_rdpmc : 1, 343 cap_____res : 62; 344 }; 345 346 /* 347 * If cap_usr_rdpmc this field provides the bit-width of the value 348 * read using the rdpmc() or equivalent instruction. This can be used 349 * to sign extend the result like: 350 * 351 * pmc <<= 64 - width; 352 * pmc >>= 64 - width; // signed shift right 353 * count += pmc; 354 */ 355 __u16 pmc_width; 356 357 /* 358 * If cap_usr_time the below fields can be used to compute the time 359 * delta since time_enabled (in ns) using rdtsc or similar. 360 * 361 * u64 quot, rem; 362 * u64 delta; 363 * 364 * quot = (cyc >> time_shift); 365 * rem = cyc & ((1 << time_shift) - 1); 366 * delta = time_offset + quot * time_mult + 367 * ((rem * time_mult) >> time_shift); 368 * 369 * Where time_offset,time_mult,time_shift and cyc are read in the 370 * seqcount loop described above. This delta can then be added to 371 * enabled and possible running (if idx), improving the scaling: 372 * 373 * enabled += delta; 374 * if (idx) 375 * running += delta; 376 * 377 * quot = count / running; 378 * rem = count % running; 379 * count = quot * enabled + (rem * enabled) / running; 380 */ 381 __u16 time_shift; 382 __u32 time_mult; 383 __u64 time_offset; 384 385 /* 386 * Hole for extension of the self monitor capabilities 387 */ 388 389 __u64 __reserved[120]; /* align to 1k */ 390 391 /* 392 * Control data for the mmap() data buffer. 393 * 394 * User-space reading the @data_head value should issue an rmb(), on 395 * SMP capable platforms, after reading this value -- see 396 * perf_event_wakeup(). 397 * 398 * When the mapping is PROT_WRITE the @data_tail value should be 399 * written by userspace to reflect the last read data. In this case 400 * the kernel will not over-write unread data. 401 */ 402 __u64 data_head; /* head in the data section */ 403 __u64 data_tail; /* user-space written tail */ 404 }; 405 406 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 407 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 408 #define PERF_RECORD_MISC_KERNEL (1 << 0) 409 #define PERF_RECORD_MISC_USER (2 << 0) 410 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 411 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 412 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 413 414 /* 415 * Indicates that the content of PERF_SAMPLE_IP points to 416 * the actual instruction that triggered the event. See also 417 * perf_event_attr::precise_ip. 418 */ 419 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 420 /* 421 * Reserve the last bit to indicate some extended misc field 422 */ 423 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 424 425 struct perf_event_header { 426 __u32 type; 427 __u16 misc; 428 __u16 size; 429 }; 430 431 enum perf_event_type { 432 433 /* 434 * If perf_event_attr.sample_id_all is set then all event types will 435 * have the sample_type selected fields related to where/when 436 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 437 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 438 * the perf_event_header and the fields already present for the existing 439 * fields, i.e. at the end of the payload. That way a newer perf.data 440 * file will be supported by older perf tools, with these new optional 441 * fields being ignored. 442 * 443 * The MMAP events record the PROT_EXEC mappings so that we can 444 * correlate userspace IPs to code. They have the following structure: 445 * 446 * struct { 447 * struct perf_event_header header; 448 * 449 * u32 pid, tid; 450 * u64 addr; 451 * u64 len; 452 * u64 pgoff; 453 * char filename[]; 454 * }; 455 */ 456 PERF_RECORD_MMAP = 1, 457 458 /* 459 * struct { 460 * struct perf_event_header header; 461 * u64 id; 462 * u64 lost; 463 * }; 464 */ 465 PERF_RECORD_LOST = 2, 466 467 /* 468 * struct { 469 * struct perf_event_header header; 470 * 471 * u32 pid, tid; 472 * char comm[]; 473 * }; 474 */ 475 PERF_RECORD_COMM = 3, 476 477 /* 478 * struct { 479 * struct perf_event_header header; 480 * u32 pid, ppid; 481 * u32 tid, ptid; 482 * u64 time; 483 * }; 484 */ 485 PERF_RECORD_EXIT = 4, 486 487 /* 488 * struct { 489 * struct perf_event_header header; 490 * u64 time; 491 * u64 id; 492 * u64 stream_id; 493 * }; 494 */ 495 PERF_RECORD_THROTTLE = 5, 496 PERF_RECORD_UNTHROTTLE = 6, 497 498 /* 499 * struct { 500 * struct perf_event_header header; 501 * u32 pid, ppid; 502 * u32 tid, ptid; 503 * u64 time; 504 * }; 505 */ 506 PERF_RECORD_FORK = 7, 507 508 /* 509 * struct { 510 * struct perf_event_header header; 511 * u32 pid, tid; 512 * 513 * struct read_format values; 514 * }; 515 */ 516 PERF_RECORD_READ = 8, 517 518 /* 519 * struct { 520 * struct perf_event_header header; 521 * 522 * { u64 ip; } && PERF_SAMPLE_IP 523 * { u32 pid, tid; } && PERF_SAMPLE_TID 524 * { u64 time; } && PERF_SAMPLE_TIME 525 * { u64 addr; } && PERF_SAMPLE_ADDR 526 * { u64 id; } && PERF_SAMPLE_ID 527 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 528 * { u32 cpu, res; } && PERF_SAMPLE_CPU 529 * { u64 period; } && PERF_SAMPLE_PERIOD 530 * 531 * { struct read_format values; } && PERF_SAMPLE_READ 532 * 533 * { u64 nr, 534 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 535 * 536 * # 537 * # The RAW record below is opaque data wrt the ABI 538 * # 539 * # That is, the ABI doesn't make any promises wrt to 540 * # the stability of its content, it may vary depending 541 * # on event, hardware, kernel version and phase of 542 * # the moon. 543 * # 544 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 545 * # 546 * 547 * { u32 size; 548 * char data[size];}&& PERF_SAMPLE_RAW 549 * 550 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 551 * }; 552 */ 553 PERF_RECORD_SAMPLE = 9, 554 555 PERF_RECORD_MAX, /* non-ABI */ 556 }; 557 558 #define PERF_MAX_STACK_DEPTH 127 559 560 enum perf_callchain_context { 561 PERF_CONTEXT_HV = (__u64)-32, 562 PERF_CONTEXT_KERNEL = (__u64)-128, 563 PERF_CONTEXT_USER = (__u64)-512, 564 565 PERF_CONTEXT_GUEST = (__u64)-2048, 566 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 567 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 568 569 PERF_CONTEXT_MAX = (__u64)-4095, 570 }; 571 572 #define PERF_FLAG_FD_NO_GROUP (1U << 0) 573 #define PERF_FLAG_FD_OUTPUT (1U << 1) 574 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 575 576 #ifdef __KERNEL__ 577 /* 578 * Kernel-internal data types and definitions: 579 */ 580 581 #ifdef CONFIG_PERF_EVENTS 582 # include <linux/cgroup.h> 583 # include <asm/perf_event.h> 584 # include <asm/local64.h> 585 #endif 586 587 struct perf_guest_info_callbacks { 588 int (*is_in_guest)(void); 589 int (*is_user_mode)(void); 590 unsigned long (*get_guest_ip)(void); 591 }; 592 593 #ifdef CONFIG_HAVE_HW_BREAKPOINT 594 #include <asm/hw_breakpoint.h> 595 #endif 596 597 #include <linux/list.h> 598 #include <linux/mutex.h> 599 #include <linux/rculist.h> 600 #include <linux/rcupdate.h> 601 #include <linux/spinlock.h> 602 #include <linux/hrtimer.h> 603 #include <linux/fs.h> 604 #include <linux/pid_namespace.h> 605 #include <linux/workqueue.h> 606 #include <linux/ftrace.h> 607 #include <linux/cpu.h> 608 #include <linux/irq_work.h> 609 #include <linux/static_key.h> 610 #include <linux/atomic.h> 611 #include <linux/sysfs.h> 612 #include <asm/local.h> 613 614 struct perf_callchain_entry { 615 __u64 nr; 616 __u64 ip[PERF_MAX_STACK_DEPTH]; 617 }; 618 619 struct perf_raw_record { 620 u32 size; 621 void *data; 622 }; 623 624 /* 625 * single taken branch record layout: 626 * 627 * from: source instruction (may not always be a branch insn) 628 * to: branch target 629 * mispred: branch target was mispredicted 630 * predicted: branch target was predicted 631 * 632 * support for mispred, predicted is optional. In case it 633 * is not supported mispred = predicted = 0. 634 */ 635 struct perf_branch_entry { 636 __u64 from; 637 __u64 to; 638 __u64 mispred:1, /* target mispredicted */ 639 predicted:1,/* target predicted */ 640 reserved:62; 641 }; 642 643 /* 644 * branch stack layout: 645 * nr: number of taken branches stored in entries[] 646 * 647 * Note that nr can vary from sample to sample 648 * branches (to, from) are stored from most recent 649 * to least recent, i.e., entries[0] contains the most 650 * recent branch. 651 */ 652 struct perf_branch_stack { 653 __u64 nr; 654 struct perf_branch_entry entries[0]; 655 }; 656 657 struct task_struct; 658 659 /* 660 * extra PMU register associated with an event 661 */ 662 struct hw_perf_event_extra { 663 u64 config; /* register value */ 664 unsigned int reg; /* register address or index */ 665 int alloc; /* extra register already allocated */ 666 int idx; /* index in shared_regs->regs[] */ 667 }; 668 669 /** 670 * struct hw_perf_event - performance event hardware details: 671 */ 672 struct hw_perf_event { 673 #ifdef CONFIG_PERF_EVENTS 674 union { 675 struct { /* hardware */ 676 u64 config; 677 u64 last_tag; 678 unsigned long config_base; 679 unsigned long event_base; 680 int event_base_rdpmc; 681 int idx; 682 int last_cpu; 683 684 struct hw_perf_event_extra extra_reg; 685 struct hw_perf_event_extra branch_reg; 686 }; 687 struct { /* software */ 688 struct hrtimer hrtimer; 689 }; 690 #ifdef CONFIG_HAVE_HW_BREAKPOINT 691 struct { /* breakpoint */ 692 struct arch_hw_breakpoint info; 693 struct list_head bp_list; 694 /* 695 * Crufty hack to avoid the chicken and egg 696 * problem hw_breakpoint has with context 697 * creation and event initalization. 698 */ 699 struct task_struct *bp_target; 700 }; 701 #endif 702 }; 703 int state; 704 local64_t prev_count; 705 u64 sample_period; 706 u64 last_period; 707 local64_t period_left; 708 u64 interrupts_seq; 709 u64 interrupts; 710 711 u64 freq_time_stamp; 712 u64 freq_count_stamp; 713 #endif 714 }; 715 716 /* 717 * hw_perf_event::state flags 718 */ 719 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 720 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 721 #define PERF_HES_ARCH 0x04 722 723 struct perf_event; 724 725 /* 726 * Common implementation detail of pmu::{start,commit,cancel}_txn 727 */ 728 #define PERF_EVENT_TXN 0x1 729 730 /** 731 * struct pmu - generic performance monitoring unit 732 */ 733 struct pmu { 734 struct list_head entry; 735 736 struct device *dev; 737 const struct attribute_group **attr_groups; 738 char *name; 739 int type; 740 741 int * __percpu pmu_disable_count; 742 struct perf_cpu_context * __percpu pmu_cpu_context; 743 int task_ctx_nr; 744 745 /* 746 * Fully disable/enable this PMU, can be used to protect from the PMI 747 * as well as for lazy/batch writing of the MSRs. 748 */ 749 void (*pmu_enable) (struct pmu *pmu); /* optional */ 750 void (*pmu_disable) (struct pmu *pmu); /* optional */ 751 752 /* 753 * Try and initialize the event for this PMU. 754 * Should return -ENOENT when the @event doesn't match this PMU. 755 */ 756 int (*event_init) (struct perf_event *event); 757 758 #define PERF_EF_START 0x01 /* start the counter when adding */ 759 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 760 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 761 762 /* 763 * Adds/Removes a counter to/from the PMU, can be done inside 764 * a transaction, see the ->*_txn() methods. 765 */ 766 int (*add) (struct perf_event *event, int flags); 767 void (*del) (struct perf_event *event, int flags); 768 769 /* 770 * Starts/Stops a counter present on the PMU. The PMI handler 771 * should stop the counter when perf_event_overflow() returns 772 * !0. ->start() will be used to continue. 773 */ 774 void (*start) (struct perf_event *event, int flags); 775 void (*stop) (struct perf_event *event, int flags); 776 777 /* 778 * Updates the counter value of the event. 779 */ 780 void (*read) (struct perf_event *event); 781 782 /* 783 * Group events scheduling is treated as a transaction, add 784 * group events as a whole and perform one schedulability test. 785 * If the test fails, roll back the whole group 786 * 787 * Start the transaction, after this ->add() doesn't need to 788 * do schedulability tests. 789 */ 790 void (*start_txn) (struct pmu *pmu); /* optional */ 791 /* 792 * If ->start_txn() disabled the ->add() schedulability test 793 * then ->commit_txn() is required to perform one. On success 794 * the transaction is closed. On error the transaction is kept 795 * open until ->cancel_txn() is called. 796 */ 797 int (*commit_txn) (struct pmu *pmu); /* optional */ 798 /* 799 * Will cancel the transaction, assumes ->del() is called 800 * for each successful ->add() during the transaction. 801 */ 802 void (*cancel_txn) (struct pmu *pmu); /* optional */ 803 804 /* 805 * Will return the value for perf_event_mmap_page::index for this event, 806 * if no implementation is provided it will default to: event->hw.idx + 1. 807 */ 808 int (*event_idx) (struct perf_event *event); /*optional */ 809 810 /* 811 * flush branch stack on context-switches (needed in cpu-wide mode) 812 */ 813 void (*flush_branch_stack) (void); 814 }; 815 816 /** 817 * enum perf_event_active_state - the states of a event 818 */ 819 enum perf_event_active_state { 820 PERF_EVENT_STATE_ERROR = -2, 821 PERF_EVENT_STATE_OFF = -1, 822 PERF_EVENT_STATE_INACTIVE = 0, 823 PERF_EVENT_STATE_ACTIVE = 1, 824 }; 825 826 struct file; 827 struct perf_sample_data; 828 829 typedef void (*perf_overflow_handler_t)(struct perf_event *, 830 struct perf_sample_data *, 831 struct pt_regs *regs); 832 833 enum perf_group_flag { 834 PERF_GROUP_SOFTWARE = 0x1, 835 }; 836 837 #define SWEVENT_HLIST_BITS 8 838 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 839 840 struct swevent_hlist { 841 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 842 struct rcu_head rcu_head; 843 }; 844 845 #define PERF_ATTACH_CONTEXT 0x01 846 #define PERF_ATTACH_GROUP 0x02 847 #define PERF_ATTACH_TASK 0x04 848 849 #ifdef CONFIG_CGROUP_PERF 850 /* 851 * perf_cgroup_info keeps track of time_enabled for a cgroup. 852 * This is a per-cpu dynamically allocated data structure. 853 */ 854 struct perf_cgroup_info { 855 u64 time; 856 u64 timestamp; 857 }; 858 859 struct perf_cgroup { 860 struct cgroup_subsys_state css; 861 struct perf_cgroup_info *info; /* timing info, one per cpu */ 862 }; 863 #endif 864 865 struct ring_buffer; 866 867 /** 868 * struct perf_event - performance event kernel representation: 869 */ 870 struct perf_event { 871 #ifdef CONFIG_PERF_EVENTS 872 struct list_head group_entry; 873 struct list_head event_entry; 874 struct list_head sibling_list; 875 struct hlist_node hlist_entry; 876 int nr_siblings; 877 int group_flags; 878 struct perf_event *group_leader; 879 struct pmu *pmu; 880 881 enum perf_event_active_state state; 882 unsigned int attach_state; 883 local64_t count; 884 atomic64_t child_count; 885 886 /* 887 * These are the total time in nanoseconds that the event 888 * has been enabled (i.e. eligible to run, and the task has 889 * been scheduled in, if this is a per-task event) 890 * and running (scheduled onto the CPU), respectively. 891 * 892 * They are computed from tstamp_enabled, tstamp_running and 893 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 894 */ 895 u64 total_time_enabled; 896 u64 total_time_running; 897 898 /* 899 * These are timestamps used for computing total_time_enabled 900 * and total_time_running when the event is in INACTIVE or 901 * ACTIVE state, measured in nanoseconds from an arbitrary point 902 * in time. 903 * tstamp_enabled: the notional time when the event was enabled 904 * tstamp_running: the notional time when the event was scheduled on 905 * tstamp_stopped: in INACTIVE state, the notional time when the 906 * event was scheduled off. 907 */ 908 u64 tstamp_enabled; 909 u64 tstamp_running; 910 u64 tstamp_stopped; 911 912 /* 913 * timestamp shadows the actual context timing but it can 914 * be safely used in NMI interrupt context. It reflects the 915 * context time as it was when the event was last scheduled in. 916 * 917 * ctx_time already accounts for ctx->timestamp. Therefore to 918 * compute ctx_time for a sample, simply add perf_clock(). 919 */ 920 u64 shadow_ctx_time; 921 922 struct perf_event_attr attr; 923 u16 header_size; 924 u16 id_header_size; 925 u16 read_size; 926 struct hw_perf_event hw; 927 928 struct perf_event_context *ctx; 929 struct file *filp; 930 931 /* 932 * These accumulate total time (in nanoseconds) that children 933 * events have been enabled and running, respectively. 934 */ 935 atomic64_t child_total_time_enabled; 936 atomic64_t child_total_time_running; 937 938 /* 939 * Protect attach/detach and child_list: 940 */ 941 struct mutex child_mutex; 942 struct list_head child_list; 943 struct perf_event *parent; 944 945 int oncpu; 946 int cpu; 947 948 struct list_head owner_entry; 949 struct task_struct *owner; 950 951 /* mmap bits */ 952 struct mutex mmap_mutex; 953 atomic_t mmap_count; 954 int mmap_locked; 955 struct user_struct *mmap_user; 956 struct ring_buffer *rb; 957 struct list_head rb_entry; 958 959 /* poll related */ 960 wait_queue_head_t waitq; 961 struct fasync_struct *fasync; 962 963 /* delayed work for NMIs and such */ 964 int pending_wakeup; 965 int pending_kill; 966 int pending_disable; 967 struct irq_work pending; 968 969 atomic_t event_limit; 970 971 void (*destroy)(struct perf_event *); 972 struct rcu_head rcu_head; 973 974 struct pid_namespace *ns; 975 u64 id; 976 977 perf_overflow_handler_t overflow_handler; 978 void *overflow_handler_context; 979 980 #ifdef CONFIG_EVENT_TRACING 981 struct ftrace_event_call *tp_event; 982 struct event_filter *filter; 983 #ifdef CONFIG_FUNCTION_TRACER 984 struct ftrace_ops ftrace_ops; 985 #endif 986 #endif 987 988 #ifdef CONFIG_CGROUP_PERF 989 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 990 int cgrp_defer_enabled; 991 #endif 992 993 #endif /* CONFIG_PERF_EVENTS */ 994 }; 995 996 enum perf_event_context_type { 997 task_context, 998 cpu_context, 999 }; 1000 1001 /** 1002 * struct perf_event_context - event context structure 1003 * 1004 * Used as a container for task events and CPU events as well: 1005 */ 1006 struct perf_event_context { 1007 struct pmu *pmu; 1008 enum perf_event_context_type type; 1009 /* 1010 * Protect the states of the events in the list, 1011 * nr_active, and the list: 1012 */ 1013 raw_spinlock_t lock; 1014 /* 1015 * Protect the list of events. Locking either mutex or lock 1016 * is sufficient to ensure the list doesn't change; to change 1017 * the list you need to lock both the mutex and the spinlock. 1018 */ 1019 struct mutex mutex; 1020 1021 struct list_head pinned_groups; 1022 struct list_head flexible_groups; 1023 struct list_head event_list; 1024 int nr_events; 1025 int nr_active; 1026 int is_active; 1027 int nr_stat; 1028 int nr_freq; 1029 int rotate_disable; 1030 atomic_t refcount; 1031 struct task_struct *task; 1032 1033 /* 1034 * Context clock, runs when context enabled. 1035 */ 1036 u64 time; 1037 u64 timestamp; 1038 1039 /* 1040 * These fields let us detect when two contexts have both 1041 * been cloned (inherited) from a common ancestor. 1042 */ 1043 struct perf_event_context *parent_ctx; 1044 u64 parent_gen; 1045 u64 generation; 1046 int pin_count; 1047 int nr_cgroups; /* cgroup evts */ 1048 int nr_branch_stack; /* branch_stack evt */ 1049 struct rcu_head rcu_head; 1050 }; 1051 1052 /* 1053 * Number of contexts where an event can trigger: 1054 * task, softirq, hardirq, nmi. 1055 */ 1056 #define PERF_NR_CONTEXTS 4 1057 1058 /** 1059 * struct perf_event_cpu_context - per cpu event context structure 1060 */ 1061 struct perf_cpu_context { 1062 struct perf_event_context ctx; 1063 struct perf_event_context *task_ctx; 1064 int active_oncpu; 1065 int exclusive; 1066 struct list_head rotation_list; 1067 int jiffies_interval; 1068 struct pmu *active_pmu; 1069 struct perf_cgroup *cgrp; 1070 }; 1071 1072 struct perf_output_handle { 1073 struct perf_event *event; 1074 struct ring_buffer *rb; 1075 unsigned long wakeup; 1076 unsigned long size; 1077 void *addr; 1078 int page; 1079 }; 1080 1081 #ifdef CONFIG_PERF_EVENTS 1082 1083 extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 1084 extern void perf_pmu_unregister(struct pmu *pmu); 1085 1086 extern int perf_num_counters(void); 1087 extern const char *perf_pmu_name(void); 1088 extern void __perf_event_task_sched_in(struct task_struct *prev, 1089 struct task_struct *task); 1090 extern void __perf_event_task_sched_out(struct task_struct *prev, 1091 struct task_struct *next); 1092 extern int perf_event_init_task(struct task_struct *child); 1093 extern void perf_event_exit_task(struct task_struct *child); 1094 extern void perf_event_free_task(struct task_struct *task); 1095 extern void perf_event_delayed_put(struct task_struct *task); 1096 extern void perf_event_print_debug(void); 1097 extern void perf_pmu_disable(struct pmu *pmu); 1098 extern void perf_pmu_enable(struct pmu *pmu); 1099 extern int perf_event_task_disable(void); 1100 extern int perf_event_task_enable(void); 1101 extern int perf_event_refresh(struct perf_event *event, int refresh); 1102 extern void perf_event_update_userpage(struct perf_event *event); 1103 extern int perf_event_release_kernel(struct perf_event *event); 1104 extern struct perf_event * 1105 perf_event_create_kernel_counter(struct perf_event_attr *attr, 1106 int cpu, 1107 struct task_struct *task, 1108 perf_overflow_handler_t callback, 1109 void *context); 1110 extern void perf_pmu_migrate_context(struct pmu *pmu, 1111 int src_cpu, int dst_cpu); 1112 extern u64 perf_event_read_value(struct perf_event *event, 1113 u64 *enabled, u64 *running); 1114 1115 1116 struct perf_sample_data { 1117 u64 type; 1118 1119 u64 ip; 1120 struct { 1121 u32 pid; 1122 u32 tid; 1123 } tid_entry; 1124 u64 time; 1125 u64 addr; 1126 u64 id; 1127 u64 stream_id; 1128 struct { 1129 u32 cpu; 1130 u32 reserved; 1131 } cpu_entry; 1132 u64 period; 1133 struct perf_callchain_entry *callchain; 1134 struct perf_raw_record *raw; 1135 struct perf_branch_stack *br_stack; 1136 }; 1137 1138 static inline void perf_sample_data_init(struct perf_sample_data *data, 1139 u64 addr, u64 period) 1140 { 1141 /* remaining struct members initialized in perf_prepare_sample() */ 1142 data->addr = addr; 1143 data->raw = NULL; 1144 data->br_stack = NULL; 1145 data->period = period; 1146 } 1147 1148 extern void perf_output_sample(struct perf_output_handle *handle, 1149 struct perf_event_header *header, 1150 struct perf_sample_data *data, 1151 struct perf_event *event); 1152 extern void perf_prepare_sample(struct perf_event_header *header, 1153 struct perf_sample_data *data, 1154 struct perf_event *event, 1155 struct pt_regs *regs); 1156 1157 extern int perf_event_overflow(struct perf_event *event, 1158 struct perf_sample_data *data, 1159 struct pt_regs *regs); 1160 1161 static inline bool is_sampling_event(struct perf_event *event) 1162 { 1163 return event->attr.sample_period != 0; 1164 } 1165 1166 /* 1167 * Return 1 for a software event, 0 for a hardware event 1168 */ 1169 static inline int is_software_event(struct perf_event *event) 1170 { 1171 return event->pmu->task_ctx_nr == perf_sw_context; 1172 } 1173 1174 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1175 1176 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1177 1178 #ifndef perf_arch_fetch_caller_regs 1179 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1180 #endif 1181 1182 /* 1183 * Take a snapshot of the regs. Skip ip and frame pointer to 1184 * the nth caller. We only need a few of the regs: 1185 * - ip for PERF_SAMPLE_IP 1186 * - cs for user_mode() tests 1187 * - bp for callchains 1188 * - eflags, for future purposes, just in case 1189 */ 1190 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1191 { 1192 memset(regs, 0, sizeof(*regs)); 1193 1194 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1195 } 1196 1197 static __always_inline void 1198 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1199 { 1200 struct pt_regs hot_regs; 1201 1202 if (static_key_false(&perf_swevent_enabled[event_id])) { 1203 if (!regs) { 1204 perf_fetch_caller_regs(&hot_regs); 1205 regs = &hot_regs; 1206 } 1207 __perf_sw_event(event_id, nr, regs, addr); 1208 } 1209 } 1210 1211 extern struct static_key_deferred perf_sched_events; 1212 1213 static inline void perf_event_task_sched_in(struct task_struct *prev, 1214 struct task_struct *task) 1215 { 1216 if (static_key_false(&perf_sched_events.key)) 1217 __perf_event_task_sched_in(prev, task); 1218 } 1219 1220 static inline void perf_event_task_sched_out(struct task_struct *prev, 1221 struct task_struct *next) 1222 { 1223 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1224 1225 if (static_key_false(&perf_sched_events.key)) 1226 __perf_event_task_sched_out(prev, next); 1227 } 1228 1229 extern void perf_event_mmap(struct vm_area_struct *vma); 1230 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1231 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1232 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1233 1234 extern void perf_event_comm(struct task_struct *tsk); 1235 extern void perf_event_fork(struct task_struct *tsk); 1236 1237 /* Callchains */ 1238 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1239 1240 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1241 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1242 1243 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1244 { 1245 if (entry->nr < PERF_MAX_STACK_DEPTH) 1246 entry->ip[entry->nr++] = ip; 1247 } 1248 1249 extern int sysctl_perf_event_paranoid; 1250 extern int sysctl_perf_event_mlock; 1251 extern int sysctl_perf_event_sample_rate; 1252 1253 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1254 void __user *buffer, size_t *lenp, 1255 loff_t *ppos); 1256 1257 static inline bool perf_paranoid_tracepoint_raw(void) 1258 { 1259 return sysctl_perf_event_paranoid > -1; 1260 } 1261 1262 static inline bool perf_paranoid_cpu(void) 1263 { 1264 return sysctl_perf_event_paranoid > 0; 1265 } 1266 1267 static inline bool perf_paranoid_kernel(void) 1268 { 1269 return sysctl_perf_event_paranoid > 1; 1270 } 1271 1272 extern void perf_event_init(void); 1273 extern void perf_tp_event(u64 addr, u64 count, void *record, 1274 int entry_size, struct pt_regs *regs, 1275 struct hlist_head *head, int rctx); 1276 extern void perf_bp_event(struct perf_event *event, void *data); 1277 1278 #ifndef perf_misc_flags 1279 # define perf_misc_flags(regs) \ 1280 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1281 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1282 #endif 1283 1284 static inline bool has_branch_stack(struct perf_event *event) 1285 { 1286 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1287 } 1288 1289 extern int perf_output_begin(struct perf_output_handle *handle, 1290 struct perf_event *event, unsigned int size); 1291 extern void perf_output_end(struct perf_output_handle *handle); 1292 extern void perf_output_copy(struct perf_output_handle *handle, 1293 const void *buf, unsigned int len); 1294 extern int perf_swevent_get_recursion_context(void); 1295 extern void perf_swevent_put_recursion_context(int rctx); 1296 extern void perf_event_enable(struct perf_event *event); 1297 extern void perf_event_disable(struct perf_event *event); 1298 extern void perf_event_task_tick(void); 1299 #else 1300 static inline void 1301 perf_event_task_sched_in(struct task_struct *prev, 1302 struct task_struct *task) { } 1303 static inline void 1304 perf_event_task_sched_out(struct task_struct *prev, 1305 struct task_struct *next) { } 1306 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1307 static inline void perf_event_exit_task(struct task_struct *child) { } 1308 static inline void perf_event_free_task(struct task_struct *task) { } 1309 static inline void perf_event_delayed_put(struct task_struct *task) { } 1310 static inline void perf_event_print_debug(void) { } 1311 static inline int perf_event_task_disable(void) { return -EINVAL; } 1312 static inline int perf_event_task_enable(void) { return -EINVAL; } 1313 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1314 { 1315 return -EINVAL; 1316 } 1317 1318 static inline void 1319 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1320 static inline void 1321 perf_bp_event(struct perf_event *event, void *data) { } 1322 1323 static inline int perf_register_guest_info_callbacks 1324 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1325 static inline int perf_unregister_guest_info_callbacks 1326 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1327 1328 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1329 static inline void perf_event_comm(struct task_struct *tsk) { } 1330 static inline void perf_event_fork(struct task_struct *tsk) { } 1331 static inline void perf_event_init(void) { } 1332 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1333 static inline void perf_swevent_put_recursion_context(int rctx) { } 1334 static inline void perf_event_enable(struct perf_event *event) { } 1335 static inline void perf_event_disable(struct perf_event *event) { } 1336 static inline void perf_event_task_tick(void) { } 1337 #endif 1338 1339 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1340 1341 /* 1342 * This has to have a higher priority than migration_notifier in sched.c. 1343 */ 1344 #define perf_cpu_notifier(fn) \ 1345 do { \ 1346 static struct notifier_block fn##_nb __cpuinitdata = \ 1347 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1348 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1349 (void *)(unsigned long)smp_processor_id()); \ 1350 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1351 (void *)(unsigned long)smp_processor_id()); \ 1352 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1353 (void *)(unsigned long)smp_processor_id()); \ 1354 register_cpu_notifier(&fn##_nb); \ 1355 } while (0) 1356 1357 1358 #define PMU_FORMAT_ATTR(_name, _format) \ 1359 static ssize_t \ 1360 _name##_show(struct device *dev, \ 1361 struct device_attribute *attr, \ 1362 char *page) \ 1363 { \ 1364 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1365 return sprintf(page, _format "\n"); \ 1366 } \ 1367 \ 1368 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1369 1370 #endif /* __KERNEL__ */ 1371 #endif /* _LINUX_PERF_EVENT_H */ 1372