xref: /linux-6.15/include/linux/perf_event.h (revision e00a844a)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/jump_label_ratelimit.h>
53 #include <linux/atomic.h>
54 #include <linux/sysfs.h>
55 #include <linux/perf_regs.h>
56 #include <linux/workqueue.h>
57 #include <linux/cgroup.h>
58 #include <asm/local.h>
59 
60 struct perf_callchain_entry {
61 	__u64				nr;
62 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
63 };
64 
65 struct perf_callchain_entry_ctx {
66 	struct perf_callchain_entry *entry;
67 	u32			    max_stack;
68 	u32			    nr;
69 	short			    contexts;
70 	bool			    contexts_maxed;
71 };
72 
73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
74 				     unsigned long off, unsigned long len);
75 
76 struct perf_raw_frag {
77 	union {
78 		struct perf_raw_frag	*next;
79 		unsigned long		pad;
80 	};
81 	perf_copy_f			copy;
82 	void				*data;
83 	u32				size;
84 } __packed;
85 
86 struct perf_raw_record {
87 	struct perf_raw_frag		frag;
88 	u32				size;
89 };
90 
91 /*
92  * branch stack layout:
93  *  nr: number of taken branches stored in entries[]
94  *
95  * Note that nr can vary from sample to sample
96  * branches (to, from) are stored from most recent
97  * to least recent, i.e., entries[0] contains the most
98  * recent branch.
99  */
100 struct perf_branch_stack {
101 	__u64				nr;
102 	struct perf_branch_entry	entries[0];
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 			int		flags;
132 
133 			struct hw_perf_event_extra extra_reg;
134 			struct hw_perf_event_extra branch_reg;
135 		};
136 		struct { /* software */
137 			struct hrtimer	hrtimer;
138 		};
139 		struct { /* tracepoint */
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 		struct { /* amd_power */
144 			u64	pwr_acc;
145 			u64	ptsc;
146 		};
147 #ifdef CONFIG_HAVE_HW_BREAKPOINT
148 		struct { /* breakpoint */
149 			/*
150 			 * Crufty hack to avoid the chicken and egg
151 			 * problem hw_breakpoint has with context
152 			 * creation and event initalization.
153 			 */
154 			struct arch_hw_breakpoint	info;
155 			struct list_head		bp_list;
156 		};
157 #endif
158 		struct { /* amd_iommu */
159 			u8	iommu_bank;
160 			u8	iommu_cntr;
161 			u16	padding;
162 			u64	conf;
163 			u64	conf1;
164 		};
165 	};
166 	/*
167 	 * If the event is a per task event, this will point to the task in
168 	 * question. See the comment in perf_event_alloc().
169 	 */
170 	struct task_struct		*target;
171 
172 	/*
173 	 * PMU would store hardware filter configuration
174 	 * here.
175 	 */
176 	void				*addr_filters;
177 
178 	/* Last sync'ed generation of filters */
179 	unsigned long			addr_filters_gen;
180 
181 /*
182  * hw_perf_event::state flags; used to track the PERF_EF_* state.
183  */
184 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
185 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
186 #define PERF_HES_ARCH		0x04
187 
188 	int				state;
189 
190 	/*
191 	 * The last observed hardware counter value, updated with a
192 	 * local64_cmpxchg() such that pmu::read() can be called nested.
193 	 */
194 	local64_t			prev_count;
195 
196 	/*
197 	 * The period to start the next sample with.
198 	 */
199 	u64				sample_period;
200 
201 	/*
202 	 * The period we started this sample with.
203 	 */
204 	u64				last_period;
205 
206 	/*
207 	 * However much is left of the current period; note that this is
208 	 * a full 64bit value and allows for generation of periods longer
209 	 * than hardware might allow.
210 	 */
211 	local64_t			period_left;
212 
213 	/*
214 	 * State for throttling the event, see __perf_event_overflow() and
215 	 * perf_adjust_freq_unthr_context().
216 	 */
217 	u64                             interrupts_seq;
218 	u64				interrupts;
219 
220 	/*
221 	 * State for freq target events, see __perf_event_overflow() and
222 	 * perf_adjust_freq_unthr_context().
223 	 */
224 	u64				freq_time_stamp;
225 	u64				freq_count_stamp;
226 #endif
227 };
228 
229 struct perf_event;
230 
231 /*
232  * Common implementation detail of pmu::{start,commit,cancel}_txn
233  */
234 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
235 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
236 
237 /**
238  * pmu::capabilities flags
239  */
240 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
241 #define PERF_PMU_CAP_NO_NMI			0x02
242 #define PERF_PMU_CAP_AUX_NO_SG			0x04
243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
244 #define PERF_PMU_CAP_EXCLUSIVE			0x10
245 #define PERF_PMU_CAP_ITRACE			0x20
246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
247 
248 /**
249  * struct pmu - generic performance monitoring unit
250  */
251 struct pmu {
252 	struct list_head		entry;
253 
254 	struct module			*module;
255 	struct device			*dev;
256 	const struct attribute_group	**attr_groups;
257 	const char			*name;
258 	int				type;
259 
260 	/*
261 	 * various common per-pmu feature flags
262 	 */
263 	int				capabilities;
264 
265 	int * __percpu			pmu_disable_count;
266 	struct perf_cpu_context * __percpu pmu_cpu_context;
267 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
268 	int				task_ctx_nr;
269 	int				hrtimer_interval_ms;
270 
271 	/* number of address filters this PMU can do */
272 	unsigned int			nr_addr_filters;
273 
274 	/*
275 	 * Fully disable/enable this PMU, can be used to protect from the PMI
276 	 * as well as for lazy/batch writing of the MSRs.
277 	 */
278 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
279 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
280 
281 	/*
282 	 * Try and initialize the event for this PMU.
283 	 *
284 	 * Returns:
285 	 *  -ENOENT	-- @event is not for this PMU
286 	 *
287 	 *  -ENODEV	-- @event is for this PMU but PMU not present
288 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
289 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
290 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
291 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
292 	 *
293 	 *  0		-- @event is for this PMU and valid
294 	 *
295 	 * Other error return values are allowed.
296 	 */
297 	int (*event_init)		(struct perf_event *event);
298 
299 	/*
300 	 * Notification that the event was mapped or unmapped.  Called
301 	 * in the context of the mapping task.
302 	 */
303 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
304 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
305 
306 	/*
307 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
308 	 * matching hw_perf_event::state flags.
309 	 */
310 #define PERF_EF_START	0x01		/* start the counter when adding    */
311 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
312 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
313 
314 	/*
315 	 * Adds/Removes a counter to/from the PMU, can be done inside a
316 	 * transaction, see the ->*_txn() methods.
317 	 *
318 	 * The add/del callbacks will reserve all hardware resources required
319 	 * to service the event, this includes any counter constraint
320 	 * scheduling etc.
321 	 *
322 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
323 	 * is on.
324 	 *
325 	 * ->add() called without PERF_EF_START should result in the same state
326 	 *  as ->add() followed by ->stop().
327 	 *
328 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
329 	 *  ->stop() that must deal with already being stopped without
330 	 *  PERF_EF_UPDATE.
331 	 */
332 	int  (*add)			(struct perf_event *event, int flags);
333 	void (*del)			(struct perf_event *event, int flags);
334 
335 	/*
336 	 * Starts/Stops a counter present on the PMU.
337 	 *
338 	 * The PMI handler should stop the counter when perf_event_overflow()
339 	 * returns !0. ->start() will be used to continue.
340 	 *
341 	 * Also used to change the sample period.
342 	 *
343 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
344 	 * is on -- will be called from NMI context with the PMU generates
345 	 * NMIs.
346 	 *
347 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
348 	 *  period/count values like ->read() would.
349 	 *
350 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
351 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
352 	 */
353 	void (*start)			(struct perf_event *event, int flags);
354 	void (*stop)			(struct perf_event *event, int flags);
355 
356 	/*
357 	 * Updates the counter value of the event.
358 	 *
359 	 * For sampling capable PMUs this will also update the software period
360 	 * hw_perf_event::period_left field.
361 	 */
362 	void (*read)			(struct perf_event *event);
363 
364 	/*
365 	 * Group events scheduling is treated as a transaction, add
366 	 * group events as a whole and perform one schedulability test.
367 	 * If the test fails, roll back the whole group
368 	 *
369 	 * Start the transaction, after this ->add() doesn't need to
370 	 * do schedulability tests.
371 	 *
372 	 * Optional.
373 	 */
374 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
375 	/*
376 	 * If ->start_txn() disabled the ->add() schedulability test
377 	 * then ->commit_txn() is required to perform one. On success
378 	 * the transaction is closed. On error the transaction is kept
379 	 * open until ->cancel_txn() is called.
380 	 *
381 	 * Optional.
382 	 */
383 	int  (*commit_txn)		(struct pmu *pmu);
384 	/*
385 	 * Will cancel the transaction, assumes ->del() is called
386 	 * for each successful ->add() during the transaction.
387 	 *
388 	 * Optional.
389 	 */
390 	void (*cancel_txn)		(struct pmu *pmu);
391 
392 	/*
393 	 * Will return the value for perf_event_mmap_page::index for this event,
394 	 * if no implementation is provided it will default to: event->hw.idx + 1.
395 	 */
396 	int (*event_idx)		(struct perf_event *event); /*optional */
397 
398 	/*
399 	 * context-switches callback
400 	 */
401 	void (*sched_task)		(struct perf_event_context *ctx,
402 					bool sched_in);
403 	/*
404 	 * PMU specific data size
405 	 */
406 	size_t				task_ctx_size;
407 
408 
409 	/*
410 	 * Set up pmu-private data structures for an AUX area
411 	 */
412 	void *(*setup_aux)		(int cpu, void **pages,
413 					 int nr_pages, bool overwrite);
414 					/* optional */
415 
416 	/*
417 	 * Free pmu-private AUX data structures
418 	 */
419 	void (*free_aux)		(void *aux); /* optional */
420 
421 	/*
422 	 * Validate address range filters: make sure the HW supports the
423 	 * requested configuration and number of filters; return 0 if the
424 	 * supplied filters are valid, -errno otherwise.
425 	 *
426 	 * Runs in the context of the ioctl()ing process and is not serialized
427 	 * with the rest of the PMU callbacks.
428 	 */
429 	int (*addr_filters_validate)	(struct list_head *filters);
430 					/* optional */
431 
432 	/*
433 	 * Synchronize address range filter configuration:
434 	 * translate hw-agnostic filters into hardware configuration in
435 	 * event::hw::addr_filters.
436 	 *
437 	 * Runs as a part of filter sync sequence that is done in ->start()
438 	 * callback by calling perf_event_addr_filters_sync().
439 	 *
440 	 * May (and should) traverse event::addr_filters::list, for which its
441 	 * caller provides necessary serialization.
442 	 */
443 	void (*addr_filters_sync)	(struct perf_event *event);
444 					/* optional */
445 
446 	/*
447 	 * Filter events for PMU-specific reasons.
448 	 */
449 	int (*filter_match)		(struct perf_event *event); /* optional */
450 };
451 
452 /**
453  * struct perf_addr_filter - address range filter definition
454  * @entry:	event's filter list linkage
455  * @inode:	object file's inode for file-based filters
456  * @offset:	filter range offset
457  * @size:	filter range size
458  * @range:	1: range, 0: address
459  * @filter:	1: filter/start, 0: stop
460  *
461  * This is a hardware-agnostic filter configuration as specified by the user.
462  */
463 struct perf_addr_filter {
464 	struct list_head	entry;
465 	struct inode		*inode;
466 	unsigned long		offset;
467 	unsigned long		size;
468 	unsigned int		range	: 1,
469 				filter	: 1;
470 };
471 
472 /**
473  * struct perf_addr_filters_head - container for address range filters
474  * @list:	list of filters for this event
475  * @lock:	spinlock that serializes accesses to the @list and event's
476  *		(and its children's) filter generations.
477  * @nr_file_filters:	number of file-based filters
478  *
479  * A child event will use parent's @list (and therefore @lock), so they are
480  * bundled together; see perf_event_addr_filters().
481  */
482 struct perf_addr_filters_head {
483 	struct list_head	list;
484 	raw_spinlock_t		lock;
485 	unsigned int		nr_file_filters;
486 };
487 
488 /**
489  * enum perf_event_state - the states of a event
490  */
491 enum perf_event_state {
492 	PERF_EVENT_STATE_DEAD		= -4,
493 	PERF_EVENT_STATE_EXIT		= -3,
494 	PERF_EVENT_STATE_ERROR		= -2,
495 	PERF_EVENT_STATE_OFF		= -1,
496 	PERF_EVENT_STATE_INACTIVE	=  0,
497 	PERF_EVENT_STATE_ACTIVE		=  1,
498 };
499 
500 struct file;
501 struct perf_sample_data;
502 
503 typedef void (*perf_overflow_handler_t)(struct perf_event *,
504 					struct perf_sample_data *,
505 					struct pt_regs *regs);
506 
507 /*
508  * Event capabilities. For event_caps and groups caps.
509  *
510  * PERF_EV_CAP_SOFTWARE: Is a software event.
511  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
512  * from any CPU in the package where it is active.
513  */
514 #define PERF_EV_CAP_SOFTWARE		BIT(0)
515 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
516 
517 #define SWEVENT_HLIST_BITS		8
518 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
519 
520 struct swevent_hlist {
521 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
522 	struct rcu_head			rcu_head;
523 };
524 
525 #define PERF_ATTACH_CONTEXT	0x01
526 #define PERF_ATTACH_GROUP	0x02
527 #define PERF_ATTACH_TASK	0x04
528 #define PERF_ATTACH_TASK_DATA	0x08
529 #define PERF_ATTACH_ITRACE	0x10
530 
531 struct perf_cgroup;
532 struct ring_buffer;
533 
534 struct pmu_event_list {
535 	raw_spinlock_t		lock;
536 	struct list_head	list;
537 };
538 
539 /**
540  * struct perf_event - performance event kernel representation:
541  */
542 struct perf_event {
543 #ifdef CONFIG_PERF_EVENTS
544 	/*
545 	 * entry onto perf_event_context::event_list;
546 	 *   modifications require ctx->lock
547 	 *   RCU safe iterations.
548 	 */
549 	struct list_head		event_entry;
550 
551 	/*
552 	 * XXX: group_entry and sibling_list should be mutually exclusive;
553 	 * either you're a sibling on a group, or you're the group leader.
554 	 * Rework the code to always use the same list element.
555 	 *
556 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
557 	 * either sufficies for read.
558 	 */
559 	struct list_head		group_entry;
560 	struct list_head		sibling_list;
561 
562 	/*
563 	 * We need storage to track the entries in perf_pmu_migrate_context; we
564 	 * cannot use the event_entry because of RCU and we want to keep the
565 	 * group in tact which avoids us using the other two entries.
566 	 */
567 	struct list_head		migrate_entry;
568 
569 	struct hlist_node		hlist_entry;
570 	struct list_head		active_entry;
571 	int				nr_siblings;
572 
573 	/* Not serialized. Only written during event initialization. */
574 	int				event_caps;
575 	/* The cumulative AND of all event_caps for events in this group. */
576 	int				group_caps;
577 
578 	struct perf_event		*group_leader;
579 	struct pmu			*pmu;
580 	void				*pmu_private;
581 
582 	enum perf_event_state		state;
583 	unsigned int			attach_state;
584 	local64_t			count;
585 	atomic64_t			child_count;
586 
587 	/*
588 	 * These are the total time in nanoseconds that the event
589 	 * has been enabled (i.e. eligible to run, and the task has
590 	 * been scheduled in, if this is a per-task event)
591 	 * and running (scheduled onto the CPU), respectively.
592 	 */
593 	u64				total_time_enabled;
594 	u64				total_time_running;
595 	u64				tstamp;
596 
597 	/*
598 	 * timestamp shadows the actual context timing but it can
599 	 * be safely used in NMI interrupt context. It reflects the
600 	 * context time as it was when the event was last scheduled in.
601 	 *
602 	 * ctx_time already accounts for ctx->timestamp. Therefore to
603 	 * compute ctx_time for a sample, simply add perf_clock().
604 	 */
605 	u64				shadow_ctx_time;
606 
607 	struct perf_event_attr		attr;
608 	u16				header_size;
609 	u16				id_header_size;
610 	u16				read_size;
611 	struct hw_perf_event		hw;
612 
613 	struct perf_event_context	*ctx;
614 	atomic_long_t			refcount;
615 
616 	/*
617 	 * These accumulate total time (in nanoseconds) that children
618 	 * events have been enabled and running, respectively.
619 	 */
620 	atomic64_t			child_total_time_enabled;
621 	atomic64_t			child_total_time_running;
622 
623 	/*
624 	 * Protect attach/detach and child_list:
625 	 */
626 	struct mutex			child_mutex;
627 	struct list_head		child_list;
628 	struct perf_event		*parent;
629 
630 	int				oncpu;
631 	int				cpu;
632 
633 	struct list_head		owner_entry;
634 	struct task_struct		*owner;
635 
636 	/* mmap bits */
637 	struct mutex			mmap_mutex;
638 	atomic_t			mmap_count;
639 
640 	struct ring_buffer		*rb;
641 	struct list_head		rb_entry;
642 	unsigned long			rcu_batches;
643 	int				rcu_pending;
644 
645 	/* poll related */
646 	wait_queue_head_t		waitq;
647 	struct fasync_struct		*fasync;
648 
649 	/* delayed work for NMIs and such */
650 	int				pending_wakeup;
651 	int				pending_kill;
652 	int				pending_disable;
653 	struct irq_work			pending;
654 
655 	atomic_t			event_limit;
656 
657 	/* address range filters */
658 	struct perf_addr_filters_head	addr_filters;
659 	/* vma address array for file-based filders */
660 	unsigned long			*addr_filters_offs;
661 	unsigned long			addr_filters_gen;
662 
663 	void (*destroy)(struct perf_event *);
664 	struct rcu_head			rcu_head;
665 
666 	struct pid_namespace		*ns;
667 	u64				id;
668 
669 	u64				(*clock)(void);
670 	perf_overflow_handler_t		overflow_handler;
671 	void				*overflow_handler_context;
672 #ifdef CONFIG_BPF_SYSCALL
673 	perf_overflow_handler_t		orig_overflow_handler;
674 	struct bpf_prog			*prog;
675 #endif
676 
677 #ifdef CONFIG_EVENT_TRACING
678 	struct trace_event_call		*tp_event;
679 	struct event_filter		*filter;
680 #ifdef CONFIG_FUNCTION_TRACER
681 	struct ftrace_ops               ftrace_ops;
682 #endif
683 #endif
684 
685 #ifdef CONFIG_CGROUP_PERF
686 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
687 #endif
688 
689 	struct list_head		sb_list;
690 #endif /* CONFIG_PERF_EVENTS */
691 };
692 
693 /**
694  * struct perf_event_context - event context structure
695  *
696  * Used as a container for task events and CPU events as well:
697  */
698 struct perf_event_context {
699 	struct pmu			*pmu;
700 	/*
701 	 * Protect the states of the events in the list,
702 	 * nr_active, and the list:
703 	 */
704 	raw_spinlock_t			lock;
705 	/*
706 	 * Protect the list of events.  Locking either mutex or lock
707 	 * is sufficient to ensure the list doesn't change; to change
708 	 * the list you need to lock both the mutex and the spinlock.
709 	 */
710 	struct mutex			mutex;
711 
712 	struct list_head		active_ctx_list;
713 	struct list_head		pinned_groups;
714 	struct list_head		flexible_groups;
715 	struct list_head		event_list;
716 	int				nr_events;
717 	int				nr_active;
718 	int				is_active;
719 	int				nr_stat;
720 	int				nr_freq;
721 	int				rotate_disable;
722 	atomic_t			refcount;
723 	struct task_struct		*task;
724 
725 	/*
726 	 * Context clock, runs when context enabled.
727 	 */
728 	u64				time;
729 	u64				timestamp;
730 
731 	/*
732 	 * These fields let us detect when two contexts have both
733 	 * been cloned (inherited) from a common ancestor.
734 	 */
735 	struct perf_event_context	*parent_ctx;
736 	u64				parent_gen;
737 	u64				generation;
738 	int				pin_count;
739 #ifdef CONFIG_CGROUP_PERF
740 	int				nr_cgroups;	 /* cgroup evts */
741 #endif
742 	void				*task_ctx_data; /* pmu specific data */
743 	struct rcu_head			rcu_head;
744 };
745 
746 /*
747  * Number of contexts where an event can trigger:
748  *	task, softirq, hardirq, nmi.
749  */
750 #define PERF_NR_CONTEXTS	4
751 
752 /**
753  * struct perf_event_cpu_context - per cpu event context structure
754  */
755 struct perf_cpu_context {
756 	struct perf_event_context	ctx;
757 	struct perf_event_context	*task_ctx;
758 	int				active_oncpu;
759 	int				exclusive;
760 
761 	raw_spinlock_t			hrtimer_lock;
762 	struct hrtimer			hrtimer;
763 	ktime_t				hrtimer_interval;
764 	unsigned int			hrtimer_active;
765 
766 #ifdef CONFIG_CGROUP_PERF
767 	struct perf_cgroup		*cgrp;
768 	struct list_head		cgrp_cpuctx_entry;
769 #endif
770 
771 	struct list_head		sched_cb_entry;
772 	int				sched_cb_usage;
773 
774 	int				online;
775 };
776 
777 struct perf_output_handle {
778 	struct perf_event		*event;
779 	struct ring_buffer		*rb;
780 	unsigned long			wakeup;
781 	unsigned long			size;
782 	u64				aux_flags;
783 	union {
784 		void			*addr;
785 		unsigned long		head;
786 	};
787 	int				page;
788 };
789 
790 struct bpf_perf_event_data_kern {
791 	bpf_user_pt_regs_t *regs;
792 	struct perf_sample_data *data;
793 	struct perf_event *event;
794 };
795 
796 #ifdef CONFIG_CGROUP_PERF
797 
798 /*
799  * perf_cgroup_info keeps track of time_enabled for a cgroup.
800  * This is a per-cpu dynamically allocated data structure.
801  */
802 struct perf_cgroup_info {
803 	u64				time;
804 	u64				timestamp;
805 };
806 
807 struct perf_cgroup {
808 	struct cgroup_subsys_state	css;
809 	struct perf_cgroup_info	__percpu *info;
810 };
811 
812 /*
813  * Must ensure cgroup is pinned (css_get) before calling
814  * this function. In other words, we cannot call this function
815  * if there is no cgroup event for the current CPU context.
816  */
817 static inline struct perf_cgroup *
818 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
819 {
820 	return container_of(task_css_check(task, perf_event_cgrp_id,
821 					   ctx ? lockdep_is_held(&ctx->lock)
822 					       : true),
823 			    struct perf_cgroup, css);
824 }
825 #endif /* CONFIG_CGROUP_PERF */
826 
827 #ifdef CONFIG_PERF_EVENTS
828 
829 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
830 				   struct perf_event *event);
831 extern void perf_aux_output_end(struct perf_output_handle *handle,
832 				unsigned long size);
833 extern int perf_aux_output_skip(struct perf_output_handle *handle,
834 				unsigned long size);
835 extern void *perf_get_aux(struct perf_output_handle *handle);
836 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
837 extern void perf_event_itrace_started(struct perf_event *event);
838 
839 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
840 extern void perf_pmu_unregister(struct pmu *pmu);
841 
842 extern int perf_num_counters(void);
843 extern const char *perf_pmu_name(void);
844 extern void __perf_event_task_sched_in(struct task_struct *prev,
845 				       struct task_struct *task);
846 extern void __perf_event_task_sched_out(struct task_struct *prev,
847 					struct task_struct *next);
848 extern int perf_event_init_task(struct task_struct *child);
849 extern void perf_event_exit_task(struct task_struct *child);
850 extern void perf_event_free_task(struct task_struct *task);
851 extern void perf_event_delayed_put(struct task_struct *task);
852 extern struct file *perf_event_get(unsigned int fd);
853 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
854 extern void perf_event_print_debug(void);
855 extern void perf_pmu_disable(struct pmu *pmu);
856 extern void perf_pmu_enable(struct pmu *pmu);
857 extern void perf_sched_cb_dec(struct pmu *pmu);
858 extern void perf_sched_cb_inc(struct pmu *pmu);
859 extern int perf_event_task_disable(void);
860 extern int perf_event_task_enable(void);
861 extern int perf_event_refresh(struct perf_event *event, int refresh);
862 extern void perf_event_update_userpage(struct perf_event *event);
863 extern int perf_event_release_kernel(struct perf_event *event);
864 extern struct perf_event *
865 perf_event_create_kernel_counter(struct perf_event_attr *attr,
866 				int cpu,
867 				struct task_struct *task,
868 				perf_overflow_handler_t callback,
869 				void *context);
870 extern void perf_pmu_migrate_context(struct pmu *pmu,
871 				int src_cpu, int dst_cpu);
872 int perf_event_read_local(struct perf_event *event, u64 *value,
873 			  u64 *enabled, u64 *running);
874 extern u64 perf_event_read_value(struct perf_event *event,
875 				 u64 *enabled, u64 *running);
876 
877 
878 struct perf_sample_data {
879 	/*
880 	 * Fields set by perf_sample_data_init(), group so as to
881 	 * minimize the cachelines touched.
882 	 */
883 	u64				addr;
884 	struct perf_raw_record		*raw;
885 	struct perf_branch_stack	*br_stack;
886 	u64				period;
887 	u64				weight;
888 	u64				txn;
889 	union  perf_mem_data_src	data_src;
890 
891 	/*
892 	 * The other fields, optionally {set,used} by
893 	 * perf_{prepare,output}_sample().
894 	 */
895 	u64				type;
896 	u64				ip;
897 	struct {
898 		u32	pid;
899 		u32	tid;
900 	}				tid_entry;
901 	u64				time;
902 	u64				id;
903 	u64				stream_id;
904 	struct {
905 		u32	cpu;
906 		u32	reserved;
907 	}				cpu_entry;
908 	struct perf_callchain_entry	*callchain;
909 
910 	/*
911 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
912 	 * on arch details.
913 	 */
914 	struct perf_regs		regs_user;
915 	struct pt_regs			regs_user_copy;
916 
917 	struct perf_regs		regs_intr;
918 	u64				stack_user_size;
919 
920 	u64				phys_addr;
921 } ____cacheline_aligned;
922 
923 /* default value for data source */
924 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
925 		    PERF_MEM_S(LVL, NA)   |\
926 		    PERF_MEM_S(SNOOP, NA) |\
927 		    PERF_MEM_S(LOCK, NA)  |\
928 		    PERF_MEM_S(TLB, NA))
929 
930 static inline void perf_sample_data_init(struct perf_sample_data *data,
931 					 u64 addr, u64 period)
932 {
933 	/* remaining struct members initialized in perf_prepare_sample() */
934 	data->addr = addr;
935 	data->raw  = NULL;
936 	data->br_stack = NULL;
937 	data->period = period;
938 	data->weight = 0;
939 	data->data_src.val = PERF_MEM_NA;
940 	data->txn = 0;
941 }
942 
943 extern void perf_output_sample(struct perf_output_handle *handle,
944 			       struct perf_event_header *header,
945 			       struct perf_sample_data *data,
946 			       struct perf_event *event);
947 extern void perf_prepare_sample(struct perf_event_header *header,
948 				struct perf_sample_data *data,
949 				struct perf_event *event,
950 				struct pt_regs *regs);
951 
952 extern int perf_event_overflow(struct perf_event *event,
953 				 struct perf_sample_data *data,
954 				 struct pt_regs *regs);
955 
956 extern void perf_event_output_forward(struct perf_event *event,
957 				     struct perf_sample_data *data,
958 				     struct pt_regs *regs);
959 extern void perf_event_output_backward(struct perf_event *event,
960 				       struct perf_sample_data *data,
961 				       struct pt_regs *regs);
962 extern void perf_event_output(struct perf_event *event,
963 			      struct perf_sample_data *data,
964 			      struct pt_regs *regs);
965 
966 static inline bool
967 is_default_overflow_handler(struct perf_event *event)
968 {
969 	if (likely(event->overflow_handler == perf_event_output_forward))
970 		return true;
971 	if (unlikely(event->overflow_handler == perf_event_output_backward))
972 		return true;
973 	return false;
974 }
975 
976 extern void
977 perf_event_header__init_id(struct perf_event_header *header,
978 			   struct perf_sample_data *data,
979 			   struct perf_event *event);
980 extern void
981 perf_event__output_id_sample(struct perf_event *event,
982 			     struct perf_output_handle *handle,
983 			     struct perf_sample_data *sample);
984 
985 extern void
986 perf_log_lost_samples(struct perf_event *event, u64 lost);
987 
988 static inline bool is_sampling_event(struct perf_event *event)
989 {
990 	return event->attr.sample_period != 0;
991 }
992 
993 /*
994  * Return 1 for a software event, 0 for a hardware event
995  */
996 static inline int is_software_event(struct perf_event *event)
997 {
998 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
999 }
1000 
1001 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1002 
1003 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1004 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1005 
1006 #ifndef perf_arch_fetch_caller_regs
1007 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1008 #endif
1009 
1010 /*
1011  * Take a snapshot of the regs. Skip ip and frame pointer to
1012  * the nth caller. We only need a few of the regs:
1013  * - ip for PERF_SAMPLE_IP
1014  * - cs for user_mode() tests
1015  * - bp for callchains
1016  * - eflags, for future purposes, just in case
1017  */
1018 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1019 {
1020 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1021 }
1022 
1023 static __always_inline void
1024 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1025 {
1026 	if (static_key_false(&perf_swevent_enabled[event_id]))
1027 		__perf_sw_event(event_id, nr, regs, addr);
1028 }
1029 
1030 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1031 
1032 /*
1033  * 'Special' version for the scheduler, it hard assumes no recursion,
1034  * which is guaranteed by us not actually scheduling inside other swevents
1035  * because those disable preemption.
1036  */
1037 static __always_inline void
1038 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1039 {
1040 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1041 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1042 
1043 		perf_fetch_caller_regs(regs);
1044 		___perf_sw_event(event_id, nr, regs, addr);
1045 	}
1046 }
1047 
1048 extern struct static_key_false perf_sched_events;
1049 
1050 static __always_inline bool
1051 perf_sw_migrate_enabled(void)
1052 {
1053 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1054 		return true;
1055 	return false;
1056 }
1057 
1058 static inline void perf_event_task_migrate(struct task_struct *task)
1059 {
1060 	if (perf_sw_migrate_enabled())
1061 		task->sched_migrated = 1;
1062 }
1063 
1064 static inline void perf_event_task_sched_in(struct task_struct *prev,
1065 					    struct task_struct *task)
1066 {
1067 	if (static_branch_unlikely(&perf_sched_events))
1068 		__perf_event_task_sched_in(prev, task);
1069 
1070 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1071 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1072 
1073 		perf_fetch_caller_regs(regs);
1074 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1075 		task->sched_migrated = 0;
1076 	}
1077 }
1078 
1079 static inline void perf_event_task_sched_out(struct task_struct *prev,
1080 					     struct task_struct *next)
1081 {
1082 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1083 
1084 	if (static_branch_unlikely(&perf_sched_events))
1085 		__perf_event_task_sched_out(prev, next);
1086 }
1087 
1088 extern void perf_event_mmap(struct vm_area_struct *vma);
1089 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1090 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1091 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1092 
1093 extern void perf_event_exec(void);
1094 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1095 extern void perf_event_namespaces(struct task_struct *tsk);
1096 extern void perf_event_fork(struct task_struct *tsk);
1097 
1098 /* Callchains */
1099 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1100 
1101 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1102 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1103 extern struct perf_callchain_entry *
1104 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1105 		   u32 max_stack, bool crosstask, bool add_mark);
1106 extern int get_callchain_buffers(int max_stack);
1107 extern void put_callchain_buffers(void);
1108 
1109 extern int sysctl_perf_event_max_stack;
1110 extern int sysctl_perf_event_max_contexts_per_stack;
1111 
1112 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1113 {
1114 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1115 		struct perf_callchain_entry *entry = ctx->entry;
1116 		entry->ip[entry->nr++] = ip;
1117 		++ctx->contexts;
1118 		return 0;
1119 	} else {
1120 		ctx->contexts_maxed = true;
1121 		return -1; /* no more room, stop walking the stack */
1122 	}
1123 }
1124 
1125 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1126 {
1127 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1128 		struct perf_callchain_entry *entry = ctx->entry;
1129 		entry->ip[entry->nr++] = ip;
1130 		++ctx->nr;
1131 		return 0;
1132 	} else {
1133 		return -1; /* no more room, stop walking the stack */
1134 	}
1135 }
1136 
1137 extern int sysctl_perf_event_paranoid;
1138 extern int sysctl_perf_event_mlock;
1139 extern int sysctl_perf_event_sample_rate;
1140 extern int sysctl_perf_cpu_time_max_percent;
1141 
1142 extern void perf_sample_event_took(u64 sample_len_ns);
1143 
1144 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1145 		void __user *buffer, size_t *lenp,
1146 		loff_t *ppos);
1147 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1148 		void __user *buffer, size_t *lenp,
1149 		loff_t *ppos);
1150 
1151 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1152 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1153 
1154 static inline bool perf_paranoid_tracepoint_raw(void)
1155 {
1156 	return sysctl_perf_event_paranoid > -1;
1157 }
1158 
1159 static inline bool perf_paranoid_cpu(void)
1160 {
1161 	return sysctl_perf_event_paranoid > 0;
1162 }
1163 
1164 static inline bool perf_paranoid_kernel(void)
1165 {
1166 	return sysctl_perf_event_paranoid > 1;
1167 }
1168 
1169 extern void perf_event_init(void);
1170 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1171 			  int entry_size, struct pt_regs *regs,
1172 			  struct hlist_head *head, int rctx,
1173 			  struct task_struct *task);
1174 extern void perf_bp_event(struct perf_event *event, void *data);
1175 
1176 #ifndef perf_misc_flags
1177 # define perf_misc_flags(regs) \
1178 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1179 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1180 #endif
1181 #ifndef perf_arch_bpf_user_pt_regs
1182 # define perf_arch_bpf_user_pt_regs(regs) regs
1183 #endif
1184 
1185 static inline bool has_branch_stack(struct perf_event *event)
1186 {
1187 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1188 }
1189 
1190 static inline bool needs_branch_stack(struct perf_event *event)
1191 {
1192 	return event->attr.branch_sample_type != 0;
1193 }
1194 
1195 static inline bool has_aux(struct perf_event *event)
1196 {
1197 	return event->pmu->setup_aux;
1198 }
1199 
1200 static inline bool is_write_backward(struct perf_event *event)
1201 {
1202 	return !!event->attr.write_backward;
1203 }
1204 
1205 static inline bool has_addr_filter(struct perf_event *event)
1206 {
1207 	return event->pmu->nr_addr_filters;
1208 }
1209 
1210 /*
1211  * An inherited event uses parent's filters
1212  */
1213 static inline struct perf_addr_filters_head *
1214 perf_event_addr_filters(struct perf_event *event)
1215 {
1216 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1217 
1218 	if (event->parent)
1219 		ifh = &event->parent->addr_filters;
1220 
1221 	return ifh;
1222 }
1223 
1224 extern void perf_event_addr_filters_sync(struct perf_event *event);
1225 
1226 extern int perf_output_begin(struct perf_output_handle *handle,
1227 			     struct perf_event *event, unsigned int size);
1228 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1229 				    struct perf_event *event,
1230 				    unsigned int size);
1231 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1232 				      struct perf_event *event,
1233 				      unsigned int size);
1234 
1235 extern void perf_output_end(struct perf_output_handle *handle);
1236 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1237 			     const void *buf, unsigned int len);
1238 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1239 				     unsigned int len);
1240 extern int perf_swevent_get_recursion_context(void);
1241 extern void perf_swevent_put_recursion_context(int rctx);
1242 extern u64 perf_swevent_set_period(struct perf_event *event);
1243 extern void perf_event_enable(struct perf_event *event);
1244 extern void perf_event_disable(struct perf_event *event);
1245 extern void perf_event_disable_local(struct perf_event *event);
1246 extern void perf_event_disable_inatomic(struct perf_event *event);
1247 extern void perf_event_task_tick(void);
1248 extern int perf_event_account_interrupt(struct perf_event *event);
1249 #else /* !CONFIG_PERF_EVENTS: */
1250 static inline void *
1251 perf_aux_output_begin(struct perf_output_handle *handle,
1252 		      struct perf_event *event)				{ return NULL; }
1253 static inline void
1254 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1255 									{ }
1256 static inline int
1257 perf_aux_output_skip(struct perf_output_handle *handle,
1258 		     unsigned long size)				{ return -EINVAL; }
1259 static inline void *
1260 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1261 static inline void
1262 perf_event_task_migrate(struct task_struct *task)			{ }
1263 static inline void
1264 perf_event_task_sched_in(struct task_struct *prev,
1265 			 struct task_struct *task)			{ }
1266 static inline void
1267 perf_event_task_sched_out(struct task_struct *prev,
1268 			  struct task_struct *next)			{ }
1269 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1270 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1271 static inline void perf_event_free_task(struct task_struct *task)	{ }
1272 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1273 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1274 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1275 {
1276 	return ERR_PTR(-EINVAL);
1277 }
1278 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1279 					u64 *enabled, u64 *running)
1280 {
1281 	return -EINVAL;
1282 }
1283 static inline void perf_event_print_debug(void)				{ }
1284 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1285 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1286 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1287 {
1288 	return -EINVAL;
1289 }
1290 
1291 static inline void
1292 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1293 static inline void
1294 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1295 static inline void
1296 perf_bp_event(struct perf_event *event, void *data)			{ }
1297 
1298 static inline int perf_register_guest_info_callbacks
1299 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1300 static inline int perf_unregister_guest_info_callbacks
1301 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1302 
1303 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1304 static inline void perf_event_exec(void)				{ }
1305 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1306 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1307 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1308 static inline void perf_event_init(void)				{ }
1309 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1310 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1311 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1312 static inline void perf_event_enable(struct perf_event *event)		{ }
1313 static inline void perf_event_disable(struct perf_event *event)		{ }
1314 static inline int __perf_event_disable(void *info)			{ return -1; }
1315 static inline void perf_event_task_tick(void)				{ }
1316 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1317 #endif
1318 
1319 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1320 extern void perf_restore_debug_store(void);
1321 #else
1322 static inline void perf_restore_debug_store(void)			{ }
1323 #endif
1324 
1325 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1326 {
1327 	return frag->pad < sizeof(u64);
1328 }
1329 
1330 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1331 
1332 struct perf_pmu_events_attr {
1333 	struct device_attribute attr;
1334 	u64 id;
1335 	const char *event_str;
1336 };
1337 
1338 struct perf_pmu_events_ht_attr {
1339 	struct device_attribute			attr;
1340 	u64					id;
1341 	const char				*event_str_ht;
1342 	const char				*event_str_noht;
1343 };
1344 
1345 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1346 			      char *page);
1347 
1348 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1349 static struct perf_pmu_events_attr _var = {				\
1350 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1351 	.id   =  _id,							\
1352 };
1353 
1354 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1355 static struct perf_pmu_events_attr _var = {				    \
1356 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1357 	.id		= 0,						    \
1358 	.event_str	= _str,						    \
1359 };
1360 
1361 #define PMU_FORMAT_ATTR(_name, _format)					\
1362 static ssize_t								\
1363 _name##_show(struct device *dev,					\
1364 			       struct device_attribute *attr,		\
1365 			       char *page)				\
1366 {									\
1367 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1368 	return sprintf(page, _format "\n");				\
1369 }									\
1370 									\
1371 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1372 
1373 /* Performance counter hotplug functions */
1374 #ifdef CONFIG_PERF_EVENTS
1375 int perf_event_init_cpu(unsigned int cpu);
1376 int perf_event_exit_cpu(unsigned int cpu);
1377 #else
1378 #define perf_event_init_cpu	NULL
1379 #define perf_event_exit_cpu	NULL
1380 #endif
1381 
1382 #endif /* _LINUX_PERF_EVENT_H */
1383