1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34 }; 35 36 #ifdef CONFIG_HAVE_HW_BREAKPOINT 37 #include <asm/hw_breakpoint.h> 38 #endif 39 40 #include <linux/list.h> 41 #include <linux/mutex.h> 42 #include <linux/rculist.h> 43 #include <linux/rcupdate.h> 44 #include <linux/spinlock.h> 45 #include <linux/hrtimer.h> 46 #include <linux/fs.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/workqueue.h> 49 #include <linux/ftrace.h> 50 #include <linux/cpu.h> 51 #include <linux/irq_work.h> 52 #include <linux/static_key.h> 53 #include <linux/jump_label_ratelimit.h> 54 #include <linux/atomic.h> 55 #include <linux/sysfs.h> 56 #include <linux/perf_regs.h> 57 #include <linux/cgroup.h> 58 #include <linux/refcount.h> 59 #include <linux/security.h> 60 #include <linux/static_call.h> 61 #include <asm/local.h> 62 63 struct perf_callchain_entry { 64 __u64 nr; 65 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 66 }; 67 68 struct perf_callchain_entry_ctx { 69 struct perf_callchain_entry *entry; 70 u32 max_stack; 71 u32 nr; 72 short contexts; 73 bool contexts_maxed; 74 }; 75 76 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 77 unsigned long off, unsigned long len); 78 79 struct perf_raw_frag { 80 union { 81 struct perf_raw_frag *next; 82 unsigned long pad; 83 }; 84 perf_copy_f copy; 85 void *data; 86 u32 size; 87 } __packed; 88 89 struct perf_raw_record { 90 struct perf_raw_frag frag; 91 u32 size; 92 }; 93 94 /* 95 * branch stack layout: 96 * nr: number of taken branches stored in entries[] 97 * hw_idx: The low level index of raw branch records 98 * for the most recent branch. 99 * -1ULL means invalid/unknown. 100 * 101 * Note that nr can vary from sample to sample 102 * branches (to, from) are stored from most recent 103 * to least recent, i.e., entries[0] contains the most 104 * recent branch. 105 * The entries[] is an abstraction of raw branch records, 106 * which may not be stored in age order in HW, e.g. Intel LBR. 107 * The hw_idx is to expose the low level index of raw 108 * branch record for the most recent branch aka entries[0]. 109 * The hw_idx index is between -1 (unknown) and max depth, 110 * which can be retrieved in /sys/devices/cpu/caps/branches. 111 * For the architectures whose raw branch records are 112 * already stored in age order, the hw_idx should be 0. 113 */ 114 struct perf_branch_stack { 115 __u64 nr; 116 __u64 hw_idx; 117 struct perf_branch_entry entries[]; 118 }; 119 120 struct task_struct; 121 122 /* 123 * extra PMU register associated with an event 124 */ 125 struct hw_perf_event_extra { 126 u64 config; /* register value */ 127 unsigned int reg; /* register address or index */ 128 int alloc; /* extra register already allocated */ 129 int idx; /* index in shared_regs->regs[] */ 130 }; 131 132 /** 133 * hw_perf_event::flag values 134 * 135 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 136 * usage. 137 */ 138 #define PERF_EVENT_FLAG_ARCH 0x0000ffff 139 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 140 141 /** 142 * struct hw_perf_event - performance event hardware details: 143 */ 144 struct hw_perf_event { 145 #ifdef CONFIG_PERF_EVENTS 146 union { 147 struct { /* hardware */ 148 u64 config; 149 u64 last_tag; 150 unsigned long config_base; 151 unsigned long event_base; 152 int event_base_rdpmc; 153 int idx; 154 int last_cpu; 155 int flags; 156 157 struct hw_perf_event_extra extra_reg; 158 struct hw_perf_event_extra branch_reg; 159 }; 160 struct { /* software */ 161 struct hrtimer hrtimer; 162 }; 163 struct { /* tracepoint */ 164 /* for tp_event->class */ 165 struct list_head tp_list; 166 }; 167 struct { /* amd_power */ 168 u64 pwr_acc; 169 u64 ptsc; 170 }; 171 #ifdef CONFIG_HAVE_HW_BREAKPOINT 172 struct { /* breakpoint */ 173 /* 174 * Crufty hack to avoid the chicken and egg 175 * problem hw_breakpoint has with context 176 * creation and event initalization. 177 */ 178 struct arch_hw_breakpoint info; 179 struct list_head bp_list; 180 }; 181 #endif 182 struct { /* amd_iommu */ 183 u8 iommu_bank; 184 u8 iommu_cntr; 185 u16 padding; 186 u64 conf; 187 u64 conf1; 188 }; 189 }; 190 /* 191 * If the event is a per task event, this will point to the task in 192 * question. See the comment in perf_event_alloc(). 193 */ 194 struct task_struct *target; 195 196 /* 197 * PMU would store hardware filter configuration 198 * here. 199 */ 200 void *addr_filters; 201 202 /* Last sync'ed generation of filters */ 203 unsigned long addr_filters_gen; 204 205 /* 206 * hw_perf_event::state flags; used to track the PERF_EF_* state. 207 */ 208 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 209 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 210 #define PERF_HES_ARCH 0x04 211 212 int state; 213 214 /* 215 * The last observed hardware counter value, updated with a 216 * local64_cmpxchg() such that pmu::read() can be called nested. 217 */ 218 local64_t prev_count; 219 220 /* 221 * The period to start the next sample with. 222 */ 223 u64 sample_period; 224 225 union { 226 struct { /* Sampling */ 227 /* 228 * The period we started this sample with. 229 */ 230 u64 last_period; 231 232 /* 233 * However much is left of the current period; 234 * note that this is a full 64bit value and 235 * allows for generation of periods longer 236 * than hardware might allow. 237 */ 238 local64_t period_left; 239 }; 240 struct { /* Topdown events counting for context switch */ 241 u64 saved_metric; 242 u64 saved_slots; 243 }; 244 }; 245 246 /* 247 * State for throttling the event, see __perf_event_overflow() and 248 * perf_adjust_freq_unthr_context(). 249 */ 250 u64 interrupts_seq; 251 u64 interrupts; 252 253 /* 254 * State for freq target events, see __perf_event_overflow() and 255 * perf_adjust_freq_unthr_context(). 256 */ 257 u64 freq_time_stamp; 258 u64 freq_count_stamp; 259 #endif 260 }; 261 262 struct perf_event; 263 264 /* 265 * Common implementation detail of pmu::{start,commit,cancel}_txn 266 */ 267 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 268 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 269 270 /** 271 * pmu::capabilities flags 272 */ 273 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 274 #define PERF_PMU_CAP_NO_NMI 0x0002 275 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 276 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 277 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 278 #define PERF_PMU_CAP_ITRACE 0x0020 279 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 280 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 281 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 282 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 283 284 struct perf_output_handle; 285 286 /** 287 * struct pmu - generic performance monitoring unit 288 */ 289 struct pmu { 290 struct list_head entry; 291 292 struct module *module; 293 struct device *dev; 294 const struct attribute_group **attr_groups; 295 const struct attribute_group **attr_update; 296 const char *name; 297 int type; 298 299 /* 300 * various common per-pmu feature flags 301 */ 302 int capabilities; 303 304 int __percpu *pmu_disable_count; 305 struct perf_cpu_context __percpu *pmu_cpu_context; 306 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 307 int task_ctx_nr; 308 int hrtimer_interval_ms; 309 310 /* number of address filters this PMU can do */ 311 unsigned int nr_addr_filters; 312 313 /* 314 * Fully disable/enable this PMU, can be used to protect from the PMI 315 * as well as for lazy/batch writing of the MSRs. 316 */ 317 void (*pmu_enable) (struct pmu *pmu); /* optional */ 318 void (*pmu_disable) (struct pmu *pmu); /* optional */ 319 320 /* 321 * Try and initialize the event for this PMU. 322 * 323 * Returns: 324 * -ENOENT -- @event is not for this PMU 325 * 326 * -ENODEV -- @event is for this PMU but PMU not present 327 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 328 * -EINVAL -- @event is for this PMU but @event is not valid 329 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 330 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 331 * 332 * 0 -- @event is for this PMU and valid 333 * 334 * Other error return values are allowed. 335 */ 336 int (*event_init) (struct perf_event *event); 337 338 /* 339 * Notification that the event was mapped or unmapped. Called 340 * in the context of the mapping task. 341 */ 342 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 343 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 344 345 /* 346 * Flags for ->add()/->del()/ ->start()/->stop(). There are 347 * matching hw_perf_event::state flags. 348 */ 349 #define PERF_EF_START 0x01 /* start the counter when adding */ 350 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 351 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 352 353 /* 354 * Adds/Removes a counter to/from the PMU, can be done inside a 355 * transaction, see the ->*_txn() methods. 356 * 357 * The add/del callbacks will reserve all hardware resources required 358 * to service the event, this includes any counter constraint 359 * scheduling etc. 360 * 361 * Called with IRQs disabled and the PMU disabled on the CPU the event 362 * is on. 363 * 364 * ->add() called without PERF_EF_START should result in the same state 365 * as ->add() followed by ->stop(). 366 * 367 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 368 * ->stop() that must deal with already being stopped without 369 * PERF_EF_UPDATE. 370 */ 371 int (*add) (struct perf_event *event, int flags); 372 void (*del) (struct perf_event *event, int flags); 373 374 /* 375 * Starts/Stops a counter present on the PMU. 376 * 377 * The PMI handler should stop the counter when perf_event_overflow() 378 * returns !0. ->start() will be used to continue. 379 * 380 * Also used to change the sample period. 381 * 382 * Called with IRQs disabled and the PMU disabled on the CPU the event 383 * is on -- will be called from NMI context with the PMU generates 384 * NMIs. 385 * 386 * ->stop() with PERF_EF_UPDATE will read the counter and update 387 * period/count values like ->read() would. 388 * 389 * ->start() with PERF_EF_RELOAD will reprogram the counter 390 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 391 */ 392 void (*start) (struct perf_event *event, int flags); 393 void (*stop) (struct perf_event *event, int flags); 394 395 /* 396 * Updates the counter value of the event. 397 * 398 * For sampling capable PMUs this will also update the software period 399 * hw_perf_event::period_left field. 400 */ 401 void (*read) (struct perf_event *event); 402 403 /* 404 * Group events scheduling is treated as a transaction, add 405 * group events as a whole and perform one schedulability test. 406 * If the test fails, roll back the whole group 407 * 408 * Start the transaction, after this ->add() doesn't need to 409 * do schedulability tests. 410 * 411 * Optional. 412 */ 413 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 414 /* 415 * If ->start_txn() disabled the ->add() schedulability test 416 * then ->commit_txn() is required to perform one. On success 417 * the transaction is closed. On error the transaction is kept 418 * open until ->cancel_txn() is called. 419 * 420 * Optional. 421 */ 422 int (*commit_txn) (struct pmu *pmu); 423 /* 424 * Will cancel the transaction, assumes ->del() is called 425 * for each successful ->add() during the transaction. 426 * 427 * Optional. 428 */ 429 void (*cancel_txn) (struct pmu *pmu); 430 431 /* 432 * Will return the value for perf_event_mmap_page::index for this event, 433 * if no implementation is provided it will default to: event->hw.idx + 1. 434 */ 435 int (*event_idx) (struct perf_event *event); /*optional */ 436 437 /* 438 * context-switches callback 439 */ 440 void (*sched_task) (struct perf_event_context *ctx, 441 bool sched_in); 442 443 /* 444 * Kmem cache of PMU specific data 445 */ 446 struct kmem_cache *task_ctx_cache; 447 448 /* 449 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 450 * can be synchronized using this function. See Intel LBR callstack support 451 * implementation and Perf core context switch handling callbacks for usage 452 * examples. 453 */ 454 void (*swap_task_ctx) (struct perf_event_context *prev, 455 struct perf_event_context *next); 456 /* optional */ 457 458 /* 459 * Set up pmu-private data structures for an AUX area 460 */ 461 void *(*setup_aux) (struct perf_event *event, void **pages, 462 int nr_pages, bool overwrite); 463 /* optional */ 464 465 /* 466 * Free pmu-private AUX data structures 467 */ 468 void (*free_aux) (void *aux); /* optional */ 469 470 /* 471 * Take a snapshot of the AUX buffer without touching the event 472 * state, so that preempting ->start()/->stop() callbacks does 473 * not interfere with their logic. Called in PMI context. 474 * 475 * Returns the size of AUX data copied to the output handle. 476 * 477 * Optional. 478 */ 479 long (*snapshot_aux) (struct perf_event *event, 480 struct perf_output_handle *handle, 481 unsigned long size); 482 483 /* 484 * Validate address range filters: make sure the HW supports the 485 * requested configuration and number of filters; return 0 if the 486 * supplied filters are valid, -errno otherwise. 487 * 488 * Runs in the context of the ioctl()ing process and is not serialized 489 * with the rest of the PMU callbacks. 490 */ 491 int (*addr_filters_validate) (struct list_head *filters); 492 /* optional */ 493 494 /* 495 * Synchronize address range filter configuration: 496 * translate hw-agnostic filters into hardware configuration in 497 * event::hw::addr_filters. 498 * 499 * Runs as a part of filter sync sequence that is done in ->start() 500 * callback by calling perf_event_addr_filters_sync(). 501 * 502 * May (and should) traverse event::addr_filters::list, for which its 503 * caller provides necessary serialization. 504 */ 505 void (*addr_filters_sync) (struct perf_event *event); 506 /* optional */ 507 508 /* 509 * Check if event can be used for aux_output purposes for 510 * events of this PMU. 511 * 512 * Runs from perf_event_open(). Should return 0 for "no match" 513 * or non-zero for "match". 514 */ 515 int (*aux_output_match) (struct perf_event *event); 516 /* optional */ 517 518 /* 519 * Filter events for PMU-specific reasons. 520 */ 521 int (*filter_match) (struct perf_event *event); /* optional */ 522 523 /* 524 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 525 */ 526 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 527 }; 528 529 enum perf_addr_filter_action_t { 530 PERF_ADDR_FILTER_ACTION_STOP = 0, 531 PERF_ADDR_FILTER_ACTION_START, 532 PERF_ADDR_FILTER_ACTION_FILTER, 533 }; 534 535 /** 536 * struct perf_addr_filter - address range filter definition 537 * @entry: event's filter list linkage 538 * @path: object file's path for file-based filters 539 * @offset: filter range offset 540 * @size: filter range size (size==0 means single address trigger) 541 * @action: filter/start/stop 542 * 543 * This is a hardware-agnostic filter configuration as specified by the user. 544 */ 545 struct perf_addr_filter { 546 struct list_head entry; 547 struct path path; 548 unsigned long offset; 549 unsigned long size; 550 enum perf_addr_filter_action_t action; 551 }; 552 553 /** 554 * struct perf_addr_filters_head - container for address range filters 555 * @list: list of filters for this event 556 * @lock: spinlock that serializes accesses to the @list and event's 557 * (and its children's) filter generations. 558 * @nr_file_filters: number of file-based filters 559 * 560 * A child event will use parent's @list (and therefore @lock), so they are 561 * bundled together; see perf_event_addr_filters(). 562 */ 563 struct perf_addr_filters_head { 564 struct list_head list; 565 raw_spinlock_t lock; 566 unsigned int nr_file_filters; 567 }; 568 569 struct perf_addr_filter_range { 570 unsigned long start; 571 unsigned long size; 572 }; 573 574 /** 575 * enum perf_event_state - the states of an event: 576 */ 577 enum perf_event_state { 578 PERF_EVENT_STATE_DEAD = -4, 579 PERF_EVENT_STATE_EXIT = -3, 580 PERF_EVENT_STATE_ERROR = -2, 581 PERF_EVENT_STATE_OFF = -1, 582 PERF_EVENT_STATE_INACTIVE = 0, 583 PERF_EVENT_STATE_ACTIVE = 1, 584 }; 585 586 struct file; 587 struct perf_sample_data; 588 589 typedef void (*perf_overflow_handler_t)(struct perf_event *, 590 struct perf_sample_data *, 591 struct pt_regs *regs); 592 593 /* 594 * Event capabilities. For event_caps and groups caps. 595 * 596 * PERF_EV_CAP_SOFTWARE: Is a software event. 597 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 598 * from any CPU in the package where it is active. 599 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 600 * cannot be a group leader. If an event with this flag is detached from the 601 * group it is scheduled out and moved into an unrecoverable ERROR state. 602 */ 603 #define PERF_EV_CAP_SOFTWARE BIT(0) 604 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 605 #define PERF_EV_CAP_SIBLING BIT(2) 606 607 #define SWEVENT_HLIST_BITS 8 608 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 609 610 struct swevent_hlist { 611 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 612 struct rcu_head rcu_head; 613 }; 614 615 #define PERF_ATTACH_CONTEXT 0x01 616 #define PERF_ATTACH_GROUP 0x02 617 #define PERF_ATTACH_TASK 0x04 618 #define PERF_ATTACH_TASK_DATA 0x08 619 #define PERF_ATTACH_ITRACE 0x10 620 #define PERF_ATTACH_SCHED_CB 0x20 621 #define PERF_ATTACH_CHILD 0x40 622 623 struct perf_cgroup; 624 struct perf_buffer; 625 626 struct pmu_event_list { 627 raw_spinlock_t lock; 628 struct list_head list; 629 }; 630 631 #define for_each_sibling_event(sibling, event) \ 632 if ((event)->group_leader == (event)) \ 633 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 634 635 /** 636 * struct perf_event - performance event kernel representation: 637 */ 638 struct perf_event { 639 #ifdef CONFIG_PERF_EVENTS 640 /* 641 * entry onto perf_event_context::event_list; 642 * modifications require ctx->lock 643 * RCU safe iterations. 644 */ 645 struct list_head event_entry; 646 647 /* 648 * Locked for modification by both ctx->mutex and ctx->lock; holding 649 * either sufficies for read. 650 */ 651 struct list_head sibling_list; 652 struct list_head active_list; 653 /* 654 * Node on the pinned or flexible tree located at the event context; 655 */ 656 struct rb_node group_node; 657 u64 group_index; 658 /* 659 * We need storage to track the entries in perf_pmu_migrate_context; we 660 * cannot use the event_entry because of RCU and we want to keep the 661 * group in tact which avoids us using the other two entries. 662 */ 663 struct list_head migrate_entry; 664 665 struct hlist_node hlist_entry; 666 struct list_head active_entry; 667 int nr_siblings; 668 669 /* Not serialized. Only written during event initialization. */ 670 int event_caps; 671 /* The cumulative AND of all event_caps for events in this group. */ 672 int group_caps; 673 674 struct perf_event *group_leader; 675 struct pmu *pmu; 676 void *pmu_private; 677 678 enum perf_event_state state; 679 unsigned int attach_state; 680 local64_t count; 681 atomic64_t child_count; 682 683 /* 684 * These are the total time in nanoseconds that the event 685 * has been enabled (i.e. eligible to run, and the task has 686 * been scheduled in, if this is a per-task event) 687 * and running (scheduled onto the CPU), respectively. 688 */ 689 u64 total_time_enabled; 690 u64 total_time_running; 691 u64 tstamp; 692 693 /* 694 * timestamp shadows the actual context timing but it can 695 * be safely used in NMI interrupt context. It reflects the 696 * context time as it was when the event was last scheduled in, 697 * or when ctx_sched_in failed to schedule the event because we 698 * run out of PMC. 699 * 700 * ctx_time already accounts for ctx->timestamp. Therefore to 701 * compute ctx_time for a sample, simply add perf_clock(). 702 */ 703 u64 shadow_ctx_time; 704 705 struct perf_event_attr attr; 706 u16 header_size; 707 u16 id_header_size; 708 u16 read_size; 709 struct hw_perf_event hw; 710 711 struct perf_event_context *ctx; 712 atomic_long_t refcount; 713 714 /* 715 * These accumulate total time (in nanoseconds) that children 716 * events have been enabled and running, respectively. 717 */ 718 atomic64_t child_total_time_enabled; 719 atomic64_t child_total_time_running; 720 721 /* 722 * Protect attach/detach and child_list: 723 */ 724 struct mutex child_mutex; 725 struct list_head child_list; 726 struct perf_event *parent; 727 728 int oncpu; 729 int cpu; 730 731 struct list_head owner_entry; 732 struct task_struct *owner; 733 734 /* mmap bits */ 735 struct mutex mmap_mutex; 736 atomic_t mmap_count; 737 738 struct perf_buffer *rb; 739 struct list_head rb_entry; 740 unsigned long rcu_batches; 741 int rcu_pending; 742 743 /* poll related */ 744 wait_queue_head_t waitq; 745 struct fasync_struct *fasync; 746 747 /* delayed work for NMIs and such */ 748 int pending_wakeup; 749 int pending_kill; 750 int pending_disable; 751 unsigned long pending_addr; /* SIGTRAP */ 752 struct irq_work pending; 753 754 atomic_t event_limit; 755 756 /* address range filters */ 757 struct perf_addr_filters_head addr_filters; 758 /* vma address array for file-based filders */ 759 struct perf_addr_filter_range *addr_filter_ranges; 760 unsigned long addr_filters_gen; 761 762 /* for aux_output events */ 763 struct perf_event *aux_event; 764 765 void (*destroy)(struct perf_event *); 766 struct rcu_head rcu_head; 767 768 struct pid_namespace *ns; 769 u64 id; 770 771 u64 (*clock)(void); 772 perf_overflow_handler_t overflow_handler; 773 void *overflow_handler_context; 774 #ifdef CONFIG_BPF_SYSCALL 775 perf_overflow_handler_t orig_overflow_handler; 776 struct bpf_prog *prog; 777 u64 bpf_cookie; 778 #endif 779 780 #ifdef CONFIG_EVENT_TRACING 781 struct trace_event_call *tp_event; 782 struct event_filter *filter; 783 #ifdef CONFIG_FUNCTION_TRACER 784 struct ftrace_ops ftrace_ops; 785 #endif 786 #endif 787 788 #ifdef CONFIG_CGROUP_PERF 789 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 790 #endif 791 792 #ifdef CONFIG_SECURITY 793 void *security; 794 #endif 795 struct list_head sb_list; 796 #endif /* CONFIG_PERF_EVENTS */ 797 }; 798 799 800 struct perf_event_groups { 801 struct rb_root tree; 802 u64 index; 803 }; 804 805 /** 806 * struct perf_event_context - event context structure 807 * 808 * Used as a container for task events and CPU events as well: 809 */ 810 struct perf_event_context { 811 struct pmu *pmu; 812 /* 813 * Protect the states of the events in the list, 814 * nr_active, and the list: 815 */ 816 raw_spinlock_t lock; 817 /* 818 * Protect the list of events. Locking either mutex or lock 819 * is sufficient to ensure the list doesn't change; to change 820 * the list you need to lock both the mutex and the spinlock. 821 */ 822 struct mutex mutex; 823 824 struct list_head active_ctx_list; 825 struct perf_event_groups pinned_groups; 826 struct perf_event_groups flexible_groups; 827 struct list_head event_list; 828 829 struct list_head pinned_active; 830 struct list_head flexible_active; 831 832 int nr_events; 833 int nr_active; 834 int nr_user; 835 int is_active; 836 int nr_stat; 837 int nr_freq; 838 int rotate_disable; 839 /* 840 * Set when nr_events != nr_active, except tolerant to events not 841 * necessary to be active due to scheduling constraints, such as cgroups. 842 */ 843 int rotate_necessary; 844 refcount_t refcount; 845 struct task_struct *task; 846 847 /* 848 * Context clock, runs when context enabled. 849 */ 850 u64 time; 851 u64 timestamp; 852 853 /* 854 * These fields let us detect when two contexts have both 855 * been cloned (inherited) from a common ancestor. 856 */ 857 struct perf_event_context *parent_ctx; 858 u64 parent_gen; 859 u64 generation; 860 int pin_count; 861 #ifdef CONFIG_CGROUP_PERF 862 int nr_cgroups; /* cgroup evts */ 863 #endif 864 void *task_ctx_data; /* pmu specific data */ 865 struct rcu_head rcu_head; 866 }; 867 868 /* 869 * Number of contexts where an event can trigger: 870 * task, softirq, hardirq, nmi. 871 */ 872 #define PERF_NR_CONTEXTS 4 873 874 /** 875 * struct perf_event_cpu_context - per cpu event context structure 876 */ 877 struct perf_cpu_context { 878 struct perf_event_context ctx; 879 struct perf_event_context *task_ctx; 880 int active_oncpu; 881 int exclusive; 882 883 raw_spinlock_t hrtimer_lock; 884 struct hrtimer hrtimer; 885 ktime_t hrtimer_interval; 886 unsigned int hrtimer_active; 887 888 #ifdef CONFIG_CGROUP_PERF 889 struct perf_cgroup *cgrp; 890 struct list_head cgrp_cpuctx_entry; 891 #endif 892 893 struct list_head sched_cb_entry; 894 int sched_cb_usage; 895 896 int online; 897 /* 898 * Per-CPU storage for iterators used in visit_groups_merge. The default 899 * storage is of size 2 to hold the CPU and any CPU event iterators. 900 */ 901 int heap_size; 902 struct perf_event **heap; 903 struct perf_event *heap_default[2]; 904 }; 905 906 struct perf_output_handle { 907 struct perf_event *event; 908 struct perf_buffer *rb; 909 unsigned long wakeup; 910 unsigned long size; 911 u64 aux_flags; 912 union { 913 void *addr; 914 unsigned long head; 915 }; 916 int page; 917 }; 918 919 struct bpf_perf_event_data_kern { 920 bpf_user_pt_regs_t *regs; 921 struct perf_sample_data *data; 922 struct perf_event *event; 923 }; 924 925 #ifdef CONFIG_CGROUP_PERF 926 927 /* 928 * perf_cgroup_info keeps track of time_enabled for a cgroup. 929 * This is a per-cpu dynamically allocated data structure. 930 */ 931 struct perf_cgroup_info { 932 u64 time; 933 u64 timestamp; 934 }; 935 936 struct perf_cgroup { 937 struct cgroup_subsys_state css; 938 struct perf_cgroup_info __percpu *info; 939 }; 940 941 /* 942 * Must ensure cgroup is pinned (css_get) before calling 943 * this function. In other words, we cannot call this function 944 * if there is no cgroup event for the current CPU context. 945 */ 946 static inline struct perf_cgroup * 947 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 948 { 949 return container_of(task_css_check(task, perf_event_cgrp_id, 950 ctx ? lockdep_is_held(&ctx->lock) 951 : true), 952 struct perf_cgroup, css); 953 } 954 #endif /* CONFIG_CGROUP_PERF */ 955 956 #ifdef CONFIG_PERF_EVENTS 957 958 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 959 struct perf_event *event); 960 extern void perf_aux_output_end(struct perf_output_handle *handle, 961 unsigned long size); 962 extern int perf_aux_output_skip(struct perf_output_handle *handle, 963 unsigned long size); 964 extern void *perf_get_aux(struct perf_output_handle *handle); 965 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 966 extern void perf_event_itrace_started(struct perf_event *event); 967 968 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 969 extern void perf_pmu_unregister(struct pmu *pmu); 970 971 extern void __perf_event_task_sched_in(struct task_struct *prev, 972 struct task_struct *task); 973 extern void __perf_event_task_sched_out(struct task_struct *prev, 974 struct task_struct *next); 975 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 976 extern void perf_event_exit_task(struct task_struct *child); 977 extern void perf_event_free_task(struct task_struct *task); 978 extern void perf_event_delayed_put(struct task_struct *task); 979 extern struct file *perf_event_get(unsigned int fd); 980 extern const struct perf_event *perf_get_event(struct file *file); 981 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 982 extern void perf_event_print_debug(void); 983 extern void perf_pmu_disable(struct pmu *pmu); 984 extern void perf_pmu_enable(struct pmu *pmu); 985 extern void perf_sched_cb_dec(struct pmu *pmu); 986 extern void perf_sched_cb_inc(struct pmu *pmu); 987 extern int perf_event_task_disable(void); 988 extern int perf_event_task_enable(void); 989 990 extern void perf_pmu_resched(struct pmu *pmu); 991 992 extern int perf_event_refresh(struct perf_event *event, int refresh); 993 extern void perf_event_update_userpage(struct perf_event *event); 994 extern int perf_event_release_kernel(struct perf_event *event); 995 extern struct perf_event * 996 perf_event_create_kernel_counter(struct perf_event_attr *attr, 997 int cpu, 998 struct task_struct *task, 999 perf_overflow_handler_t callback, 1000 void *context); 1001 extern void perf_pmu_migrate_context(struct pmu *pmu, 1002 int src_cpu, int dst_cpu); 1003 int perf_event_read_local(struct perf_event *event, u64 *value, 1004 u64 *enabled, u64 *running); 1005 extern u64 perf_event_read_value(struct perf_event *event, 1006 u64 *enabled, u64 *running); 1007 1008 1009 struct perf_sample_data { 1010 /* 1011 * Fields set by perf_sample_data_init(), group so as to 1012 * minimize the cachelines touched. 1013 */ 1014 u64 addr; 1015 struct perf_raw_record *raw; 1016 struct perf_branch_stack *br_stack; 1017 u64 period; 1018 union perf_sample_weight weight; 1019 u64 txn; 1020 union perf_mem_data_src data_src; 1021 1022 /* 1023 * The other fields, optionally {set,used} by 1024 * perf_{prepare,output}_sample(). 1025 */ 1026 u64 type; 1027 u64 ip; 1028 struct { 1029 u32 pid; 1030 u32 tid; 1031 } tid_entry; 1032 u64 time; 1033 u64 id; 1034 u64 stream_id; 1035 struct { 1036 u32 cpu; 1037 u32 reserved; 1038 } cpu_entry; 1039 struct perf_callchain_entry *callchain; 1040 u64 aux_size; 1041 1042 struct perf_regs regs_user; 1043 struct perf_regs regs_intr; 1044 u64 stack_user_size; 1045 1046 u64 phys_addr; 1047 u64 cgroup; 1048 u64 data_page_size; 1049 u64 code_page_size; 1050 } ____cacheline_aligned; 1051 1052 /* default value for data source */ 1053 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1054 PERF_MEM_S(LVL, NA) |\ 1055 PERF_MEM_S(SNOOP, NA) |\ 1056 PERF_MEM_S(LOCK, NA) |\ 1057 PERF_MEM_S(TLB, NA)) 1058 1059 static inline void perf_sample_data_init(struct perf_sample_data *data, 1060 u64 addr, u64 period) 1061 { 1062 /* remaining struct members initialized in perf_prepare_sample() */ 1063 data->addr = addr; 1064 data->raw = NULL; 1065 data->br_stack = NULL; 1066 data->period = period; 1067 data->weight.full = 0; 1068 data->data_src.val = PERF_MEM_NA; 1069 data->txn = 0; 1070 } 1071 1072 extern void perf_output_sample(struct perf_output_handle *handle, 1073 struct perf_event_header *header, 1074 struct perf_sample_data *data, 1075 struct perf_event *event); 1076 extern void perf_prepare_sample(struct perf_event_header *header, 1077 struct perf_sample_data *data, 1078 struct perf_event *event, 1079 struct pt_regs *regs); 1080 1081 extern int perf_event_overflow(struct perf_event *event, 1082 struct perf_sample_data *data, 1083 struct pt_regs *regs); 1084 1085 extern void perf_event_output_forward(struct perf_event *event, 1086 struct perf_sample_data *data, 1087 struct pt_regs *regs); 1088 extern void perf_event_output_backward(struct perf_event *event, 1089 struct perf_sample_data *data, 1090 struct pt_regs *regs); 1091 extern int perf_event_output(struct perf_event *event, 1092 struct perf_sample_data *data, 1093 struct pt_regs *regs); 1094 1095 static inline bool 1096 is_default_overflow_handler(struct perf_event *event) 1097 { 1098 if (likely(event->overflow_handler == perf_event_output_forward)) 1099 return true; 1100 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1101 return true; 1102 return false; 1103 } 1104 1105 extern void 1106 perf_event_header__init_id(struct perf_event_header *header, 1107 struct perf_sample_data *data, 1108 struct perf_event *event); 1109 extern void 1110 perf_event__output_id_sample(struct perf_event *event, 1111 struct perf_output_handle *handle, 1112 struct perf_sample_data *sample); 1113 1114 extern void 1115 perf_log_lost_samples(struct perf_event *event, u64 lost); 1116 1117 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1118 { 1119 struct perf_event_attr *attr = &event->attr; 1120 1121 return attr->exclude_idle || attr->exclude_user || 1122 attr->exclude_kernel || attr->exclude_hv || 1123 attr->exclude_guest || attr->exclude_host; 1124 } 1125 1126 static inline bool is_sampling_event(struct perf_event *event) 1127 { 1128 return event->attr.sample_period != 0; 1129 } 1130 1131 /* 1132 * Return 1 for a software event, 0 for a hardware event 1133 */ 1134 static inline int is_software_event(struct perf_event *event) 1135 { 1136 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1137 } 1138 1139 /* 1140 * Return 1 for event in sw context, 0 for event in hw context 1141 */ 1142 static inline int in_software_context(struct perf_event *event) 1143 { 1144 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1145 } 1146 1147 static inline int is_exclusive_pmu(struct pmu *pmu) 1148 { 1149 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1150 } 1151 1152 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1153 1154 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1155 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1156 1157 #ifndef perf_arch_fetch_caller_regs 1158 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1159 #endif 1160 1161 /* 1162 * When generating a perf sample in-line, instead of from an interrupt / 1163 * exception, we lack a pt_regs. This is typically used from software events 1164 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1165 * 1166 * We typically don't need a full set, but (for x86) do require: 1167 * - ip for PERF_SAMPLE_IP 1168 * - cs for user_mode() tests 1169 * - sp for PERF_SAMPLE_CALLCHAIN 1170 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1171 * 1172 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1173 * things like PERF_SAMPLE_REGS_INTR. 1174 */ 1175 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1176 { 1177 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1178 } 1179 1180 static __always_inline void 1181 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1182 { 1183 if (static_key_false(&perf_swevent_enabled[event_id])) 1184 __perf_sw_event(event_id, nr, regs, addr); 1185 } 1186 1187 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1188 1189 /* 1190 * 'Special' version for the scheduler, it hard assumes no recursion, 1191 * which is guaranteed by us not actually scheduling inside other swevents 1192 * because those disable preemption. 1193 */ 1194 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1195 { 1196 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1197 1198 perf_fetch_caller_regs(regs); 1199 ___perf_sw_event(event_id, nr, regs, addr); 1200 } 1201 1202 extern struct static_key_false perf_sched_events; 1203 1204 static __always_inline bool __perf_sw_enabled(int swevt) 1205 { 1206 return static_key_false(&perf_swevent_enabled[swevt]); 1207 } 1208 1209 static inline void perf_event_task_migrate(struct task_struct *task) 1210 { 1211 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1212 task->sched_migrated = 1; 1213 } 1214 1215 static inline void perf_event_task_sched_in(struct task_struct *prev, 1216 struct task_struct *task) 1217 { 1218 if (static_branch_unlikely(&perf_sched_events)) 1219 __perf_event_task_sched_in(prev, task); 1220 1221 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1222 task->sched_migrated) { 1223 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1224 task->sched_migrated = 0; 1225 } 1226 } 1227 1228 static inline void perf_event_task_sched_out(struct task_struct *prev, 1229 struct task_struct *next) 1230 { 1231 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1232 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1233 1234 #ifdef CONFIG_CGROUP_PERF 1235 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1236 perf_cgroup_from_task(prev, NULL) != 1237 perf_cgroup_from_task(next, NULL)) 1238 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1239 #endif 1240 1241 if (static_branch_unlikely(&perf_sched_events)) 1242 __perf_event_task_sched_out(prev, next); 1243 } 1244 1245 extern void perf_event_mmap(struct vm_area_struct *vma); 1246 1247 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1248 bool unregister, const char *sym); 1249 extern void perf_event_bpf_event(struct bpf_prog *prog, 1250 enum perf_bpf_event_type type, 1251 u16 flags); 1252 1253 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1254 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1255 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1256 1257 extern void perf_event_exec(void); 1258 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1259 extern void perf_event_namespaces(struct task_struct *tsk); 1260 extern void perf_event_fork(struct task_struct *tsk); 1261 extern void perf_event_text_poke(const void *addr, 1262 const void *old_bytes, size_t old_len, 1263 const void *new_bytes, size_t new_len); 1264 1265 /* Callchains */ 1266 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1267 1268 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1269 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1270 extern struct perf_callchain_entry * 1271 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1272 u32 max_stack, bool crosstask, bool add_mark); 1273 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1274 extern int get_callchain_buffers(int max_stack); 1275 extern void put_callchain_buffers(void); 1276 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1277 extern void put_callchain_entry(int rctx); 1278 1279 extern int sysctl_perf_event_max_stack; 1280 extern int sysctl_perf_event_max_contexts_per_stack; 1281 1282 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1283 { 1284 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1285 struct perf_callchain_entry *entry = ctx->entry; 1286 entry->ip[entry->nr++] = ip; 1287 ++ctx->contexts; 1288 return 0; 1289 } else { 1290 ctx->contexts_maxed = true; 1291 return -1; /* no more room, stop walking the stack */ 1292 } 1293 } 1294 1295 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1296 { 1297 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1298 struct perf_callchain_entry *entry = ctx->entry; 1299 entry->ip[entry->nr++] = ip; 1300 ++ctx->nr; 1301 return 0; 1302 } else { 1303 return -1; /* no more room, stop walking the stack */ 1304 } 1305 } 1306 1307 extern int sysctl_perf_event_paranoid; 1308 extern int sysctl_perf_event_mlock; 1309 extern int sysctl_perf_event_sample_rate; 1310 extern int sysctl_perf_cpu_time_max_percent; 1311 1312 extern void perf_sample_event_took(u64 sample_len_ns); 1313 1314 int perf_proc_update_handler(struct ctl_table *table, int write, 1315 void *buffer, size_t *lenp, loff_t *ppos); 1316 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1317 void *buffer, size_t *lenp, loff_t *ppos); 1318 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1319 void *buffer, size_t *lenp, loff_t *ppos); 1320 1321 /* Access to perf_event_open(2) syscall. */ 1322 #define PERF_SECURITY_OPEN 0 1323 1324 /* Finer grained perf_event_open(2) access control. */ 1325 #define PERF_SECURITY_CPU 1 1326 #define PERF_SECURITY_KERNEL 2 1327 #define PERF_SECURITY_TRACEPOINT 3 1328 1329 static inline int perf_is_paranoid(void) 1330 { 1331 return sysctl_perf_event_paranoid > -1; 1332 } 1333 1334 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1335 { 1336 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1337 return -EACCES; 1338 1339 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1340 } 1341 1342 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1343 { 1344 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1345 return -EACCES; 1346 1347 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1348 } 1349 1350 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1351 { 1352 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1353 return -EPERM; 1354 1355 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1356 } 1357 1358 extern void perf_event_init(void); 1359 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1360 int entry_size, struct pt_regs *regs, 1361 struct hlist_head *head, int rctx, 1362 struct task_struct *task); 1363 extern void perf_bp_event(struct perf_event *event, void *data); 1364 1365 #ifndef perf_misc_flags 1366 # define perf_misc_flags(regs) \ 1367 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1368 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1369 #endif 1370 #ifndef perf_arch_bpf_user_pt_regs 1371 # define perf_arch_bpf_user_pt_regs(regs) regs 1372 #endif 1373 1374 static inline bool has_branch_stack(struct perf_event *event) 1375 { 1376 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1377 } 1378 1379 static inline bool needs_branch_stack(struct perf_event *event) 1380 { 1381 return event->attr.branch_sample_type != 0; 1382 } 1383 1384 static inline bool has_aux(struct perf_event *event) 1385 { 1386 return event->pmu->setup_aux; 1387 } 1388 1389 static inline bool is_write_backward(struct perf_event *event) 1390 { 1391 return !!event->attr.write_backward; 1392 } 1393 1394 static inline bool has_addr_filter(struct perf_event *event) 1395 { 1396 return event->pmu->nr_addr_filters; 1397 } 1398 1399 /* 1400 * An inherited event uses parent's filters 1401 */ 1402 static inline struct perf_addr_filters_head * 1403 perf_event_addr_filters(struct perf_event *event) 1404 { 1405 struct perf_addr_filters_head *ifh = &event->addr_filters; 1406 1407 if (event->parent) 1408 ifh = &event->parent->addr_filters; 1409 1410 return ifh; 1411 } 1412 1413 extern void perf_event_addr_filters_sync(struct perf_event *event); 1414 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1415 1416 extern int perf_output_begin(struct perf_output_handle *handle, 1417 struct perf_sample_data *data, 1418 struct perf_event *event, unsigned int size); 1419 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1420 struct perf_sample_data *data, 1421 struct perf_event *event, 1422 unsigned int size); 1423 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1424 struct perf_sample_data *data, 1425 struct perf_event *event, 1426 unsigned int size); 1427 1428 extern void perf_output_end(struct perf_output_handle *handle); 1429 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1430 const void *buf, unsigned int len); 1431 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1432 unsigned int len); 1433 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1434 struct perf_output_handle *handle, 1435 unsigned long from, unsigned long to); 1436 extern int perf_swevent_get_recursion_context(void); 1437 extern void perf_swevent_put_recursion_context(int rctx); 1438 extern u64 perf_swevent_set_period(struct perf_event *event); 1439 extern void perf_event_enable(struct perf_event *event); 1440 extern void perf_event_disable(struct perf_event *event); 1441 extern void perf_event_disable_local(struct perf_event *event); 1442 extern void perf_event_disable_inatomic(struct perf_event *event); 1443 extern void perf_event_task_tick(void); 1444 extern int perf_event_account_interrupt(struct perf_event *event); 1445 extern int perf_event_period(struct perf_event *event, u64 value); 1446 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1447 #else /* !CONFIG_PERF_EVENTS: */ 1448 static inline void * 1449 perf_aux_output_begin(struct perf_output_handle *handle, 1450 struct perf_event *event) { return NULL; } 1451 static inline void 1452 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1453 { } 1454 static inline int 1455 perf_aux_output_skip(struct perf_output_handle *handle, 1456 unsigned long size) { return -EINVAL; } 1457 static inline void * 1458 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1459 static inline void 1460 perf_event_task_migrate(struct task_struct *task) { } 1461 static inline void 1462 perf_event_task_sched_in(struct task_struct *prev, 1463 struct task_struct *task) { } 1464 static inline void 1465 perf_event_task_sched_out(struct task_struct *prev, 1466 struct task_struct *next) { } 1467 static inline int perf_event_init_task(struct task_struct *child, 1468 u64 clone_flags) { return 0; } 1469 static inline void perf_event_exit_task(struct task_struct *child) { } 1470 static inline void perf_event_free_task(struct task_struct *task) { } 1471 static inline void perf_event_delayed_put(struct task_struct *task) { } 1472 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1473 static inline const struct perf_event *perf_get_event(struct file *file) 1474 { 1475 return ERR_PTR(-EINVAL); 1476 } 1477 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1478 { 1479 return ERR_PTR(-EINVAL); 1480 } 1481 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1482 u64 *enabled, u64 *running) 1483 { 1484 return -EINVAL; 1485 } 1486 static inline void perf_event_print_debug(void) { } 1487 static inline int perf_event_task_disable(void) { return -EINVAL; } 1488 static inline int perf_event_task_enable(void) { return -EINVAL; } 1489 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1490 { 1491 return -EINVAL; 1492 } 1493 1494 static inline void 1495 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1496 static inline void 1497 perf_bp_event(struct perf_event *event, void *data) { } 1498 1499 static inline int perf_register_guest_info_callbacks 1500 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1501 static inline int perf_unregister_guest_info_callbacks 1502 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1503 1504 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1505 1506 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1507 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1508 bool unregister, const char *sym) { } 1509 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1510 enum perf_bpf_event_type type, 1511 u16 flags) { } 1512 static inline void perf_event_exec(void) { } 1513 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1514 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1515 static inline void perf_event_fork(struct task_struct *tsk) { } 1516 static inline void perf_event_text_poke(const void *addr, 1517 const void *old_bytes, 1518 size_t old_len, 1519 const void *new_bytes, 1520 size_t new_len) { } 1521 static inline void perf_event_init(void) { } 1522 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1523 static inline void perf_swevent_put_recursion_context(int rctx) { } 1524 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1525 static inline void perf_event_enable(struct perf_event *event) { } 1526 static inline void perf_event_disable(struct perf_event *event) { } 1527 static inline int __perf_event_disable(void *info) { return -1; } 1528 static inline void perf_event_task_tick(void) { } 1529 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1530 static inline int perf_event_period(struct perf_event *event, u64 value) 1531 { 1532 return -EINVAL; 1533 } 1534 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1535 { 1536 return 0; 1537 } 1538 #endif 1539 1540 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1541 extern void perf_restore_debug_store(void); 1542 #else 1543 static inline void perf_restore_debug_store(void) { } 1544 #endif 1545 1546 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1547 { 1548 return frag->pad < sizeof(u64); 1549 } 1550 1551 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1552 1553 struct perf_pmu_events_attr { 1554 struct device_attribute attr; 1555 u64 id; 1556 const char *event_str; 1557 }; 1558 1559 struct perf_pmu_events_ht_attr { 1560 struct device_attribute attr; 1561 u64 id; 1562 const char *event_str_ht; 1563 const char *event_str_noht; 1564 }; 1565 1566 struct perf_pmu_events_hybrid_attr { 1567 struct device_attribute attr; 1568 u64 id; 1569 const char *event_str; 1570 u64 pmu_type; 1571 }; 1572 1573 struct perf_pmu_format_hybrid_attr { 1574 struct device_attribute attr; 1575 u64 pmu_type; 1576 }; 1577 1578 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1579 char *page); 1580 1581 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1582 static struct perf_pmu_events_attr _var = { \ 1583 .attr = __ATTR(_name, 0444, _show, NULL), \ 1584 .id = _id, \ 1585 }; 1586 1587 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1588 static struct perf_pmu_events_attr _var = { \ 1589 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1590 .id = 0, \ 1591 .event_str = _str, \ 1592 }; 1593 1594 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1595 (&((struct perf_pmu_events_attr[]) { \ 1596 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1597 .id = _id, } \ 1598 })[0].attr.attr) 1599 1600 #define PMU_FORMAT_ATTR(_name, _format) \ 1601 static ssize_t \ 1602 _name##_show(struct device *dev, \ 1603 struct device_attribute *attr, \ 1604 char *page) \ 1605 { \ 1606 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1607 return sprintf(page, _format "\n"); \ 1608 } \ 1609 \ 1610 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1611 1612 /* Performance counter hotplug functions */ 1613 #ifdef CONFIG_PERF_EVENTS 1614 int perf_event_init_cpu(unsigned int cpu); 1615 int perf_event_exit_cpu(unsigned int cpu); 1616 #else 1617 #define perf_event_init_cpu NULL 1618 #define perf_event_exit_cpu NULL 1619 #endif 1620 1621 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1622 struct perf_event_mmap_page *userpg, 1623 u64 now); 1624 1625 #ifdef CONFIG_MMU 1626 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1627 #endif 1628 1629 /* 1630 * Snapshot branch stack on software events. 1631 * 1632 * Branch stack can be very useful in understanding software events. For 1633 * example, when a long function, e.g. sys_perf_event_open, returns an 1634 * errno, it is not obvious why the function failed. Branch stack could 1635 * provide very helpful information in this type of scenarios. 1636 * 1637 * On software event, it is necessary to stop the hardware branch recorder 1638 * fast. Otherwise, the hardware register/buffer will be flushed with 1639 * entries of the triggering event. Therefore, static call is used to 1640 * stop the hardware recorder. 1641 */ 1642 1643 /* 1644 * cnt is the number of entries allocated for entries. 1645 * Return number of entries copied to . 1646 */ 1647 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1648 unsigned int cnt); 1649 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1650 1651 #endif /* _LINUX_PERF_EVENT_H */ 1652