xref: /linux-6.15/include/linux/perf_event.h (revision dca6b414)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_raw_record {
65 	u32				size;
66 	void				*data;
67 };
68 
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79 	__u64				nr;
80 	struct perf_branch_entry	entries[0];
81 };
82 
83 struct task_struct;
84 
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89 	u64		config;	/* register value */
90 	unsigned int	reg;	/* register address or index */
91 	int		alloc;	/* extra register already allocated */
92 	int		idx;	/* index in shared_regs->regs[] */
93 };
94 
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 	union {
101 		struct { /* hardware */
102 			u64		config;
103 			u64		last_tag;
104 			unsigned long	config_base;
105 			unsigned long	event_base;
106 			int		event_base_rdpmc;
107 			int		idx;
108 			int		last_cpu;
109 			int		flags;
110 
111 			struct hw_perf_event_extra extra_reg;
112 			struct hw_perf_event_extra branch_reg;
113 		};
114 		struct { /* software */
115 			struct hrtimer	hrtimer;
116 		};
117 		struct { /* tracepoint */
118 			/* for tp_event->class */
119 			struct list_head	tp_list;
120 		};
121 		struct { /* intel_cqm */
122 			int			cqm_state;
123 			u32			cqm_rmid;
124 			int			is_group_event;
125 			struct list_head	cqm_events_entry;
126 			struct list_head	cqm_groups_entry;
127 			struct list_head	cqm_group_entry;
128 		};
129 		struct { /* itrace */
130 			int			itrace_started;
131 		};
132 		struct { /* amd_power */
133 			u64	pwr_acc;
134 			u64	ptsc;
135 		};
136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
137 		struct { /* breakpoint */
138 			/*
139 			 * Crufty hack to avoid the chicken and egg
140 			 * problem hw_breakpoint has with context
141 			 * creation and event initalization.
142 			 */
143 			struct arch_hw_breakpoint	info;
144 			struct list_head		bp_list;
145 		};
146 #endif
147 	};
148 	/*
149 	 * If the event is a per task event, this will point to the task in
150 	 * question. See the comment in perf_event_alloc().
151 	 */
152 	struct task_struct		*target;
153 
154 	/*
155 	 * PMU would store hardware filter configuration
156 	 * here.
157 	 */
158 	void				*addr_filters;
159 
160 	/* Last sync'ed generation of filters */
161 	unsigned long			addr_filters_gen;
162 
163 /*
164  * hw_perf_event::state flags; used to track the PERF_EF_* state.
165  */
166 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
167 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
168 #define PERF_HES_ARCH		0x04
169 
170 	int				state;
171 
172 	/*
173 	 * The last observed hardware counter value, updated with a
174 	 * local64_cmpxchg() such that pmu::read() can be called nested.
175 	 */
176 	local64_t			prev_count;
177 
178 	/*
179 	 * The period to start the next sample with.
180 	 */
181 	u64				sample_period;
182 
183 	/*
184 	 * The period we started this sample with.
185 	 */
186 	u64				last_period;
187 
188 	/*
189 	 * However much is left of the current period; note that this is
190 	 * a full 64bit value and allows for generation of periods longer
191 	 * than hardware might allow.
192 	 */
193 	local64_t			period_left;
194 
195 	/*
196 	 * State for throttling the event, see __perf_event_overflow() and
197 	 * perf_adjust_freq_unthr_context().
198 	 */
199 	u64                             interrupts_seq;
200 	u64				interrupts;
201 
202 	/*
203 	 * State for freq target events, see __perf_event_overflow() and
204 	 * perf_adjust_freq_unthr_context().
205 	 */
206 	u64				freq_time_stamp;
207 	u64				freq_count_stamp;
208 #endif
209 };
210 
211 struct perf_event;
212 
213 /*
214  * Common implementation detail of pmu::{start,commit,cancel}_txn
215  */
216 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
217 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
218 
219 /**
220  * pmu::capabilities flags
221  */
222 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
223 #define PERF_PMU_CAP_NO_NMI			0x02
224 #define PERF_PMU_CAP_AUX_NO_SG			0x04
225 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
226 #define PERF_PMU_CAP_EXCLUSIVE			0x10
227 #define PERF_PMU_CAP_ITRACE			0x20
228 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
229 
230 /**
231  * struct pmu - generic performance monitoring unit
232  */
233 struct pmu {
234 	struct list_head		entry;
235 
236 	struct module			*module;
237 	struct device			*dev;
238 	const struct attribute_group	**attr_groups;
239 	const char			*name;
240 	int				type;
241 
242 	/*
243 	 * various common per-pmu feature flags
244 	 */
245 	int				capabilities;
246 
247 	int * __percpu			pmu_disable_count;
248 	struct perf_cpu_context * __percpu pmu_cpu_context;
249 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
250 	int				task_ctx_nr;
251 	int				hrtimer_interval_ms;
252 
253 	/* number of address filters this PMU can do */
254 	unsigned int			nr_addr_filters;
255 
256 	/*
257 	 * Fully disable/enable this PMU, can be used to protect from the PMI
258 	 * as well as for lazy/batch writing of the MSRs.
259 	 */
260 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
261 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
262 
263 	/*
264 	 * Try and initialize the event for this PMU.
265 	 *
266 	 * Returns:
267 	 *  -ENOENT	-- @event is not for this PMU
268 	 *
269 	 *  -ENODEV	-- @event is for this PMU but PMU not present
270 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
271 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
272 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
273 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
274 	 *
275 	 *  0		-- @event is for this PMU and valid
276 	 *
277 	 * Other error return values are allowed.
278 	 */
279 	int (*event_init)		(struct perf_event *event);
280 
281 	/*
282 	 * Notification that the event was mapped or unmapped.  Called
283 	 * in the context of the mapping task.
284 	 */
285 	void (*event_mapped)		(struct perf_event *event); /*optional*/
286 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
287 
288 	/*
289 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
290 	 * matching hw_perf_event::state flags.
291 	 */
292 #define PERF_EF_START	0x01		/* start the counter when adding    */
293 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
294 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
295 
296 	/*
297 	 * Adds/Removes a counter to/from the PMU, can be done inside a
298 	 * transaction, see the ->*_txn() methods.
299 	 *
300 	 * The add/del callbacks will reserve all hardware resources required
301 	 * to service the event, this includes any counter constraint
302 	 * scheduling etc.
303 	 *
304 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
305 	 * is on.
306 	 *
307 	 * ->add() called without PERF_EF_START should result in the same state
308 	 *  as ->add() followed by ->stop().
309 	 *
310 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
311 	 *  ->stop() that must deal with already being stopped without
312 	 *  PERF_EF_UPDATE.
313 	 */
314 	int  (*add)			(struct perf_event *event, int flags);
315 	void (*del)			(struct perf_event *event, int flags);
316 
317 	/*
318 	 * Starts/Stops a counter present on the PMU.
319 	 *
320 	 * The PMI handler should stop the counter when perf_event_overflow()
321 	 * returns !0. ->start() will be used to continue.
322 	 *
323 	 * Also used to change the sample period.
324 	 *
325 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 	 * is on -- will be called from NMI context with the PMU generates
327 	 * NMIs.
328 	 *
329 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
330 	 *  period/count values like ->read() would.
331 	 *
332 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
333 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
334 	 */
335 	void (*start)			(struct perf_event *event, int flags);
336 	void (*stop)			(struct perf_event *event, int flags);
337 
338 	/*
339 	 * Updates the counter value of the event.
340 	 *
341 	 * For sampling capable PMUs this will also update the software period
342 	 * hw_perf_event::period_left field.
343 	 */
344 	void (*read)			(struct perf_event *event);
345 
346 	/*
347 	 * Group events scheduling is treated as a transaction, add
348 	 * group events as a whole and perform one schedulability test.
349 	 * If the test fails, roll back the whole group
350 	 *
351 	 * Start the transaction, after this ->add() doesn't need to
352 	 * do schedulability tests.
353 	 *
354 	 * Optional.
355 	 */
356 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
357 	/*
358 	 * If ->start_txn() disabled the ->add() schedulability test
359 	 * then ->commit_txn() is required to perform one. On success
360 	 * the transaction is closed. On error the transaction is kept
361 	 * open until ->cancel_txn() is called.
362 	 *
363 	 * Optional.
364 	 */
365 	int  (*commit_txn)		(struct pmu *pmu);
366 	/*
367 	 * Will cancel the transaction, assumes ->del() is called
368 	 * for each successful ->add() during the transaction.
369 	 *
370 	 * Optional.
371 	 */
372 	void (*cancel_txn)		(struct pmu *pmu);
373 
374 	/*
375 	 * Will return the value for perf_event_mmap_page::index for this event,
376 	 * if no implementation is provided it will default to: event->hw.idx + 1.
377 	 */
378 	int (*event_idx)		(struct perf_event *event); /*optional */
379 
380 	/*
381 	 * context-switches callback
382 	 */
383 	void (*sched_task)		(struct perf_event_context *ctx,
384 					bool sched_in);
385 	/*
386 	 * PMU specific data size
387 	 */
388 	size_t				task_ctx_size;
389 
390 
391 	/*
392 	 * Return the count value for a counter.
393 	 */
394 	u64 (*count)			(struct perf_event *event); /*optional*/
395 
396 	/*
397 	 * Set up pmu-private data structures for an AUX area
398 	 */
399 	void *(*setup_aux)		(int cpu, void **pages,
400 					 int nr_pages, bool overwrite);
401 					/* optional */
402 
403 	/*
404 	 * Free pmu-private AUX data structures
405 	 */
406 	void (*free_aux)		(void *aux); /* optional */
407 
408 	/*
409 	 * Validate address range filters: make sure the HW supports the
410 	 * requested configuration and number of filters; return 0 if the
411 	 * supplied filters are valid, -errno otherwise.
412 	 *
413 	 * Runs in the context of the ioctl()ing process and is not serialized
414 	 * with the rest of the PMU callbacks.
415 	 */
416 	int (*addr_filters_validate)	(struct list_head *filters);
417 					/* optional */
418 
419 	/*
420 	 * Synchronize address range filter configuration:
421 	 * translate hw-agnostic filters into hardware configuration in
422 	 * event::hw::addr_filters.
423 	 *
424 	 * Runs as a part of filter sync sequence that is done in ->start()
425 	 * callback by calling perf_event_addr_filters_sync().
426 	 *
427 	 * May (and should) traverse event::addr_filters::list, for which its
428 	 * caller provides necessary serialization.
429 	 */
430 	void (*addr_filters_sync)	(struct perf_event *event);
431 					/* optional */
432 
433 	/*
434 	 * Filter events for PMU-specific reasons.
435 	 */
436 	int (*filter_match)		(struct perf_event *event); /* optional */
437 };
438 
439 /**
440  * struct perf_addr_filter - address range filter definition
441  * @entry:	event's filter list linkage
442  * @inode:	object file's inode for file-based filters
443  * @offset:	filter range offset
444  * @size:	filter range size
445  * @range:	1: range, 0: address
446  * @filter:	1: filter/start, 0: stop
447  *
448  * This is a hardware-agnostic filter configuration as specified by the user.
449  */
450 struct perf_addr_filter {
451 	struct list_head	entry;
452 	struct inode		*inode;
453 	unsigned long		offset;
454 	unsigned long		size;
455 	unsigned int		range	: 1,
456 				filter	: 1;
457 };
458 
459 /**
460  * struct perf_addr_filters_head - container for address range filters
461  * @list:	list of filters for this event
462  * @lock:	spinlock that serializes accesses to the @list and event's
463  *		(and its children's) filter generations.
464  *
465  * A child event will use parent's @list (and therefore @lock), so they are
466  * bundled together; see perf_event_addr_filters().
467  */
468 struct perf_addr_filters_head {
469 	struct list_head	list;
470 	raw_spinlock_t		lock;
471 };
472 
473 /**
474  * enum perf_event_active_state - the states of a event
475  */
476 enum perf_event_active_state {
477 	PERF_EVENT_STATE_DEAD		= -4,
478 	PERF_EVENT_STATE_EXIT		= -3,
479 	PERF_EVENT_STATE_ERROR		= -2,
480 	PERF_EVENT_STATE_OFF		= -1,
481 	PERF_EVENT_STATE_INACTIVE	=  0,
482 	PERF_EVENT_STATE_ACTIVE		=  1,
483 };
484 
485 struct file;
486 struct perf_sample_data;
487 
488 typedef void (*perf_overflow_handler_t)(struct perf_event *,
489 					struct perf_sample_data *,
490 					struct pt_regs *regs);
491 
492 enum perf_group_flag {
493 	PERF_GROUP_SOFTWARE		= 0x1,
494 };
495 
496 #define SWEVENT_HLIST_BITS		8
497 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
498 
499 struct swevent_hlist {
500 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
501 	struct rcu_head			rcu_head;
502 };
503 
504 #define PERF_ATTACH_CONTEXT	0x01
505 #define PERF_ATTACH_GROUP	0x02
506 #define PERF_ATTACH_TASK	0x04
507 #define PERF_ATTACH_TASK_DATA	0x08
508 
509 struct perf_cgroup;
510 struct ring_buffer;
511 
512 /**
513  * struct perf_event - performance event kernel representation:
514  */
515 struct perf_event {
516 #ifdef CONFIG_PERF_EVENTS
517 	/*
518 	 * entry onto perf_event_context::event_list;
519 	 *   modifications require ctx->lock
520 	 *   RCU safe iterations.
521 	 */
522 	struct list_head		event_entry;
523 
524 	/*
525 	 * XXX: group_entry and sibling_list should be mutually exclusive;
526 	 * either you're a sibling on a group, or you're the group leader.
527 	 * Rework the code to always use the same list element.
528 	 *
529 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
530 	 * either sufficies for read.
531 	 */
532 	struct list_head		group_entry;
533 	struct list_head		sibling_list;
534 
535 	/*
536 	 * We need storage to track the entries in perf_pmu_migrate_context; we
537 	 * cannot use the event_entry because of RCU and we want to keep the
538 	 * group in tact which avoids us using the other two entries.
539 	 */
540 	struct list_head		migrate_entry;
541 
542 	struct hlist_node		hlist_entry;
543 	struct list_head		active_entry;
544 	int				nr_siblings;
545 	int				group_flags;
546 	struct perf_event		*group_leader;
547 	struct pmu			*pmu;
548 	void				*pmu_private;
549 
550 	enum perf_event_active_state	state;
551 	unsigned int			attach_state;
552 	local64_t			count;
553 	atomic64_t			child_count;
554 
555 	/*
556 	 * These are the total time in nanoseconds that the event
557 	 * has been enabled (i.e. eligible to run, and the task has
558 	 * been scheduled in, if this is a per-task event)
559 	 * and running (scheduled onto the CPU), respectively.
560 	 *
561 	 * They are computed from tstamp_enabled, tstamp_running and
562 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
563 	 */
564 	u64				total_time_enabled;
565 	u64				total_time_running;
566 
567 	/*
568 	 * These are timestamps used for computing total_time_enabled
569 	 * and total_time_running when the event is in INACTIVE or
570 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
571 	 * in time.
572 	 * tstamp_enabled: the notional time when the event was enabled
573 	 * tstamp_running: the notional time when the event was scheduled on
574 	 * tstamp_stopped: in INACTIVE state, the notional time when the
575 	 *	event was scheduled off.
576 	 */
577 	u64				tstamp_enabled;
578 	u64				tstamp_running;
579 	u64				tstamp_stopped;
580 
581 	/*
582 	 * timestamp shadows the actual context timing but it can
583 	 * be safely used in NMI interrupt context. It reflects the
584 	 * context time as it was when the event was last scheduled in.
585 	 *
586 	 * ctx_time already accounts for ctx->timestamp. Therefore to
587 	 * compute ctx_time for a sample, simply add perf_clock().
588 	 */
589 	u64				shadow_ctx_time;
590 
591 	struct perf_event_attr		attr;
592 	u16				header_size;
593 	u16				id_header_size;
594 	u16				read_size;
595 	struct hw_perf_event		hw;
596 
597 	struct perf_event_context	*ctx;
598 	atomic_long_t			refcount;
599 
600 	/*
601 	 * These accumulate total time (in nanoseconds) that children
602 	 * events have been enabled and running, respectively.
603 	 */
604 	atomic64_t			child_total_time_enabled;
605 	atomic64_t			child_total_time_running;
606 
607 	/*
608 	 * Protect attach/detach and child_list:
609 	 */
610 	struct mutex			child_mutex;
611 	struct list_head		child_list;
612 	struct perf_event		*parent;
613 
614 	int				oncpu;
615 	int				cpu;
616 
617 	struct list_head		owner_entry;
618 	struct task_struct		*owner;
619 
620 	/* mmap bits */
621 	struct mutex			mmap_mutex;
622 	atomic_t			mmap_count;
623 
624 	struct ring_buffer		*rb;
625 	struct list_head		rb_entry;
626 	unsigned long			rcu_batches;
627 	int				rcu_pending;
628 
629 	/* poll related */
630 	wait_queue_head_t		waitq;
631 	struct fasync_struct		*fasync;
632 
633 	/* delayed work for NMIs and such */
634 	int				pending_wakeup;
635 	int				pending_kill;
636 	int				pending_disable;
637 	struct irq_work			pending;
638 
639 	atomic_t			event_limit;
640 
641 	/* address range filters */
642 	struct perf_addr_filters_head	addr_filters;
643 	/* vma address array for file-based filders */
644 	unsigned long			*addr_filters_offs;
645 	unsigned long			addr_filters_gen;
646 
647 	void (*destroy)(struct perf_event *);
648 	struct rcu_head			rcu_head;
649 
650 	struct pid_namespace		*ns;
651 	u64				id;
652 
653 	u64				(*clock)(void);
654 	perf_overflow_handler_t		overflow_handler;
655 	void				*overflow_handler_context;
656 
657 #ifdef CONFIG_EVENT_TRACING
658 	struct trace_event_call		*tp_event;
659 	struct event_filter		*filter;
660 #ifdef CONFIG_FUNCTION_TRACER
661 	struct ftrace_ops               ftrace_ops;
662 #endif
663 #endif
664 
665 #ifdef CONFIG_CGROUP_PERF
666 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
667 	int				cgrp_defer_enabled;
668 #endif
669 
670 #endif /* CONFIG_PERF_EVENTS */
671 };
672 
673 /**
674  * struct perf_event_context - event context structure
675  *
676  * Used as a container for task events and CPU events as well:
677  */
678 struct perf_event_context {
679 	struct pmu			*pmu;
680 	/*
681 	 * Protect the states of the events in the list,
682 	 * nr_active, and the list:
683 	 */
684 	raw_spinlock_t			lock;
685 	/*
686 	 * Protect the list of events.  Locking either mutex or lock
687 	 * is sufficient to ensure the list doesn't change; to change
688 	 * the list you need to lock both the mutex and the spinlock.
689 	 */
690 	struct mutex			mutex;
691 
692 	struct list_head		active_ctx_list;
693 	struct list_head		pinned_groups;
694 	struct list_head		flexible_groups;
695 	struct list_head		event_list;
696 	int				nr_events;
697 	int				nr_active;
698 	int				is_active;
699 	int				nr_stat;
700 	int				nr_freq;
701 	int				rotate_disable;
702 	atomic_t			refcount;
703 	struct task_struct		*task;
704 
705 	/*
706 	 * Context clock, runs when context enabled.
707 	 */
708 	u64				time;
709 	u64				timestamp;
710 
711 	/*
712 	 * These fields let us detect when two contexts have both
713 	 * been cloned (inherited) from a common ancestor.
714 	 */
715 	struct perf_event_context	*parent_ctx;
716 	u64				parent_gen;
717 	u64				generation;
718 	int				pin_count;
719 	int				nr_cgroups;	 /* cgroup evts */
720 	void				*task_ctx_data; /* pmu specific data */
721 	struct rcu_head			rcu_head;
722 };
723 
724 /*
725  * Number of contexts where an event can trigger:
726  *	task, softirq, hardirq, nmi.
727  */
728 #define PERF_NR_CONTEXTS	4
729 
730 /**
731  * struct perf_event_cpu_context - per cpu event context structure
732  */
733 struct perf_cpu_context {
734 	struct perf_event_context	ctx;
735 	struct perf_event_context	*task_ctx;
736 	int				active_oncpu;
737 	int				exclusive;
738 
739 	raw_spinlock_t			hrtimer_lock;
740 	struct hrtimer			hrtimer;
741 	ktime_t				hrtimer_interval;
742 	unsigned int			hrtimer_active;
743 
744 	struct pmu			*unique_pmu;
745 	struct perf_cgroup		*cgrp;
746 };
747 
748 struct perf_output_handle {
749 	struct perf_event		*event;
750 	struct ring_buffer		*rb;
751 	unsigned long			wakeup;
752 	unsigned long			size;
753 	union {
754 		void			*addr;
755 		unsigned long		head;
756 	};
757 	int				page;
758 };
759 
760 #ifdef CONFIG_CGROUP_PERF
761 
762 /*
763  * perf_cgroup_info keeps track of time_enabled for a cgroup.
764  * This is a per-cpu dynamically allocated data structure.
765  */
766 struct perf_cgroup_info {
767 	u64				time;
768 	u64				timestamp;
769 };
770 
771 struct perf_cgroup {
772 	struct cgroup_subsys_state	css;
773 	struct perf_cgroup_info	__percpu *info;
774 };
775 
776 /*
777  * Must ensure cgroup is pinned (css_get) before calling
778  * this function. In other words, we cannot call this function
779  * if there is no cgroup event for the current CPU context.
780  */
781 static inline struct perf_cgroup *
782 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
783 {
784 	return container_of(task_css_check(task, perf_event_cgrp_id,
785 					   ctx ? lockdep_is_held(&ctx->lock)
786 					       : true),
787 			    struct perf_cgroup, css);
788 }
789 #endif /* CONFIG_CGROUP_PERF */
790 
791 #ifdef CONFIG_PERF_EVENTS
792 
793 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
794 				   struct perf_event *event);
795 extern void perf_aux_output_end(struct perf_output_handle *handle,
796 				unsigned long size, bool truncated);
797 extern int perf_aux_output_skip(struct perf_output_handle *handle,
798 				unsigned long size);
799 extern void *perf_get_aux(struct perf_output_handle *handle);
800 
801 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
802 extern void perf_pmu_unregister(struct pmu *pmu);
803 
804 extern int perf_num_counters(void);
805 extern const char *perf_pmu_name(void);
806 extern void __perf_event_task_sched_in(struct task_struct *prev,
807 				       struct task_struct *task);
808 extern void __perf_event_task_sched_out(struct task_struct *prev,
809 					struct task_struct *next);
810 extern int perf_event_init_task(struct task_struct *child);
811 extern void perf_event_exit_task(struct task_struct *child);
812 extern void perf_event_free_task(struct task_struct *task);
813 extern void perf_event_delayed_put(struct task_struct *task);
814 extern struct file *perf_event_get(unsigned int fd);
815 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
816 extern void perf_event_print_debug(void);
817 extern void perf_pmu_disable(struct pmu *pmu);
818 extern void perf_pmu_enable(struct pmu *pmu);
819 extern void perf_sched_cb_dec(struct pmu *pmu);
820 extern void perf_sched_cb_inc(struct pmu *pmu);
821 extern int perf_event_task_disable(void);
822 extern int perf_event_task_enable(void);
823 extern int perf_event_refresh(struct perf_event *event, int refresh);
824 extern void perf_event_update_userpage(struct perf_event *event);
825 extern int perf_event_release_kernel(struct perf_event *event);
826 extern struct perf_event *
827 perf_event_create_kernel_counter(struct perf_event_attr *attr,
828 				int cpu,
829 				struct task_struct *task,
830 				perf_overflow_handler_t callback,
831 				void *context);
832 extern void perf_pmu_migrate_context(struct pmu *pmu,
833 				int src_cpu, int dst_cpu);
834 extern u64 perf_event_read_local(struct perf_event *event);
835 extern u64 perf_event_read_value(struct perf_event *event,
836 				 u64 *enabled, u64 *running);
837 
838 
839 struct perf_sample_data {
840 	/*
841 	 * Fields set by perf_sample_data_init(), group so as to
842 	 * minimize the cachelines touched.
843 	 */
844 	u64				addr;
845 	struct perf_raw_record		*raw;
846 	struct perf_branch_stack	*br_stack;
847 	u64				period;
848 	u64				weight;
849 	u64				txn;
850 	union  perf_mem_data_src	data_src;
851 
852 	/*
853 	 * The other fields, optionally {set,used} by
854 	 * perf_{prepare,output}_sample().
855 	 */
856 	u64				type;
857 	u64				ip;
858 	struct {
859 		u32	pid;
860 		u32	tid;
861 	}				tid_entry;
862 	u64				time;
863 	u64				id;
864 	u64				stream_id;
865 	struct {
866 		u32	cpu;
867 		u32	reserved;
868 	}				cpu_entry;
869 	struct perf_callchain_entry	*callchain;
870 
871 	/*
872 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
873 	 * on arch details.
874 	 */
875 	struct perf_regs		regs_user;
876 	struct pt_regs			regs_user_copy;
877 
878 	struct perf_regs		regs_intr;
879 	u64				stack_user_size;
880 } ____cacheline_aligned;
881 
882 /* default value for data source */
883 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
884 		    PERF_MEM_S(LVL, NA)   |\
885 		    PERF_MEM_S(SNOOP, NA) |\
886 		    PERF_MEM_S(LOCK, NA)  |\
887 		    PERF_MEM_S(TLB, NA))
888 
889 static inline void perf_sample_data_init(struct perf_sample_data *data,
890 					 u64 addr, u64 period)
891 {
892 	/* remaining struct members initialized in perf_prepare_sample() */
893 	data->addr = addr;
894 	data->raw  = NULL;
895 	data->br_stack = NULL;
896 	data->period = period;
897 	data->weight = 0;
898 	data->data_src.val = PERF_MEM_NA;
899 	data->txn = 0;
900 }
901 
902 extern void perf_output_sample(struct perf_output_handle *handle,
903 			       struct perf_event_header *header,
904 			       struct perf_sample_data *data,
905 			       struct perf_event *event);
906 extern void perf_prepare_sample(struct perf_event_header *header,
907 				struct perf_sample_data *data,
908 				struct perf_event *event,
909 				struct pt_regs *regs);
910 
911 extern int perf_event_overflow(struct perf_event *event,
912 				 struct perf_sample_data *data,
913 				 struct pt_regs *regs);
914 
915 extern void perf_event_output_forward(struct perf_event *event,
916 				     struct perf_sample_data *data,
917 				     struct pt_regs *regs);
918 extern void perf_event_output_backward(struct perf_event *event,
919 				       struct perf_sample_data *data,
920 				       struct pt_regs *regs);
921 extern void perf_event_output(struct perf_event *event,
922 			      struct perf_sample_data *data,
923 			      struct pt_regs *regs);
924 
925 static inline bool
926 is_default_overflow_handler(struct perf_event *event)
927 {
928 	if (likely(event->overflow_handler == perf_event_output_forward))
929 		return true;
930 	if (unlikely(event->overflow_handler == perf_event_output_backward))
931 		return true;
932 	return false;
933 }
934 
935 extern void
936 perf_event_header__init_id(struct perf_event_header *header,
937 			   struct perf_sample_data *data,
938 			   struct perf_event *event);
939 extern void
940 perf_event__output_id_sample(struct perf_event *event,
941 			     struct perf_output_handle *handle,
942 			     struct perf_sample_data *sample);
943 
944 extern void
945 perf_log_lost_samples(struct perf_event *event, u64 lost);
946 
947 static inline bool is_sampling_event(struct perf_event *event)
948 {
949 	return event->attr.sample_period != 0;
950 }
951 
952 /*
953  * Return 1 for a software event, 0 for a hardware event
954  */
955 static inline int is_software_event(struct perf_event *event)
956 {
957 	return event->pmu->task_ctx_nr == perf_sw_context;
958 }
959 
960 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
961 
962 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
963 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
964 
965 #ifndef perf_arch_fetch_caller_regs
966 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
967 #endif
968 
969 /*
970  * Take a snapshot of the regs. Skip ip and frame pointer to
971  * the nth caller. We only need a few of the regs:
972  * - ip for PERF_SAMPLE_IP
973  * - cs for user_mode() tests
974  * - bp for callchains
975  * - eflags, for future purposes, just in case
976  */
977 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
978 {
979 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
980 }
981 
982 static __always_inline void
983 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
984 {
985 	if (static_key_false(&perf_swevent_enabled[event_id]))
986 		__perf_sw_event(event_id, nr, regs, addr);
987 }
988 
989 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
990 
991 /*
992  * 'Special' version for the scheduler, it hard assumes no recursion,
993  * which is guaranteed by us not actually scheduling inside other swevents
994  * because those disable preemption.
995  */
996 static __always_inline void
997 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
998 {
999 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1000 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1001 
1002 		perf_fetch_caller_regs(regs);
1003 		___perf_sw_event(event_id, nr, regs, addr);
1004 	}
1005 }
1006 
1007 extern struct static_key_false perf_sched_events;
1008 
1009 static __always_inline bool
1010 perf_sw_migrate_enabled(void)
1011 {
1012 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1013 		return true;
1014 	return false;
1015 }
1016 
1017 static inline void perf_event_task_migrate(struct task_struct *task)
1018 {
1019 	if (perf_sw_migrate_enabled())
1020 		task->sched_migrated = 1;
1021 }
1022 
1023 static inline void perf_event_task_sched_in(struct task_struct *prev,
1024 					    struct task_struct *task)
1025 {
1026 	if (static_branch_unlikely(&perf_sched_events))
1027 		__perf_event_task_sched_in(prev, task);
1028 
1029 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1030 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1031 
1032 		perf_fetch_caller_regs(regs);
1033 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1034 		task->sched_migrated = 0;
1035 	}
1036 }
1037 
1038 static inline void perf_event_task_sched_out(struct task_struct *prev,
1039 					     struct task_struct *next)
1040 {
1041 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1042 
1043 	if (static_branch_unlikely(&perf_sched_events))
1044 		__perf_event_task_sched_out(prev, next);
1045 }
1046 
1047 static inline u64 __perf_event_count(struct perf_event *event)
1048 {
1049 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1050 }
1051 
1052 extern void perf_event_mmap(struct vm_area_struct *vma);
1053 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1054 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1055 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1056 
1057 extern void perf_event_exec(void);
1058 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1059 extern void perf_event_fork(struct task_struct *tsk);
1060 
1061 /* Callchains */
1062 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1063 
1064 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1065 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1066 extern struct perf_callchain_entry *
1067 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1068 		   bool crosstask, bool add_mark);
1069 extern int get_callchain_buffers(void);
1070 extern void put_callchain_buffers(void);
1071 
1072 extern int sysctl_perf_event_max_stack;
1073 
1074 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1075 {
1076 	if (entry->nr < sysctl_perf_event_max_stack) {
1077 		entry->ip[entry->nr++] = ip;
1078 		return 0;
1079 	} else {
1080 		return -1; /* no more room, stop walking the stack */
1081 	}
1082 }
1083 
1084 extern int sysctl_perf_event_paranoid;
1085 extern int sysctl_perf_event_mlock;
1086 extern int sysctl_perf_event_sample_rate;
1087 extern int sysctl_perf_cpu_time_max_percent;
1088 
1089 extern void perf_sample_event_took(u64 sample_len_ns);
1090 
1091 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1092 		void __user *buffer, size_t *lenp,
1093 		loff_t *ppos);
1094 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1095 		void __user *buffer, size_t *lenp,
1096 		loff_t *ppos);
1097 
1098 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1099 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1100 
1101 static inline bool perf_paranoid_tracepoint_raw(void)
1102 {
1103 	return sysctl_perf_event_paranoid > -1;
1104 }
1105 
1106 static inline bool perf_paranoid_cpu(void)
1107 {
1108 	return sysctl_perf_event_paranoid > 0;
1109 }
1110 
1111 static inline bool perf_paranoid_kernel(void)
1112 {
1113 	return sysctl_perf_event_paranoid > 1;
1114 }
1115 
1116 extern void perf_event_init(void);
1117 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1118 			  int entry_size, struct pt_regs *regs,
1119 			  struct hlist_head *head, int rctx,
1120 			  struct task_struct *task);
1121 extern void perf_bp_event(struct perf_event *event, void *data);
1122 
1123 #ifndef perf_misc_flags
1124 # define perf_misc_flags(regs) \
1125 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1126 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1127 #endif
1128 
1129 static inline bool has_branch_stack(struct perf_event *event)
1130 {
1131 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1132 }
1133 
1134 static inline bool needs_branch_stack(struct perf_event *event)
1135 {
1136 	return event->attr.branch_sample_type != 0;
1137 }
1138 
1139 static inline bool has_aux(struct perf_event *event)
1140 {
1141 	return event->pmu->setup_aux;
1142 }
1143 
1144 static inline bool is_write_backward(struct perf_event *event)
1145 {
1146 	return !!event->attr.write_backward;
1147 }
1148 
1149 static inline bool has_addr_filter(struct perf_event *event)
1150 {
1151 	return event->pmu->nr_addr_filters;
1152 }
1153 
1154 /*
1155  * An inherited event uses parent's filters
1156  */
1157 static inline struct perf_addr_filters_head *
1158 perf_event_addr_filters(struct perf_event *event)
1159 {
1160 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1161 
1162 	if (event->parent)
1163 		ifh = &event->parent->addr_filters;
1164 
1165 	return ifh;
1166 }
1167 
1168 extern void perf_event_addr_filters_sync(struct perf_event *event);
1169 
1170 extern int perf_output_begin(struct perf_output_handle *handle,
1171 			     struct perf_event *event, unsigned int size);
1172 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1173 				    struct perf_event *event,
1174 				    unsigned int size);
1175 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1176 				      struct perf_event *event,
1177 				      unsigned int size);
1178 
1179 extern void perf_output_end(struct perf_output_handle *handle);
1180 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1181 			     const void *buf, unsigned int len);
1182 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1183 				     unsigned int len);
1184 extern int perf_swevent_get_recursion_context(void);
1185 extern void perf_swevent_put_recursion_context(int rctx);
1186 extern u64 perf_swevent_set_period(struct perf_event *event);
1187 extern void perf_event_enable(struct perf_event *event);
1188 extern void perf_event_disable(struct perf_event *event);
1189 extern void perf_event_disable_local(struct perf_event *event);
1190 extern void perf_event_task_tick(void);
1191 #else /* !CONFIG_PERF_EVENTS: */
1192 static inline void *
1193 perf_aux_output_begin(struct perf_output_handle *handle,
1194 		      struct perf_event *event)				{ return NULL; }
1195 static inline void
1196 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1197 		    bool truncated)					{ }
1198 static inline int
1199 perf_aux_output_skip(struct perf_output_handle *handle,
1200 		     unsigned long size)				{ return -EINVAL; }
1201 static inline void *
1202 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1203 static inline void
1204 perf_event_task_migrate(struct task_struct *task)			{ }
1205 static inline void
1206 perf_event_task_sched_in(struct task_struct *prev,
1207 			 struct task_struct *task)			{ }
1208 static inline void
1209 perf_event_task_sched_out(struct task_struct *prev,
1210 			  struct task_struct *next)			{ }
1211 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1212 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1213 static inline void perf_event_free_task(struct task_struct *task)	{ }
1214 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1215 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1216 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1217 {
1218 	return ERR_PTR(-EINVAL);
1219 }
1220 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1221 static inline void perf_event_print_debug(void)				{ }
1222 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1223 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1224 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1225 {
1226 	return -EINVAL;
1227 }
1228 
1229 static inline void
1230 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1231 static inline void
1232 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1233 static inline void
1234 perf_bp_event(struct perf_event *event, void *data)			{ }
1235 
1236 static inline int perf_register_guest_info_callbacks
1237 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1238 static inline int perf_unregister_guest_info_callbacks
1239 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1240 
1241 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1242 static inline void perf_event_exec(void)				{ }
1243 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1244 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1245 static inline void perf_event_init(void)				{ }
1246 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1247 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1248 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1249 static inline void perf_event_enable(struct perf_event *event)		{ }
1250 static inline void perf_event_disable(struct perf_event *event)		{ }
1251 static inline int __perf_event_disable(void *info)			{ return -1; }
1252 static inline void perf_event_task_tick(void)				{ }
1253 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1254 #endif
1255 
1256 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1257 extern void perf_restore_debug_store(void);
1258 #else
1259 static inline void perf_restore_debug_store(void)			{ }
1260 #endif
1261 
1262 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1263 
1264 /*
1265  * This has to have a higher priority than migration_notifier in sched/core.c.
1266  */
1267 #define perf_cpu_notifier(fn)						\
1268 do {									\
1269 	static struct notifier_block fn##_nb =				\
1270 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1271 	unsigned long cpu = smp_processor_id();				\
1272 	unsigned long flags;						\
1273 									\
1274 	cpu_notifier_register_begin();					\
1275 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1276 		(void *)(unsigned long)cpu);				\
1277 	local_irq_save(flags);						\
1278 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1279 		(void *)(unsigned long)cpu);				\
1280 	local_irq_restore(flags);					\
1281 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1282 		(void *)(unsigned long)cpu);				\
1283 	__register_cpu_notifier(&fn##_nb);				\
1284 	cpu_notifier_register_done();					\
1285 } while (0)
1286 
1287 /*
1288  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1289  * callback for already online CPUs.
1290  */
1291 #define __perf_cpu_notifier(fn)						\
1292 do {									\
1293 	static struct notifier_block fn##_nb =				\
1294 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1295 									\
1296 	__register_cpu_notifier(&fn##_nb);				\
1297 } while (0)
1298 
1299 struct perf_pmu_events_attr {
1300 	struct device_attribute attr;
1301 	u64 id;
1302 	const char *event_str;
1303 };
1304 
1305 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1306 			      char *page);
1307 
1308 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1309 static struct perf_pmu_events_attr _var = {				\
1310 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1311 	.id   =  _id,							\
1312 };
1313 
1314 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1315 static struct perf_pmu_events_attr _var = {				    \
1316 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1317 	.id		= 0,						    \
1318 	.event_str	= _str,						    \
1319 };
1320 
1321 #define PMU_FORMAT_ATTR(_name, _format)					\
1322 static ssize_t								\
1323 _name##_show(struct device *dev,					\
1324 			       struct device_attribute *attr,		\
1325 			       char *page)				\
1326 {									\
1327 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1328 	return sprintf(page, _format "\n");				\
1329 }									\
1330 									\
1331 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1332 
1333 #endif /* _LINUX_PERF_EVENT_H */
1334