1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[PERF_MAX_STACK_DEPTH]; 62 }; 63 64 struct perf_raw_record { 65 u32 size; 66 void *data; 67 }; 68 69 /* 70 * branch stack layout: 71 * nr: number of taken branches stored in entries[] 72 * 73 * Note that nr can vary from sample to sample 74 * branches (to, from) are stored from most recent 75 * to least recent, i.e., entries[0] contains the most 76 * recent branch. 77 */ 78 struct perf_branch_stack { 79 __u64 nr; 80 struct perf_branch_entry entries[0]; 81 }; 82 83 struct task_struct; 84 85 /* 86 * extra PMU register associated with an event 87 */ 88 struct hw_perf_event_extra { 89 u64 config; /* register value */ 90 unsigned int reg; /* register address or index */ 91 int alloc; /* extra register already allocated */ 92 int idx; /* index in shared_regs->regs[] */ 93 }; 94 95 /** 96 * struct hw_perf_event - performance event hardware details: 97 */ 98 struct hw_perf_event { 99 #ifdef CONFIG_PERF_EVENTS 100 union { 101 struct { /* hardware */ 102 u64 config; 103 u64 last_tag; 104 unsigned long config_base; 105 unsigned long event_base; 106 int event_base_rdpmc; 107 int idx; 108 int last_cpu; 109 int flags; 110 111 struct hw_perf_event_extra extra_reg; 112 struct hw_perf_event_extra branch_reg; 113 }; 114 struct { /* software */ 115 struct hrtimer hrtimer; 116 }; 117 struct { /* tracepoint */ 118 /* for tp_event->class */ 119 struct list_head tp_list; 120 }; 121 struct { /* intel_cqm */ 122 int cqm_state; 123 u32 cqm_rmid; 124 int is_group_event; 125 struct list_head cqm_events_entry; 126 struct list_head cqm_groups_entry; 127 struct list_head cqm_group_entry; 128 }; 129 struct { /* itrace */ 130 int itrace_started; 131 }; 132 struct { /* amd_power */ 133 u64 pwr_acc; 134 u64 ptsc; 135 }; 136 #ifdef CONFIG_HAVE_HW_BREAKPOINT 137 struct { /* breakpoint */ 138 /* 139 * Crufty hack to avoid the chicken and egg 140 * problem hw_breakpoint has with context 141 * creation and event initalization. 142 */ 143 struct arch_hw_breakpoint info; 144 struct list_head bp_list; 145 }; 146 #endif 147 }; 148 /* 149 * If the event is a per task event, this will point to the task in 150 * question. See the comment in perf_event_alloc(). 151 */ 152 struct task_struct *target; 153 154 /* 155 * hw_perf_event::state flags; used to track the PERF_EF_* state. 156 */ 157 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 158 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 159 #define PERF_HES_ARCH 0x04 160 161 int state; 162 163 /* 164 * The last observed hardware counter value, updated with a 165 * local64_cmpxchg() such that pmu::read() can be called nested. 166 */ 167 local64_t prev_count; 168 169 /* 170 * The period to start the next sample with. 171 */ 172 u64 sample_period; 173 174 /* 175 * The period we started this sample with. 176 */ 177 u64 last_period; 178 179 /* 180 * However much is left of the current period; note that this is 181 * a full 64bit value and allows for generation of periods longer 182 * than hardware might allow. 183 */ 184 local64_t period_left; 185 186 /* 187 * State for throttling the event, see __perf_event_overflow() and 188 * perf_adjust_freq_unthr_context(). 189 */ 190 u64 interrupts_seq; 191 u64 interrupts; 192 193 /* 194 * State for freq target events, see __perf_event_overflow() and 195 * perf_adjust_freq_unthr_context(). 196 */ 197 u64 freq_time_stamp; 198 u64 freq_count_stamp; 199 #endif 200 }; 201 202 struct perf_event; 203 204 /* 205 * Common implementation detail of pmu::{start,commit,cancel}_txn 206 */ 207 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 208 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 209 210 /** 211 * pmu::capabilities flags 212 */ 213 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 214 #define PERF_PMU_CAP_NO_NMI 0x02 215 #define PERF_PMU_CAP_AUX_NO_SG 0x04 216 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 217 #define PERF_PMU_CAP_EXCLUSIVE 0x10 218 #define PERF_PMU_CAP_ITRACE 0x20 219 220 /** 221 * struct pmu - generic performance monitoring unit 222 */ 223 struct pmu { 224 struct list_head entry; 225 226 struct module *module; 227 struct device *dev; 228 const struct attribute_group **attr_groups; 229 const char *name; 230 int type; 231 232 /* 233 * various common per-pmu feature flags 234 */ 235 int capabilities; 236 237 int * __percpu pmu_disable_count; 238 struct perf_cpu_context * __percpu pmu_cpu_context; 239 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 240 int task_ctx_nr; 241 int hrtimer_interval_ms; 242 243 /* 244 * Fully disable/enable this PMU, can be used to protect from the PMI 245 * as well as for lazy/batch writing of the MSRs. 246 */ 247 void (*pmu_enable) (struct pmu *pmu); /* optional */ 248 void (*pmu_disable) (struct pmu *pmu); /* optional */ 249 250 /* 251 * Try and initialize the event for this PMU. 252 * 253 * Returns: 254 * -ENOENT -- @event is not for this PMU 255 * 256 * -ENODEV -- @event is for this PMU but PMU not present 257 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 258 * -EINVAL -- @event is for this PMU but @event is not valid 259 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 260 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 261 * 262 * 0 -- @event is for this PMU and valid 263 * 264 * Other error return values are allowed. 265 */ 266 int (*event_init) (struct perf_event *event); 267 268 /* 269 * Notification that the event was mapped or unmapped. Called 270 * in the context of the mapping task. 271 */ 272 void (*event_mapped) (struct perf_event *event); /*optional*/ 273 void (*event_unmapped) (struct perf_event *event); /*optional*/ 274 275 /* 276 * Flags for ->add()/->del()/ ->start()/->stop(). There are 277 * matching hw_perf_event::state flags. 278 */ 279 #define PERF_EF_START 0x01 /* start the counter when adding */ 280 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 281 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 282 283 /* 284 * Adds/Removes a counter to/from the PMU, can be done inside a 285 * transaction, see the ->*_txn() methods. 286 * 287 * The add/del callbacks will reserve all hardware resources required 288 * to service the event, this includes any counter constraint 289 * scheduling etc. 290 * 291 * Called with IRQs disabled and the PMU disabled on the CPU the event 292 * is on. 293 * 294 * ->add() called without PERF_EF_START should result in the same state 295 * as ->add() followed by ->stop(). 296 * 297 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 298 * ->stop() that must deal with already being stopped without 299 * PERF_EF_UPDATE. 300 */ 301 int (*add) (struct perf_event *event, int flags); 302 void (*del) (struct perf_event *event, int flags); 303 304 /* 305 * Starts/Stops a counter present on the PMU. 306 * 307 * The PMI handler should stop the counter when perf_event_overflow() 308 * returns !0. ->start() will be used to continue. 309 * 310 * Also used to change the sample period. 311 * 312 * Called with IRQs disabled and the PMU disabled on the CPU the event 313 * is on -- will be called from NMI context with the PMU generates 314 * NMIs. 315 * 316 * ->stop() with PERF_EF_UPDATE will read the counter and update 317 * period/count values like ->read() would. 318 * 319 * ->start() with PERF_EF_RELOAD will reprogram the the counter 320 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 321 */ 322 void (*start) (struct perf_event *event, int flags); 323 void (*stop) (struct perf_event *event, int flags); 324 325 /* 326 * Updates the counter value of the event. 327 * 328 * For sampling capable PMUs this will also update the software period 329 * hw_perf_event::period_left field. 330 */ 331 void (*read) (struct perf_event *event); 332 333 /* 334 * Group events scheduling is treated as a transaction, add 335 * group events as a whole and perform one schedulability test. 336 * If the test fails, roll back the whole group 337 * 338 * Start the transaction, after this ->add() doesn't need to 339 * do schedulability tests. 340 * 341 * Optional. 342 */ 343 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 344 /* 345 * If ->start_txn() disabled the ->add() schedulability test 346 * then ->commit_txn() is required to perform one. On success 347 * the transaction is closed. On error the transaction is kept 348 * open until ->cancel_txn() is called. 349 * 350 * Optional. 351 */ 352 int (*commit_txn) (struct pmu *pmu); 353 /* 354 * Will cancel the transaction, assumes ->del() is called 355 * for each successful ->add() during the transaction. 356 * 357 * Optional. 358 */ 359 void (*cancel_txn) (struct pmu *pmu); 360 361 /* 362 * Will return the value for perf_event_mmap_page::index for this event, 363 * if no implementation is provided it will default to: event->hw.idx + 1. 364 */ 365 int (*event_idx) (struct perf_event *event); /*optional */ 366 367 /* 368 * context-switches callback 369 */ 370 void (*sched_task) (struct perf_event_context *ctx, 371 bool sched_in); 372 /* 373 * PMU specific data size 374 */ 375 size_t task_ctx_size; 376 377 378 /* 379 * Return the count value for a counter. 380 */ 381 u64 (*count) (struct perf_event *event); /*optional*/ 382 383 /* 384 * Set up pmu-private data structures for an AUX area 385 */ 386 void *(*setup_aux) (int cpu, void **pages, 387 int nr_pages, bool overwrite); 388 /* optional */ 389 390 /* 391 * Free pmu-private AUX data structures 392 */ 393 void (*free_aux) (void *aux); /* optional */ 394 395 /* 396 * Filter events for PMU-specific reasons. 397 */ 398 int (*filter_match) (struct perf_event *event); /* optional */ 399 }; 400 401 /** 402 * enum perf_event_active_state - the states of a event 403 */ 404 enum perf_event_active_state { 405 PERF_EVENT_STATE_DEAD = -4, 406 PERF_EVENT_STATE_EXIT = -3, 407 PERF_EVENT_STATE_ERROR = -2, 408 PERF_EVENT_STATE_OFF = -1, 409 PERF_EVENT_STATE_INACTIVE = 0, 410 PERF_EVENT_STATE_ACTIVE = 1, 411 }; 412 413 struct file; 414 struct perf_sample_data; 415 416 typedef void (*perf_overflow_handler_t)(struct perf_event *, 417 struct perf_sample_data *, 418 struct pt_regs *regs); 419 420 enum perf_group_flag { 421 PERF_GROUP_SOFTWARE = 0x1, 422 }; 423 424 #define SWEVENT_HLIST_BITS 8 425 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 426 427 struct swevent_hlist { 428 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 429 struct rcu_head rcu_head; 430 }; 431 432 #define PERF_ATTACH_CONTEXT 0x01 433 #define PERF_ATTACH_GROUP 0x02 434 #define PERF_ATTACH_TASK 0x04 435 #define PERF_ATTACH_TASK_DATA 0x08 436 437 struct perf_cgroup; 438 struct ring_buffer; 439 440 /** 441 * struct perf_event - performance event kernel representation: 442 */ 443 struct perf_event { 444 #ifdef CONFIG_PERF_EVENTS 445 /* 446 * entry onto perf_event_context::event_list; 447 * modifications require ctx->lock 448 * RCU safe iterations. 449 */ 450 struct list_head event_entry; 451 452 /* 453 * XXX: group_entry and sibling_list should be mutually exclusive; 454 * either you're a sibling on a group, or you're the group leader. 455 * Rework the code to always use the same list element. 456 * 457 * Locked for modification by both ctx->mutex and ctx->lock; holding 458 * either sufficies for read. 459 */ 460 struct list_head group_entry; 461 struct list_head sibling_list; 462 463 /* 464 * We need storage to track the entries in perf_pmu_migrate_context; we 465 * cannot use the event_entry because of RCU and we want to keep the 466 * group in tact which avoids us using the other two entries. 467 */ 468 struct list_head migrate_entry; 469 470 struct hlist_node hlist_entry; 471 struct list_head active_entry; 472 int nr_siblings; 473 int group_flags; 474 struct perf_event *group_leader; 475 struct pmu *pmu; 476 void *pmu_private; 477 478 enum perf_event_active_state state; 479 unsigned int attach_state; 480 local64_t count; 481 atomic64_t child_count; 482 483 /* 484 * These are the total time in nanoseconds that the event 485 * has been enabled (i.e. eligible to run, and the task has 486 * been scheduled in, if this is a per-task event) 487 * and running (scheduled onto the CPU), respectively. 488 * 489 * They are computed from tstamp_enabled, tstamp_running and 490 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 491 */ 492 u64 total_time_enabled; 493 u64 total_time_running; 494 495 /* 496 * These are timestamps used for computing total_time_enabled 497 * and total_time_running when the event is in INACTIVE or 498 * ACTIVE state, measured in nanoseconds from an arbitrary point 499 * in time. 500 * tstamp_enabled: the notional time when the event was enabled 501 * tstamp_running: the notional time when the event was scheduled on 502 * tstamp_stopped: in INACTIVE state, the notional time when the 503 * event was scheduled off. 504 */ 505 u64 tstamp_enabled; 506 u64 tstamp_running; 507 u64 tstamp_stopped; 508 509 /* 510 * timestamp shadows the actual context timing but it can 511 * be safely used in NMI interrupt context. It reflects the 512 * context time as it was when the event was last scheduled in. 513 * 514 * ctx_time already accounts for ctx->timestamp. Therefore to 515 * compute ctx_time for a sample, simply add perf_clock(). 516 */ 517 u64 shadow_ctx_time; 518 519 struct perf_event_attr attr; 520 u16 header_size; 521 u16 id_header_size; 522 u16 read_size; 523 struct hw_perf_event hw; 524 525 struct perf_event_context *ctx; 526 atomic_long_t refcount; 527 528 /* 529 * These accumulate total time (in nanoseconds) that children 530 * events have been enabled and running, respectively. 531 */ 532 atomic64_t child_total_time_enabled; 533 atomic64_t child_total_time_running; 534 535 /* 536 * Protect attach/detach and child_list: 537 */ 538 struct mutex child_mutex; 539 struct list_head child_list; 540 struct perf_event *parent; 541 542 int oncpu; 543 int cpu; 544 545 struct list_head owner_entry; 546 struct task_struct *owner; 547 548 /* mmap bits */ 549 struct mutex mmap_mutex; 550 atomic_t mmap_count; 551 552 struct ring_buffer *rb; 553 struct list_head rb_entry; 554 unsigned long rcu_batches; 555 int rcu_pending; 556 557 /* poll related */ 558 wait_queue_head_t waitq; 559 struct fasync_struct *fasync; 560 561 /* delayed work for NMIs and such */ 562 int pending_wakeup; 563 int pending_kill; 564 int pending_disable; 565 struct irq_work pending; 566 567 atomic_t event_limit; 568 569 void (*destroy)(struct perf_event *); 570 struct rcu_head rcu_head; 571 572 struct pid_namespace *ns; 573 u64 id; 574 575 u64 (*clock)(void); 576 perf_overflow_handler_t overflow_handler; 577 void *overflow_handler_context; 578 579 #ifdef CONFIG_EVENT_TRACING 580 struct trace_event_call *tp_event; 581 struct event_filter *filter; 582 #ifdef CONFIG_FUNCTION_TRACER 583 struct ftrace_ops ftrace_ops; 584 #endif 585 #endif 586 587 #ifdef CONFIG_CGROUP_PERF 588 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 589 int cgrp_defer_enabled; 590 #endif 591 592 #endif /* CONFIG_PERF_EVENTS */ 593 }; 594 595 /** 596 * struct perf_event_context - event context structure 597 * 598 * Used as a container for task events and CPU events as well: 599 */ 600 struct perf_event_context { 601 struct pmu *pmu; 602 /* 603 * Protect the states of the events in the list, 604 * nr_active, and the list: 605 */ 606 raw_spinlock_t lock; 607 /* 608 * Protect the list of events. Locking either mutex or lock 609 * is sufficient to ensure the list doesn't change; to change 610 * the list you need to lock both the mutex and the spinlock. 611 */ 612 struct mutex mutex; 613 614 struct list_head active_ctx_list; 615 struct list_head pinned_groups; 616 struct list_head flexible_groups; 617 struct list_head event_list; 618 int nr_events; 619 int nr_active; 620 int is_active; 621 int nr_stat; 622 int nr_freq; 623 int rotate_disable; 624 atomic_t refcount; 625 struct task_struct *task; 626 627 /* 628 * Context clock, runs when context enabled. 629 */ 630 u64 time; 631 u64 timestamp; 632 633 /* 634 * These fields let us detect when two contexts have both 635 * been cloned (inherited) from a common ancestor. 636 */ 637 struct perf_event_context *parent_ctx; 638 u64 parent_gen; 639 u64 generation; 640 int pin_count; 641 int nr_cgroups; /* cgroup evts */ 642 void *task_ctx_data; /* pmu specific data */ 643 struct rcu_head rcu_head; 644 }; 645 646 /* 647 * Number of contexts where an event can trigger: 648 * task, softirq, hardirq, nmi. 649 */ 650 #define PERF_NR_CONTEXTS 4 651 652 /** 653 * struct perf_event_cpu_context - per cpu event context structure 654 */ 655 struct perf_cpu_context { 656 struct perf_event_context ctx; 657 struct perf_event_context *task_ctx; 658 int active_oncpu; 659 int exclusive; 660 661 raw_spinlock_t hrtimer_lock; 662 struct hrtimer hrtimer; 663 ktime_t hrtimer_interval; 664 unsigned int hrtimer_active; 665 666 struct pmu *unique_pmu; 667 struct perf_cgroup *cgrp; 668 }; 669 670 struct perf_output_handle { 671 struct perf_event *event; 672 struct ring_buffer *rb; 673 unsigned long wakeup; 674 unsigned long size; 675 union { 676 void *addr; 677 unsigned long head; 678 }; 679 int page; 680 }; 681 682 #ifdef CONFIG_CGROUP_PERF 683 684 /* 685 * perf_cgroup_info keeps track of time_enabled for a cgroup. 686 * This is a per-cpu dynamically allocated data structure. 687 */ 688 struct perf_cgroup_info { 689 u64 time; 690 u64 timestamp; 691 }; 692 693 struct perf_cgroup { 694 struct cgroup_subsys_state css; 695 struct perf_cgroup_info __percpu *info; 696 }; 697 698 /* 699 * Must ensure cgroup is pinned (css_get) before calling 700 * this function. In other words, we cannot call this function 701 * if there is no cgroup event for the current CPU context. 702 */ 703 static inline struct perf_cgroup * 704 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 705 { 706 return container_of(task_css_check(task, perf_event_cgrp_id, 707 ctx ? lockdep_is_held(&ctx->lock) 708 : true), 709 struct perf_cgroup, css); 710 } 711 #endif /* CONFIG_CGROUP_PERF */ 712 713 #ifdef CONFIG_PERF_EVENTS 714 715 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 716 struct perf_event *event); 717 extern void perf_aux_output_end(struct perf_output_handle *handle, 718 unsigned long size, bool truncated); 719 extern int perf_aux_output_skip(struct perf_output_handle *handle, 720 unsigned long size); 721 extern void *perf_get_aux(struct perf_output_handle *handle); 722 723 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 724 extern void perf_pmu_unregister(struct pmu *pmu); 725 726 extern int perf_num_counters(void); 727 extern const char *perf_pmu_name(void); 728 extern void __perf_event_task_sched_in(struct task_struct *prev, 729 struct task_struct *task); 730 extern void __perf_event_task_sched_out(struct task_struct *prev, 731 struct task_struct *next); 732 extern int perf_event_init_task(struct task_struct *child); 733 extern void perf_event_exit_task(struct task_struct *child); 734 extern void perf_event_free_task(struct task_struct *task); 735 extern void perf_event_delayed_put(struct task_struct *task); 736 extern struct file *perf_event_get(unsigned int fd); 737 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 738 extern void perf_event_print_debug(void); 739 extern void perf_pmu_disable(struct pmu *pmu); 740 extern void perf_pmu_enable(struct pmu *pmu); 741 extern void perf_sched_cb_dec(struct pmu *pmu); 742 extern void perf_sched_cb_inc(struct pmu *pmu); 743 extern int perf_event_task_disable(void); 744 extern int perf_event_task_enable(void); 745 extern int perf_event_refresh(struct perf_event *event, int refresh); 746 extern void perf_event_update_userpage(struct perf_event *event); 747 extern int perf_event_release_kernel(struct perf_event *event); 748 extern struct perf_event * 749 perf_event_create_kernel_counter(struct perf_event_attr *attr, 750 int cpu, 751 struct task_struct *task, 752 perf_overflow_handler_t callback, 753 void *context); 754 extern void perf_pmu_migrate_context(struct pmu *pmu, 755 int src_cpu, int dst_cpu); 756 extern u64 perf_event_read_local(struct perf_event *event); 757 extern u64 perf_event_read_value(struct perf_event *event, 758 u64 *enabled, u64 *running); 759 760 761 struct perf_sample_data { 762 /* 763 * Fields set by perf_sample_data_init(), group so as to 764 * minimize the cachelines touched. 765 */ 766 u64 addr; 767 struct perf_raw_record *raw; 768 struct perf_branch_stack *br_stack; 769 u64 period; 770 u64 weight; 771 u64 txn; 772 union perf_mem_data_src data_src; 773 774 /* 775 * The other fields, optionally {set,used} by 776 * perf_{prepare,output}_sample(). 777 */ 778 u64 type; 779 u64 ip; 780 struct { 781 u32 pid; 782 u32 tid; 783 } tid_entry; 784 u64 time; 785 u64 id; 786 u64 stream_id; 787 struct { 788 u32 cpu; 789 u32 reserved; 790 } cpu_entry; 791 struct perf_callchain_entry *callchain; 792 793 /* 794 * regs_user may point to task_pt_regs or to regs_user_copy, depending 795 * on arch details. 796 */ 797 struct perf_regs regs_user; 798 struct pt_regs regs_user_copy; 799 800 struct perf_regs regs_intr; 801 u64 stack_user_size; 802 } ____cacheline_aligned; 803 804 /* default value for data source */ 805 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 806 PERF_MEM_S(LVL, NA) |\ 807 PERF_MEM_S(SNOOP, NA) |\ 808 PERF_MEM_S(LOCK, NA) |\ 809 PERF_MEM_S(TLB, NA)) 810 811 static inline void perf_sample_data_init(struct perf_sample_data *data, 812 u64 addr, u64 period) 813 { 814 /* remaining struct members initialized in perf_prepare_sample() */ 815 data->addr = addr; 816 data->raw = NULL; 817 data->br_stack = NULL; 818 data->period = period; 819 data->weight = 0; 820 data->data_src.val = PERF_MEM_NA; 821 data->txn = 0; 822 } 823 824 extern void perf_output_sample(struct perf_output_handle *handle, 825 struct perf_event_header *header, 826 struct perf_sample_data *data, 827 struct perf_event *event); 828 extern void perf_prepare_sample(struct perf_event_header *header, 829 struct perf_sample_data *data, 830 struct perf_event *event, 831 struct pt_regs *regs); 832 833 extern int perf_event_overflow(struct perf_event *event, 834 struct perf_sample_data *data, 835 struct pt_regs *regs); 836 837 extern void perf_event_output(struct perf_event *event, 838 struct perf_sample_data *data, 839 struct pt_regs *regs); 840 841 extern void 842 perf_event_header__init_id(struct perf_event_header *header, 843 struct perf_sample_data *data, 844 struct perf_event *event); 845 extern void 846 perf_event__output_id_sample(struct perf_event *event, 847 struct perf_output_handle *handle, 848 struct perf_sample_data *sample); 849 850 extern void 851 perf_log_lost_samples(struct perf_event *event, u64 lost); 852 853 static inline bool is_sampling_event(struct perf_event *event) 854 { 855 return event->attr.sample_period != 0; 856 } 857 858 /* 859 * Return 1 for a software event, 0 for a hardware event 860 */ 861 static inline int is_software_event(struct perf_event *event) 862 { 863 return event->pmu->task_ctx_nr == perf_sw_context; 864 } 865 866 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 867 868 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 869 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 870 871 #ifndef perf_arch_fetch_caller_regs 872 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 873 #endif 874 875 /* 876 * Take a snapshot of the regs. Skip ip and frame pointer to 877 * the nth caller. We only need a few of the regs: 878 * - ip for PERF_SAMPLE_IP 879 * - cs for user_mode() tests 880 * - bp for callchains 881 * - eflags, for future purposes, just in case 882 */ 883 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 884 { 885 memset(regs, 0, sizeof(*regs)); 886 887 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 888 } 889 890 static __always_inline void 891 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 892 { 893 if (static_key_false(&perf_swevent_enabled[event_id])) 894 __perf_sw_event(event_id, nr, regs, addr); 895 } 896 897 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 898 899 /* 900 * 'Special' version for the scheduler, it hard assumes no recursion, 901 * which is guaranteed by us not actually scheduling inside other swevents 902 * because those disable preemption. 903 */ 904 static __always_inline void 905 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 906 { 907 if (static_key_false(&perf_swevent_enabled[event_id])) { 908 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 909 910 perf_fetch_caller_regs(regs); 911 ___perf_sw_event(event_id, nr, regs, addr); 912 } 913 } 914 915 extern struct static_key_false perf_sched_events; 916 917 static __always_inline bool 918 perf_sw_migrate_enabled(void) 919 { 920 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 921 return true; 922 return false; 923 } 924 925 static inline void perf_event_task_migrate(struct task_struct *task) 926 { 927 if (perf_sw_migrate_enabled()) 928 task->sched_migrated = 1; 929 } 930 931 static inline void perf_event_task_sched_in(struct task_struct *prev, 932 struct task_struct *task) 933 { 934 if (static_branch_unlikely(&perf_sched_events)) 935 __perf_event_task_sched_in(prev, task); 936 937 if (perf_sw_migrate_enabled() && task->sched_migrated) { 938 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 939 940 perf_fetch_caller_regs(regs); 941 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 942 task->sched_migrated = 0; 943 } 944 } 945 946 static inline void perf_event_task_sched_out(struct task_struct *prev, 947 struct task_struct *next) 948 { 949 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 950 951 if (static_branch_unlikely(&perf_sched_events)) 952 __perf_event_task_sched_out(prev, next); 953 } 954 955 static inline u64 __perf_event_count(struct perf_event *event) 956 { 957 return local64_read(&event->count) + atomic64_read(&event->child_count); 958 } 959 960 extern void perf_event_mmap(struct vm_area_struct *vma); 961 extern struct perf_guest_info_callbacks *perf_guest_cbs; 962 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 963 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 964 965 extern void perf_event_exec(void); 966 extern void perf_event_comm(struct task_struct *tsk, bool exec); 967 extern void perf_event_fork(struct task_struct *tsk); 968 969 /* Callchains */ 970 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 971 972 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 973 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 974 extern struct perf_callchain_entry * 975 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 976 bool crosstask, bool add_mark); 977 extern int get_callchain_buffers(void); 978 extern void put_callchain_buffers(void); 979 980 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 981 { 982 if (entry->nr < PERF_MAX_STACK_DEPTH) { 983 entry->ip[entry->nr++] = ip; 984 return 0; 985 } else { 986 return -1; /* no more room, stop walking the stack */ 987 } 988 } 989 990 extern int sysctl_perf_event_paranoid; 991 extern int sysctl_perf_event_mlock; 992 extern int sysctl_perf_event_sample_rate; 993 extern int sysctl_perf_cpu_time_max_percent; 994 995 extern void perf_sample_event_took(u64 sample_len_ns); 996 997 extern int perf_proc_update_handler(struct ctl_table *table, int write, 998 void __user *buffer, size_t *lenp, 999 loff_t *ppos); 1000 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1001 void __user *buffer, size_t *lenp, 1002 loff_t *ppos); 1003 1004 1005 static inline bool perf_paranoid_tracepoint_raw(void) 1006 { 1007 return sysctl_perf_event_paranoid > -1; 1008 } 1009 1010 static inline bool perf_paranoid_cpu(void) 1011 { 1012 return sysctl_perf_event_paranoid > 0; 1013 } 1014 1015 static inline bool perf_paranoid_kernel(void) 1016 { 1017 return sysctl_perf_event_paranoid > 1; 1018 } 1019 1020 extern void perf_event_init(void); 1021 extern void perf_tp_event(u64 addr, u64 count, void *record, 1022 int entry_size, struct pt_regs *regs, 1023 struct hlist_head *head, int rctx, 1024 struct task_struct *task); 1025 extern void perf_bp_event(struct perf_event *event, void *data); 1026 1027 #ifndef perf_misc_flags 1028 # define perf_misc_flags(regs) \ 1029 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1030 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1031 #endif 1032 1033 static inline bool has_branch_stack(struct perf_event *event) 1034 { 1035 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1036 } 1037 1038 static inline bool needs_branch_stack(struct perf_event *event) 1039 { 1040 return event->attr.branch_sample_type != 0; 1041 } 1042 1043 static inline bool has_aux(struct perf_event *event) 1044 { 1045 return event->pmu->setup_aux; 1046 } 1047 1048 extern int perf_output_begin(struct perf_output_handle *handle, 1049 struct perf_event *event, unsigned int size); 1050 extern void perf_output_end(struct perf_output_handle *handle); 1051 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1052 const void *buf, unsigned int len); 1053 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1054 unsigned int len); 1055 extern int perf_swevent_get_recursion_context(void); 1056 extern void perf_swevent_put_recursion_context(int rctx); 1057 extern u64 perf_swevent_set_period(struct perf_event *event); 1058 extern void perf_event_enable(struct perf_event *event); 1059 extern void perf_event_disable(struct perf_event *event); 1060 extern void perf_event_disable_local(struct perf_event *event); 1061 extern void perf_event_task_tick(void); 1062 #else /* !CONFIG_PERF_EVENTS: */ 1063 static inline void * 1064 perf_aux_output_begin(struct perf_output_handle *handle, 1065 struct perf_event *event) { return NULL; } 1066 static inline void 1067 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1068 bool truncated) { } 1069 static inline int 1070 perf_aux_output_skip(struct perf_output_handle *handle, 1071 unsigned long size) { return -EINVAL; } 1072 static inline void * 1073 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1074 static inline void 1075 perf_event_task_migrate(struct task_struct *task) { } 1076 static inline void 1077 perf_event_task_sched_in(struct task_struct *prev, 1078 struct task_struct *task) { } 1079 static inline void 1080 perf_event_task_sched_out(struct task_struct *prev, 1081 struct task_struct *next) { } 1082 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1083 static inline void perf_event_exit_task(struct task_struct *child) { } 1084 static inline void perf_event_free_task(struct task_struct *task) { } 1085 static inline void perf_event_delayed_put(struct task_struct *task) { } 1086 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1087 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1088 { 1089 return ERR_PTR(-EINVAL); 1090 } 1091 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1092 static inline void perf_event_print_debug(void) { } 1093 static inline int perf_event_task_disable(void) { return -EINVAL; } 1094 static inline int perf_event_task_enable(void) { return -EINVAL; } 1095 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1096 { 1097 return -EINVAL; 1098 } 1099 1100 static inline void 1101 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1102 static inline void 1103 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1104 static inline void 1105 perf_bp_event(struct perf_event *event, void *data) { } 1106 1107 static inline int perf_register_guest_info_callbacks 1108 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1109 static inline int perf_unregister_guest_info_callbacks 1110 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1111 1112 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1113 static inline void perf_event_exec(void) { } 1114 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1115 static inline void perf_event_fork(struct task_struct *tsk) { } 1116 static inline void perf_event_init(void) { } 1117 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1118 static inline void perf_swevent_put_recursion_context(int rctx) { } 1119 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1120 static inline void perf_event_enable(struct perf_event *event) { } 1121 static inline void perf_event_disable(struct perf_event *event) { } 1122 static inline int __perf_event_disable(void *info) { return -1; } 1123 static inline void perf_event_task_tick(void) { } 1124 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1125 #endif 1126 1127 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1128 extern void perf_restore_debug_store(void); 1129 #else 1130 static inline void perf_restore_debug_store(void) { } 1131 #endif 1132 1133 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1134 1135 /* 1136 * This has to have a higher priority than migration_notifier in sched/core.c. 1137 */ 1138 #define perf_cpu_notifier(fn) \ 1139 do { \ 1140 static struct notifier_block fn##_nb = \ 1141 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1142 unsigned long cpu = smp_processor_id(); \ 1143 unsigned long flags; \ 1144 \ 1145 cpu_notifier_register_begin(); \ 1146 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1147 (void *)(unsigned long)cpu); \ 1148 local_irq_save(flags); \ 1149 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1150 (void *)(unsigned long)cpu); \ 1151 local_irq_restore(flags); \ 1152 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1153 (void *)(unsigned long)cpu); \ 1154 __register_cpu_notifier(&fn##_nb); \ 1155 cpu_notifier_register_done(); \ 1156 } while (0) 1157 1158 /* 1159 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 1160 * callback for already online CPUs. 1161 */ 1162 #define __perf_cpu_notifier(fn) \ 1163 do { \ 1164 static struct notifier_block fn##_nb = \ 1165 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1166 \ 1167 __register_cpu_notifier(&fn##_nb); \ 1168 } while (0) 1169 1170 struct perf_pmu_events_attr { 1171 struct device_attribute attr; 1172 u64 id; 1173 const char *event_str; 1174 }; 1175 1176 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1177 char *page); 1178 1179 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1180 static struct perf_pmu_events_attr _var = { \ 1181 .attr = __ATTR(_name, 0444, _show, NULL), \ 1182 .id = _id, \ 1183 }; 1184 1185 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1186 static struct perf_pmu_events_attr _var = { \ 1187 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1188 .id = 0, \ 1189 .event_str = _str, \ 1190 }; 1191 1192 #define PMU_FORMAT_ATTR(_name, _format) \ 1193 static ssize_t \ 1194 _name##_show(struct device *dev, \ 1195 struct device_attribute *attr, \ 1196 char *page) \ 1197 { \ 1198 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1199 return sprintf(page, _format "\n"); \ 1200 } \ 1201 \ 1202 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1203 1204 #endif /* _LINUX_PERF_EVENT_H */ 1205