xref: /linux-6.15/include/linux/perf_event.h (revision dc642e83)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[PERF_MAX_STACK_DEPTH];
62 };
63 
64 struct perf_raw_record {
65 	u32				size;
66 	void				*data;
67 };
68 
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79 	__u64				nr;
80 	struct perf_branch_entry	entries[0];
81 };
82 
83 struct task_struct;
84 
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89 	u64		config;	/* register value */
90 	unsigned int	reg;	/* register address or index */
91 	int		alloc;	/* extra register already allocated */
92 	int		idx;	/* index in shared_regs->regs[] */
93 };
94 
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 	union {
101 		struct { /* hardware */
102 			u64		config;
103 			u64		last_tag;
104 			unsigned long	config_base;
105 			unsigned long	event_base;
106 			int		event_base_rdpmc;
107 			int		idx;
108 			int		last_cpu;
109 			int		flags;
110 
111 			struct hw_perf_event_extra extra_reg;
112 			struct hw_perf_event_extra branch_reg;
113 		};
114 		struct { /* software */
115 			struct hrtimer	hrtimer;
116 		};
117 		struct { /* tracepoint */
118 			/* for tp_event->class */
119 			struct list_head	tp_list;
120 		};
121 		struct { /* intel_cqm */
122 			int			cqm_state;
123 			u32			cqm_rmid;
124 			int			is_group_event;
125 			struct list_head	cqm_events_entry;
126 			struct list_head	cqm_groups_entry;
127 			struct list_head	cqm_group_entry;
128 		};
129 		struct { /* itrace */
130 			int			itrace_started;
131 		};
132 		struct { /* amd_power */
133 			u64	pwr_acc;
134 			u64	ptsc;
135 		};
136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
137 		struct { /* breakpoint */
138 			/*
139 			 * Crufty hack to avoid the chicken and egg
140 			 * problem hw_breakpoint has with context
141 			 * creation and event initalization.
142 			 */
143 			struct arch_hw_breakpoint	info;
144 			struct list_head		bp_list;
145 		};
146 #endif
147 	};
148 	/*
149 	 * If the event is a per task event, this will point to the task in
150 	 * question. See the comment in perf_event_alloc().
151 	 */
152 	struct task_struct		*target;
153 
154 /*
155  * hw_perf_event::state flags; used to track the PERF_EF_* state.
156  */
157 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
158 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
159 #define PERF_HES_ARCH		0x04
160 
161 	int				state;
162 
163 	/*
164 	 * The last observed hardware counter value, updated with a
165 	 * local64_cmpxchg() such that pmu::read() can be called nested.
166 	 */
167 	local64_t			prev_count;
168 
169 	/*
170 	 * The period to start the next sample with.
171 	 */
172 	u64				sample_period;
173 
174 	/*
175 	 * The period we started this sample with.
176 	 */
177 	u64				last_period;
178 
179 	/*
180 	 * However much is left of the current period; note that this is
181 	 * a full 64bit value and allows for generation of periods longer
182 	 * than hardware might allow.
183 	 */
184 	local64_t			period_left;
185 
186 	/*
187 	 * State for throttling the event, see __perf_event_overflow() and
188 	 * perf_adjust_freq_unthr_context().
189 	 */
190 	u64                             interrupts_seq;
191 	u64				interrupts;
192 
193 	/*
194 	 * State for freq target events, see __perf_event_overflow() and
195 	 * perf_adjust_freq_unthr_context().
196 	 */
197 	u64				freq_time_stamp;
198 	u64				freq_count_stamp;
199 #endif
200 };
201 
202 struct perf_event;
203 
204 /*
205  * Common implementation detail of pmu::{start,commit,cancel}_txn
206  */
207 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
208 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
209 
210 /**
211  * pmu::capabilities flags
212  */
213 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
214 #define PERF_PMU_CAP_NO_NMI			0x02
215 #define PERF_PMU_CAP_AUX_NO_SG			0x04
216 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
217 #define PERF_PMU_CAP_EXCLUSIVE			0x10
218 #define PERF_PMU_CAP_ITRACE			0x20
219 
220 /**
221  * struct pmu - generic performance monitoring unit
222  */
223 struct pmu {
224 	struct list_head		entry;
225 
226 	struct module			*module;
227 	struct device			*dev;
228 	const struct attribute_group	**attr_groups;
229 	const char			*name;
230 	int				type;
231 
232 	/*
233 	 * various common per-pmu feature flags
234 	 */
235 	int				capabilities;
236 
237 	int * __percpu			pmu_disable_count;
238 	struct perf_cpu_context * __percpu pmu_cpu_context;
239 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
240 	int				task_ctx_nr;
241 	int				hrtimer_interval_ms;
242 
243 	/*
244 	 * Fully disable/enable this PMU, can be used to protect from the PMI
245 	 * as well as for lazy/batch writing of the MSRs.
246 	 */
247 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
248 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
249 
250 	/*
251 	 * Try and initialize the event for this PMU.
252 	 *
253 	 * Returns:
254 	 *  -ENOENT	-- @event is not for this PMU
255 	 *
256 	 *  -ENODEV	-- @event is for this PMU but PMU not present
257 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
258 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
259 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
260 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
261 	 *
262 	 *  0		-- @event is for this PMU and valid
263 	 *
264 	 * Other error return values are allowed.
265 	 */
266 	int (*event_init)		(struct perf_event *event);
267 
268 	/*
269 	 * Notification that the event was mapped or unmapped.  Called
270 	 * in the context of the mapping task.
271 	 */
272 	void (*event_mapped)		(struct perf_event *event); /*optional*/
273 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
274 
275 	/*
276 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
277 	 * matching hw_perf_event::state flags.
278 	 */
279 #define PERF_EF_START	0x01		/* start the counter when adding    */
280 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
281 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
282 
283 	/*
284 	 * Adds/Removes a counter to/from the PMU, can be done inside a
285 	 * transaction, see the ->*_txn() methods.
286 	 *
287 	 * The add/del callbacks will reserve all hardware resources required
288 	 * to service the event, this includes any counter constraint
289 	 * scheduling etc.
290 	 *
291 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
292 	 * is on.
293 	 *
294 	 * ->add() called without PERF_EF_START should result in the same state
295 	 *  as ->add() followed by ->stop().
296 	 *
297 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
298 	 *  ->stop() that must deal with already being stopped without
299 	 *  PERF_EF_UPDATE.
300 	 */
301 	int  (*add)			(struct perf_event *event, int flags);
302 	void (*del)			(struct perf_event *event, int flags);
303 
304 	/*
305 	 * Starts/Stops a counter present on the PMU.
306 	 *
307 	 * The PMI handler should stop the counter when perf_event_overflow()
308 	 * returns !0. ->start() will be used to continue.
309 	 *
310 	 * Also used to change the sample period.
311 	 *
312 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
313 	 * is on -- will be called from NMI context with the PMU generates
314 	 * NMIs.
315 	 *
316 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
317 	 *  period/count values like ->read() would.
318 	 *
319 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
320 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
321 	 */
322 	void (*start)			(struct perf_event *event, int flags);
323 	void (*stop)			(struct perf_event *event, int flags);
324 
325 	/*
326 	 * Updates the counter value of the event.
327 	 *
328 	 * For sampling capable PMUs this will also update the software period
329 	 * hw_perf_event::period_left field.
330 	 */
331 	void (*read)			(struct perf_event *event);
332 
333 	/*
334 	 * Group events scheduling is treated as a transaction, add
335 	 * group events as a whole and perform one schedulability test.
336 	 * If the test fails, roll back the whole group
337 	 *
338 	 * Start the transaction, after this ->add() doesn't need to
339 	 * do schedulability tests.
340 	 *
341 	 * Optional.
342 	 */
343 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
344 	/*
345 	 * If ->start_txn() disabled the ->add() schedulability test
346 	 * then ->commit_txn() is required to perform one. On success
347 	 * the transaction is closed. On error the transaction is kept
348 	 * open until ->cancel_txn() is called.
349 	 *
350 	 * Optional.
351 	 */
352 	int  (*commit_txn)		(struct pmu *pmu);
353 	/*
354 	 * Will cancel the transaction, assumes ->del() is called
355 	 * for each successful ->add() during the transaction.
356 	 *
357 	 * Optional.
358 	 */
359 	void (*cancel_txn)		(struct pmu *pmu);
360 
361 	/*
362 	 * Will return the value for perf_event_mmap_page::index for this event,
363 	 * if no implementation is provided it will default to: event->hw.idx + 1.
364 	 */
365 	int (*event_idx)		(struct perf_event *event); /*optional */
366 
367 	/*
368 	 * context-switches callback
369 	 */
370 	void (*sched_task)		(struct perf_event_context *ctx,
371 					bool sched_in);
372 	/*
373 	 * PMU specific data size
374 	 */
375 	size_t				task_ctx_size;
376 
377 
378 	/*
379 	 * Return the count value for a counter.
380 	 */
381 	u64 (*count)			(struct perf_event *event); /*optional*/
382 
383 	/*
384 	 * Set up pmu-private data structures for an AUX area
385 	 */
386 	void *(*setup_aux)		(int cpu, void **pages,
387 					 int nr_pages, bool overwrite);
388 					/* optional */
389 
390 	/*
391 	 * Free pmu-private AUX data structures
392 	 */
393 	void (*free_aux)		(void *aux); /* optional */
394 
395 	/*
396 	 * Filter events for PMU-specific reasons.
397 	 */
398 	int (*filter_match)		(struct perf_event *event); /* optional */
399 };
400 
401 /**
402  * enum perf_event_active_state - the states of a event
403  */
404 enum perf_event_active_state {
405 	PERF_EVENT_STATE_DEAD		= -4,
406 	PERF_EVENT_STATE_EXIT		= -3,
407 	PERF_EVENT_STATE_ERROR		= -2,
408 	PERF_EVENT_STATE_OFF		= -1,
409 	PERF_EVENT_STATE_INACTIVE	=  0,
410 	PERF_EVENT_STATE_ACTIVE		=  1,
411 };
412 
413 struct file;
414 struct perf_sample_data;
415 
416 typedef void (*perf_overflow_handler_t)(struct perf_event *,
417 					struct perf_sample_data *,
418 					struct pt_regs *regs);
419 
420 enum perf_group_flag {
421 	PERF_GROUP_SOFTWARE		= 0x1,
422 };
423 
424 #define SWEVENT_HLIST_BITS		8
425 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
426 
427 struct swevent_hlist {
428 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
429 	struct rcu_head			rcu_head;
430 };
431 
432 #define PERF_ATTACH_CONTEXT	0x01
433 #define PERF_ATTACH_GROUP	0x02
434 #define PERF_ATTACH_TASK	0x04
435 #define PERF_ATTACH_TASK_DATA	0x08
436 
437 struct perf_cgroup;
438 struct ring_buffer;
439 
440 /**
441  * struct perf_event - performance event kernel representation:
442  */
443 struct perf_event {
444 #ifdef CONFIG_PERF_EVENTS
445 	/*
446 	 * entry onto perf_event_context::event_list;
447 	 *   modifications require ctx->lock
448 	 *   RCU safe iterations.
449 	 */
450 	struct list_head		event_entry;
451 
452 	/*
453 	 * XXX: group_entry and sibling_list should be mutually exclusive;
454 	 * either you're a sibling on a group, or you're the group leader.
455 	 * Rework the code to always use the same list element.
456 	 *
457 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
458 	 * either sufficies for read.
459 	 */
460 	struct list_head		group_entry;
461 	struct list_head		sibling_list;
462 
463 	/*
464 	 * We need storage to track the entries in perf_pmu_migrate_context; we
465 	 * cannot use the event_entry because of RCU and we want to keep the
466 	 * group in tact which avoids us using the other two entries.
467 	 */
468 	struct list_head		migrate_entry;
469 
470 	struct hlist_node		hlist_entry;
471 	struct list_head		active_entry;
472 	int				nr_siblings;
473 	int				group_flags;
474 	struct perf_event		*group_leader;
475 	struct pmu			*pmu;
476 	void				*pmu_private;
477 
478 	enum perf_event_active_state	state;
479 	unsigned int			attach_state;
480 	local64_t			count;
481 	atomic64_t			child_count;
482 
483 	/*
484 	 * These are the total time in nanoseconds that the event
485 	 * has been enabled (i.e. eligible to run, and the task has
486 	 * been scheduled in, if this is a per-task event)
487 	 * and running (scheduled onto the CPU), respectively.
488 	 *
489 	 * They are computed from tstamp_enabled, tstamp_running and
490 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
491 	 */
492 	u64				total_time_enabled;
493 	u64				total_time_running;
494 
495 	/*
496 	 * These are timestamps used for computing total_time_enabled
497 	 * and total_time_running when the event is in INACTIVE or
498 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
499 	 * in time.
500 	 * tstamp_enabled: the notional time when the event was enabled
501 	 * tstamp_running: the notional time when the event was scheduled on
502 	 * tstamp_stopped: in INACTIVE state, the notional time when the
503 	 *	event was scheduled off.
504 	 */
505 	u64				tstamp_enabled;
506 	u64				tstamp_running;
507 	u64				tstamp_stopped;
508 
509 	/*
510 	 * timestamp shadows the actual context timing but it can
511 	 * be safely used in NMI interrupt context. It reflects the
512 	 * context time as it was when the event was last scheduled in.
513 	 *
514 	 * ctx_time already accounts for ctx->timestamp. Therefore to
515 	 * compute ctx_time for a sample, simply add perf_clock().
516 	 */
517 	u64				shadow_ctx_time;
518 
519 	struct perf_event_attr		attr;
520 	u16				header_size;
521 	u16				id_header_size;
522 	u16				read_size;
523 	struct hw_perf_event		hw;
524 
525 	struct perf_event_context	*ctx;
526 	atomic_long_t			refcount;
527 
528 	/*
529 	 * These accumulate total time (in nanoseconds) that children
530 	 * events have been enabled and running, respectively.
531 	 */
532 	atomic64_t			child_total_time_enabled;
533 	atomic64_t			child_total_time_running;
534 
535 	/*
536 	 * Protect attach/detach and child_list:
537 	 */
538 	struct mutex			child_mutex;
539 	struct list_head		child_list;
540 	struct perf_event		*parent;
541 
542 	int				oncpu;
543 	int				cpu;
544 
545 	struct list_head		owner_entry;
546 	struct task_struct		*owner;
547 
548 	/* mmap bits */
549 	struct mutex			mmap_mutex;
550 	atomic_t			mmap_count;
551 
552 	struct ring_buffer		*rb;
553 	struct list_head		rb_entry;
554 	unsigned long			rcu_batches;
555 	int				rcu_pending;
556 
557 	/* poll related */
558 	wait_queue_head_t		waitq;
559 	struct fasync_struct		*fasync;
560 
561 	/* delayed work for NMIs and such */
562 	int				pending_wakeup;
563 	int				pending_kill;
564 	int				pending_disable;
565 	struct irq_work			pending;
566 
567 	atomic_t			event_limit;
568 
569 	void (*destroy)(struct perf_event *);
570 	struct rcu_head			rcu_head;
571 
572 	struct pid_namespace		*ns;
573 	u64				id;
574 
575 	u64				(*clock)(void);
576 	perf_overflow_handler_t		overflow_handler;
577 	void				*overflow_handler_context;
578 
579 #ifdef CONFIG_EVENT_TRACING
580 	struct trace_event_call		*tp_event;
581 	struct event_filter		*filter;
582 #ifdef CONFIG_FUNCTION_TRACER
583 	struct ftrace_ops               ftrace_ops;
584 #endif
585 #endif
586 
587 #ifdef CONFIG_CGROUP_PERF
588 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
589 	int				cgrp_defer_enabled;
590 #endif
591 
592 #endif /* CONFIG_PERF_EVENTS */
593 };
594 
595 /**
596  * struct perf_event_context - event context structure
597  *
598  * Used as a container for task events and CPU events as well:
599  */
600 struct perf_event_context {
601 	struct pmu			*pmu;
602 	/*
603 	 * Protect the states of the events in the list,
604 	 * nr_active, and the list:
605 	 */
606 	raw_spinlock_t			lock;
607 	/*
608 	 * Protect the list of events.  Locking either mutex or lock
609 	 * is sufficient to ensure the list doesn't change; to change
610 	 * the list you need to lock both the mutex and the spinlock.
611 	 */
612 	struct mutex			mutex;
613 
614 	struct list_head		active_ctx_list;
615 	struct list_head		pinned_groups;
616 	struct list_head		flexible_groups;
617 	struct list_head		event_list;
618 	int				nr_events;
619 	int				nr_active;
620 	int				is_active;
621 	int				nr_stat;
622 	int				nr_freq;
623 	int				rotate_disable;
624 	atomic_t			refcount;
625 	struct task_struct		*task;
626 
627 	/*
628 	 * Context clock, runs when context enabled.
629 	 */
630 	u64				time;
631 	u64				timestamp;
632 
633 	/*
634 	 * These fields let us detect when two contexts have both
635 	 * been cloned (inherited) from a common ancestor.
636 	 */
637 	struct perf_event_context	*parent_ctx;
638 	u64				parent_gen;
639 	u64				generation;
640 	int				pin_count;
641 	int				nr_cgroups;	 /* cgroup evts */
642 	void				*task_ctx_data; /* pmu specific data */
643 	struct rcu_head			rcu_head;
644 };
645 
646 /*
647  * Number of contexts where an event can trigger:
648  *	task, softirq, hardirq, nmi.
649  */
650 #define PERF_NR_CONTEXTS	4
651 
652 /**
653  * struct perf_event_cpu_context - per cpu event context structure
654  */
655 struct perf_cpu_context {
656 	struct perf_event_context	ctx;
657 	struct perf_event_context	*task_ctx;
658 	int				active_oncpu;
659 	int				exclusive;
660 
661 	raw_spinlock_t			hrtimer_lock;
662 	struct hrtimer			hrtimer;
663 	ktime_t				hrtimer_interval;
664 	unsigned int			hrtimer_active;
665 
666 	struct pmu			*unique_pmu;
667 	struct perf_cgroup		*cgrp;
668 };
669 
670 struct perf_output_handle {
671 	struct perf_event		*event;
672 	struct ring_buffer		*rb;
673 	unsigned long			wakeup;
674 	unsigned long			size;
675 	union {
676 		void			*addr;
677 		unsigned long		head;
678 	};
679 	int				page;
680 };
681 
682 #ifdef CONFIG_CGROUP_PERF
683 
684 /*
685  * perf_cgroup_info keeps track of time_enabled for a cgroup.
686  * This is a per-cpu dynamically allocated data structure.
687  */
688 struct perf_cgroup_info {
689 	u64				time;
690 	u64				timestamp;
691 };
692 
693 struct perf_cgroup {
694 	struct cgroup_subsys_state	css;
695 	struct perf_cgroup_info	__percpu *info;
696 };
697 
698 /*
699  * Must ensure cgroup is pinned (css_get) before calling
700  * this function. In other words, we cannot call this function
701  * if there is no cgroup event for the current CPU context.
702  */
703 static inline struct perf_cgroup *
704 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
705 {
706 	return container_of(task_css_check(task, perf_event_cgrp_id,
707 					   ctx ? lockdep_is_held(&ctx->lock)
708 					       : true),
709 			    struct perf_cgroup, css);
710 }
711 #endif /* CONFIG_CGROUP_PERF */
712 
713 #ifdef CONFIG_PERF_EVENTS
714 
715 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
716 				   struct perf_event *event);
717 extern void perf_aux_output_end(struct perf_output_handle *handle,
718 				unsigned long size, bool truncated);
719 extern int perf_aux_output_skip(struct perf_output_handle *handle,
720 				unsigned long size);
721 extern void *perf_get_aux(struct perf_output_handle *handle);
722 
723 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
724 extern void perf_pmu_unregister(struct pmu *pmu);
725 
726 extern int perf_num_counters(void);
727 extern const char *perf_pmu_name(void);
728 extern void __perf_event_task_sched_in(struct task_struct *prev,
729 				       struct task_struct *task);
730 extern void __perf_event_task_sched_out(struct task_struct *prev,
731 					struct task_struct *next);
732 extern int perf_event_init_task(struct task_struct *child);
733 extern void perf_event_exit_task(struct task_struct *child);
734 extern void perf_event_free_task(struct task_struct *task);
735 extern void perf_event_delayed_put(struct task_struct *task);
736 extern struct file *perf_event_get(unsigned int fd);
737 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
738 extern void perf_event_print_debug(void);
739 extern void perf_pmu_disable(struct pmu *pmu);
740 extern void perf_pmu_enable(struct pmu *pmu);
741 extern void perf_sched_cb_dec(struct pmu *pmu);
742 extern void perf_sched_cb_inc(struct pmu *pmu);
743 extern int perf_event_task_disable(void);
744 extern int perf_event_task_enable(void);
745 extern int perf_event_refresh(struct perf_event *event, int refresh);
746 extern void perf_event_update_userpage(struct perf_event *event);
747 extern int perf_event_release_kernel(struct perf_event *event);
748 extern struct perf_event *
749 perf_event_create_kernel_counter(struct perf_event_attr *attr,
750 				int cpu,
751 				struct task_struct *task,
752 				perf_overflow_handler_t callback,
753 				void *context);
754 extern void perf_pmu_migrate_context(struct pmu *pmu,
755 				int src_cpu, int dst_cpu);
756 extern u64 perf_event_read_local(struct perf_event *event);
757 extern u64 perf_event_read_value(struct perf_event *event,
758 				 u64 *enabled, u64 *running);
759 
760 
761 struct perf_sample_data {
762 	/*
763 	 * Fields set by perf_sample_data_init(), group so as to
764 	 * minimize the cachelines touched.
765 	 */
766 	u64				addr;
767 	struct perf_raw_record		*raw;
768 	struct perf_branch_stack	*br_stack;
769 	u64				period;
770 	u64				weight;
771 	u64				txn;
772 	union  perf_mem_data_src	data_src;
773 
774 	/*
775 	 * The other fields, optionally {set,used} by
776 	 * perf_{prepare,output}_sample().
777 	 */
778 	u64				type;
779 	u64				ip;
780 	struct {
781 		u32	pid;
782 		u32	tid;
783 	}				tid_entry;
784 	u64				time;
785 	u64				id;
786 	u64				stream_id;
787 	struct {
788 		u32	cpu;
789 		u32	reserved;
790 	}				cpu_entry;
791 	struct perf_callchain_entry	*callchain;
792 
793 	/*
794 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
795 	 * on arch details.
796 	 */
797 	struct perf_regs		regs_user;
798 	struct pt_regs			regs_user_copy;
799 
800 	struct perf_regs		regs_intr;
801 	u64				stack_user_size;
802 } ____cacheline_aligned;
803 
804 /* default value for data source */
805 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
806 		    PERF_MEM_S(LVL, NA)   |\
807 		    PERF_MEM_S(SNOOP, NA) |\
808 		    PERF_MEM_S(LOCK, NA)  |\
809 		    PERF_MEM_S(TLB, NA))
810 
811 static inline void perf_sample_data_init(struct perf_sample_data *data,
812 					 u64 addr, u64 period)
813 {
814 	/* remaining struct members initialized in perf_prepare_sample() */
815 	data->addr = addr;
816 	data->raw  = NULL;
817 	data->br_stack = NULL;
818 	data->period = period;
819 	data->weight = 0;
820 	data->data_src.val = PERF_MEM_NA;
821 	data->txn = 0;
822 }
823 
824 extern void perf_output_sample(struct perf_output_handle *handle,
825 			       struct perf_event_header *header,
826 			       struct perf_sample_data *data,
827 			       struct perf_event *event);
828 extern void perf_prepare_sample(struct perf_event_header *header,
829 				struct perf_sample_data *data,
830 				struct perf_event *event,
831 				struct pt_regs *regs);
832 
833 extern int perf_event_overflow(struct perf_event *event,
834 				 struct perf_sample_data *data,
835 				 struct pt_regs *regs);
836 
837 extern void perf_event_output(struct perf_event *event,
838 				struct perf_sample_data *data,
839 				struct pt_regs *regs);
840 
841 extern void
842 perf_event_header__init_id(struct perf_event_header *header,
843 			   struct perf_sample_data *data,
844 			   struct perf_event *event);
845 extern void
846 perf_event__output_id_sample(struct perf_event *event,
847 			     struct perf_output_handle *handle,
848 			     struct perf_sample_data *sample);
849 
850 extern void
851 perf_log_lost_samples(struct perf_event *event, u64 lost);
852 
853 static inline bool is_sampling_event(struct perf_event *event)
854 {
855 	return event->attr.sample_period != 0;
856 }
857 
858 /*
859  * Return 1 for a software event, 0 for a hardware event
860  */
861 static inline int is_software_event(struct perf_event *event)
862 {
863 	return event->pmu->task_ctx_nr == perf_sw_context;
864 }
865 
866 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
867 
868 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
869 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
870 
871 #ifndef perf_arch_fetch_caller_regs
872 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
873 #endif
874 
875 /*
876  * Take a snapshot of the regs. Skip ip and frame pointer to
877  * the nth caller. We only need a few of the regs:
878  * - ip for PERF_SAMPLE_IP
879  * - cs for user_mode() tests
880  * - bp for callchains
881  * - eflags, for future purposes, just in case
882  */
883 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
884 {
885 	memset(regs, 0, sizeof(*regs));
886 
887 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
888 }
889 
890 static __always_inline void
891 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
892 {
893 	if (static_key_false(&perf_swevent_enabled[event_id]))
894 		__perf_sw_event(event_id, nr, regs, addr);
895 }
896 
897 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
898 
899 /*
900  * 'Special' version for the scheduler, it hard assumes no recursion,
901  * which is guaranteed by us not actually scheduling inside other swevents
902  * because those disable preemption.
903  */
904 static __always_inline void
905 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
906 {
907 	if (static_key_false(&perf_swevent_enabled[event_id])) {
908 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
909 
910 		perf_fetch_caller_regs(regs);
911 		___perf_sw_event(event_id, nr, regs, addr);
912 	}
913 }
914 
915 extern struct static_key_false perf_sched_events;
916 
917 static __always_inline bool
918 perf_sw_migrate_enabled(void)
919 {
920 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
921 		return true;
922 	return false;
923 }
924 
925 static inline void perf_event_task_migrate(struct task_struct *task)
926 {
927 	if (perf_sw_migrate_enabled())
928 		task->sched_migrated = 1;
929 }
930 
931 static inline void perf_event_task_sched_in(struct task_struct *prev,
932 					    struct task_struct *task)
933 {
934 	if (static_branch_unlikely(&perf_sched_events))
935 		__perf_event_task_sched_in(prev, task);
936 
937 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
938 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
939 
940 		perf_fetch_caller_regs(regs);
941 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
942 		task->sched_migrated = 0;
943 	}
944 }
945 
946 static inline void perf_event_task_sched_out(struct task_struct *prev,
947 					     struct task_struct *next)
948 {
949 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
950 
951 	if (static_branch_unlikely(&perf_sched_events))
952 		__perf_event_task_sched_out(prev, next);
953 }
954 
955 static inline u64 __perf_event_count(struct perf_event *event)
956 {
957 	return local64_read(&event->count) + atomic64_read(&event->child_count);
958 }
959 
960 extern void perf_event_mmap(struct vm_area_struct *vma);
961 extern struct perf_guest_info_callbacks *perf_guest_cbs;
962 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
963 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
964 
965 extern void perf_event_exec(void);
966 extern void perf_event_comm(struct task_struct *tsk, bool exec);
967 extern void perf_event_fork(struct task_struct *tsk);
968 
969 /* Callchains */
970 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
971 
972 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
973 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
974 extern struct perf_callchain_entry *
975 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
976 		   bool crosstask, bool add_mark);
977 extern int get_callchain_buffers(void);
978 extern void put_callchain_buffers(void);
979 
980 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
981 {
982 	if (entry->nr < PERF_MAX_STACK_DEPTH) {
983 		entry->ip[entry->nr++] = ip;
984 		return 0;
985 	} else {
986 		return -1; /* no more room, stop walking the stack */
987 	}
988 }
989 
990 extern int sysctl_perf_event_paranoid;
991 extern int sysctl_perf_event_mlock;
992 extern int sysctl_perf_event_sample_rate;
993 extern int sysctl_perf_cpu_time_max_percent;
994 
995 extern void perf_sample_event_took(u64 sample_len_ns);
996 
997 extern int perf_proc_update_handler(struct ctl_table *table, int write,
998 		void __user *buffer, size_t *lenp,
999 		loff_t *ppos);
1000 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1001 		void __user *buffer, size_t *lenp,
1002 		loff_t *ppos);
1003 
1004 
1005 static inline bool perf_paranoid_tracepoint_raw(void)
1006 {
1007 	return sysctl_perf_event_paranoid > -1;
1008 }
1009 
1010 static inline bool perf_paranoid_cpu(void)
1011 {
1012 	return sysctl_perf_event_paranoid > 0;
1013 }
1014 
1015 static inline bool perf_paranoid_kernel(void)
1016 {
1017 	return sysctl_perf_event_paranoid > 1;
1018 }
1019 
1020 extern void perf_event_init(void);
1021 extern void perf_tp_event(u64 addr, u64 count, void *record,
1022 			  int entry_size, struct pt_regs *regs,
1023 			  struct hlist_head *head, int rctx,
1024 			  struct task_struct *task);
1025 extern void perf_bp_event(struct perf_event *event, void *data);
1026 
1027 #ifndef perf_misc_flags
1028 # define perf_misc_flags(regs) \
1029 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1030 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1031 #endif
1032 
1033 static inline bool has_branch_stack(struct perf_event *event)
1034 {
1035 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1036 }
1037 
1038 static inline bool needs_branch_stack(struct perf_event *event)
1039 {
1040 	return event->attr.branch_sample_type != 0;
1041 }
1042 
1043 static inline bool has_aux(struct perf_event *event)
1044 {
1045 	return event->pmu->setup_aux;
1046 }
1047 
1048 extern int perf_output_begin(struct perf_output_handle *handle,
1049 			     struct perf_event *event, unsigned int size);
1050 extern void perf_output_end(struct perf_output_handle *handle);
1051 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1052 			     const void *buf, unsigned int len);
1053 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1054 				     unsigned int len);
1055 extern int perf_swevent_get_recursion_context(void);
1056 extern void perf_swevent_put_recursion_context(int rctx);
1057 extern u64 perf_swevent_set_period(struct perf_event *event);
1058 extern void perf_event_enable(struct perf_event *event);
1059 extern void perf_event_disable(struct perf_event *event);
1060 extern void perf_event_disable_local(struct perf_event *event);
1061 extern void perf_event_task_tick(void);
1062 #else /* !CONFIG_PERF_EVENTS: */
1063 static inline void *
1064 perf_aux_output_begin(struct perf_output_handle *handle,
1065 		      struct perf_event *event)				{ return NULL; }
1066 static inline void
1067 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1068 		    bool truncated)					{ }
1069 static inline int
1070 perf_aux_output_skip(struct perf_output_handle *handle,
1071 		     unsigned long size)				{ return -EINVAL; }
1072 static inline void *
1073 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1074 static inline void
1075 perf_event_task_migrate(struct task_struct *task)			{ }
1076 static inline void
1077 perf_event_task_sched_in(struct task_struct *prev,
1078 			 struct task_struct *task)			{ }
1079 static inline void
1080 perf_event_task_sched_out(struct task_struct *prev,
1081 			  struct task_struct *next)			{ }
1082 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1083 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1084 static inline void perf_event_free_task(struct task_struct *task)	{ }
1085 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1086 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1087 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1088 {
1089 	return ERR_PTR(-EINVAL);
1090 }
1091 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1092 static inline void perf_event_print_debug(void)				{ }
1093 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1094 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1095 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1096 {
1097 	return -EINVAL;
1098 }
1099 
1100 static inline void
1101 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1102 static inline void
1103 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1104 static inline void
1105 perf_bp_event(struct perf_event *event, void *data)			{ }
1106 
1107 static inline int perf_register_guest_info_callbacks
1108 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1109 static inline int perf_unregister_guest_info_callbacks
1110 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1111 
1112 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1113 static inline void perf_event_exec(void)				{ }
1114 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1115 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1116 static inline void perf_event_init(void)				{ }
1117 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1118 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1119 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1120 static inline void perf_event_enable(struct perf_event *event)		{ }
1121 static inline void perf_event_disable(struct perf_event *event)		{ }
1122 static inline int __perf_event_disable(void *info)			{ return -1; }
1123 static inline void perf_event_task_tick(void)				{ }
1124 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1125 #endif
1126 
1127 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1128 extern void perf_restore_debug_store(void);
1129 #else
1130 static inline void perf_restore_debug_store(void)			{ }
1131 #endif
1132 
1133 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1134 
1135 /*
1136  * This has to have a higher priority than migration_notifier in sched/core.c.
1137  */
1138 #define perf_cpu_notifier(fn)						\
1139 do {									\
1140 	static struct notifier_block fn##_nb =				\
1141 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1142 	unsigned long cpu = smp_processor_id();				\
1143 	unsigned long flags;						\
1144 									\
1145 	cpu_notifier_register_begin();					\
1146 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1147 		(void *)(unsigned long)cpu);				\
1148 	local_irq_save(flags);						\
1149 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1150 		(void *)(unsigned long)cpu);				\
1151 	local_irq_restore(flags);					\
1152 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1153 		(void *)(unsigned long)cpu);				\
1154 	__register_cpu_notifier(&fn##_nb);				\
1155 	cpu_notifier_register_done();					\
1156 } while (0)
1157 
1158 /*
1159  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1160  * callback for already online CPUs.
1161  */
1162 #define __perf_cpu_notifier(fn)						\
1163 do {									\
1164 	static struct notifier_block fn##_nb =				\
1165 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1166 									\
1167 	__register_cpu_notifier(&fn##_nb);				\
1168 } while (0)
1169 
1170 struct perf_pmu_events_attr {
1171 	struct device_attribute attr;
1172 	u64 id;
1173 	const char *event_str;
1174 };
1175 
1176 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1177 			      char *page);
1178 
1179 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1180 static struct perf_pmu_events_attr _var = {				\
1181 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1182 	.id   =  _id,							\
1183 };
1184 
1185 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1186 static struct perf_pmu_events_attr _var = {				    \
1187 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1188 	.id		= 0,						    \
1189 	.event_str	= _str,						    \
1190 };
1191 
1192 #define PMU_FORMAT_ATTR(_name, _format)					\
1193 static ssize_t								\
1194 _name##_show(struct device *dev,					\
1195 			       struct device_attribute *attr,		\
1196 			       char *page)				\
1197 {									\
1198 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1199 	return sprintf(page, _format "\n");				\
1200 }									\
1201 									\
1202 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1203 
1204 #endif /* _LINUX_PERF_EVENT_H */
1205