1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 #define PERF_GUEST_ACTIVE 0x01 30 #define PERF_GUEST_USER 0x02 31 32 struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36 }; 37 38 #ifdef CONFIG_HAVE_HW_BREAKPOINT 39 #include <asm/hw_breakpoint.h> 40 #endif 41 42 #include <linux/list.h> 43 #include <linux/mutex.h> 44 #include <linux/rculist.h> 45 #include <linux/rcupdate.h> 46 #include <linux/spinlock.h> 47 #include <linux/hrtimer.h> 48 #include <linux/fs.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/workqueue.h> 51 #include <linux/ftrace.h> 52 #include <linux/cpu.h> 53 #include <linux/irq_work.h> 54 #include <linux/static_key.h> 55 #include <linux/jump_label_ratelimit.h> 56 #include <linux/atomic.h> 57 #include <linux/sysfs.h> 58 #include <linux/perf_regs.h> 59 #include <linux/cgroup.h> 60 #include <linux/refcount.h> 61 #include <linux/security.h> 62 #include <linux/static_call.h> 63 #include <asm/local.h> 64 65 struct perf_callchain_entry { 66 __u64 nr; 67 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 68 }; 69 70 struct perf_callchain_entry_ctx { 71 struct perf_callchain_entry *entry; 72 u32 max_stack; 73 u32 nr; 74 short contexts; 75 bool contexts_maxed; 76 }; 77 78 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 79 unsigned long off, unsigned long len); 80 81 struct perf_raw_frag { 82 union { 83 struct perf_raw_frag *next; 84 unsigned long pad; 85 }; 86 perf_copy_f copy; 87 void *data; 88 u32 size; 89 } __packed; 90 91 struct perf_raw_record { 92 struct perf_raw_frag frag; 93 u32 size; 94 }; 95 96 /* 97 * branch stack layout: 98 * nr: number of taken branches stored in entries[] 99 * hw_idx: The low level index of raw branch records 100 * for the most recent branch. 101 * -1ULL means invalid/unknown. 102 * 103 * Note that nr can vary from sample to sample 104 * branches (to, from) are stored from most recent 105 * to least recent, i.e., entries[0] contains the most 106 * recent branch. 107 * The entries[] is an abstraction of raw branch records, 108 * which may not be stored in age order in HW, e.g. Intel LBR. 109 * The hw_idx is to expose the low level index of raw 110 * branch record for the most recent branch aka entries[0]. 111 * The hw_idx index is between -1 (unknown) and max depth, 112 * which can be retrieved in /sys/devices/cpu/caps/branches. 113 * For the architectures whose raw branch records are 114 * already stored in age order, the hw_idx should be 0. 115 */ 116 struct perf_branch_stack { 117 __u64 nr; 118 __u64 hw_idx; 119 struct perf_branch_entry entries[]; 120 }; 121 122 struct task_struct; 123 124 /* 125 * extra PMU register associated with an event 126 */ 127 struct hw_perf_event_extra { 128 u64 config; /* register value */ 129 unsigned int reg; /* register address or index */ 130 int alloc; /* extra register already allocated */ 131 int idx; /* index in shared_regs->regs[] */ 132 }; 133 134 /** 135 * hw_perf_event::flag values 136 * 137 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 138 * usage. 139 */ 140 #define PERF_EVENT_FLAG_ARCH 0x0000ffff 141 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 142 143 /** 144 * struct hw_perf_event - performance event hardware details: 145 */ 146 struct hw_perf_event { 147 #ifdef CONFIG_PERF_EVENTS 148 union { 149 struct { /* hardware */ 150 u64 config; 151 u64 last_tag; 152 unsigned long config_base; 153 unsigned long event_base; 154 int event_base_rdpmc; 155 int idx; 156 int last_cpu; 157 int flags; 158 159 struct hw_perf_event_extra extra_reg; 160 struct hw_perf_event_extra branch_reg; 161 }; 162 struct { /* software */ 163 struct hrtimer hrtimer; 164 }; 165 struct { /* tracepoint */ 166 /* for tp_event->class */ 167 struct list_head tp_list; 168 }; 169 struct { /* amd_power */ 170 u64 pwr_acc; 171 u64 ptsc; 172 }; 173 #ifdef CONFIG_HAVE_HW_BREAKPOINT 174 struct { /* breakpoint */ 175 /* 176 * Crufty hack to avoid the chicken and egg 177 * problem hw_breakpoint has with context 178 * creation and event initalization. 179 */ 180 struct arch_hw_breakpoint info; 181 struct list_head bp_list; 182 }; 183 #endif 184 struct { /* amd_iommu */ 185 u8 iommu_bank; 186 u8 iommu_cntr; 187 u16 padding; 188 u64 conf; 189 u64 conf1; 190 }; 191 }; 192 /* 193 * If the event is a per task event, this will point to the task in 194 * question. See the comment in perf_event_alloc(). 195 */ 196 struct task_struct *target; 197 198 /* 199 * PMU would store hardware filter configuration 200 * here. 201 */ 202 void *addr_filters; 203 204 /* Last sync'ed generation of filters */ 205 unsigned long addr_filters_gen; 206 207 /* 208 * hw_perf_event::state flags; used to track the PERF_EF_* state. 209 */ 210 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 211 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 212 #define PERF_HES_ARCH 0x04 213 214 int state; 215 216 /* 217 * The last observed hardware counter value, updated with a 218 * local64_cmpxchg() such that pmu::read() can be called nested. 219 */ 220 local64_t prev_count; 221 222 /* 223 * The period to start the next sample with. 224 */ 225 u64 sample_period; 226 227 union { 228 struct { /* Sampling */ 229 /* 230 * The period we started this sample with. 231 */ 232 u64 last_period; 233 234 /* 235 * However much is left of the current period; 236 * note that this is a full 64bit value and 237 * allows for generation of periods longer 238 * than hardware might allow. 239 */ 240 local64_t period_left; 241 }; 242 struct { /* Topdown events counting for context switch */ 243 u64 saved_metric; 244 u64 saved_slots; 245 }; 246 }; 247 248 /* 249 * State for throttling the event, see __perf_event_overflow() and 250 * perf_adjust_freq_unthr_context(). 251 */ 252 u64 interrupts_seq; 253 u64 interrupts; 254 255 /* 256 * State for freq target events, see __perf_event_overflow() and 257 * perf_adjust_freq_unthr_context(). 258 */ 259 u64 freq_time_stamp; 260 u64 freq_count_stamp; 261 #endif 262 }; 263 264 struct perf_event; 265 266 /* 267 * Common implementation detail of pmu::{start,commit,cancel}_txn 268 */ 269 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 270 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 271 272 /** 273 * pmu::capabilities flags 274 */ 275 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 276 #define PERF_PMU_CAP_NO_NMI 0x0002 277 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 278 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 279 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 280 #define PERF_PMU_CAP_ITRACE 0x0020 281 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 282 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 283 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 284 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 285 286 struct perf_output_handle; 287 288 /** 289 * struct pmu - generic performance monitoring unit 290 */ 291 struct pmu { 292 struct list_head entry; 293 294 struct module *module; 295 struct device *dev; 296 const struct attribute_group **attr_groups; 297 const struct attribute_group **attr_update; 298 const char *name; 299 int type; 300 301 /* 302 * various common per-pmu feature flags 303 */ 304 int capabilities; 305 306 int __percpu *pmu_disable_count; 307 struct perf_cpu_context __percpu *pmu_cpu_context; 308 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 309 int task_ctx_nr; 310 int hrtimer_interval_ms; 311 312 /* number of address filters this PMU can do */ 313 unsigned int nr_addr_filters; 314 315 /* 316 * Fully disable/enable this PMU, can be used to protect from the PMI 317 * as well as for lazy/batch writing of the MSRs. 318 */ 319 void (*pmu_enable) (struct pmu *pmu); /* optional */ 320 void (*pmu_disable) (struct pmu *pmu); /* optional */ 321 322 /* 323 * Try and initialize the event for this PMU. 324 * 325 * Returns: 326 * -ENOENT -- @event is not for this PMU 327 * 328 * -ENODEV -- @event is for this PMU but PMU not present 329 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 330 * -EINVAL -- @event is for this PMU but @event is not valid 331 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 332 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 333 * 334 * 0 -- @event is for this PMU and valid 335 * 336 * Other error return values are allowed. 337 */ 338 int (*event_init) (struct perf_event *event); 339 340 /* 341 * Notification that the event was mapped or unmapped. Called 342 * in the context of the mapping task. 343 */ 344 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 345 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 346 347 /* 348 * Flags for ->add()/->del()/ ->start()/->stop(). There are 349 * matching hw_perf_event::state flags. 350 */ 351 #define PERF_EF_START 0x01 /* start the counter when adding */ 352 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 353 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 354 355 /* 356 * Adds/Removes a counter to/from the PMU, can be done inside a 357 * transaction, see the ->*_txn() methods. 358 * 359 * The add/del callbacks will reserve all hardware resources required 360 * to service the event, this includes any counter constraint 361 * scheduling etc. 362 * 363 * Called with IRQs disabled and the PMU disabled on the CPU the event 364 * is on. 365 * 366 * ->add() called without PERF_EF_START should result in the same state 367 * as ->add() followed by ->stop(). 368 * 369 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 370 * ->stop() that must deal with already being stopped without 371 * PERF_EF_UPDATE. 372 */ 373 int (*add) (struct perf_event *event, int flags); 374 void (*del) (struct perf_event *event, int flags); 375 376 /* 377 * Starts/Stops a counter present on the PMU. 378 * 379 * The PMI handler should stop the counter when perf_event_overflow() 380 * returns !0. ->start() will be used to continue. 381 * 382 * Also used to change the sample period. 383 * 384 * Called with IRQs disabled and the PMU disabled on the CPU the event 385 * is on -- will be called from NMI context with the PMU generates 386 * NMIs. 387 * 388 * ->stop() with PERF_EF_UPDATE will read the counter and update 389 * period/count values like ->read() would. 390 * 391 * ->start() with PERF_EF_RELOAD will reprogram the counter 392 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 393 */ 394 void (*start) (struct perf_event *event, int flags); 395 void (*stop) (struct perf_event *event, int flags); 396 397 /* 398 * Updates the counter value of the event. 399 * 400 * For sampling capable PMUs this will also update the software period 401 * hw_perf_event::period_left field. 402 */ 403 void (*read) (struct perf_event *event); 404 405 /* 406 * Group events scheduling is treated as a transaction, add 407 * group events as a whole and perform one schedulability test. 408 * If the test fails, roll back the whole group 409 * 410 * Start the transaction, after this ->add() doesn't need to 411 * do schedulability tests. 412 * 413 * Optional. 414 */ 415 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 416 /* 417 * If ->start_txn() disabled the ->add() schedulability test 418 * then ->commit_txn() is required to perform one. On success 419 * the transaction is closed. On error the transaction is kept 420 * open until ->cancel_txn() is called. 421 * 422 * Optional. 423 */ 424 int (*commit_txn) (struct pmu *pmu); 425 /* 426 * Will cancel the transaction, assumes ->del() is called 427 * for each successful ->add() during the transaction. 428 * 429 * Optional. 430 */ 431 void (*cancel_txn) (struct pmu *pmu); 432 433 /* 434 * Will return the value for perf_event_mmap_page::index for this event, 435 * if no implementation is provided it will default to: event->hw.idx + 1. 436 */ 437 int (*event_idx) (struct perf_event *event); /*optional */ 438 439 /* 440 * context-switches callback 441 */ 442 void (*sched_task) (struct perf_event_context *ctx, 443 bool sched_in); 444 445 /* 446 * Kmem cache of PMU specific data 447 */ 448 struct kmem_cache *task_ctx_cache; 449 450 /* 451 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 452 * can be synchronized using this function. See Intel LBR callstack support 453 * implementation and Perf core context switch handling callbacks for usage 454 * examples. 455 */ 456 void (*swap_task_ctx) (struct perf_event_context *prev, 457 struct perf_event_context *next); 458 /* optional */ 459 460 /* 461 * Set up pmu-private data structures for an AUX area 462 */ 463 void *(*setup_aux) (struct perf_event *event, void **pages, 464 int nr_pages, bool overwrite); 465 /* optional */ 466 467 /* 468 * Free pmu-private AUX data structures 469 */ 470 void (*free_aux) (void *aux); /* optional */ 471 472 /* 473 * Take a snapshot of the AUX buffer without touching the event 474 * state, so that preempting ->start()/->stop() callbacks does 475 * not interfere with their logic. Called in PMI context. 476 * 477 * Returns the size of AUX data copied to the output handle. 478 * 479 * Optional. 480 */ 481 long (*snapshot_aux) (struct perf_event *event, 482 struct perf_output_handle *handle, 483 unsigned long size); 484 485 /* 486 * Validate address range filters: make sure the HW supports the 487 * requested configuration and number of filters; return 0 if the 488 * supplied filters are valid, -errno otherwise. 489 * 490 * Runs in the context of the ioctl()ing process and is not serialized 491 * with the rest of the PMU callbacks. 492 */ 493 int (*addr_filters_validate) (struct list_head *filters); 494 /* optional */ 495 496 /* 497 * Synchronize address range filter configuration: 498 * translate hw-agnostic filters into hardware configuration in 499 * event::hw::addr_filters. 500 * 501 * Runs as a part of filter sync sequence that is done in ->start() 502 * callback by calling perf_event_addr_filters_sync(). 503 * 504 * May (and should) traverse event::addr_filters::list, for which its 505 * caller provides necessary serialization. 506 */ 507 void (*addr_filters_sync) (struct perf_event *event); 508 /* optional */ 509 510 /* 511 * Check if event can be used for aux_output purposes for 512 * events of this PMU. 513 * 514 * Runs from perf_event_open(). Should return 0 for "no match" 515 * or non-zero for "match". 516 */ 517 int (*aux_output_match) (struct perf_event *event); 518 /* optional */ 519 520 /* 521 * Filter events for PMU-specific reasons. 522 */ 523 int (*filter_match) (struct perf_event *event); /* optional */ 524 525 /* 526 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 527 */ 528 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 529 }; 530 531 enum perf_addr_filter_action_t { 532 PERF_ADDR_FILTER_ACTION_STOP = 0, 533 PERF_ADDR_FILTER_ACTION_START, 534 PERF_ADDR_FILTER_ACTION_FILTER, 535 }; 536 537 /** 538 * struct perf_addr_filter - address range filter definition 539 * @entry: event's filter list linkage 540 * @path: object file's path for file-based filters 541 * @offset: filter range offset 542 * @size: filter range size (size==0 means single address trigger) 543 * @action: filter/start/stop 544 * 545 * This is a hardware-agnostic filter configuration as specified by the user. 546 */ 547 struct perf_addr_filter { 548 struct list_head entry; 549 struct path path; 550 unsigned long offset; 551 unsigned long size; 552 enum perf_addr_filter_action_t action; 553 }; 554 555 /** 556 * struct perf_addr_filters_head - container for address range filters 557 * @list: list of filters for this event 558 * @lock: spinlock that serializes accesses to the @list and event's 559 * (and its children's) filter generations. 560 * @nr_file_filters: number of file-based filters 561 * 562 * A child event will use parent's @list (and therefore @lock), so they are 563 * bundled together; see perf_event_addr_filters(). 564 */ 565 struct perf_addr_filters_head { 566 struct list_head list; 567 raw_spinlock_t lock; 568 unsigned int nr_file_filters; 569 }; 570 571 struct perf_addr_filter_range { 572 unsigned long start; 573 unsigned long size; 574 }; 575 576 /** 577 * enum perf_event_state - the states of an event: 578 */ 579 enum perf_event_state { 580 PERF_EVENT_STATE_DEAD = -4, 581 PERF_EVENT_STATE_EXIT = -3, 582 PERF_EVENT_STATE_ERROR = -2, 583 PERF_EVENT_STATE_OFF = -1, 584 PERF_EVENT_STATE_INACTIVE = 0, 585 PERF_EVENT_STATE_ACTIVE = 1, 586 }; 587 588 struct file; 589 struct perf_sample_data; 590 591 typedef void (*perf_overflow_handler_t)(struct perf_event *, 592 struct perf_sample_data *, 593 struct pt_regs *regs); 594 595 /* 596 * Event capabilities. For event_caps and groups caps. 597 * 598 * PERF_EV_CAP_SOFTWARE: Is a software event. 599 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 600 * from any CPU in the package where it is active. 601 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 602 * cannot be a group leader. If an event with this flag is detached from the 603 * group it is scheduled out and moved into an unrecoverable ERROR state. 604 */ 605 #define PERF_EV_CAP_SOFTWARE BIT(0) 606 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 607 #define PERF_EV_CAP_SIBLING BIT(2) 608 609 #define SWEVENT_HLIST_BITS 8 610 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 611 612 struct swevent_hlist { 613 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 614 struct rcu_head rcu_head; 615 }; 616 617 #define PERF_ATTACH_CONTEXT 0x01 618 #define PERF_ATTACH_GROUP 0x02 619 #define PERF_ATTACH_TASK 0x04 620 #define PERF_ATTACH_TASK_DATA 0x08 621 #define PERF_ATTACH_ITRACE 0x10 622 #define PERF_ATTACH_SCHED_CB 0x20 623 #define PERF_ATTACH_CHILD 0x40 624 625 struct bpf_prog; 626 struct perf_cgroup; 627 struct perf_buffer; 628 629 struct pmu_event_list { 630 raw_spinlock_t lock; 631 struct list_head list; 632 }; 633 634 #define for_each_sibling_event(sibling, event) \ 635 if ((event)->group_leader == (event)) \ 636 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 637 638 /** 639 * struct perf_event - performance event kernel representation: 640 */ 641 struct perf_event { 642 #ifdef CONFIG_PERF_EVENTS 643 /* 644 * entry onto perf_event_context::event_list; 645 * modifications require ctx->lock 646 * RCU safe iterations. 647 */ 648 struct list_head event_entry; 649 650 /* 651 * Locked for modification by both ctx->mutex and ctx->lock; holding 652 * either sufficies for read. 653 */ 654 struct list_head sibling_list; 655 struct list_head active_list; 656 /* 657 * Node on the pinned or flexible tree located at the event context; 658 */ 659 struct rb_node group_node; 660 u64 group_index; 661 /* 662 * We need storage to track the entries in perf_pmu_migrate_context; we 663 * cannot use the event_entry because of RCU and we want to keep the 664 * group in tact which avoids us using the other two entries. 665 */ 666 struct list_head migrate_entry; 667 668 struct hlist_node hlist_entry; 669 struct list_head active_entry; 670 int nr_siblings; 671 672 /* Not serialized. Only written during event initialization. */ 673 int event_caps; 674 /* The cumulative AND of all event_caps for events in this group. */ 675 int group_caps; 676 677 struct perf_event *group_leader; 678 struct pmu *pmu; 679 void *pmu_private; 680 681 enum perf_event_state state; 682 unsigned int attach_state; 683 local64_t count; 684 atomic64_t child_count; 685 686 /* 687 * These are the total time in nanoseconds that the event 688 * has been enabled (i.e. eligible to run, and the task has 689 * been scheduled in, if this is a per-task event) 690 * and running (scheduled onto the CPU), respectively. 691 */ 692 u64 total_time_enabled; 693 u64 total_time_running; 694 u64 tstamp; 695 696 struct perf_event_attr attr; 697 u16 header_size; 698 u16 id_header_size; 699 u16 read_size; 700 struct hw_perf_event hw; 701 702 struct perf_event_context *ctx; 703 atomic_long_t refcount; 704 705 /* 706 * These accumulate total time (in nanoseconds) that children 707 * events have been enabled and running, respectively. 708 */ 709 atomic64_t child_total_time_enabled; 710 atomic64_t child_total_time_running; 711 712 /* 713 * Protect attach/detach and child_list: 714 */ 715 struct mutex child_mutex; 716 struct list_head child_list; 717 struct perf_event *parent; 718 719 int oncpu; 720 int cpu; 721 722 struct list_head owner_entry; 723 struct task_struct *owner; 724 725 /* mmap bits */ 726 struct mutex mmap_mutex; 727 atomic_t mmap_count; 728 729 struct perf_buffer *rb; 730 struct list_head rb_entry; 731 unsigned long rcu_batches; 732 int rcu_pending; 733 734 /* poll related */ 735 wait_queue_head_t waitq; 736 struct fasync_struct *fasync; 737 738 /* delayed work for NMIs and such */ 739 int pending_wakeup; 740 int pending_kill; 741 int pending_disable; 742 unsigned long pending_addr; /* SIGTRAP */ 743 struct irq_work pending; 744 745 atomic_t event_limit; 746 747 /* address range filters */ 748 struct perf_addr_filters_head addr_filters; 749 /* vma address array for file-based filders */ 750 struct perf_addr_filter_range *addr_filter_ranges; 751 unsigned long addr_filters_gen; 752 753 /* for aux_output events */ 754 struct perf_event *aux_event; 755 756 void (*destroy)(struct perf_event *); 757 struct rcu_head rcu_head; 758 759 struct pid_namespace *ns; 760 u64 id; 761 762 u64 (*clock)(void); 763 perf_overflow_handler_t overflow_handler; 764 void *overflow_handler_context; 765 #ifdef CONFIG_BPF_SYSCALL 766 perf_overflow_handler_t orig_overflow_handler; 767 struct bpf_prog *prog; 768 u64 bpf_cookie; 769 #endif 770 771 #ifdef CONFIG_EVENT_TRACING 772 struct trace_event_call *tp_event; 773 struct event_filter *filter; 774 #ifdef CONFIG_FUNCTION_TRACER 775 struct ftrace_ops ftrace_ops; 776 #endif 777 #endif 778 779 #ifdef CONFIG_CGROUP_PERF 780 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 781 #endif 782 783 #ifdef CONFIG_SECURITY 784 void *security; 785 #endif 786 struct list_head sb_list; 787 #endif /* CONFIG_PERF_EVENTS */ 788 }; 789 790 791 struct perf_event_groups { 792 struct rb_root tree; 793 u64 index; 794 }; 795 796 /** 797 * struct perf_event_context - event context structure 798 * 799 * Used as a container for task events and CPU events as well: 800 */ 801 struct perf_event_context { 802 struct pmu *pmu; 803 /* 804 * Protect the states of the events in the list, 805 * nr_active, and the list: 806 */ 807 raw_spinlock_t lock; 808 /* 809 * Protect the list of events. Locking either mutex or lock 810 * is sufficient to ensure the list doesn't change; to change 811 * the list you need to lock both the mutex and the spinlock. 812 */ 813 struct mutex mutex; 814 815 struct list_head active_ctx_list; 816 struct perf_event_groups pinned_groups; 817 struct perf_event_groups flexible_groups; 818 struct list_head event_list; 819 820 struct list_head pinned_active; 821 struct list_head flexible_active; 822 823 int nr_events; 824 int nr_active; 825 int nr_user; 826 int is_active; 827 int nr_stat; 828 int nr_freq; 829 int rotate_disable; 830 /* 831 * Set when nr_events != nr_active, except tolerant to events not 832 * necessary to be active due to scheduling constraints, such as cgroups. 833 */ 834 int rotate_necessary; 835 refcount_t refcount; 836 struct task_struct *task; 837 838 /* 839 * Context clock, runs when context enabled. 840 */ 841 u64 time; 842 u64 timestamp; 843 u64 timeoffset; 844 845 /* 846 * These fields let us detect when two contexts have both 847 * been cloned (inherited) from a common ancestor. 848 */ 849 struct perf_event_context *parent_ctx; 850 u64 parent_gen; 851 u64 generation; 852 int pin_count; 853 #ifdef CONFIG_CGROUP_PERF 854 int nr_cgroups; /* cgroup evts */ 855 #endif 856 void *task_ctx_data; /* pmu specific data */ 857 struct rcu_head rcu_head; 858 }; 859 860 /* 861 * Number of contexts where an event can trigger: 862 * task, softirq, hardirq, nmi. 863 */ 864 #define PERF_NR_CONTEXTS 4 865 866 /** 867 * struct perf_event_cpu_context - per cpu event context structure 868 */ 869 struct perf_cpu_context { 870 struct perf_event_context ctx; 871 struct perf_event_context *task_ctx; 872 int active_oncpu; 873 int exclusive; 874 875 raw_spinlock_t hrtimer_lock; 876 struct hrtimer hrtimer; 877 ktime_t hrtimer_interval; 878 unsigned int hrtimer_active; 879 880 #ifdef CONFIG_CGROUP_PERF 881 struct perf_cgroup *cgrp; 882 struct list_head cgrp_cpuctx_entry; 883 #endif 884 885 struct list_head sched_cb_entry; 886 int sched_cb_usage; 887 888 int online; 889 /* 890 * Per-CPU storage for iterators used in visit_groups_merge. The default 891 * storage is of size 2 to hold the CPU and any CPU event iterators. 892 */ 893 int heap_size; 894 struct perf_event **heap; 895 struct perf_event *heap_default[2]; 896 }; 897 898 struct perf_output_handle { 899 struct perf_event *event; 900 struct perf_buffer *rb; 901 unsigned long wakeup; 902 unsigned long size; 903 u64 aux_flags; 904 union { 905 void *addr; 906 unsigned long head; 907 }; 908 int page; 909 }; 910 911 struct bpf_perf_event_data_kern { 912 bpf_user_pt_regs_t *regs; 913 struct perf_sample_data *data; 914 struct perf_event *event; 915 }; 916 917 #ifdef CONFIG_CGROUP_PERF 918 919 /* 920 * perf_cgroup_info keeps track of time_enabled for a cgroup. 921 * This is a per-cpu dynamically allocated data structure. 922 */ 923 struct perf_cgroup_info { 924 u64 time; 925 u64 timestamp; 926 u64 timeoffset; 927 int active; 928 }; 929 930 struct perf_cgroup { 931 struct cgroup_subsys_state css; 932 struct perf_cgroup_info __percpu *info; 933 }; 934 935 /* 936 * Must ensure cgroup is pinned (css_get) before calling 937 * this function. In other words, we cannot call this function 938 * if there is no cgroup event for the current CPU context. 939 */ 940 static inline struct perf_cgroup * 941 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 942 { 943 return container_of(task_css_check(task, perf_event_cgrp_id, 944 ctx ? lockdep_is_held(&ctx->lock) 945 : true), 946 struct perf_cgroup, css); 947 } 948 #endif /* CONFIG_CGROUP_PERF */ 949 950 #ifdef CONFIG_PERF_EVENTS 951 952 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 953 struct perf_event *event); 954 extern void perf_aux_output_end(struct perf_output_handle *handle, 955 unsigned long size); 956 extern int perf_aux_output_skip(struct perf_output_handle *handle, 957 unsigned long size); 958 extern void *perf_get_aux(struct perf_output_handle *handle); 959 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 960 extern void perf_event_itrace_started(struct perf_event *event); 961 962 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 963 extern void perf_pmu_unregister(struct pmu *pmu); 964 965 extern void __perf_event_task_sched_in(struct task_struct *prev, 966 struct task_struct *task); 967 extern void __perf_event_task_sched_out(struct task_struct *prev, 968 struct task_struct *next); 969 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 970 extern void perf_event_exit_task(struct task_struct *child); 971 extern void perf_event_free_task(struct task_struct *task); 972 extern void perf_event_delayed_put(struct task_struct *task); 973 extern struct file *perf_event_get(unsigned int fd); 974 extern const struct perf_event *perf_get_event(struct file *file); 975 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 976 extern void perf_event_print_debug(void); 977 extern void perf_pmu_disable(struct pmu *pmu); 978 extern void perf_pmu_enable(struct pmu *pmu); 979 extern void perf_sched_cb_dec(struct pmu *pmu); 980 extern void perf_sched_cb_inc(struct pmu *pmu); 981 extern int perf_event_task_disable(void); 982 extern int perf_event_task_enable(void); 983 984 extern void perf_pmu_resched(struct pmu *pmu); 985 986 extern int perf_event_refresh(struct perf_event *event, int refresh); 987 extern void perf_event_update_userpage(struct perf_event *event); 988 extern int perf_event_release_kernel(struct perf_event *event); 989 extern struct perf_event * 990 perf_event_create_kernel_counter(struct perf_event_attr *attr, 991 int cpu, 992 struct task_struct *task, 993 perf_overflow_handler_t callback, 994 void *context); 995 extern void perf_pmu_migrate_context(struct pmu *pmu, 996 int src_cpu, int dst_cpu); 997 int perf_event_read_local(struct perf_event *event, u64 *value, 998 u64 *enabled, u64 *running); 999 extern u64 perf_event_read_value(struct perf_event *event, 1000 u64 *enabled, u64 *running); 1001 1002 1003 struct perf_sample_data { 1004 /* 1005 * Fields set by perf_sample_data_init(), group so as to 1006 * minimize the cachelines touched. 1007 */ 1008 u64 addr; 1009 struct perf_raw_record *raw; 1010 struct perf_branch_stack *br_stack; 1011 u64 period; 1012 union perf_sample_weight weight; 1013 u64 txn; 1014 union perf_mem_data_src data_src; 1015 1016 /* 1017 * The other fields, optionally {set,used} by 1018 * perf_{prepare,output}_sample(). 1019 */ 1020 u64 type; 1021 u64 ip; 1022 struct { 1023 u32 pid; 1024 u32 tid; 1025 } tid_entry; 1026 u64 time; 1027 u64 id; 1028 u64 stream_id; 1029 struct { 1030 u32 cpu; 1031 u32 reserved; 1032 } cpu_entry; 1033 struct perf_callchain_entry *callchain; 1034 u64 aux_size; 1035 1036 struct perf_regs regs_user; 1037 struct perf_regs regs_intr; 1038 u64 stack_user_size; 1039 1040 u64 phys_addr; 1041 u64 cgroup; 1042 u64 data_page_size; 1043 u64 code_page_size; 1044 } ____cacheline_aligned; 1045 1046 /* default value for data source */ 1047 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1048 PERF_MEM_S(LVL, NA) |\ 1049 PERF_MEM_S(SNOOP, NA) |\ 1050 PERF_MEM_S(LOCK, NA) |\ 1051 PERF_MEM_S(TLB, NA)) 1052 1053 static inline void perf_sample_data_init(struct perf_sample_data *data, 1054 u64 addr, u64 period) 1055 { 1056 /* remaining struct members initialized in perf_prepare_sample() */ 1057 data->addr = addr; 1058 data->raw = NULL; 1059 data->br_stack = NULL; 1060 data->period = period; 1061 data->weight.full = 0; 1062 data->data_src.val = PERF_MEM_NA; 1063 data->txn = 0; 1064 } 1065 1066 extern void perf_output_sample(struct perf_output_handle *handle, 1067 struct perf_event_header *header, 1068 struct perf_sample_data *data, 1069 struct perf_event *event); 1070 extern void perf_prepare_sample(struct perf_event_header *header, 1071 struct perf_sample_data *data, 1072 struct perf_event *event, 1073 struct pt_regs *regs); 1074 1075 extern int perf_event_overflow(struct perf_event *event, 1076 struct perf_sample_data *data, 1077 struct pt_regs *regs); 1078 1079 extern void perf_event_output_forward(struct perf_event *event, 1080 struct perf_sample_data *data, 1081 struct pt_regs *regs); 1082 extern void perf_event_output_backward(struct perf_event *event, 1083 struct perf_sample_data *data, 1084 struct pt_regs *regs); 1085 extern int perf_event_output(struct perf_event *event, 1086 struct perf_sample_data *data, 1087 struct pt_regs *regs); 1088 1089 static inline bool 1090 is_default_overflow_handler(struct perf_event *event) 1091 { 1092 if (likely(event->overflow_handler == perf_event_output_forward)) 1093 return true; 1094 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1095 return true; 1096 return false; 1097 } 1098 1099 extern void 1100 perf_event_header__init_id(struct perf_event_header *header, 1101 struct perf_sample_data *data, 1102 struct perf_event *event); 1103 extern void 1104 perf_event__output_id_sample(struct perf_event *event, 1105 struct perf_output_handle *handle, 1106 struct perf_sample_data *sample); 1107 1108 extern void 1109 perf_log_lost_samples(struct perf_event *event, u64 lost); 1110 1111 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1112 { 1113 struct perf_event_attr *attr = &event->attr; 1114 1115 return attr->exclude_idle || attr->exclude_user || 1116 attr->exclude_kernel || attr->exclude_hv || 1117 attr->exclude_guest || attr->exclude_host; 1118 } 1119 1120 static inline bool is_sampling_event(struct perf_event *event) 1121 { 1122 return event->attr.sample_period != 0; 1123 } 1124 1125 /* 1126 * Return 1 for a software event, 0 for a hardware event 1127 */ 1128 static inline int is_software_event(struct perf_event *event) 1129 { 1130 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1131 } 1132 1133 /* 1134 * Return 1 for event in sw context, 0 for event in hw context 1135 */ 1136 static inline int in_software_context(struct perf_event *event) 1137 { 1138 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1139 } 1140 1141 static inline int is_exclusive_pmu(struct pmu *pmu) 1142 { 1143 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1144 } 1145 1146 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1147 1148 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1149 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1150 1151 #ifndef perf_arch_fetch_caller_regs 1152 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1153 #endif 1154 1155 /* 1156 * When generating a perf sample in-line, instead of from an interrupt / 1157 * exception, we lack a pt_regs. This is typically used from software events 1158 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1159 * 1160 * We typically don't need a full set, but (for x86) do require: 1161 * - ip for PERF_SAMPLE_IP 1162 * - cs for user_mode() tests 1163 * - sp for PERF_SAMPLE_CALLCHAIN 1164 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1165 * 1166 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1167 * things like PERF_SAMPLE_REGS_INTR. 1168 */ 1169 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1170 { 1171 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1172 } 1173 1174 static __always_inline void 1175 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1176 { 1177 if (static_key_false(&perf_swevent_enabled[event_id])) 1178 __perf_sw_event(event_id, nr, regs, addr); 1179 } 1180 1181 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1182 1183 /* 1184 * 'Special' version for the scheduler, it hard assumes no recursion, 1185 * which is guaranteed by us not actually scheduling inside other swevents 1186 * because those disable preemption. 1187 */ 1188 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1189 { 1190 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1191 1192 perf_fetch_caller_regs(regs); 1193 ___perf_sw_event(event_id, nr, regs, addr); 1194 } 1195 1196 extern struct static_key_false perf_sched_events; 1197 1198 static __always_inline bool __perf_sw_enabled(int swevt) 1199 { 1200 return static_key_false(&perf_swevent_enabled[swevt]); 1201 } 1202 1203 static inline void perf_event_task_migrate(struct task_struct *task) 1204 { 1205 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1206 task->sched_migrated = 1; 1207 } 1208 1209 static inline void perf_event_task_sched_in(struct task_struct *prev, 1210 struct task_struct *task) 1211 { 1212 if (static_branch_unlikely(&perf_sched_events)) 1213 __perf_event_task_sched_in(prev, task); 1214 1215 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1216 task->sched_migrated) { 1217 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1218 task->sched_migrated = 0; 1219 } 1220 } 1221 1222 static inline void perf_event_task_sched_out(struct task_struct *prev, 1223 struct task_struct *next) 1224 { 1225 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1226 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1227 1228 #ifdef CONFIG_CGROUP_PERF 1229 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1230 perf_cgroup_from_task(prev, NULL) != 1231 perf_cgroup_from_task(next, NULL)) 1232 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1233 #endif 1234 1235 if (static_branch_unlikely(&perf_sched_events)) 1236 __perf_event_task_sched_out(prev, next); 1237 } 1238 1239 extern void perf_event_mmap(struct vm_area_struct *vma); 1240 1241 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1242 bool unregister, const char *sym); 1243 extern void perf_event_bpf_event(struct bpf_prog *prog, 1244 enum perf_bpf_event_type type, 1245 u16 flags); 1246 1247 #ifdef CONFIG_GUEST_PERF_EVENTS 1248 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1249 1250 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1251 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1252 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1253 1254 static inline unsigned int perf_guest_state(void) 1255 { 1256 return static_call(__perf_guest_state)(); 1257 } 1258 static inline unsigned long perf_guest_get_ip(void) 1259 { 1260 return static_call(__perf_guest_get_ip)(); 1261 } 1262 static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1263 { 1264 return static_call(__perf_guest_handle_intel_pt_intr)(); 1265 } 1266 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1267 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1268 #else 1269 static inline unsigned int perf_guest_state(void) { return 0; } 1270 static inline unsigned long perf_guest_get_ip(void) { return 0; } 1271 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1272 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1273 1274 extern void perf_event_exec(void); 1275 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1276 extern void perf_event_namespaces(struct task_struct *tsk); 1277 extern void perf_event_fork(struct task_struct *tsk); 1278 extern void perf_event_text_poke(const void *addr, 1279 const void *old_bytes, size_t old_len, 1280 const void *new_bytes, size_t new_len); 1281 1282 /* Callchains */ 1283 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1284 1285 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1286 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1287 extern struct perf_callchain_entry * 1288 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1289 u32 max_stack, bool crosstask, bool add_mark); 1290 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1291 extern int get_callchain_buffers(int max_stack); 1292 extern void put_callchain_buffers(void); 1293 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1294 extern void put_callchain_entry(int rctx); 1295 1296 extern int sysctl_perf_event_max_stack; 1297 extern int sysctl_perf_event_max_contexts_per_stack; 1298 1299 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1300 { 1301 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1302 struct perf_callchain_entry *entry = ctx->entry; 1303 entry->ip[entry->nr++] = ip; 1304 ++ctx->contexts; 1305 return 0; 1306 } else { 1307 ctx->contexts_maxed = true; 1308 return -1; /* no more room, stop walking the stack */ 1309 } 1310 } 1311 1312 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1313 { 1314 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1315 struct perf_callchain_entry *entry = ctx->entry; 1316 entry->ip[entry->nr++] = ip; 1317 ++ctx->nr; 1318 return 0; 1319 } else { 1320 return -1; /* no more room, stop walking the stack */ 1321 } 1322 } 1323 1324 extern int sysctl_perf_event_paranoid; 1325 extern int sysctl_perf_event_mlock; 1326 extern int sysctl_perf_event_sample_rate; 1327 extern int sysctl_perf_cpu_time_max_percent; 1328 1329 extern void perf_sample_event_took(u64 sample_len_ns); 1330 1331 int perf_proc_update_handler(struct ctl_table *table, int write, 1332 void *buffer, size_t *lenp, loff_t *ppos); 1333 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1334 void *buffer, size_t *lenp, loff_t *ppos); 1335 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1336 void *buffer, size_t *lenp, loff_t *ppos); 1337 1338 /* Access to perf_event_open(2) syscall. */ 1339 #define PERF_SECURITY_OPEN 0 1340 1341 /* Finer grained perf_event_open(2) access control. */ 1342 #define PERF_SECURITY_CPU 1 1343 #define PERF_SECURITY_KERNEL 2 1344 #define PERF_SECURITY_TRACEPOINT 3 1345 1346 static inline int perf_is_paranoid(void) 1347 { 1348 return sysctl_perf_event_paranoid > -1; 1349 } 1350 1351 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1352 { 1353 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1354 return -EACCES; 1355 1356 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1357 } 1358 1359 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1360 { 1361 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1362 return -EACCES; 1363 1364 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1365 } 1366 1367 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1368 { 1369 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1370 return -EPERM; 1371 1372 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1373 } 1374 1375 extern void perf_event_init(void); 1376 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1377 int entry_size, struct pt_regs *regs, 1378 struct hlist_head *head, int rctx, 1379 struct task_struct *task); 1380 extern void perf_bp_event(struct perf_event *event, void *data); 1381 1382 #ifndef perf_misc_flags 1383 # define perf_misc_flags(regs) \ 1384 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1385 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1386 #endif 1387 #ifndef perf_arch_bpf_user_pt_regs 1388 # define perf_arch_bpf_user_pt_regs(regs) regs 1389 #endif 1390 1391 static inline bool has_branch_stack(struct perf_event *event) 1392 { 1393 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1394 } 1395 1396 static inline bool needs_branch_stack(struct perf_event *event) 1397 { 1398 return event->attr.branch_sample_type != 0; 1399 } 1400 1401 static inline bool has_aux(struct perf_event *event) 1402 { 1403 return event->pmu->setup_aux; 1404 } 1405 1406 static inline bool is_write_backward(struct perf_event *event) 1407 { 1408 return !!event->attr.write_backward; 1409 } 1410 1411 static inline bool has_addr_filter(struct perf_event *event) 1412 { 1413 return event->pmu->nr_addr_filters; 1414 } 1415 1416 /* 1417 * An inherited event uses parent's filters 1418 */ 1419 static inline struct perf_addr_filters_head * 1420 perf_event_addr_filters(struct perf_event *event) 1421 { 1422 struct perf_addr_filters_head *ifh = &event->addr_filters; 1423 1424 if (event->parent) 1425 ifh = &event->parent->addr_filters; 1426 1427 return ifh; 1428 } 1429 1430 extern void perf_event_addr_filters_sync(struct perf_event *event); 1431 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1432 1433 extern int perf_output_begin(struct perf_output_handle *handle, 1434 struct perf_sample_data *data, 1435 struct perf_event *event, unsigned int size); 1436 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1437 struct perf_sample_data *data, 1438 struct perf_event *event, 1439 unsigned int size); 1440 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1441 struct perf_sample_data *data, 1442 struct perf_event *event, 1443 unsigned int size); 1444 1445 extern void perf_output_end(struct perf_output_handle *handle); 1446 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1447 const void *buf, unsigned int len); 1448 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1449 unsigned int len); 1450 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1451 struct perf_output_handle *handle, 1452 unsigned long from, unsigned long to); 1453 extern int perf_swevent_get_recursion_context(void); 1454 extern void perf_swevent_put_recursion_context(int rctx); 1455 extern u64 perf_swevent_set_period(struct perf_event *event); 1456 extern void perf_event_enable(struct perf_event *event); 1457 extern void perf_event_disable(struct perf_event *event); 1458 extern void perf_event_disable_local(struct perf_event *event); 1459 extern void perf_event_disable_inatomic(struct perf_event *event); 1460 extern void perf_event_task_tick(void); 1461 extern int perf_event_account_interrupt(struct perf_event *event); 1462 extern int perf_event_period(struct perf_event *event, u64 value); 1463 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1464 #else /* !CONFIG_PERF_EVENTS: */ 1465 static inline void * 1466 perf_aux_output_begin(struct perf_output_handle *handle, 1467 struct perf_event *event) { return NULL; } 1468 static inline void 1469 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1470 { } 1471 static inline int 1472 perf_aux_output_skip(struct perf_output_handle *handle, 1473 unsigned long size) { return -EINVAL; } 1474 static inline void * 1475 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1476 static inline void 1477 perf_event_task_migrate(struct task_struct *task) { } 1478 static inline void 1479 perf_event_task_sched_in(struct task_struct *prev, 1480 struct task_struct *task) { } 1481 static inline void 1482 perf_event_task_sched_out(struct task_struct *prev, 1483 struct task_struct *next) { } 1484 static inline int perf_event_init_task(struct task_struct *child, 1485 u64 clone_flags) { return 0; } 1486 static inline void perf_event_exit_task(struct task_struct *child) { } 1487 static inline void perf_event_free_task(struct task_struct *task) { } 1488 static inline void perf_event_delayed_put(struct task_struct *task) { } 1489 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1490 static inline const struct perf_event *perf_get_event(struct file *file) 1491 { 1492 return ERR_PTR(-EINVAL); 1493 } 1494 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1495 { 1496 return ERR_PTR(-EINVAL); 1497 } 1498 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1499 u64 *enabled, u64 *running) 1500 { 1501 return -EINVAL; 1502 } 1503 static inline void perf_event_print_debug(void) { } 1504 static inline int perf_event_task_disable(void) { return -EINVAL; } 1505 static inline int perf_event_task_enable(void) { return -EINVAL; } 1506 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1507 { 1508 return -EINVAL; 1509 } 1510 1511 static inline void 1512 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1513 static inline void 1514 perf_bp_event(struct perf_event *event, void *data) { } 1515 1516 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1517 1518 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1519 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1520 bool unregister, const char *sym) { } 1521 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1522 enum perf_bpf_event_type type, 1523 u16 flags) { } 1524 static inline void perf_event_exec(void) { } 1525 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1526 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1527 static inline void perf_event_fork(struct task_struct *tsk) { } 1528 static inline void perf_event_text_poke(const void *addr, 1529 const void *old_bytes, 1530 size_t old_len, 1531 const void *new_bytes, 1532 size_t new_len) { } 1533 static inline void perf_event_init(void) { } 1534 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1535 static inline void perf_swevent_put_recursion_context(int rctx) { } 1536 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1537 static inline void perf_event_enable(struct perf_event *event) { } 1538 static inline void perf_event_disable(struct perf_event *event) { } 1539 static inline int __perf_event_disable(void *info) { return -1; } 1540 static inline void perf_event_task_tick(void) { } 1541 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1542 static inline int perf_event_period(struct perf_event *event, u64 value) 1543 { 1544 return -EINVAL; 1545 } 1546 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1547 { 1548 return 0; 1549 } 1550 #endif 1551 1552 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1553 extern void perf_restore_debug_store(void); 1554 #else 1555 static inline void perf_restore_debug_store(void) { } 1556 #endif 1557 1558 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1559 { 1560 return frag->pad < sizeof(u64); 1561 } 1562 1563 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1564 1565 struct perf_pmu_events_attr { 1566 struct device_attribute attr; 1567 u64 id; 1568 const char *event_str; 1569 }; 1570 1571 struct perf_pmu_events_ht_attr { 1572 struct device_attribute attr; 1573 u64 id; 1574 const char *event_str_ht; 1575 const char *event_str_noht; 1576 }; 1577 1578 struct perf_pmu_events_hybrid_attr { 1579 struct device_attribute attr; 1580 u64 id; 1581 const char *event_str; 1582 u64 pmu_type; 1583 }; 1584 1585 struct perf_pmu_format_hybrid_attr { 1586 struct device_attribute attr; 1587 u64 pmu_type; 1588 }; 1589 1590 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1591 char *page); 1592 1593 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1594 static struct perf_pmu_events_attr _var = { \ 1595 .attr = __ATTR(_name, 0444, _show, NULL), \ 1596 .id = _id, \ 1597 }; 1598 1599 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1600 static struct perf_pmu_events_attr _var = { \ 1601 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1602 .id = 0, \ 1603 .event_str = _str, \ 1604 }; 1605 1606 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1607 (&((struct perf_pmu_events_attr[]) { \ 1608 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1609 .id = _id, } \ 1610 })[0].attr.attr) 1611 1612 #define PMU_FORMAT_ATTR(_name, _format) \ 1613 static ssize_t \ 1614 _name##_show(struct device *dev, \ 1615 struct device_attribute *attr, \ 1616 char *page) \ 1617 { \ 1618 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1619 return sprintf(page, _format "\n"); \ 1620 } \ 1621 \ 1622 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1623 1624 /* Performance counter hotplug functions */ 1625 #ifdef CONFIG_PERF_EVENTS 1626 int perf_event_init_cpu(unsigned int cpu); 1627 int perf_event_exit_cpu(unsigned int cpu); 1628 #else 1629 #define perf_event_init_cpu NULL 1630 #define perf_event_exit_cpu NULL 1631 #endif 1632 1633 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1634 struct perf_event_mmap_page *userpg, 1635 u64 now); 1636 1637 #ifdef CONFIG_MMU 1638 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1639 #endif 1640 1641 /* 1642 * Snapshot branch stack on software events. 1643 * 1644 * Branch stack can be very useful in understanding software events. For 1645 * example, when a long function, e.g. sys_perf_event_open, returns an 1646 * errno, it is not obvious why the function failed. Branch stack could 1647 * provide very helpful information in this type of scenarios. 1648 * 1649 * On software event, it is necessary to stop the hardware branch recorder 1650 * fast. Otherwise, the hardware register/buffer will be flushed with 1651 * entries of the triggering event. Therefore, static call is used to 1652 * stop the hardware recorder. 1653 */ 1654 1655 /* 1656 * cnt is the number of entries allocated for entries. 1657 * Return number of entries copied to . 1658 */ 1659 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1660 unsigned int cnt); 1661 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1662 1663 #endif /* _LINUX_PERF_EVENT_H */ 1664