xref: /linux-6.15/include/linux/perf_event.h (revision c8ea0d67)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61 
62 struct perf_callchain_entry {
63 	__u64				nr;
64 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66 
67 struct perf_callchain_entry_ctx {
68 	struct perf_callchain_entry *entry;
69 	u32			    max_stack;
70 	u32			    nr;
71 	short			    contexts;
72 	bool			    contexts_maxed;
73 };
74 
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 				     unsigned long off, unsigned long len);
77 
78 struct perf_raw_frag {
79 	union {
80 		struct perf_raw_frag	*next;
81 		unsigned long		pad;
82 	};
83 	perf_copy_f			copy;
84 	void				*data;
85 	u32				size;
86 } __packed;
87 
88 struct perf_raw_record {
89 	struct perf_raw_frag		frag;
90 	u32				size;
91 };
92 
93 /*
94  * branch stack layout:
95  *  nr: number of taken branches stored in entries[]
96  *  hw_idx: The low level index of raw branch records
97  *          for the most recent branch.
98  *          -1ULL means invalid/unknown.
99  *
100  * Note that nr can vary from sample to sample
101  * branches (to, from) are stored from most recent
102  * to least recent, i.e., entries[0] contains the most
103  * recent branch.
104  * The entries[] is an abstraction of raw branch records,
105  * which may not be stored in age order in HW, e.g. Intel LBR.
106  * The hw_idx is to expose the low level index of raw
107  * branch record for the most recent branch aka entries[0].
108  * The hw_idx index is between -1 (unknown) and max depth,
109  * which can be retrieved in /sys/devices/cpu/caps/branches.
110  * For the architectures whose raw branch records are
111  * already stored in age order, the hw_idx should be 0.
112  */
113 struct perf_branch_stack {
114 	__u64				nr;
115 	__u64				hw_idx;
116 	struct perf_branch_entry	entries[];
117 };
118 
119 struct task_struct;
120 
121 /*
122  * extra PMU register associated with an event
123  */
124 struct hw_perf_event_extra {
125 	u64		config;	/* register value */
126 	unsigned int	reg;	/* register address or index */
127 	int		alloc;	/* extra register already allocated */
128 	int		idx;	/* index in shared_regs->regs[] */
129 };
130 
131 /**
132  * struct hw_perf_event - performance event hardware details:
133  */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 	union {
137 		struct { /* hardware */
138 			u64		config;
139 			u64		last_tag;
140 			unsigned long	config_base;
141 			unsigned long	event_base;
142 			int		event_base_rdpmc;
143 			int		idx;
144 			int		last_cpu;
145 			int		flags;
146 
147 			struct hw_perf_event_extra extra_reg;
148 			struct hw_perf_event_extra branch_reg;
149 		};
150 		struct { /* software */
151 			struct hrtimer	hrtimer;
152 		};
153 		struct { /* tracepoint */
154 			/* for tp_event->class */
155 			struct list_head	tp_list;
156 		};
157 		struct { /* amd_power */
158 			u64	pwr_acc;
159 			u64	ptsc;
160 		};
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 		struct { /* breakpoint */
163 			/*
164 			 * Crufty hack to avoid the chicken and egg
165 			 * problem hw_breakpoint has with context
166 			 * creation and event initalization.
167 			 */
168 			struct arch_hw_breakpoint	info;
169 			struct list_head		bp_list;
170 		};
171 #endif
172 		struct { /* amd_iommu */
173 			u8	iommu_bank;
174 			u8	iommu_cntr;
175 			u16	padding;
176 			u64	conf;
177 			u64	conf1;
178 		};
179 	};
180 	/*
181 	 * If the event is a per task event, this will point to the task in
182 	 * question. See the comment in perf_event_alloc().
183 	 */
184 	struct task_struct		*target;
185 
186 	/*
187 	 * PMU would store hardware filter configuration
188 	 * here.
189 	 */
190 	void				*addr_filters;
191 
192 	/* Last sync'ed generation of filters */
193 	unsigned long			addr_filters_gen;
194 
195 /*
196  * hw_perf_event::state flags; used to track the PERF_EF_* state.
197  */
198 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH		0x04
201 
202 	int				state;
203 
204 	/*
205 	 * The last observed hardware counter value, updated with a
206 	 * local64_cmpxchg() such that pmu::read() can be called nested.
207 	 */
208 	local64_t			prev_count;
209 
210 	/*
211 	 * The period to start the next sample with.
212 	 */
213 	u64				sample_period;
214 
215 	/*
216 	 * The period we started this sample with.
217 	 */
218 	u64				last_period;
219 
220 	/*
221 	 * However much is left of the current period; note that this is
222 	 * a full 64bit value and allows for generation of periods longer
223 	 * than hardware might allow.
224 	 */
225 	local64_t			period_left;
226 
227 	/*
228 	 * State for throttling the event, see __perf_event_overflow() and
229 	 * perf_adjust_freq_unthr_context().
230 	 */
231 	u64                             interrupts_seq;
232 	u64				interrupts;
233 
234 	/*
235 	 * State for freq target events, see __perf_event_overflow() and
236 	 * perf_adjust_freq_unthr_context().
237 	 */
238 	u64				freq_time_stamp;
239 	u64				freq_count_stamp;
240 #endif
241 };
242 
243 struct perf_event;
244 
245 /*
246  * Common implementation detail of pmu::{start,commit,cancel}_txn
247  */
248 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
249 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
250 
251 /**
252  * pmu::capabilities flags
253  */
254 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
255 #define PERF_PMU_CAP_NO_NMI			0x02
256 #define PERF_PMU_CAP_AUX_NO_SG			0x04
257 #define PERF_PMU_CAP_EXTENDED_REGS		0x08
258 #define PERF_PMU_CAP_EXCLUSIVE			0x10
259 #define PERF_PMU_CAP_ITRACE			0x20
260 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
261 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
262 #define PERF_PMU_CAP_AUX_OUTPUT			0x100
263 
264 struct perf_output_handle;
265 
266 /**
267  * struct pmu - generic performance monitoring unit
268  */
269 struct pmu {
270 	struct list_head		entry;
271 
272 	struct module			*module;
273 	struct device			*dev;
274 	const struct attribute_group	**attr_groups;
275 	const struct attribute_group	**attr_update;
276 	const char			*name;
277 	int				type;
278 
279 	/*
280 	 * various common per-pmu feature flags
281 	 */
282 	int				capabilities;
283 
284 	int __percpu			*pmu_disable_count;
285 	struct perf_cpu_context __percpu *pmu_cpu_context;
286 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
287 	int				task_ctx_nr;
288 	int				hrtimer_interval_ms;
289 
290 	/* number of address filters this PMU can do */
291 	unsigned int			nr_addr_filters;
292 
293 	/*
294 	 * Fully disable/enable this PMU, can be used to protect from the PMI
295 	 * as well as for lazy/batch writing of the MSRs.
296 	 */
297 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
298 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
299 
300 	/*
301 	 * Try and initialize the event for this PMU.
302 	 *
303 	 * Returns:
304 	 *  -ENOENT	-- @event is not for this PMU
305 	 *
306 	 *  -ENODEV	-- @event is for this PMU but PMU not present
307 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
308 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
309 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
310 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
311 	 *
312 	 *  0		-- @event is for this PMU and valid
313 	 *
314 	 * Other error return values are allowed.
315 	 */
316 	int (*event_init)		(struct perf_event *event);
317 
318 	/*
319 	 * Notification that the event was mapped or unmapped.  Called
320 	 * in the context of the mapping task.
321 	 */
322 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
323 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
324 
325 	/*
326 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
327 	 * matching hw_perf_event::state flags.
328 	 */
329 #define PERF_EF_START	0x01		/* start the counter when adding    */
330 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
331 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
332 
333 	/*
334 	 * Adds/Removes a counter to/from the PMU, can be done inside a
335 	 * transaction, see the ->*_txn() methods.
336 	 *
337 	 * The add/del callbacks will reserve all hardware resources required
338 	 * to service the event, this includes any counter constraint
339 	 * scheduling etc.
340 	 *
341 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
342 	 * is on.
343 	 *
344 	 * ->add() called without PERF_EF_START should result in the same state
345 	 *  as ->add() followed by ->stop().
346 	 *
347 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
348 	 *  ->stop() that must deal with already being stopped without
349 	 *  PERF_EF_UPDATE.
350 	 */
351 	int  (*add)			(struct perf_event *event, int flags);
352 	void (*del)			(struct perf_event *event, int flags);
353 
354 	/*
355 	 * Starts/Stops a counter present on the PMU.
356 	 *
357 	 * The PMI handler should stop the counter when perf_event_overflow()
358 	 * returns !0. ->start() will be used to continue.
359 	 *
360 	 * Also used to change the sample period.
361 	 *
362 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
363 	 * is on -- will be called from NMI context with the PMU generates
364 	 * NMIs.
365 	 *
366 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
367 	 *  period/count values like ->read() would.
368 	 *
369 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
370 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
371 	 */
372 	void (*start)			(struct perf_event *event, int flags);
373 	void (*stop)			(struct perf_event *event, int flags);
374 
375 	/*
376 	 * Updates the counter value of the event.
377 	 *
378 	 * For sampling capable PMUs this will also update the software period
379 	 * hw_perf_event::period_left field.
380 	 */
381 	void (*read)			(struct perf_event *event);
382 
383 	/*
384 	 * Group events scheduling is treated as a transaction, add
385 	 * group events as a whole and perform one schedulability test.
386 	 * If the test fails, roll back the whole group
387 	 *
388 	 * Start the transaction, after this ->add() doesn't need to
389 	 * do schedulability tests.
390 	 *
391 	 * Optional.
392 	 */
393 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
394 	/*
395 	 * If ->start_txn() disabled the ->add() schedulability test
396 	 * then ->commit_txn() is required to perform one. On success
397 	 * the transaction is closed. On error the transaction is kept
398 	 * open until ->cancel_txn() is called.
399 	 *
400 	 * Optional.
401 	 */
402 	int  (*commit_txn)		(struct pmu *pmu);
403 	/*
404 	 * Will cancel the transaction, assumes ->del() is called
405 	 * for each successful ->add() during the transaction.
406 	 *
407 	 * Optional.
408 	 */
409 	void (*cancel_txn)		(struct pmu *pmu);
410 
411 	/*
412 	 * Will return the value for perf_event_mmap_page::index for this event,
413 	 * if no implementation is provided it will default to: event->hw.idx + 1.
414 	 */
415 	int (*event_idx)		(struct perf_event *event); /*optional */
416 
417 	/*
418 	 * context-switches callback
419 	 */
420 	void (*sched_task)		(struct perf_event_context *ctx,
421 					bool sched_in);
422 
423 	/*
424 	 * Kmem cache of PMU specific data
425 	 */
426 	struct kmem_cache		*task_ctx_cache;
427 
428 	/*
429 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
430 	 * can be synchronized using this function. See Intel LBR callstack support
431 	 * implementation and Perf core context switch handling callbacks for usage
432 	 * examples.
433 	 */
434 	void (*swap_task_ctx)		(struct perf_event_context *prev,
435 					 struct perf_event_context *next);
436 					/* optional */
437 
438 	/*
439 	 * Set up pmu-private data structures for an AUX area
440 	 */
441 	void *(*setup_aux)		(struct perf_event *event, void **pages,
442 					 int nr_pages, bool overwrite);
443 					/* optional */
444 
445 	/*
446 	 * Free pmu-private AUX data structures
447 	 */
448 	void (*free_aux)		(void *aux); /* optional */
449 
450 	/*
451 	 * Take a snapshot of the AUX buffer without touching the event
452 	 * state, so that preempting ->start()/->stop() callbacks does
453 	 * not interfere with their logic. Called in PMI context.
454 	 *
455 	 * Returns the size of AUX data copied to the output handle.
456 	 *
457 	 * Optional.
458 	 */
459 	long (*snapshot_aux)		(struct perf_event *event,
460 					 struct perf_output_handle *handle,
461 					 unsigned long size);
462 
463 	/*
464 	 * Validate address range filters: make sure the HW supports the
465 	 * requested configuration and number of filters; return 0 if the
466 	 * supplied filters are valid, -errno otherwise.
467 	 *
468 	 * Runs in the context of the ioctl()ing process and is not serialized
469 	 * with the rest of the PMU callbacks.
470 	 */
471 	int (*addr_filters_validate)	(struct list_head *filters);
472 					/* optional */
473 
474 	/*
475 	 * Synchronize address range filter configuration:
476 	 * translate hw-agnostic filters into hardware configuration in
477 	 * event::hw::addr_filters.
478 	 *
479 	 * Runs as a part of filter sync sequence that is done in ->start()
480 	 * callback by calling perf_event_addr_filters_sync().
481 	 *
482 	 * May (and should) traverse event::addr_filters::list, for which its
483 	 * caller provides necessary serialization.
484 	 */
485 	void (*addr_filters_sync)	(struct perf_event *event);
486 					/* optional */
487 
488 	/*
489 	 * Check if event can be used for aux_output purposes for
490 	 * events of this PMU.
491 	 *
492 	 * Runs from perf_event_open(). Should return 0 for "no match"
493 	 * or non-zero for "match".
494 	 */
495 	int (*aux_output_match)		(struct perf_event *event);
496 					/* optional */
497 
498 	/*
499 	 * Filter events for PMU-specific reasons.
500 	 */
501 	int (*filter_match)		(struct perf_event *event); /* optional */
502 
503 	/*
504 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
505 	 */
506 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
507 };
508 
509 enum perf_addr_filter_action_t {
510 	PERF_ADDR_FILTER_ACTION_STOP = 0,
511 	PERF_ADDR_FILTER_ACTION_START,
512 	PERF_ADDR_FILTER_ACTION_FILTER,
513 };
514 
515 /**
516  * struct perf_addr_filter - address range filter definition
517  * @entry:	event's filter list linkage
518  * @path:	object file's path for file-based filters
519  * @offset:	filter range offset
520  * @size:	filter range size (size==0 means single address trigger)
521  * @action:	filter/start/stop
522  *
523  * This is a hardware-agnostic filter configuration as specified by the user.
524  */
525 struct perf_addr_filter {
526 	struct list_head	entry;
527 	struct path		path;
528 	unsigned long		offset;
529 	unsigned long		size;
530 	enum perf_addr_filter_action_t	action;
531 };
532 
533 /**
534  * struct perf_addr_filters_head - container for address range filters
535  * @list:	list of filters for this event
536  * @lock:	spinlock that serializes accesses to the @list and event's
537  *		(and its children's) filter generations.
538  * @nr_file_filters:	number of file-based filters
539  *
540  * A child event will use parent's @list (and therefore @lock), so they are
541  * bundled together; see perf_event_addr_filters().
542  */
543 struct perf_addr_filters_head {
544 	struct list_head	list;
545 	raw_spinlock_t		lock;
546 	unsigned int		nr_file_filters;
547 };
548 
549 struct perf_addr_filter_range {
550 	unsigned long		start;
551 	unsigned long		size;
552 };
553 
554 /**
555  * enum perf_event_state - the states of an event:
556  */
557 enum perf_event_state {
558 	PERF_EVENT_STATE_DEAD		= -4,
559 	PERF_EVENT_STATE_EXIT		= -3,
560 	PERF_EVENT_STATE_ERROR		= -2,
561 	PERF_EVENT_STATE_OFF		= -1,
562 	PERF_EVENT_STATE_INACTIVE	=  0,
563 	PERF_EVENT_STATE_ACTIVE		=  1,
564 };
565 
566 struct file;
567 struct perf_sample_data;
568 
569 typedef void (*perf_overflow_handler_t)(struct perf_event *,
570 					struct perf_sample_data *,
571 					struct pt_regs *regs);
572 
573 /*
574  * Event capabilities. For event_caps and groups caps.
575  *
576  * PERF_EV_CAP_SOFTWARE: Is a software event.
577  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
578  * from any CPU in the package where it is active.
579  */
580 #define PERF_EV_CAP_SOFTWARE		BIT(0)
581 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
582 
583 #define SWEVENT_HLIST_BITS		8
584 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
585 
586 struct swevent_hlist {
587 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
588 	struct rcu_head			rcu_head;
589 };
590 
591 #define PERF_ATTACH_CONTEXT	0x01
592 #define PERF_ATTACH_GROUP	0x02
593 #define PERF_ATTACH_TASK	0x04
594 #define PERF_ATTACH_TASK_DATA	0x08
595 #define PERF_ATTACH_ITRACE	0x10
596 
597 struct perf_cgroup;
598 struct perf_buffer;
599 
600 struct pmu_event_list {
601 	raw_spinlock_t		lock;
602 	struct list_head	list;
603 };
604 
605 #define for_each_sibling_event(sibling, event)			\
606 	if ((event)->group_leader == (event))			\
607 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
608 
609 /**
610  * struct perf_event - performance event kernel representation:
611  */
612 struct perf_event {
613 #ifdef CONFIG_PERF_EVENTS
614 	/*
615 	 * entry onto perf_event_context::event_list;
616 	 *   modifications require ctx->lock
617 	 *   RCU safe iterations.
618 	 */
619 	struct list_head		event_entry;
620 
621 	/*
622 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
623 	 * either sufficies for read.
624 	 */
625 	struct list_head		sibling_list;
626 	struct list_head		active_list;
627 	/*
628 	 * Node on the pinned or flexible tree located at the event context;
629 	 */
630 	struct rb_node			group_node;
631 	u64				group_index;
632 	/*
633 	 * We need storage to track the entries in perf_pmu_migrate_context; we
634 	 * cannot use the event_entry because of RCU and we want to keep the
635 	 * group in tact which avoids us using the other two entries.
636 	 */
637 	struct list_head		migrate_entry;
638 
639 	struct hlist_node		hlist_entry;
640 	struct list_head		active_entry;
641 	int				nr_siblings;
642 
643 	/* Not serialized. Only written during event initialization. */
644 	int				event_caps;
645 	/* The cumulative AND of all event_caps for events in this group. */
646 	int				group_caps;
647 
648 	struct perf_event		*group_leader;
649 	struct pmu			*pmu;
650 	void				*pmu_private;
651 
652 	enum perf_event_state		state;
653 	unsigned int			attach_state;
654 	local64_t			count;
655 	atomic64_t			child_count;
656 
657 	/*
658 	 * These are the total time in nanoseconds that the event
659 	 * has been enabled (i.e. eligible to run, and the task has
660 	 * been scheduled in, if this is a per-task event)
661 	 * and running (scheduled onto the CPU), respectively.
662 	 */
663 	u64				total_time_enabled;
664 	u64				total_time_running;
665 	u64				tstamp;
666 
667 	/*
668 	 * timestamp shadows the actual context timing but it can
669 	 * be safely used in NMI interrupt context. It reflects the
670 	 * context time as it was when the event was last scheduled in.
671 	 *
672 	 * ctx_time already accounts for ctx->timestamp. Therefore to
673 	 * compute ctx_time for a sample, simply add perf_clock().
674 	 */
675 	u64				shadow_ctx_time;
676 
677 	struct perf_event_attr		attr;
678 	u16				header_size;
679 	u16				id_header_size;
680 	u16				read_size;
681 	struct hw_perf_event		hw;
682 
683 	struct perf_event_context	*ctx;
684 	atomic_long_t			refcount;
685 
686 	/*
687 	 * These accumulate total time (in nanoseconds) that children
688 	 * events have been enabled and running, respectively.
689 	 */
690 	atomic64_t			child_total_time_enabled;
691 	atomic64_t			child_total_time_running;
692 
693 	/*
694 	 * Protect attach/detach and child_list:
695 	 */
696 	struct mutex			child_mutex;
697 	struct list_head		child_list;
698 	struct perf_event		*parent;
699 
700 	int				oncpu;
701 	int				cpu;
702 
703 	struct list_head		owner_entry;
704 	struct task_struct		*owner;
705 
706 	/* mmap bits */
707 	struct mutex			mmap_mutex;
708 	atomic_t			mmap_count;
709 
710 	struct perf_buffer		*rb;
711 	struct list_head		rb_entry;
712 	unsigned long			rcu_batches;
713 	int				rcu_pending;
714 
715 	/* poll related */
716 	wait_queue_head_t		waitq;
717 	struct fasync_struct		*fasync;
718 
719 	/* delayed work for NMIs and such */
720 	int				pending_wakeup;
721 	int				pending_kill;
722 	int				pending_disable;
723 	struct irq_work			pending;
724 
725 	atomic_t			event_limit;
726 
727 	/* address range filters */
728 	struct perf_addr_filters_head	addr_filters;
729 	/* vma address array for file-based filders */
730 	struct perf_addr_filter_range	*addr_filter_ranges;
731 	unsigned long			addr_filters_gen;
732 
733 	/* for aux_output events */
734 	struct perf_event		*aux_event;
735 
736 	void (*destroy)(struct perf_event *);
737 	struct rcu_head			rcu_head;
738 
739 	struct pid_namespace		*ns;
740 	u64				id;
741 
742 	u64				(*clock)(void);
743 	perf_overflow_handler_t		overflow_handler;
744 	void				*overflow_handler_context;
745 #ifdef CONFIG_BPF_SYSCALL
746 	perf_overflow_handler_t		orig_overflow_handler;
747 	struct bpf_prog			*prog;
748 #endif
749 
750 #ifdef CONFIG_EVENT_TRACING
751 	struct trace_event_call		*tp_event;
752 	struct event_filter		*filter;
753 #ifdef CONFIG_FUNCTION_TRACER
754 	struct ftrace_ops               ftrace_ops;
755 #endif
756 #endif
757 
758 #ifdef CONFIG_CGROUP_PERF
759 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
760 #endif
761 
762 #ifdef CONFIG_SECURITY
763 	void *security;
764 #endif
765 	struct list_head		sb_list;
766 #endif /* CONFIG_PERF_EVENTS */
767 };
768 
769 
770 struct perf_event_groups {
771 	struct rb_root	tree;
772 	u64		index;
773 };
774 
775 /**
776  * struct perf_event_context - event context structure
777  *
778  * Used as a container for task events and CPU events as well:
779  */
780 struct perf_event_context {
781 	struct pmu			*pmu;
782 	/*
783 	 * Protect the states of the events in the list,
784 	 * nr_active, and the list:
785 	 */
786 	raw_spinlock_t			lock;
787 	/*
788 	 * Protect the list of events.  Locking either mutex or lock
789 	 * is sufficient to ensure the list doesn't change; to change
790 	 * the list you need to lock both the mutex and the spinlock.
791 	 */
792 	struct mutex			mutex;
793 
794 	struct list_head		active_ctx_list;
795 	struct perf_event_groups	pinned_groups;
796 	struct perf_event_groups	flexible_groups;
797 	struct list_head		event_list;
798 
799 	struct list_head		pinned_active;
800 	struct list_head		flexible_active;
801 
802 	int				nr_events;
803 	int				nr_active;
804 	int				is_active;
805 	int				nr_stat;
806 	int				nr_freq;
807 	int				rotate_disable;
808 	/*
809 	 * Set when nr_events != nr_active, except tolerant to events not
810 	 * necessary to be active due to scheduling constraints, such as cgroups.
811 	 */
812 	int				rotate_necessary;
813 	refcount_t			refcount;
814 	struct task_struct		*task;
815 
816 	/*
817 	 * Context clock, runs when context enabled.
818 	 */
819 	u64				time;
820 	u64				timestamp;
821 
822 	/*
823 	 * These fields let us detect when two contexts have both
824 	 * been cloned (inherited) from a common ancestor.
825 	 */
826 	struct perf_event_context	*parent_ctx;
827 	u64				parent_gen;
828 	u64				generation;
829 	int				pin_count;
830 #ifdef CONFIG_CGROUP_PERF
831 	int				nr_cgroups;	 /* cgroup evts */
832 #endif
833 	void				*task_ctx_data; /* pmu specific data */
834 	struct rcu_head			rcu_head;
835 };
836 
837 /*
838  * Number of contexts where an event can trigger:
839  *	task, softirq, hardirq, nmi.
840  */
841 #define PERF_NR_CONTEXTS	4
842 
843 /**
844  * struct perf_event_cpu_context - per cpu event context structure
845  */
846 struct perf_cpu_context {
847 	struct perf_event_context	ctx;
848 	struct perf_event_context	*task_ctx;
849 	int				active_oncpu;
850 	int				exclusive;
851 
852 	raw_spinlock_t			hrtimer_lock;
853 	struct hrtimer			hrtimer;
854 	ktime_t				hrtimer_interval;
855 	unsigned int			hrtimer_active;
856 
857 #ifdef CONFIG_CGROUP_PERF
858 	struct perf_cgroup		*cgrp;
859 	struct list_head		cgrp_cpuctx_entry;
860 #endif
861 
862 	struct list_head		sched_cb_entry;
863 	int				sched_cb_usage;
864 
865 	int				online;
866 	/*
867 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
868 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
869 	 */
870 	int				heap_size;
871 	struct perf_event		**heap;
872 	struct perf_event		*heap_default[2];
873 };
874 
875 struct perf_output_handle {
876 	struct perf_event		*event;
877 	struct perf_buffer		*rb;
878 	unsigned long			wakeup;
879 	unsigned long			size;
880 	u64				aux_flags;
881 	union {
882 		void			*addr;
883 		unsigned long		head;
884 	};
885 	int				page;
886 };
887 
888 struct bpf_perf_event_data_kern {
889 	bpf_user_pt_regs_t *regs;
890 	struct perf_sample_data *data;
891 	struct perf_event *event;
892 };
893 
894 #ifdef CONFIG_CGROUP_PERF
895 
896 /*
897  * perf_cgroup_info keeps track of time_enabled for a cgroup.
898  * This is a per-cpu dynamically allocated data structure.
899  */
900 struct perf_cgroup_info {
901 	u64				time;
902 	u64				timestamp;
903 };
904 
905 struct perf_cgroup {
906 	struct cgroup_subsys_state	css;
907 	struct perf_cgroup_info	__percpu *info;
908 };
909 
910 /*
911  * Must ensure cgroup is pinned (css_get) before calling
912  * this function. In other words, we cannot call this function
913  * if there is no cgroup event for the current CPU context.
914  */
915 static inline struct perf_cgroup *
916 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
917 {
918 	return container_of(task_css_check(task, perf_event_cgrp_id,
919 					   ctx ? lockdep_is_held(&ctx->lock)
920 					       : true),
921 			    struct perf_cgroup, css);
922 }
923 #endif /* CONFIG_CGROUP_PERF */
924 
925 #ifdef CONFIG_PERF_EVENTS
926 
927 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
928 				   struct perf_event *event);
929 extern void perf_aux_output_end(struct perf_output_handle *handle,
930 				unsigned long size);
931 extern int perf_aux_output_skip(struct perf_output_handle *handle,
932 				unsigned long size);
933 extern void *perf_get_aux(struct perf_output_handle *handle);
934 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
935 extern void perf_event_itrace_started(struct perf_event *event);
936 
937 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
938 extern void perf_pmu_unregister(struct pmu *pmu);
939 
940 extern int perf_num_counters(void);
941 extern const char *perf_pmu_name(void);
942 extern void __perf_event_task_sched_in(struct task_struct *prev,
943 				       struct task_struct *task);
944 extern void __perf_event_task_sched_out(struct task_struct *prev,
945 					struct task_struct *next);
946 extern int perf_event_init_task(struct task_struct *child);
947 extern void perf_event_exit_task(struct task_struct *child);
948 extern void perf_event_free_task(struct task_struct *task);
949 extern void perf_event_delayed_put(struct task_struct *task);
950 extern struct file *perf_event_get(unsigned int fd);
951 extern const struct perf_event *perf_get_event(struct file *file);
952 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
953 extern void perf_event_print_debug(void);
954 extern void perf_pmu_disable(struct pmu *pmu);
955 extern void perf_pmu_enable(struct pmu *pmu);
956 extern void perf_sched_cb_dec(struct pmu *pmu);
957 extern void perf_sched_cb_inc(struct pmu *pmu);
958 extern int perf_event_task_disable(void);
959 extern int perf_event_task_enable(void);
960 
961 extern void perf_pmu_resched(struct pmu *pmu);
962 
963 extern int perf_event_refresh(struct perf_event *event, int refresh);
964 extern void perf_event_update_userpage(struct perf_event *event);
965 extern int perf_event_release_kernel(struct perf_event *event);
966 extern struct perf_event *
967 perf_event_create_kernel_counter(struct perf_event_attr *attr,
968 				int cpu,
969 				struct task_struct *task,
970 				perf_overflow_handler_t callback,
971 				void *context);
972 extern void perf_pmu_migrate_context(struct pmu *pmu,
973 				int src_cpu, int dst_cpu);
974 int perf_event_read_local(struct perf_event *event, u64 *value,
975 			  u64 *enabled, u64 *running);
976 extern u64 perf_event_read_value(struct perf_event *event,
977 				 u64 *enabled, u64 *running);
978 
979 
980 struct perf_sample_data {
981 	/*
982 	 * Fields set by perf_sample_data_init(), group so as to
983 	 * minimize the cachelines touched.
984 	 */
985 	u64				addr;
986 	struct perf_raw_record		*raw;
987 	struct perf_branch_stack	*br_stack;
988 	u64				period;
989 	u64				weight;
990 	u64				txn;
991 	union  perf_mem_data_src	data_src;
992 
993 	/*
994 	 * The other fields, optionally {set,used} by
995 	 * perf_{prepare,output}_sample().
996 	 */
997 	u64				type;
998 	u64				ip;
999 	struct {
1000 		u32	pid;
1001 		u32	tid;
1002 	}				tid_entry;
1003 	u64				time;
1004 	u64				id;
1005 	u64				stream_id;
1006 	struct {
1007 		u32	cpu;
1008 		u32	reserved;
1009 	}				cpu_entry;
1010 	struct perf_callchain_entry	*callchain;
1011 	u64				aux_size;
1012 
1013 	/*
1014 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
1015 	 * on arch details.
1016 	 */
1017 	struct perf_regs		regs_user;
1018 	struct pt_regs			regs_user_copy;
1019 
1020 	struct perf_regs		regs_intr;
1021 	u64				stack_user_size;
1022 
1023 	u64				phys_addr;
1024 	u64				cgroup;
1025 } ____cacheline_aligned;
1026 
1027 /* default value for data source */
1028 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1029 		    PERF_MEM_S(LVL, NA)   |\
1030 		    PERF_MEM_S(SNOOP, NA) |\
1031 		    PERF_MEM_S(LOCK, NA)  |\
1032 		    PERF_MEM_S(TLB, NA))
1033 
1034 static inline void perf_sample_data_init(struct perf_sample_data *data,
1035 					 u64 addr, u64 period)
1036 {
1037 	/* remaining struct members initialized in perf_prepare_sample() */
1038 	data->addr = addr;
1039 	data->raw  = NULL;
1040 	data->br_stack = NULL;
1041 	data->period = period;
1042 	data->weight = 0;
1043 	data->data_src.val = PERF_MEM_NA;
1044 	data->txn = 0;
1045 }
1046 
1047 extern void perf_output_sample(struct perf_output_handle *handle,
1048 			       struct perf_event_header *header,
1049 			       struct perf_sample_data *data,
1050 			       struct perf_event *event);
1051 extern void perf_prepare_sample(struct perf_event_header *header,
1052 				struct perf_sample_data *data,
1053 				struct perf_event *event,
1054 				struct pt_regs *regs);
1055 
1056 extern int perf_event_overflow(struct perf_event *event,
1057 				 struct perf_sample_data *data,
1058 				 struct pt_regs *regs);
1059 
1060 extern void perf_event_output_forward(struct perf_event *event,
1061 				     struct perf_sample_data *data,
1062 				     struct pt_regs *regs);
1063 extern void perf_event_output_backward(struct perf_event *event,
1064 				       struct perf_sample_data *data,
1065 				       struct pt_regs *regs);
1066 extern int perf_event_output(struct perf_event *event,
1067 			     struct perf_sample_data *data,
1068 			     struct pt_regs *regs);
1069 
1070 static inline bool
1071 is_default_overflow_handler(struct perf_event *event)
1072 {
1073 	if (likely(event->overflow_handler == perf_event_output_forward))
1074 		return true;
1075 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1076 		return true;
1077 	return false;
1078 }
1079 
1080 extern void
1081 perf_event_header__init_id(struct perf_event_header *header,
1082 			   struct perf_sample_data *data,
1083 			   struct perf_event *event);
1084 extern void
1085 perf_event__output_id_sample(struct perf_event *event,
1086 			     struct perf_output_handle *handle,
1087 			     struct perf_sample_data *sample);
1088 
1089 extern void
1090 perf_log_lost_samples(struct perf_event *event, u64 lost);
1091 
1092 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1093 {
1094 	struct perf_event_attr *attr = &event->attr;
1095 
1096 	return attr->exclude_idle || attr->exclude_user ||
1097 	       attr->exclude_kernel || attr->exclude_hv ||
1098 	       attr->exclude_guest || attr->exclude_host;
1099 }
1100 
1101 static inline bool is_sampling_event(struct perf_event *event)
1102 {
1103 	return event->attr.sample_period != 0;
1104 }
1105 
1106 /*
1107  * Return 1 for a software event, 0 for a hardware event
1108  */
1109 static inline int is_software_event(struct perf_event *event)
1110 {
1111 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1112 }
1113 
1114 /*
1115  * Return 1 for event in sw context, 0 for event in hw context
1116  */
1117 static inline int in_software_context(struct perf_event *event)
1118 {
1119 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1120 }
1121 
1122 static inline int is_exclusive_pmu(struct pmu *pmu)
1123 {
1124 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1125 }
1126 
1127 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1128 
1129 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1130 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1131 
1132 #ifndef perf_arch_fetch_caller_regs
1133 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1134 #endif
1135 
1136 /*
1137  * When generating a perf sample in-line, instead of from an interrupt /
1138  * exception, we lack a pt_regs. This is typically used from software events
1139  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1140  *
1141  * We typically don't need a full set, but (for x86) do require:
1142  * - ip for PERF_SAMPLE_IP
1143  * - cs for user_mode() tests
1144  * - sp for PERF_SAMPLE_CALLCHAIN
1145  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1146  *
1147  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1148  * things like PERF_SAMPLE_REGS_INTR.
1149  */
1150 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1151 {
1152 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1153 }
1154 
1155 static __always_inline void
1156 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1157 {
1158 	if (static_key_false(&perf_swevent_enabled[event_id]))
1159 		__perf_sw_event(event_id, nr, regs, addr);
1160 }
1161 
1162 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1163 
1164 /*
1165  * 'Special' version for the scheduler, it hard assumes no recursion,
1166  * which is guaranteed by us not actually scheduling inside other swevents
1167  * because those disable preemption.
1168  */
1169 static __always_inline void
1170 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1171 {
1172 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1173 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1174 
1175 		perf_fetch_caller_regs(regs);
1176 		___perf_sw_event(event_id, nr, regs, addr);
1177 	}
1178 }
1179 
1180 extern struct static_key_false perf_sched_events;
1181 
1182 static __always_inline bool
1183 perf_sw_migrate_enabled(void)
1184 {
1185 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1186 		return true;
1187 	return false;
1188 }
1189 
1190 static inline void perf_event_task_migrate(struct task_struct *task)
1191 {
1192 	if (perf_sw_migrate_enabled())
1193 		task->sched_migrated = 1;
1194 }
1195 
1196 static inline void perf_event_task_sched_in(struct task_struct *prev,
1197 					    struct task_struct *task)
1198 {
1199 	if (static_branch_unlikely(&perf_sched_events))
1200 		__perf_event_task_sched_in(prev, task);
1201 
1202 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1203 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1204 
1205 		perf_fetch_caller_regs(regs);
1206 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1207 		task->sched_migrated = 0;
1208 	}
1209 }
1210 
1211 static inline void perf_event_task_sched_out(struct task_struct *prev,
1212 					     struct task_struct *next)
1213 {
1214 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1215 
1216 	if (static_branch_unlikely(&perf_sched_events))
1217 		__perf_event_task_sched_out(prev, next);
1218 }
1219 
1220 extern void perf_event_mmap(struct vm_area_struct *vma);
1221 
1222 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1223 			       bool unregister, const char *sym);
1224 extern void perf_event_bpf_event(struct bpf_prog *prog,
1225 				 enum perf_bpf_event_type type,
1226 				 u16 flags);
1227 
1228 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1229 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1230 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1231 
1232 extern void perf_event_exec(void);
1233 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1234 extern void perf_event_namespaces(struct task_struct *tsk);
1235 extern void perf_event_fork(struct task_struct *tsk);
1236 extern void perf_event_text_poke(const void *addr,
1237 				 const void *old_bytes, size_t old_len,
1238 				 const void *new_bytes, size_t new_len);
1239 
1240 /* Callchains */
1241 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1242 
1243 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1244 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1245 extern struct perf_callchain_entry *
1246 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1247 		   u32 max_stack, bool crosstask, bool add_mark);
1248 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1249 extern int get_callchain_buffers(int max_stack);
1250 extern void put_callchain_buffers(void);
1251 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1252 extern void put_callchain_entry(int rctx);
1253 
1254 extern int sysctl_perf_event_max_stack;
1255 extern int sysctl_perf_event_max_contexts_per_stack;
1256 
1257 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1258 {
1259 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1260 		struct perf_callchain_entry *entry = ctx->entry;
1261 		entry->ip[entry->nr++] = ip;
1262 		++ctx->contexts;
1263 		return 0;
1264 	} else {
1265 		ctx->contexts_maxed = true;
1266 		return -1; /* no more room, stop walking the stack */
1267 	}
1268 }
1269 
1270 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1271 {
1272 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1273 		struct perf_callchain_entry *entry = ctx->entry;
1274 		entry->ip[entry->nr++] = ip;
1275 		++ctx->nr;
1276 		return 0;
1277 	} else {
1278 		return -1; /* no more room, stop walking the stack */
1279 	}
1280 }
1281 
1282 extern int sysctl_perf_event_paranoid;
1283 extern int sysctl_perf_event_mlock;
1284 extern int sysctl_perf_event_sample_rate;
1285 extern int sysctl_perf_cpu_time_max_percent;
1286 
1287 extern void perf_sample_event_took(u64 sample_len_ns);
1288 
1289 int perf_proc_update_handler(struct ctl_table *table, int write,
1290 		void *buffer, size_t *lenp, loff_t *ppos);
1291 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1292 		void *buffer, size_t *lenp, loff_t *ppos);
1293 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1294 		void *buffer, size_t *lenp, loff_t *ppos);
1295 
1296 /* Access to perf_event_open(2) syscall. */
1297 #define PERF_SECURITY_OPEN		0
1298 
1299 /* Finer grained perf_event_open(2) access control. */
1300 #define PERF_SECURITY_CPU		1
1301 #define PERF_SECURITY_KERNEL		2
1302 #define PERF_SECURITY_TRACEPOINT	3
1303 
1304 static inline int perf_is_paranoid(void)
1305 {
1306 	return sysctl_perf_event_paranoid > -1;
1307 }
1308 
1309 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1310 {
1311 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1312 		return -EACCES;
1313 
1314 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1315 }
1316 
1317 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1318 {
1319 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1320 		return -EACCES;
1321 
1322 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1323 }
1324 
1325 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1326 {
1327 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1328 		return -EPERM;
1329 
1330 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1331 }
1332 
1333 extern void perf_event_init(void);
1334 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1335 			  int entry_size, struct pt_regs *regs,
1336 			  struct hlist_head *head, int rctx,
1337 			  struct task_struct *task);
1338 extern void perf_bp_event(struct perf_event *event, void *data);
1339 
1340 #ifndef perf_misc_flags
1341 # define perf_misc_flags(regs) \
1342 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1343 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1344 #endif
1345 #ifndef perf_arch_bpf_user_pt_regs
1346 # define perf_arch_bpf_user_pt_regs(regs) regs
1347 #endif
1348 
1349 static inline bool has_branch_stack(struct perf_event *event)
1350 {
1351 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1352 }
1353 
1354 static inline bool needs_branch_stack(struct perf_event *event)
1355 {
1356 	return event->attr.branch_sample_type != 0;
1357 }
1358 
1359 static inline bool has_aux(struct perf_event *event)
1360 {
1361 	return event->pmu->setup_aux;
1362 }
1363 
1364 static inline bool is_write_backward(struct perf_event *event)
1365 {
1366 	return !!event->attr.write_backward;
1367 }
1368 
1369 static inline bool has_addr_filter(struct perf_event *event)
1370 {
1371 	return event->pmu->nr_addr_filters;
1372 }
1373 
1374 /*
1375  * An inherited event uses parent's filters
1376  */
1377 static inline struct perf_addr_filters_head *
1378 perf_event_addr_filters(struct perf_event *event)
1379 {
1380 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1381 
1382 	if (event->parent)
1383 		ifh = &event->parent->addr_filters;
1384 
1385 	return ifh;
1386 }
1387 
1388 extern void perf_event_addr_filters_sync(struct perf_event *event);
1389 
1390 extern int perf_output_begin(struct perf_output_handle *handle,
1391 			     struct perf_event *event, unsigned int size);
1392 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1393 				    struct perf_event *event,
1394 				    unsigned int size);
1395 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1396 				      struct perf_event *event,
1397 				      unsigned int size);
1398 
1399 extern void perf_output_end(struct perf_output_handle *handle);
1400 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1401 			     const void *buf, unsigned int len);
1402 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1403 				     unsigned int len);
1404 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1405 				 struct perf_output_handle *handle,
1406 				 unsigned long from, unsigned long to);
1407 extern int perf_swevent_get_recursion_context(void);
1408 extern void perf_swevent_put_recursion_context(int rctx);
1409 extern u64 perf_swevent_set_period(struct perf_event *event);
1410 extern void perf_event_enable(struct perf_event *event);
1411 extern void perf_event_disable(struct perf_event *event);
1412 extern void perf_event_disable_local(struct perf_event *event);
1413 extern void perf_event_disable_inatomic(struct perf_event *event);
1414 extern void perf_event_task_tick(void);
1415 extern int perf_event_account_interrupt(struct perf_event *event);
1416 extern int perf_event_period(struct perf_event *event, u64 value);
1417 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1418 #else /* !CONFIG_PERF_EVENTS: */
1419 static inline void *
1420 perf_aux_output_begin(struct perf_output_handle *handle,
1421 		      struct perf_event *event)				{ return NULL; }
1422 static inline void
1423 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1424 									{ }
1425 static inline int
1426 perf_aux_output_skip(struct perf_output_handle *handle,
1427 		     unsigned long size)				{ return -EINVAL; }
1428 static inline void *
1429 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1430 static inline void
1431 perf_event_task_migrate(struct task_struct *task)			{ }
1432 static inline void
1433 perf_event_task_sched_in(struct task_struct *prev,
1434 			 struct task_struct *task)			{ }
1435 static inline void
1436 perf_event_task_sched_out(struct task_struct *prev,
1437 			  struct task_struct *next)			{ }
1438 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1439 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1440 static inline void perf_event_free_task(struct task_struct *task)	{ }
1441 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1442 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1443 static inline const struct perf_event *perf_get_event(struct file *file)
1444 {
1445 	return ERR_PTR(-EINVAL);
1446 }
1447 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1448 {
1449 	return ERR_PTR(-EINVAL);
1450 }
1451 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1452 					u64 *enabled, u64 *running)
1453 {
1454 	return -EINVAL;
1455 }
1456 static inline void perf_event_print_debug(void)				{ }
1457 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1458 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1459 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1460 {
1461 	return -EINVAL;
1462 }
1463 
1464 static inline void
1465 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1466 static inline void
1467 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1468 static inline void
1469 perf_bp_event(struct perf_event *event, void *data)			{ }
1470 
1471 static inline int perf_register_guest_info_callbacks
1472 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1473 static inline int perf_unregister_guest_info_callbacks
1474 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1475 
1476 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1477 
1478 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1479 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1480 				      bool unregister, const char *sym)	{ }
1481 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1482 					enum perf_bpf_event_type type,
1483 					u16 flags)			{ }
1484 static inline void perf_event_exec(void)				{ }
1485 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1486 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1487 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1488 static inline void perf_event_text_poke(const void *addr,
1489 					const void *old_bytes,
1490 					size_t old_len,
1491 					const void *new_bytes,
1492 					size_t new_len)			{ }
1493 static inline void perf_event_init(void)				{ }
1494 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1495 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1496 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1497 static inline void perf_event_enable(struct perf_event *event)		{ }
1498 static inline void perf_event_disable(struct perf_event *event)		{ }
1499 static inline int __perf_event_disable(void *info)			{ return -1; }
1500 static inline void perf_event_task_tick(void)				{ }
1501 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1502 static inline int perf_event_period(struct perf_event *event, u64 value)
1503 {
1504 	return -EINVAL;
1505 }
1506 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1507 {
1508 	return 0;
1509 }
1510 #endif
1511 
1512 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1513 extern void perf_restore_debug_store(void);
1514 #else
1515 static inline void perf_restore_debug_store(void)			{ }
1516 #endif
1517 
1518 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1519 {
1520 	return frag->pad < sizeof(u64);
1521 }
1522 
1523 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1524 
1525 struct perf_pmu_events_attr {
1526 	struct device_attribute attr;
1527 	u64 id;
1528 	const char *event_str;
1529 };
1530 
1531 struct perf_pmu_events_ht_attr {
1532 	struct device_attribute			attr;
1533 	u64					id;
1534 	const char				*event_str_ht;
1535 	const char				*event_str_noht;
1536 };
1537 
1538 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1539 			      char *page);
1540 
1541 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1542 static struct perf_pmu_events_attr _var = {				\
1543 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1544 	.id   =  _id,							\
1545 };
1546 
1547 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1548 static struct perf_pmu_events_attr _var = {				    \
1549 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1550 	.id		= 0,						    \
1551 	.event_str	= _str,						    \
1552 };
1553 
1554 #define PMU_FORMAT_ATTR(_name, _format)					\
1555 static ssize_t								\
1556 _name##_show(struct device *dev,					\
1557 			       struct device_attribute *attr,		\
1558 			       char *page)				\
1559 {									\
1560 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1561 	return sprintf(page, _format "\n");				\
1562 }									\
1563 									\
1564 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1565 
1566 /* Performance counter hotplug functions */
1567 #ifdef CONFIG_PERF_EVENTS
1568 int perf_event_init_cpu(unsigned int cpu);
1569 int perf_event_exit_cpu(unsigned int cpu);
1570 #else
1571 #define perf_event_init_cpu	NULL
1572 #define perf_event_exit_cpu	NULL
1573 #endif
1574 
1575 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1576 					     struct perf_event_mmap_page *userpg,
1577 					     u64 now);
1578 
1579 #endif /* _LINUX_PERF_EVENT_H */
1580