1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34 }; 35 36 #ifdef CONFIG_HAVE_HW_BREAKPOINT 37 #include <asm/hw_breakpoint.h> 38 #endif 39 40 #include <linux/list.h> 41 #include <linux/mutex.h> 42 #include <linux/rculist.h> 43 #include <linux/rcupdate.h> 44 #include <linux/spinlock.h> 45 #include <linux/hrtimer.h> 46 #include <linux/fs.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/workqueue.h> 49 #include <linux/ftrace.h> 50 #include <linux/cpu.h> 51 #include <linux/irq_work.h> 52 #include <linux/static_key.h> 53 #include <linux/jump_label_ratelimit.h> 54 #include <linux/atomic.h> 55 #include <linux/sysfs.h> 56 #include <linux/perf_regs.h> 57 #include <linux/cgroup.h> 58 #include <linux/refcount.h> 59 #include <linux/security.h> 60 #include <asm/local.h> 61 62 struct perf_callchain_entry { 63 __u64 nr; 64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 65 }; 66 67 struct perf_callchain_entry_ctx { 68 struct perf_callchain_entry *entry; 69 u32 max_stack; 70 u32 nr; 71 short contexts; 72 bool contexts_maxed; 73 }; 74 75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 76 unsigned long off, unsigned long len); 77 78 struct perf_raw_frag { 79 union { 80 struct perf_raw_frag *next; 81 unsigned long pad; 82 }; 83 perf_copy_f copy; 84 void *data; 85 u32 size; 86 } __packed; 87 88 struct perf_raw_record { 89 struct perf_raw_frag frag; 90 u32 size; 91 }; 92 93 /* 94 * branch stack layout: 95 * nr: number of taken branches stored in entries[] 96 * hw_idx: The low level index of raw branch records 97 * for the most recent branch. 98 * -1ULL means invalid/unknown. 99 * 100 * Note that nr can vary from sample to sample 101 * branches (to, from) are stored from most recent 102 * to least recent, i.e., entries[0] contains the most 103 * recent branch. 104 * The entries[] is an abstraction of raw branch records, 105 * which may not be stored in age order in HW, e.g. Intel LBR. 106 * The hw_idx is to expose the low level index of raw 107 * branch record for the most recent branch aka entries[0]. 108 * The hw_idx index is between -1 (unknown) and max depth, 109 * which can be retrieved in /sys/devices/cpu/caps/branches. 110 * For the architectures whose raw branch records are 111 * already stored in age order, the hw_idx should be 0. 112 */ 113 struct perf_branch_stack { 114 __u64 nr; 115 __u64 hw_idx; 116 struct perf_branch_entry entries[]; 117 }; 118 119 struct task_struct; 120 121 /* 122 * extra PMU register associated with an event 123 */ 124 struct hw_perf_event_extra { 125 u64 config; /* register value */ 126 unsigned int reg; /* register address or index */ 127 int alloc; /* extra register already allocated */ 128 int idx; /* index in shared_regs->regs[] */ 129 }; 130 131 /** 132 * struct hw_perf_event - performance event hardware details: 133 */ 134 struct hw_perf_event { 135 #ifdef CONFIG_PERF_EVENTS 136 union { 137 struct { /* hardware */ 138 u64 config; 139 u64 last_tag; 140 unsigned long config_base; 141 unsigned long event_base; 142 int event_base_rdpmc; 143 int idx; 144 int last_cpu; 145 int flags; 146 147 struct hw_perf_event_extra extra_reg; 148 struct hw_perf_event_extra branch_reg; 149 }; 150 struct { /* software */ 151 struct hrtimer hrtimer; 152 }; 153 struct { /* tracepoint */ 154 /* for tp_event->class */ 155 struct list_head tp_list; 156 }; 157 struct { /* amd_power */ 158 u64 pwr_acc; 159 u64 ptsc; 160 }; 161 #ifdef CONFIG_HAVE_HW_BREAKPOINT 162 struct { /* breakpoint */ 163 /* 164 * Crufty hack to avoid the chicken and egg 165 * problem hw_breakpoint has with context 166 * creation and event initalization. 167 */ 168 struct arch_hw_breakpoint info; 169 struct list_head bp_list; 170 }; 171 #endif 172 struct { /* amd_iommu */ 173 u8 iommu_bank; 174 u8 iommu_cntr; 175 u16 padding; 176 u64 conf; 177 u64 conf1; 178 }; 179 }; 180 /* 181 * If the event is a per task event, this will point to the task in 182 * question. See the comment in perf_event_alloc(). 183 */ 184 struct task_struct *target; 185 186 /* 187 * PMU would store hardware filter configuration 188 * here. 189 */ 190 void *addr_filters; 191 192 /* Last sync'ed generation of filters */ 193 unsigned long addr_filters_gen; 194 195 /* 196 * hw_perf_event::state flags; used to track the PERF_EF_* state. 197 */ 198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 200 #define PERF_HES_ARCH 0x04 201 202 int state; 203 204 /* 205 * The last observed hardware counter value, updated with a 206 * local64_cmpxchg() such that pmu::read() can be called nested. 207 */ 208 local64_t prev_count; 209 210 /* 211 * The period to start the next sample with. 212 */ 213 u64 sample_period; 214 215 /* 216 * The period we started this sample with. 217 */ 218 u64 last_period; 219 220 /* 221 * However much is left of the current period; note that this is 222 * a full 64bit value and allows for generation of periods longer 223 * than hardware might allow. 224 */ 225 local64_t period_left; 226 227 /* 228 * State for throttling the event, see __perf_event_overflow() and 229 * perf_adjust_freq_unthr_context(). 230 */ 231 u64 interrupts_seq; 232 u64 interrupts; 233 234 /* 235 * State for freq target events, see __perf_event_overflow() and 236 * perf_adjust_freq_unthr_context(). 237 */ 238 u64 freq_time_stamp; 239 u64 freq_count_stamp; 240 #endif 241 }; 242 243 struct perf_event; 244 245 /* 246 * Common implementation detail of pmu::{start,commit,cancel}_txn 247 */ 248 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 249 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 250 251 /** 252 * pmu::capabilities flags 253 */ 254 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 255 #define PERF_PMU_CAP_NO_NMI 0x02 256 #define PERF_PMU_CAP_AUX_NO_SG 0x04 257 #define PERF_PMU_CAP_EXTENDED_REGS 0x08 258 #define PERF_PMU_CAP_EXCLUSIVE 0x10 259 #define PERF_PMU_CAP_ITRACE 0x20 260 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 261 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 262 #define PERF_PMU_CAP_AUX_OUTPUT 0x100 263 264 struct perf_output_handle; 265 266 /** 267 * struct pmu - generic performance monitoring unit 268 */ 269 struct pmu { 270 struct list_head entry; 271 272 struct module *module; 273 struct device *dev; 274 const struct attribute_group **attr_groups; 275 const struct attribute_group **attr_update; 276 const char *name; 277 int type; 278 279 /* 280 * various common per-pmu feature flags 281 */ 282 int capabilities; 283 284 int __percpu *pmu_disable_count; 285 struct perf_cpu_context __percpu *pmu_cpu_context; 286 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 287 int task_ctx_nr; 288 int hrtimer_interval_ms; 289 290 /* number of address filters this PMU can do */ 291 unsigned int nr_addr_filters; 292 293 /* 294 * Fully disable/enable this PMU, can be used to protect from the PMI 295 * as well as for lazy/batch writing of the MSRs. 296 */ 297 void (*pmu_enable) (struct pmu *pmu); /* optional */ 298 void (*pmu_disable) (struct pmu *pmu); /* optional */ 299 300 /* 301 * Try and initialize the event for this PMU. 302 * 303 * Returns: 304 * -ENOENT -- @event is not for this PMU 305 * 306 * -ENODEV -- @event is for this PMU but PMU not present 307 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 308 * -EINVAL -- @event is for this PMU but @event is not valid 309 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 310 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 311 * 312 * 0 -- @event is for this PMU and valid 313 * 314 * Other error return values are allowed. 315 */ 316 int (*event_init) (struct perf_event *event); 317 318 /* 319 * Notification that the event was mapped or unmapped. Called 320 * in the context of the mapping task. 321 */ 322 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 323 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 324 325 /* 326 * Flags for ->add()/->del()/ ->start()/->stop(). There are 327 * matching hw_perf_event::state flags. 328 */ 329 #define PERF_EF_START 0x01 /* start the counter when adding */ 330 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 331 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 332 333 /* 334 * Adds/Removes a counter to/from the PMU, can be done inside a 335 * transaction, see the ->*_txn() methods. 336 * 337 * The add/del callbacks will reserve all hardware resources required 338 * to service the event, this includes any counter constraint 339 * scheduling etc. 340 * 341 * Called with IRQs disabled and the PMU disabled on the CPU the event 342 * is on. 343 * 344 * ->add() called without PERF_EF_START should result in the same state 345 * as ->add() followed by ->stop(). 346 * 347 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 348 * ->stop() that must deal with already being stopped without 349 * PERF_EF_UPDATE. 350 */ 351 int (*add) (struct perf_event *event, int flags); 352 void (*del) (struct perf_event *event, int flags); 353 354 /* 355 * Starts/Stops a counter present on the PMU. 356 * 357 * The PMI handler should stop the counter when perf_event_overflow() 358 * returns !0. ->start() will be used to continue. 359 * 360 * Also used to change the sample period. 361 * 362 * Called with IRQs disabled and the PMU disabled on the CPU the event 363 * is on -- will be called from NMI context with the PMU generates 364 * NMIs. 365 * 366 * ->stop() with PERF_EF_UPDATE will read the counter and update 367 * period/count values like ->read() would. 368 * 369 * ->start() with PERF_EF_RELOAD will reprogram the counter 370 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 371 */ 372 void (*start) (struct perf_event *event, int flags); 373 void (*stop) (struct perf_event *event, int flags); 374 375 /* 376 * Updates the counter value of the event. 377 * 378 * For sampling capable PMUs this will also update the software period 379 * hw_perf_event::period_left field. 380 */ 381 void (*read) (struct perf_event *event); 382 383 /* 384 * Group events scheduling is treated as a transaction, add 385 * group events as a whole and perform one schedulability test. 386 * If the test fails, roll back the whole group 387 * 388 * Start the transaction, after this ->add() doesn't need to 389 * do schedulability tests. 390 * 391 * Optional. 392 */ 393 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 394 /* 395 * If ->start_txn() disabled the ->add() schedulability test 396 * then ->commit_txn() is required to perform one. On success 397 * the transaction is closed. On error the transaction is kept 398 * open until ->cancel_txn() is called. 399 * 400 * Optional. 401 */ 402 int (*commit_txn) (struct pmu *pmu); 403 /* 404 * Will cancel the transaction, assumes ->del() is called 405 * for each successful ->add() during the transaction. 406 * 407 * Optional. 408 */ 409 void (*cancel_txn) (struct pmu *pmu); 410 411 /* 412 * Will return the value for perf_event_mmap_page::index for this event, 413 * if no implementation is provided it will default to: event->hw.idx + 1. 414 */ 415 int (*event_idx) (struct perf_event *event); /*optional */ 416 417 /* 418 * context-switches callback 419 */ 420 void (*sched_task) (struct perf_event_context *ctx, 421 bool sched_in); 422 423 /* 424 * Kmem cache of PMU specific data 425 */ 426 struct kmem_cache *task_ctx_cache; 427 428 /* 429 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 430 * can be synchronized using this function. See Intel LBR callstack support 431 * implementation and Perf core context switch handling callbacks for usage 432 * examples. 433 */ 434 void (*swap_task_ctx) (struct perf_event_context *prev, 435 struct perf_event_context *next); 436 /* optional */ 437 438 /* 439 * Set up pmu-private data structures for an AUX area 440 */ 441 void *(*setup_aux) (struct perf_event *event, void **pages, 442 int nr_pages, bool overwrite); 443 /* optional */ 444 445 /* 446 * Free pmu-private AUX data structures 447 */ 448 void (*free_aux) (void *aux); /* optional */ 449 450 /* 451 * Take a snapshot of the AUX buffer without touching the event 452 * state, so that preempting ->start()/->stop() callbacks does 453 * not interfere with their logic. Called in PMI context. 454 * 455 * Returns the size of AUX data copied to the output handle. 456 * 457 * Optional. 458 */ 459 long (*snapshot_aux) (struct perf_event *event, 460 struct perf_output_handle *handle, 461 unsigned long size); 462 463 /* 464 * Validate address range filters: make sure the HW supports the 465 * requested configuration and number of filters; return 0 if the 466 * supplied filters are valid, -errno otherwise. 467 * 468 * Runs in the context of the ioctl()ing process and is not serialized 469 * with the rest of the PMU callbacks. 470 */ 471 int (*addr_filters_validate) (struct list_head *filters); 472 /* optional */ 473 474 /* 475 * Synchronize address range filter configuration: 476 * translate hw-agnostic filters into hardware configuration in 477 * event::hw::addr_filters. 478 * 479 * Runs as a part of filter sync sequence that is done in ->start() 480 * callback by calling perf_event_addr_filters_sync(). 481 * 482 * May (and should) traverse event::addr_filters::list, for which its 483 * caller provides necessary serialization. 484 */ 485 void (*addr_filters_sync) (struct perf_event *event); 486 /* optional */ 487 488 /* 489 * Check if event can be used for aux_output purposes for 490 * events of this PMU. 491 * 492 * Runs from perf_event_open(). Should return 0 for "no match" 493 * or non-zero for "match". 494 */ 495 int (*aux_output_match) (struct perf_event *event); 496 /* optional */ 497 498 /* 499 * Filter events for PMU-specific reasons. 500 */ 501 int (*filter_match) (struct perf_event *event); /* optional */ 502 503 /* 504 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 505 */ 506 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 507 }; 508 509 enum perf_addr_filter_action_t { 510 PERF_ADDR_FILTER_ACTION_STOP = 0, 511 PERF_ADDR_FILTER_ACTION_START, 512 PERF_ADDR_FILTER_ACTION_FILTER, 513 }; 514 515 /** 516 * struct perf_addr_filter - address range filter definition 517 * @entry: event's filter list linkage 518 * @path: object file's path for file-based filters 519 * @offset: filter range offset 520 * @size: filter range size (size==0 means single address trigger) 521 * @action: filter/start/stop 522 * 523 * This is a hardware-agnostic filter configuration as specified by the user. 524 */ 525 struct perf_addr_filter { 526 struct list_head entry; 527 struct path path; 528 unsigned long offset; 529 unsigned long size; 530 enum perf_addr_filter_action_t action; 531 }; 532 533 /** 534 * struct perf_addr_filters_head - container for address range filters 535 * @list: list of filters for this event 536 * @lock: spinlock that serializes accesses to the @list and event's 537 * (and its children's) filter generations. 538 * @nr_file_filters: number of file-based filters 539 * 540 * A child event will use parent's @list (and therefore @lock), so they are 541 * bundled together; see perf_event_addr_filters(). 542 */ 543 struct perf_addr_filters_head { 544 struct list_head list; 545 raw_spinlock_t lock; 546 unsigned int nr_file_filters; 547 }; 548 549 struct perf_addr_filter_range { 550 unsigned long start; 551 unsigned long size; 552 }; 553 554 /** 555 * enum perf_event_state - the states of an event: 556 */ 557 enum perf_event_state { 558 PERF_EVENT_STATE_DEAD = -4, 559 PERF_EVENT_STATE_EXIT = -3, 560 PERF_EVENT_STATE_ERROR = -2, 561 PERF_EVENT_STATE_OFF = -1, 562 PERF_EVENT_STATE_INACTIVE = 0, 563 PERF_EVENT_STATE_ACTIVE = 1, 564 }; 565 566 struct file; 567 struct perf_sample_data; 568 569 typedef void (*perf_overflow_handler_t)(struct perf_event *, 570 struct perf_sample_data *, 571 struct pt_regs *regs); 572 573 /* 574 * Event capabilities. For event_caps and groups caps. 575 * 576 * PERF_EV_CAP_SOFTWARE: Is a software event. 577 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 578 * from any CPU in the package where it is active. 579 */ 580 #define PERF_EV_CAP_SOFTWARE BIT(0) 581 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 582 583 #define SWEVENT_HLIST_BITS 8 584 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 585 586 struct swevent_hlist { 587 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 588 struct rcu_head rcu_head; 589 }; 590 591 #define PERF_ATTACH_CONTEXT 0x01 592 #define PERF_ATTACH_GROUP 0x02 593 #define PERF_ATTACH_TASK 0x04 594 #define PERF_ATTACH_TASK_DATA 0x08 595 #define PERF_ATTACH_ITRACE 0x10 596 597 struct perf_cgroup; 598 struct perf_buffer; 599 600 struct pmu_event_list { 601 raw_spinlock_t lock; 602 struct list_head list; 603 }; 604 605 #define for_each_sibling_event(sibling, event) \ 606 if ((event)->group_leader == (event)) \ 607 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 608 609 /** 610 * struct perf_event - performance event kernel representation: 611 */ 612 struct perf_event { 613 #ifdef CONFIG_PERF_EVENTS 614 /* 615 * entry onto perf_event_context::event_list; 616 * modifications require ctx->lock 617 * RCU safe iterations. 618 */ 619 struct list_head event_entry; 620 621 /* 622 * Locked for modification by both ctx->mutex and ctx->lock; holding 623 * either sufficies for read. 624 */ 625 struct list_head sibling_list; 626 struct list_head active_list; 627 /* 628 * Node on the pinned or flexible tree located at the event context; 629 */ 630 struct rb_node group_node; 631 u64 group_index; 632 /* 633 * We need storage to track the entries in perf_pmu_migrate_context; we 634 * cannot use the event_entry because of RCU and we want to keep the 635 * group in tact which avoids us using the other two entries. 636 */ 637 struct list_head migrate_entry; 638 639 struct hlist_node hlist_entry; 640 struct list_head active_entry; 641 int nr_siblings; 642 643 /* Not serialized. Only written during event initialization. */ 644 int event_caps; 645 /* The cumulative AND of all event_caps for events in this group. */ 646 int group_caps; 647 648 struct perf_event *group_leader; 649 struct pmu *pmu; 650 void *pmu_private; 651 652 enum perf_event_state state; 653 unsigned int attach_state; 654 local64_t count; 655 atomic64_t child_count; 656 657 /* 658 * These are the total time in nanoseconds that the event 659 * has been enabled (i.e. eligible to run, and the task has 660 * been scheduled in, if this is a per-task event) 661 * and running (scheduled onto the CPU), respectively. 662 */ 663 u64 total_time_enabled; 664 u64 total_time_running; 665 u64 tstamp; 666 667 /* 668 * timestamp shadows the actual context timing but it can 669 * be safely used in NMI interrupt context. It reflects the 670 * context time as it was when the event was last scheduled in. 671 * 672 * ctx_time already accounts for ctx->timestamp. Therefore to 673 * compute ctx_time for a sample, simply add perf_clock(). 674 */ 675 u64 shadow_ctx_time; 676 677 struct perf_event_attr attr; 678 u16 header_size; 679 u16 id_header_size; 680 u16 read_size; 681 struct hw_perf_event hw; 682 683 struct perf_event_context *ctx; 684 atomic_long_t refcount; 685 686 /* 687 * These accumulate total time (in nanoseconds) that children 688 * events have been enabled and running, respectively. 689 */ 690 atomic64_t child_total_time_enabled; 691 atomic64_t child_total_time_running; 692 693 /* 694 * Protect attach/detach and child_list: 695 */ 696 struct mutex child_mutex; 697 struct list_head child_list; 698 struct perf_event *parent; 699 700 int oncpu; 701 int cpu; 702 703 struct list_head owner_entry; 704 struct task_struct *owner; 705 706 /* mmap bits */ 707 struct mutex mmap_mutex; 708 atomic_t mmap_count; 709 710 struct perf_buffer *rb; 711 struct list_head rb_entry; 712 unsigned long rcu_batches; 713 int rcu_pending; 714 715 /* poll related */ 716 wait_queue_head_t waitq; 717 struct fasync_struct *fasync; 718 719 /* delayed work for NMIs and such */ 720 int pending_wakeup; 721 int pending_kill; 722 int pending_disable; 723 struct irq_work pending; 724 725 atomic_t event_limit; 726 727 /* address range filters */ 728 struct perf_addr_filters_head addr_filters; 729 /* vma address array for file-based filders */ 730 struct perf_addr_filter_range *addr_filter_ranges; 731 unsigned long addr_filters_gen; 732 733 /* for aux_output events */ 734 struct perf_event *aux_event; 735 736 void (*destroy)(struct perf_event *); 737 struct rcu_head rcu_head; 738 739 struct pid_namespace *ns; 740 u64 id; 741 742 u64 (*clock)(void); 743 perf_overflow_handler_t overflow_handler; 744 void *overflow_handler_context; 745 #ifdef CONFIG_BPF_SYSCALL 746 perf_overflow_handler_t orig_overflow_handler; 747 struct bpf_prog *prog; 748 #endif 749 750 #ifdef CONFIG_EVENT_TRACING 751 struct trace_event_call *tp_event; 752 struct event_filter *filter; 753 #ifdef CONFIG_FUNCTION_TRACER 754 struct ftrace_ops ftrace_ops; 755 #endif 756 #endif 757 758 #ifdef CONFIG_CGROUP_PERF 759 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 760 #endif 761 762 #ifdef CONFIG_SECURITY 763 void *security; 764 #endif 765 struct list_head sb_list; 766 #endif /* CONFIG_PERF_EVENTS */ 767 }; 768 769 770 struct perf_event_groups { 771 struct rb_root tree; 772 u64 index; 773 }; 774 775 /** 776 * struct perf_event_context - event context structure 777 * 778 * Used as a container for task events and CPU events as well: 779 */ 780 struct perf_event_context { 781 struct pmu *pmu; 782 /* 783 * Protect the states of the events in the list, 784 * nr_active, and the list: 785 */ 786 raw_spinlock_t lock; 787 /* 788 * Protect the list of events. Locking either mutex or lock 789 * is sufficient to ensure the list doesn't change; to change 790 * the list you need to lock both the mutex and the spinlock. 791 */ 792 struct mutex mutex; 793 794 struct list_head active_ctx_list; 795 struct perf_event_groups pinned_groups; 796 struct perf_event_groups flexible_groups; 797 struct list_head event_list; 798 799 struct list_head pinned_active; 800 struct list_head flexible_active; 801 802 int nr_events; 803 int nr_active; 804 int is_active; 805 int nr_stat; 806 int nr_freq; 807 int rotate_disable; 808 /* 809 * Set when nr_events != nr_active, except tolerant to events not 810 * necessary to be active due to scheduling constraints, such as cgroups. 811 */ 812 int rotate_necessary; 813 refcount_t refcount; 814 struct task_struct *task; 815 816 /* 817 * Context clock, runs when context enabled. 818 */ 819 u64 time; 820 u64 timestamp; 821 822 /* 823 * These fields let us detect when two contexts have both 824 * been cloned (inherited) from a common ancestor. 825 */ 826 struct perf_event_context *parent_ctx; 827 u64 parent_gen; 828 u64 generation; 829 int pin_count; 830 #ifdef CONFIG_CGROUP_PERF 831 int nr_cgroups; /* cgroup evts */ 832 #endif 833 void *task_ctx_data; /* pmu specific data */ 834 struct rcu_head rcu_head; 835 }; 836 837 /* 838 * Number of contexts where an event can trigger: 839 * task, softirq, hardirq, nmi. 840 */ 841 #define PERF_NR_CONTEXTS 4 842 843 /** 844 * struct perf_event_cpu_context - per cpu event context structure 845 */ 846 struct perf_cpu_context { 847 struct perf_event_context ctx; 848 struct perf_event_context *task_ctx; 849 int active_oncpu; 850 int exclusive; 851 852 raw_spinlock_t hrtimer_lock; 853 struct hrtimer hrtimer; 854 ktime_t hrtimer_interval; 855 unsigned int hrtimer_active; 856 857 #ifdef CONFIG_CGROUP_PERF 858 struct perf_cgroup *cgrp; 859 struct list_head cgrp_cpuctx_entry; 860 #endif 861 862 struct list_head sched_cb_entry; 863 int sched_cb_usage; 864 865 int online; 866 /* 867 * Per-CPU storage for iterators used in visit_groups_merge. The default 868 * storage is of size 2 to hold the CPU and any CPU event iterators. 869 */ 870 int heap_size; 871 struct perf_event **heap; 872 struct perf_event *heap_default[2]; 873 }; 874 875 struct perf_output_handle { 876 struct perf_event *event; 877 struct perf_buffer *rb; 878 unsigned long wakeup; 879 unsigned long size; 880 u64 aux_flags; 881 union { 882 void *addr; 883 unsigned long head; 884 }; 885 int page; 886 }; 887 888 struct bpf_perf_event_data_kern { 889 bpf_user_pt_regs_t *regs; 890 struct perf_sample_data *data; 891 struct perf_event *event; 892 }; 893 894 #ifdef CONFIG_CGROUP_PERF 895 896 /* 897 * perf_cgroup_info keeps track of time_enabled for a cgroup. 898 * This is a per-cpu dynamically allocated data structure. 899 */ 900 struct perf_cgroup_info { 901 u64 time; 902 u64 timestamp; 903 }; 904 905 struct perf_cgroup { 906 struct cgroup_subsys_state css; 907 struct perf_cgroup_info __percpu *info; 908 }; 909 910 /* 911 * Must ensure cgroup is pinned (css_get) before calling 912 * this function. In other words, we cannot call this function 913 * if there is no cgroup event for the current CPU context. 914 */ 915 static inline struct perf_cgroup * 916 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 917 { 918 return container_of(task_css_check(task, perf_event_cgrp_id, 919 ctx ? lockdep_is_held(&ctx->lock) 920 : true), 921 struct perf_cgroup, css); 922 } 923 #endif /* CONFIG_CGROUP_PERF */ 924 925 #ifdef CONFIG_PERF_EVENTS 926 927 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 928 struct perf_event *event); 929 extern void perf_aux_output_end(struct perf_output_handle *handle, 930 unsigned long size); 931 extern int perf_aux_output_skip(struct perf_output_handle *handle, 932 unsigned long size); 933 extern void *perf_get_aux(struct perf_output_handle *handle); 934 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 935 extern void perf_event_itrace_started(struct perf_event *event); 936 937 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 938 extern void perf_pmu_unregister(struct pmu *pmu); 939 940 extern int perf_num_counters(void); 941 extern const char *perf_pmu_name(void); 942 extern void __perf_event_task_sched_in(struct task_struct *prev, 943 struct task_struct *task); 944 extern void __perf_event_task_sched_out(struct task_struct *prev, 945 struct task_struct *next); 946 extern int perf_event_init_task(struct task_struct *child); 947 extern void perf_event_exit_task(struct task_struct *child); 948 extern void perf_event_free_task(struct task_struct *task); 949 extern void perf_event_delayed_put(struct task_struct *task); 950 extern struct file *perf_event_get(unsigned int fd); 951 extern const struct perf_event *perf_get_event(struct file *file); 952 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 953 extern void perf_event_print_debug(void); 954 extern void perf_pmu_disable(struct pmu *pmu); 955 extern void perf_pmu_enable(struct pmu *pmu); 956 extern void perf_sched_cb_dec(struct pmu *pmu); 957 extern void perf_sched_cb_inc(struct pmu *pmu); 958 extern int perf_event_task_disable(void); 959 extern int perf_event_task_enable(void); 960 961 extern void perf_pmu_resched(struct pmu *pmu); 962 963 extern int perf_event_refresh(struct perf_event *event, int refresh); 964 extern void perf_event_update_userpage(struct perf_event *event); 965 extern int perf_event_release_kernel(struct perf_event *event); 966 extern struct perf_event * 967 perf_event_create_kernel_counter(struct perf_event_attr *attr, 968 int cpu, 969 struct task_struct *task, 970 perf_overflow_handler_t callback, 971 void *context); 972 extern void perf_pmu_migrate_context(struct pmu *pmu, 973 int src_cpu, int dst_cpu); 974 int perf_event_read_local(struct perf_event *event, u64 *value, 975 u64 *enabled, u64 *running); 976 extern u64 perf_event_read_value(struct perf_event *event, 977 u64 *enabled, u64 *running); 978 979 980 struct perf_sample_data { 981 /* 982 * Fields set by perf_sample_data_init(), group so as to 983 * minimize the cachelines touched. 984 */ 985 u64 addr; 986 struct perf_raw_record *raw; 987 struct perf_branch_stack *br_stack; 988 u64 period; 989 u64 weight; 990 u64 txn; 991 union perf_mem_data_src data_src; 992 993 /* 994 * The other fields, optionally {set,used} by 995 * perf_{prepare,output}_sample(). 996 */ 997 u64 type; 998 u64 ip; 999 struct { 1000 u32 pid; 1001 u32 tid; 1002 } tid_entry; 1003 u64 time; 1004 u64 id; 1005 u64 stream_id; 1006 struct { 1007 u32 cpu; 1008 u32 reserved; 1009 } cpu_entry; 1010 struct perf_callchain_entry *callchain; 1011 u64 aux_size; 1012 1013 /* 1014 * regs_user may point to task_pt_regs or to regs_user_copy, depending 1015 * on arch details. 1016 */ 1017 struct perf_regs regs_user; 1018 struct pt_regs regs_user_copy; 1019 1020 struct perf_regs regs_intr; 1021 u64 stack_user_size; 1022 1023 u64 phys_addr; 1024 u64 cgroup; 1025 } ____cacheline_aligned; 1026 1027 /* default value for data source */ 1028 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1029 PERF_MEM_S(LVL, NA) |\ 1030 PERF_MEM_S(SNOOP, NA) |\ 1031 PERF_MEM_S(LOCK, NA) |\ 1032 PERF_MEM_S(TLB, NA)) 1033 1034 static inline void perf_sample_data_init(struct perf_sample_data *data, 1035 u64 addr, u64 period) 1036 { 1037 /* remaining struct members initialized in perf_prepare_sample() */ 1038 data->addr = addr; 1039 data->raw = NULL; 1040 data->br_stack = NULL; 1041 data->period = period; 1042 data->weight = 0; 1043 data->data_src.val = PERF_MEM_NA; 1044 data->txn = 0; 1045 } 1046 1047 extern void perf_output_sample(struct perf_output_handle *handle, 1048 struct perf_event_header *header, 1049 struct perf_sample_data *data, 1050 struct perf_event *event); 1051 extern void perf_prepare_sample(struct perf_event_header *header, 1052 struct perf_sample_data *data, 1053 struct perf_event *event, 1054 struct pt_regs *regs); 1055 1056 extern int perf_event_overflow(struct perf_event *event, 1057 struct perf_sample_data *data, 1058 struct pt_regs *regs); 1059 1060 extern void perf_event_output_forward(struct perf_event *event, 1061 struct perf_sample_data *data, 1062 struct pt_regs *regs); 1063 extern void perf_event_output_backward(struct perf_event *event, 1064 struct perf_sample_data *data, 1065 struct pt_regs *regs); 1066 extern int perf_event_output(struct perf_event *event, 1067 struct perf_sample_data *data, 1068 struct pt_regs *regs); 1069 1070 static inline bool 1071 is_default_overflow_handler(struct perf_event *event) 1072 { 1073 if (likely(event->overflow_handler == perf_event_output_forward)) 1074 return true; 1075 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1076 return true; 1077 return false; 1078 } 1079 1080 extern void 1081 perf_event_header__init_id(struct perf_event_header *header, 1082 struct perf_sample_data *data, 1083 struct perf_event *event); 1084 extern void 1085 perf_event__output_id_sample(struct perf_event *event, 1086 struct perf_output_handle *handle, 1087 struct perf_sample_data *sample); 1088 1089 extern void 1090 perf_log_lost_samples(struct perf_event *event, u64 lost); 1091 1092 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1093 { 1094 struct perf_event_attr *attr = &event->attr; 1095 1096 return attr->exclude_idle || attr->exclude_user || 1097 attr->exclude_kernel || attr->exclude_hv || 1098 attr->exclude_guest || attr->exclude_host; 1099 } 1100 1101 static inline bool is_sampling_event(struct perf_event *event) 1102 { 1103 return event->attr.sample_period != 0; 1104 } 1105 1106 /* 1107 * Return 1 for a software event, 0 for a hardware event 1108 */ 1109 static inline int is_software_event(struct perf_event *event) 1110 { 1111 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1112 } 1113 1114 /* 1115 * Return 1 for event in sw context, 0 for event in hw context 1116 */ 1117 static inline int in_software_context(struct perf_event *event) 1118 { 1119 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1120 } 1121 1122 static inline int is_exclusive_pmu(struct pmu *pmu) 1123 { 1124 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1125 } 1126 1127 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1128 1129 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1130 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1131 1132 #ifndef perf_arch_fetch_caller_regs 1133 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1134 #endif 1135 1136 /* 1137 * When generating a perf sample in-line, instead of from an interrupt / 1138 * exception, we lack a pt_regs. This is typically used from software events 1139 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1140 * 1141 * We typically don't need a full set, but (for x86) do require: 1142 * - ip for PERF_SAMPLE_IP 1143 * - cs for user_mode() tests 1144 * - sp for PERF_SAMPLE_CALLCHAIN 1145 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1146 * 1147 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1148 * things like PERF_SAMPLE_REGS_INTR. 1149 */ 1150 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1151 { 1152 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1153 } 1154 1155 static __always_inline void 1156 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1157 { 1158 if (static_key_false(&perf_swevent_enabled[event_id])) 1159 __perf_sw_event(event_id, nr, regs, addr); 1160 } 1161 1162 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1163 1164 /* 1165 * 'Special' version for the scheduler, it hard assumes no recursion, 1166 * which is guaranteed by us not actually scheduling inside other swevents 1167 * because those disable preemption. 1168 */ 1169 static __always_inline void 1170 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1171 { 1172 if (static_key_false(&perf_swevent_enabled[event_id])) { 1173 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1174 1175 perf_fetch_caller_regs(regs); 1176 ___perf_sw_event(event_id, nr, regs, addr); 1177 } 1178 } 1179 1180 extern struct static_key_false perf_sched_events; 1181 1182 static __always_inline bool 1183 perf_sw_migrate_enabled(void) 1184 { 1185 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1186 return true; 1187 return false; 1188 } 1189 1190 static inline void perf_event_task_migrate(struct task_struct *task) 1191 { 1192 if (perf_sw_migrate_enabled()) 1193 task->sched_migrated = 1; 1194 } 1195 1196 static inline void perf_event_task_sched_in(struct task_struct *prev, 1197 struct task_struct *task) 1198 { 1199 if (static_branch_unlikely(&perf_sched_events)) 1200 __perf_event_task_sched_in(prev, task); 1201 1202 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1203 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1204 1205 perf_fetch_caller_regs(regs); 1206 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1207 task->sched_migrated = 0; 1208 } 1209 } 1210 1211 static inline void perf_event_task_sched_out(struct task_struct *prev, 1212 struct task_struct *next) 1213 { 1214 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1215 1216 if (static_branch_unlikely(&perf_sched_events)) 1217 __perf_event_task_sched_out(prev, next); 1218 } 1219 1220 extern void perf_event_mmap(struct vm_area_struct *vma); 1221 1222 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1223 bool unregister, const char *sym); 1224 extern void perf_event_bpf_event(struct bpf_prog *prog, 1225 enum perf_bpf_event_type type, 1226 u16 flags); 1227 1228 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1229 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1230 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1231 1232 extern void perf_event_exec(void); 1233 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1234 extern void perf_event_namespaces(struct task_struct *tsk); 1235 extern void perf_event_fork(struct task_struct *tsk); 1236 extern void perf_event_text_poke(const void *addr, 1237 const void *old_bytes, size_t old_len, 1238 const void *new_bytes, size_t new_len); 1239 1240 /* Callchains */ 1241 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1242 1243 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1244 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1245 extern struct perf_callchain_entry * 1246 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1247 u32 max_stack, bool crosstask, bool add_mark); 1248 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1249 extern int get_callchain_buffers(int max_stack); 1250 extern void put_callchain_buffers(void); 1251 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1252 extern void put_callchain_entry(int rctx); 1253 1254 extern int sysctl_perf_event_max_stack; 1255 extern int sysctl_perf_event_max_contexts_per_stack; 1256 1257 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1258 { 1259 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1260 struct perf_callchain_entry *entry = ctx->entry; 1261 entry->ip[entry->nr++] = ip; 1262 ++ctx->contexts; 1263 return 0; 1264 } else { 1265 ctx->contexts_maxed = true; 1266 return -1; /* no more room, stop walking the stack */ 1267 } 1268 } 1269 1270 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1271 { 1272 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1273 struct perf_callchain_entry *entry = ctx->entry; 1274 entry->ip[entry->nr++] = ip; 1275 ++ctx->nr; 1276 return 0; 1277 } else { 1278 return -1; /* no more room, stop walking the stack */ 1279 } 1280 } 1281 1282 extern int sysctl_perf_event_paranoid; 1283 extern int sysctl_perf_event_mlock; 1284 extern int sysctl_perf_event_sample_rate; 1285 extern int sysctl_perf_cpu_time_max_percent; 1286 1287 extern void perf_sample_event_took(u64 sample_len_ns); 1288 1289 int perf_proc_update_handler(struct ctl_table *table, int write, 1290 void *buffer, size_t *lenp, loff_t *ppos); 1291 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1292 void *buffer, size_t *lenp, loff_t *ppos); 1293 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1294 void *buffer, size_t *lenp, loff_t *ppos); 1295 1296 /* Access to perf_event_open(2) syscall. */ 1297 #define PERF_SECURITY_OPEN 0 1298 1299 /* Finer grained perf_event_open(2) access control. */ 1300 #define PERF_SECURITY_CPU 1 1301 #define PERF_SECURITY_KERNEL 2 1302 #define PERF_SECURITY_TRACEPOINT 3 1303 1304 static inline int perf_is_paranoid(void) 1305 { 1306 return sysctl_perf_event_paranoid > -1; 1307 } 1308 1309 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1310 { 1311 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1312 return -EACCES; 1313 1314 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1315 } 1316 1317 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1318 { 1319 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1320 return -EACCES; 1321 1322 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1323 } 1324 1325 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1326 { 1327 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1328 return -EPERM; 1329 1330 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1331 } 1332 1333 extern void perf_event_init(void); 1334 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1335 int entry_size, struct pt_regs *regs, 1336 struct hlist_head *head, int rctx, 1337 struct task_struct *task); 1338 extern void perf_bp_event(struct perf_event *event, void *data); 1339 1340 #ifndef perf_misc_flags 1341 # define perf_misc_flags(regs) \ 1342 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1343 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1344 #endif 1345 #ifndef perf_arch_bpf_user_pt_regs 1346 # define perf_arch_bpf_user_pt_regs(regs) regs 1347 #endif 1348 1349 static inline bool has_branch_stack(struct perf_event *event) 1350 { 1351 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1352 } 1353 1354 static inline bool needs_branch_stack(struct perf_event *event) 1355 { 1356 return event->attr.branch_sample_type != 0; 1357 } 1358 1359 static inline bool has_aux(struct perf_event *event) 1360 { 1361 return event->pmu->setup_aux; 1362 } 1363 1364 static inline bool is_write_backward(struct perf_event *event) 1365 { 1366 return !!event->attr.write_backward; 1367 } 1368 1369 static inline bool has_addr_filter(struct perf_event *event) 1370 { 1371 return event->pmu->nr_addr_filters; 1372 } 1373 1374 /* 1375 * An inherited event uses parent's filters 1376 */ 1377 static inline struct perf_addr_filters_head * 1378 perf_event_addr_filters(struct perf_event *event) 1379 { 1380 struct perf_addr_filters_head *ifh = &event->addr_filters; 1381 1382 if (event->parent) 1383 ifh = &event->parent->addr_filters; 1384 1385 return ifh; 1386 } 1387 1388 extern void perf_event_addr_filters_sync(struct perf_event *event); 1389 1390 extern int perf_output_begin(struct perf_output_handle *handle, 1391 struct perf_event *event, unsigned int size); 1392 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1393 struct perf_event *event, 1394 unsigned int size); 1395 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1396 struct perf_event *event, 1397 unsigned int size); 1398 1399 extern void perf_output_end(struct perf_output_handle *handle); 1400 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1401 const void *buf, unsigned int len); 1402 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1403 unsigned int len); 1404 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1405 struct perf_output_handle *handle, 1406 unsigned long from, unsigned long to); 1407 extern int perf_swevent_get_recursion_context(void); 1408 extern void perf_swevent_put_recursion_context(int rctx); 1409 extern u64 perf_swevent_set_period(struct perf_event *event); 1410 extern void perf_event_enable(struct perf_event *event); 1411 extern void perf_event_disable(struct perf_event *event); 1412 extern void perf_event_disable_local(struct perf_event *event); 1413 extern void perf_event_disable_inatomic(struct perf_event *event); 1414 extern void perf_event_task_tick(void); 1415 extern int perf_event_account_interrupt(struct perf_event *event); 1416 extern int perf_event_period(struct perf_event *event, u64 value); 1417 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1418 #else /* !CONFIG_PERF_EVENTS: */ 1419 static inline void * 1420 perf_aux_output_begin(struct perf_output_handle *handle, 1421 struct perf_event *event) { return NULL; } 1422 static inline void 1423 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1424 { } 1425 static inline int 1426 perf_aux_output_skip(struct perf_output_handle *handle, 1427 unsigned long size) { return -EINVAL; } 1428 static inline void * 1429 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1430 static inline void 1431 perf_event_task_migrate(struct task_struct *task) { } 1432 static inline void 1433 perf_event_task_sched_in(struct task_struct *prev, 1434 struct task_struct *task) { } 1435 static inline void 1436 perf_event_task_sched_out(struct task_struct *prev, 1437 struct task_struct *next) { } 1438 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1439 static inline void perf_event_exit_task(struct task_struct *child) { } 1440 static inline void perf_event_free_task(struct task_struct *task) { } 1441 static inline void perf_event_delayed_put(struct task_struct *task) { } 1442 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1443 static inline const struct perf_event *perf_get_event(struct file *file) 1444 { 1445 return ERR_PTR(-EINVAL); 1446 } 1447 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1448 { 1449 return ERR_PTR(-EINVAL); 1450 } 1451 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1452 u64 *enabled, u64 *running) 1453 { 1454 return -EINVAL; 1455 } 1456 static inline void perf_event_print_debug(void) { } 1457 static inline int perf_event_task_disable(void) { return -EINVAL; } 1458 static inline int perf_event_task_enable(void) { return -EINVAL; } 1459 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1460 { 1461 return -EINVAL; 1462 } 1463 1464 static inline void 1465 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1466 static inline void 1467 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1468 static inline void 1469 perf_bp_event(struct perf_event *event, void *data) { } 1470 1471 static inline int perf_register_guest_info_callbacks 1472 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1473 static inline int perf_unregister_guest_info_callbacks 1474 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1475 1476 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1477 1478 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1479 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1480 bool unregister, const char *sym) { } 1481 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1482 enum perf_bpf_event_type type, 1483 u16 flags) { } 1484 static inline void perf_event_exec(void) { } 1485 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1486 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1487 static inline void perf_event_fork(struct task_struct *tsk) { } 1488 static inline void perf_event_text_poke(const void *addr, 1489 const void *old_bytes, 1490 size_t old_len, 1491 const void *new_bytes, 1492 size_t new_len) { } 1493 static inline void perf_event_init(void) { } 1494 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1495 static inline void perf_swevent_put_recursion_context(int rctx) { } 1496 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1497 static inline void perf_event_enable(struct perf_event *event) { } 1498 static inline void perf_event_disable(struct perf_event *event) { } 1499 static inline int __perf_event_disable(void *info) { return -1; } 1500 static inline void perf_event_task_tick(void) { } 1501 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1502 static inline int perf_event_period(struct perf_event *event, u64 value) 1503 { 1504 return -EINVAL; 1505 } 1506 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1507 { 1508 return 0; 1509 } 1510 #endif 1511 1512 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1513 extern void perf_restore_debug_store(void); 1514 #else 1515 static inline void perf_restore_debug_store(void) { } 1516 #endif 1517 1518 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1519 { 1520 return frag->pad < sizeof(u64); 1521 } 1522 1523 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1524 1525 struct perf_pmu_events_attr { 1526 struct device_attribute attr; 1527 u64 id; 1528 const char *event_str; 1529 }; 1530 1531 struct perf_pmu_events_ht_attr { 1532 struct device_attribute attr; 1533 u64 id; 1534 const char *event_str_ht; 1535 const char *event_str_noht; 1536 }; 1537 1538 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1539 char *page); 1540 1541 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1542 static struct perf_pmu_events_attr _var = { \ 1543 .attr = __ATTR(_name, 0444, _show, NULL), \ 1544 .id = _id, \ 1545 }; 1546 1547 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1548 static struct perf_pmu_events_attr _var = { \ 1549 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1550 .id = 0, \ 1551 .event_str = _str, \ 1552 }; 1553 1554 #define PMU_FORMAT_ATTR(_name, _format) \ 1555 static ssize_t \ 1556 _name##_show(struct device *dev, \ 1557 struct device_attribute *attr, \ 1558 char *page) \ 1559 { \ 1560 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1561 return sprintf(page, _format "\n"); \ 1562 } \ 1563 \ 1564 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1565 1566 /* Performance counter hotplug functions */ 1567 #ifdef CONFIG_PERF_EVENTS 1568 int perf_event_init_cpu(unsigned int cpu); 1569 int perf_event_exit_cpu(unsigned int cpu); 1570 #else 1571 #define perf_event_init_cpu NULL 1572 #define perf_event_exit_cpu NULL 1573 #endif 1574 1575 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1576 struct perf_event_mmap_page *userpg, 1577 u64 now); 1578 1579 #endif /* _LINUX_PERF_EVENT_H */ 1580