1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <asm/local.h> 57 58 struct perf_callchain_entry { 59 __u64 nr; 60 __u64 ip[PERF_MAX_STACK_DEPTH]; 61 }; 62 63 struct perf_raw_record { 64 u32 size; 65 void *data; 66 }; 67 68 /* 69 * branch stack layout: 70 * nr: number of taken branches stored in entries[] 71 * 72 * Note that nr can vary from sample to sample 73 * branches (to, from) are stored from most recent 74 * to least recent, i.e., entries[0] contains the most 75 * recent branch. 76 */ 77 struct perf_branch_stack { 78 __u64 nr; 79 struct perf_branch_entry entries[0]; 80 }; 81 82 struct task_struct; 83 84 /* 85 * extra PMU register associated with an event 86 */ 87 struct hw_perf_event_extra { 88 u64 config; /* register value */ 89 unsigned int reg; /* register address or index */ 90 int alloc; /* extra register already allocated */ 91 int idx; /* index in shared_regs->regs[] */ 92 }; 93 94 struct event_constraint; 95 96 /** 97 * struct hw_perf_event - performance event hardware details: 98 */ 99 struct hw_perf_event { 100 #ifdef CONFIG_PERF_EVENTS 101 union { 102 struct { /* hardware */ 103 u64 config; 104 u64 last_tag; 105 unsigned long config_base; 106 unsigned long event_base; 107 int event_base_rdpmc; 108 int idx; 109 int last_cpu; 110 int flags; 111 112 struct hw_perf_event_extra extra_reg; 113 struct hw_perf_event_extra branch_reg; 114 115 struct event_constraint *constraint; 116 }; 117 struct { /* software */ 118 struct hrtimer hrtimer; 119 }; 120 struct { /* tracepoint */ 121 struct task_struct *tp_target; 122 /* for tp_event->class */ 123 struct list_head tp_list; 124 }; 125 #ifdef CONFIG_HAVE_HW_BREAKPOINT 126 struct { /* breakpoint */ 127 /* 128 * Crufty hack to avoid the chicken and egg 129 * problem hw_breakpoint has with context 130 * creation and event initalization. 131 */ 132 struct task_struct *bp_target; 133 struct arch_hw_breakpoint info; 134 struct list_head bp_list; 135 }; 136 #endif 137 }; 138 int state; 139 local64_t prev_count; 140 u64 sample_period; 141 u64 last_period; 142 local64_t period_left; 143 u64 interrupts_seq; 144 u64 interrupts; 145 146 u64 freq_time_stamp; 147 u64 freq_count_stamp; 148 #endif 149 }; 150 151 /* 152 * hw_perf_event::state flags 153 */ 154 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 155 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 156 #define PERF_HES_ARCH 0x04 157 158 struct perf_event; 159 160 /* 161 * Common implementation detail of pmu::{start,commit,cancel}_txn 162 */ 163 #define PERF_EVENT_TXN 0x1 164 165 /** 166 * pmu::capabilities flags 167 */ 168 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 169 170 /** 171 * struct pmu - generic performance monitoring unit 172 */ 173 struct pmu { 174 struct list_head entry; 175 176 struct module *module; 177 struct device *dev; 178 const struct attribute_group **attr_groups; 179 const char *name; 180 int type; 181 182 /* 183 * various common per-pmu feature flags 184 */ 185 int capabilities; 186 187 int * __percpu pmu_disable_count; 188 struct perf_cpu_context * __percpu pmu_cpu_context; 189 int task_ctx_nr; 190 int hrtimer_interval_ms; 191 192 /* 193 * Fully disable/enable this PMU, can be used to protect from the PMI 194 * as well as for lazy/batch writing of the MSRs. 195 */ 196 void (*pmu_enable) (struct pmu *pmu); /* optional */ 197 void (*pmu_disable) (struct pmu *pmu); /* optional */ 198 199 /* 200 * Try and initialize the event for this PMU. 201 * Should return -ENOENT when the @event doesn't match this PMU. 202 */ 203 int (*event_init) (struct perf_event *event); 204 205 #define PERF_EF_START 0x01 /* start the counter when adding */ 206 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 207 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 208 209 /* 210 * Adds/Removes a counter to/from the PMU, can be done inside 211 * a transaction, see the ->*_txn() methods. 212 */ 213 int (*add) (struct perf_event *event, int flags); 214 void (*del) (struct perf_event *event, int flags); 215 216 /* 217 * Starts/Stops a counter present on the PMU. The PMI handler 218 * should stop the counter when perf_event_overflow() returns 219 * !0. ->start() will be used to continue. 220 */ 221 void (*start) (struct perf_event *event, int flags); 222 void (*stop) (struct perf_event *event, int flags); 223 224 /* 225 * Updates the counter value of the event. 226 */ 227 void (*read) (struct perf_event *event); 228 229 /* 230 * Group events scheduling is treated as a transaction, add 231 * group events as a whole and perform one schedulability test. 232 * If the test fails, roll back the whole group 233 * 234 * Start the transaction, after this ->add() doesn't need to 235 * do schedulability tests. 236 */ 237 void (*start_txn) (struct pmu *pmu); /* optional */ 238 /* 239 * If ->start_txn() disabled the ->add() schedulability test 240 * then ->commit_txn() is required to perform one. On success 241 * the transaction is closed. On error the transaction is kept 242 * open until ->cancel_txn() is called. 243 */ 244 int (*commit_txn) (struct pmu *pmu); /* optional */ 245 /* 246 * Will cancel the transaction, assumes ->del() is called 247 * for each successful ->add() during the transaction. 248 */ 249 void (*cancel_txn) (struct pmu *pmu); /* optional */ 250 251 /* 252 * Will return the value for perf_event_mmap_page::index for this event, 253 * if no implementation is provided it will default to: event->hw.idx + 1. 254 */ 255 int (*event_idx) (struct perf_event *event); /*optional */ 256 257 /* 258 * flush branch stack on context-switches (needed in cpu-wide mode) 259 */ 260 void (*flush_branch_stack) (void); 261 }; 262 263 /** 264 * enum perf_event_active_state - the states of a event 265 */ 266 enum perf_event_active_state { 267 PERF_EVENT_STATE_EXIT = -3, 268 PERF_EVENT_STATE_ERROR = -2, 269 PERF_EVENT_STATE_OFF = -1, 270 PERF_EVENT_STATE_INACTIVE = 0, 271 PERF_EVENT_STATE_ACTIVE = 1, 272 }; 273 274 struct file; 275 struct perf_sample_data; 276 277 typedef void (*perf_overflow_handler_t)(struct perf_event *, 278 struct perf_sample_data *, 279 struct pt_regs *regs); 280 281 enum perf_group_flag { 282 PERF_GROUP_SOFTWARE = 0x1, 283 }; 284 285 #define SWEVENT_HLIST_BITS 8 286 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 287 288 struct swevent_hlist { 289 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 290 struct rcu_head rcu_head; 291 }; 292 293 #define PERF_ATTACH_CONTEXT 0x01 294 #define PERF_ATTACH_GROUP 0x02 295 #define PERF_ATTACH_TASK 0x04 296 297 struct perf_cgroup; 298 struct ring_buffer; 299 300 /** 301 * struct perf_event - performance event kernel representation: 302 */ 303 struct perf_event { 304 #ifdef CONFIG_PERF_EVENTS 305 /* 306 * entry onto perf_event_context::event_list; 307 * modifications require ctx->lock 308 * RCU safe iterations. 309 */ 310 struct list_head event_entry; 311 312 /* 313 * XXX: group_entry and sibling_list should be mutually exclusive; 314 * either you're a sibling on a group, or you're the group leader. 315 * Rework the code to always use the same list element. 316 * 317 * Locked for modification by both ctx->mutex and ctx->lock; holding 318 * either sufficies for read. 319 */ 320 struct list_head group_entry; 321 struct list_head sibling_list; 322 323 /* 324 * We need storage to track the entries in perf_pmu_migrate_context; we 325 * cannot use the event_entry because of RCU and we want to keep the 326 * group in tact which avoids us using the other two entries. 327 */ 328 struct list_head migrate_entry; 329 330 struct hlist_node hlist_entry; 331 struct list_head active_entry; 332 int nr_siblings; 333 int group_flags; 334 struct perf_event *group_leader; 335 struct pmu *pmu; 336 337 enum perf_event_active_state state; 338 unsigned int attach_state; 339 local64_t count; 340 atomic64_t child_count; 341 342 /* 343 * These are the total time in nanoseconds that the event 344 * has been enabled (i.e. eligible to run, and the task has 345 * been scheduled in, if this is a per-task event) 346 * and running (scheduled onto the CPU), respectively. 347 * 348 * They are computed from tstamp_enabled, tstamp_running and 349 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 350 */ 351 u64 total_time_enabled; 352 u64 total_time_running; 353 354 /* 355 * These are timestamps used for computing total_time_enabled 356 * and total_time_running when the event is in INACTIVE or 357 * ACTIVE state, measured in nanoseconds from an arbitrary point 358 * in time. 359 * tstamp_enabled: the notional time when the event was enabled 360 * tstamp_running: the notional time when the event was scheduled on 361 * tstamp_stopped: in INACTIVE state, the notional time when the 362 * event was scheduled off. 363 */ 364 u64 tstamp_enabled; 365 u64 tstamp_running; 366 u64 tstamp_stopped; 367 368 /* 369 * timestamp shadows the actual context timing but it can 370 * be safely used in NMI interrupt context. It reflects the 371 * context time as it was when the event was last scheduled in. 372 * 373 * ctx_time already accounts for ctx->timestamp. Therefore to 374 * compute ctx_time for a sample, simply add perf_clock(). 375 */ 376 u64 shadow_ctx_time; 377 378 struct perf_event_attr attr; 379 u16 header_size; 380 u16 id_header_size; 381 u16 read_size; 382 struct hw_perf_event hw; 383 384 struct perf_event_context *ctx; 385 atomic_long_t refcount; 386 387 /* 388 * These accumulate total time (in nanoseconds) that children 389 * events have been enabled and running, respectively. 390 */ 391 atomic64_t child_total_time_enabled; 392 atomic64_t child_total_time_running; 393 394 /* 395 * Protect attach/detach and child_list: 396 */ 397 struct mutex child_mutex; 398 struct list_head child_list; 399 struct perf_event *parent; 400 401 int oncpu; 402 int cpu; 403 404 struct list_head owner_entry; 405 struct task_struct *owner; 406 407 /* mmap bits */ 408 struct mutex mmap_mutex; 409 atomic_t mmap_count; 410 411 struct ring_buffer *rb; 412 struct list_head rb_entry; 413 unsigned long rcu_batches; 414 int rcu_pending; 415 416 /* poll related */ 417 wait_queue_head_t waitq; 418 struct fasync_struct *fasync; 419 420 /* delayed work for NMIs and such */ 421 int pending_wakeup; 422 int pending_kill; 423 int pending_disable; 424 struct irq_work pending; 425 426 atomic_t event_limit; 427 428 void (*destroy)(struct perf_event *); 429 struct rcu_head rcu_head; 430 431 struct pid_namespace *ns; 432 u64 id; 433 434 perf_overflow_handler_t overflow_handler; 435 void *overflow_handler_context; 436 437 #ifdef CONFIG_EVENT_TRACING 438 struct ftrace_event_call *tp_event; 439 struct event_filter *filter; 440 #ifdef CONFIG_FUNCTION_TRACER 441 struct ftrace_ops ftrace_ops; 442 #endif 443 #endif 444 445 #ifdef CONFIG_CGROUP_PERF 446 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 447 int cgrp_defer_enabled; 448 #endif 449 450 #endif /* CONFIG_PERF_EVENTS */ 451 }; 452 453 /** 454 * struct perf_event_context - event context structure 455 * 456 * Used as a container for task events and CPU events as well: 457 */ 458 struct perf_event_context { 459 struct pmu *pmu; 460 /* 461 * Protect the states of the events in the list, 462 * nr_active, and the list: 463 */ 464 raw_spinlock_t lock; 465 /* 466 * Protect the list of events. Locking either mutex or lock 467 * is sufficient to ensure the list doesn't change; to change 468 * the list you need to lock both the mutex and the spinlock. 469 */ 470 struct mutex mutex; 471 472 struct list_head active_ctx_list; 473 struct list_head pinned_groups; 474 struct list_head flexible_groups; 475 struct list_head event_list; 476 int nr_events; 477 int nr_active; 478 int is_active; 479 int nr_stat; 480 int nr_freq; 481 int rotate_disable; 482 atomic_t refcount; 483 struct task_struct *task; 484 485 /* 486 * Context clock, runs when context enabled. 487 */ 488 u64 time; 489 u64 timestamp; 490 491 /* 492 * These fields let us detect when two contexts have both 493 * been cloned (inherited) from a common ancestor. 494 */ 495 struct perf_event_context *parent_ctx; 496 u64 parent_gen; 497 u64 generation; 498 int pin_count; 499 int nr_cgroups; /* cgroup evts */ 500 int nr_branch_stack; /* branch_stack evt */ 501 struct rcu_head rcu_head; 502 503 struct delayed_work orphans_remove; 504 bool orphans_remove_sched; 505 }; 506 507 /* 508 * Number of contexts where an event can trigger: 509 * task, softirq, hardirq, nmi. 510 */ 511 #define PERF_NR_CONTEXTS 4 512 513 /** 514 * struct perf_event_cpu_context - per cpu event context structure 515 */ 516 struct perf_cpu_context { 517 struct perf_event_context ctx; 518 struct perf_event_context *task_ctx; 519 int active_oncpu; 520 int exclusive; 521 struct hrtimer hrtimer; 522 ktime_t hrtimer_interval; 523 struct pmu *unique_pmu; 524 struct perf_cgroup *cgrp; 525 }; 526 527 struct perf_output_handle { 528 struct perf_event *event; 529 struct ring_buffer *rb; 530 unsigned long wakeup; 531 unsigned long size; 532 void *addr; 533 int page; 534 }; 535 536 #ifdef CONFIG_PERF_EVENTS 537 538 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 539 extern void perf_pmu_unregister(struct pmu *pmu); 540 541 extern int perf_num_counters(void); 542 extern const char *perf_pmu_name(void); 543 extern void __perf_event_task_sched_in(struct task_struct *prev, 544 struct task_struct *task); 545 extern void __perf_event_task_sched_out(struct task_struct *prev, 546 struct task_struct *next); 547 extern int perf_event_init_task(struct task_struct *child); 548 extern void perf_event_exit_task(struct task_struct *child); 549 extern void perf_event_free_task(struct task_struct *task); 550 extern void perf_event_delayed_put(struct task_struct *task); 551 extern void perf_event_print_debug(void); 552 extern void perf_pmu_disable(struct pmu *pmu); 553 extern void perf_pmu_enable(struct pmu *pmu); 554 extern int perf_event_task_disable(void); 555 extern int perf_event_task_enable(void); 556 extern int perf_event_refresh(struct perf_event *event, int refresh); 557 extern void perf_event_update_userpage(struct perf_event *event); 558 extern int perf_event_release_kernel(struct perf_event *event); 559 extern struct perf_event * 560 perf_event_create_kernel_counter(struct perf_event_attr *attr, 561 int cpu, 562 struct task_struct *task, 563 perf_overflow_handler_t callback, 564 void *context); 565 extern void perf_pmu_migrate_context(struct pmu *pmu, 566 int src_cpu, int dst_cpu); 567 extern u64 perf_event_read_value(struct perf_event *event, 568 u64 *enabled, u64 *running); 569 570 571 struct perf_sample_data { 572 /* 573 * Fields set by perf_sample_data_init(), group so as to 574 * minimize the cachelines touched. 575 */ 576 u64 addr; 577 struct perf_raw_record *raw; 578 struct perf_branch_stack *br_stack; 579 u64 period; 580 u64 weight; 581 u64 txn; 582 union perf_mem_data_src data_src; 583 584 /* 585 * The other fields, optionally {set,used} by 586 * perf_{prepare,output}_sample(). 587 */ 588 u64 type; 589 u64 ip; 590 struct { 591 u32 pid; 592 u32 tid; 593 } tid_entry; 594 u64 time; 595 u64 id; 596 u64 stream_id; 597 struct { 598 u32 cpu; 599 u32 reserved; 600 } cpu_entry; 601 struct perf_callchain_entry *callchain; 602 603 /* 604 * regs_user may point to task_pt_regs or to regs_user_copy, depending 605 * on arch details. 606 */ 607 struct perf_regs regs_user; 608 struct pt_regs regs_user_copy; 609 610 struct perf_regs regs_intr; 611 u64 stack_user_size; 612 } ____cacheline_aligned; 613 614 /* default value for data source */ 615 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 616 PERF_MEM_S(LVL, NA) |\ 617 PERF_MEM_S(SNOOP, NA) |\ 618 PERF_MEM_S(LOCK, NA) |\ 619 PERF_MEM_S(TLB, NA)) 620 621 static inline void perf_sample_data_init(struct perf_sample_data *data, 622 u64 addr, u64 period) 623 { 624 /* remaining struct members initialized in perf_prepare_sample() */ 625 data->addr = addr; 626 data->raw = NULL; 627 data->br_stack = NULL; 628 data->period = period; 629 data->weight = 0; 630 data->data_src.val = PERF_MEM_NA; 631 data->txn = 0; 632 } 633 634 extern void perf_output_sample(struct perf_output_handle *handle, 635 struct perf_event_header *header, 636 struct perf_sample_data *data, 637 struct perf_event *event); 638 extern void perf_prepare_sample(struct perf_event_header *header, 639 struct perf_sample_data *data, 640 struct perf_event *event, 641 struct pt_regs *regs); 642 643 extern int perf_event_overflow(struct perf_event *event, 644 struct perf_sample_data *data, 645 struct pt_regs *regs); 646 647 static inline bool is_sampling_event(struct perf_event *event) 648 { 649 return event->attr.sample_period != 0; 650 } 651 652 /* 653 * Return 1 for a software event, 0 for a hardware event 654 */ 655 static inline int is_software_event(struct perf_event *event) 656 { 657 return event->pmu->task_ctx_nr == perf_sw_context; 658 } 659 660 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 661 662 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 663 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 664 665 #ifndef perf_arch_fetch_caller_regs 666 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 667 #endif 668 669 /* 670 * Take a snapshot of the regs. Skip ip and frame pointer to 671 * the nth caller. We only need a few of the regs: 672 * - ip for PERF_SAMPLE_IP 673 * - cs for user_mode() tests 674 * - bp for callchains 675 * - eflags, for future purposes, just in case 676 */ 677 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 678 { 679 memset(regs, 0, sizeof(*regs)); 680 681 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 682 } 683 684 static __always_inline void 685 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 686 { 687 if (static_key_false(&perf_swevent_enabled[event_id])) 688 __perf_sw_event(event_id, nr, regs, addr); 689 } 690 691 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 692 693 /* 694 * 'Special' version for the scheduler, it hard assumes no recursion, 695 * which is guaranteed by us not actually scheduling inside other swevents 696 * because those disable preemption. 697 */ 698 static __always_inline void 699 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 700 { 701 if (static_key_false(&perf_swevent_enabled[event_id])) { 702 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 703 704 perf_fetch_caller_regs(regs); 705 ___perf_sw_event(event_id, nr, regs, addr); 706 } 707 } 708 709 extern struct static_key_deferred perf_sched_events; 710 711 static inline void perf_event_task_sched_in(struct task_struct *prev, 712 struct task_struct *task) 713 { 714 if (static_key_false(&perf_sched_events.key)) 715 __perf_event_task_sched_in(prev, task); 716 } 717 718 static inline void perf_event_task_sched_out(struct task_struct *prev, 719 struct task_struct *next) 720 { 721 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 722 723 if (static_key_false(&perf_sched_events.key)) 724 __perf_event_task_sched_out(prev, next); 725 } 726 727 extern void perf_event_mmap(struct vm_area_struct *vma); 728 extern struct perf_guest_info_callbacks *perf_guest_cbs; 729 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 730 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 731 732 extern void perf_event_exec(void); 733 extern void perf_event_comm(struct task_struct *tsk, bool exec); 734 extern void perf_event_fork(struct task_struct *tsk); 735 736 /* Callchains */ 737 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 738 739 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 740 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 741 742 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 743 { 744 if (entry->nr < PERF_MAX_STACK_DEPTH) 745 entry->ip[entry->nr++] = ip; 746 } 747 748 extern int sysctl_perf_event_paranoid; 749 extern int sysctl_perf_event_mlock; 750 extern int sysctl_perf_event_sample_rate; 751 extern int sysctl_perf_cpu_time_max_percent; 752 753 extern void perf_sample_event_took(u64 sample_len_ns); 754 755 extern int perf_proc_update_handler(struct ctl_table *table, int write, 756 void __user *buffer, size_t *lenp, 757 loff_t *ppos); 758 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 759 void __user *buffer, size_t *lenp, 760 loff_t *ppos); 761 762 763 static inline bool perf_paranoid_tracepoint_raw(void) 764 { 765 return sysctl_perf_event_paranoid > -1; 766 } 767 768 static inline bool perf_paranoid_cpu(void) 769 { 770 return sysctl_perf_event_paranoid > 0; 771 } 772 773 static inline bool perf_paranoid_kernel(void) 774 { 775 return sysctl_perf_event_paranoid > 1; 776 } 777 778 extern void perf_event_init(void); 779 extern void perf_tp_event(u64 addr, u64 count, void *record, 780 int entry_size, struct pt_regs *regs, 781 struct hlist_head *head, int rctx, 782 struct task_struct *task); 783 extern void perf_bp_event(struct perf_event *event, void *data); 784 785 #ifndef perf_misc_flags 786 # define perf_misc_flags(regs) \ 787 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 788 # define perf_instruction_pointer(regs) instruction_pointer(regs) 789 #endif 790 791 static inline bool has_branch_stack(struct perf_event *event) 792 { 793 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 794 } 795 796 extern int perf_output_begin(struct perf_output_handle *handle, 797 struct perf_event *event, unsigned int size); 798 extern void perf_output_end(struct perf_output_handle *handle); 799 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 800 const void *buf, unsigned int len); 801 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 802 unsigned int len); 803 extern int perf_swevent_get_recursion_context(void); 804 extern void perf_swevent_put_recursion_context(int rctx); 805 extern u64 perf_swevent_set_period(struct perf_event *event); 806 extern void perf_event_enable(struct perf_event *event); 807 extern void perf_event_disable(struct perf_event *event); 808 extern int __perf_event_disable(void *info); 809 extern void perf_event_task_tick(void); 810 #else /* !CONFIG_PERF_EVENTS: */ 811 static inline void 812 perf_event_task_sched_in(struct task_struct *prev, 813 struct task_struct *task) { } 814 static inline void 815 perf_event_task_sched_out(struct task_struct *prev, 816 struct task_struct *next) { } 817 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 818 static inline void perf_event_exit_task(struct task_struct *child) { } 819 static inline void perf_event_free_task(struct task_struct *task) { } 820 static inline void perf_event_delayed_put(struct task_struct *task) { } 821 static inline void perf_event_print_debug(void) { } 822 static inline int perf_event_task_disable(void) { return -EINVAL; } 823 static inline int perf_event_task_enable(void) { return -EINVAL; } 824 static inline int perf_event_refresh(struct perf_event *event, int refresh) 825 { 826 return -EINVAL; 827 } 828 829 static inline void 830 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 831 static inline void 832 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 833 static inline void 834 perf_bp_event(struct perf_event *event, void *data) { } 835 836 static inline int perf_register_guest_info_callbacks 837 (struct perf_guest_info_callbacks *callbacks) { return 0; } 838 static inline int perf_unregister_guest_info_callbacks 839 (struct perf_guest_info_callbacks *callbacks) { return 0; } 840 841 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 842 static inline void perf_event_exec(void) { } 843 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 844 static inline void perf_event_fork(struct task_struct *tsk) { } 845 static inline void perf_event_init(void) { } 846 static inline int perf_swevent_get_recursion_context(void) { return -1; } 847 static inline void perf_swevent_put_recursion_context(int rctx) { } 848 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 849 static inline void perf_event_enable(struct perf_event *event) { } 850 static inline void perf_event_disable(struct perf_event *event) { } 851 static inline int __perf_event_disable(void *info) { return -1; } 852 static inline void perf_event_task_tick(void) { } 853 #endif 854 855 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 856 extern bool perf_event_can_stop_tick(void); 857 #else 858 static inline bool perf_event_can_stop_tick(void) { return true; } 859 #endif 860 861 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 862 extern void perf_restore_debug_store(void); 863 #else 864 static inline void perf_restore_debug_store(void) { } 865 #endif 866 867 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 868 869 /* 870 * This has to have a higher priority than migration_notifier in sched/core.c. 871 */ 872 #define perf_cpu_notifier(fn) \ 873 do { \ 874 static struct notifier_block fn##_nb = \ 875 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 876 unsigned long cpu = smp_processor_id(); \ 877 unsigned long flags; \ 878 \ 879 cpu_notifier_register_begin(); \ 880 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 881 (void *)(unsigned long)cpu); \ 882 local_irq_save(flags); \ 883 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 884 (void *)(unsigned long)cpu); \ 885 local_irq_restore(flags); \ 886 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 887 (void *)(unsigned long)cpu); \ 888 __register_cpu_notifier(&fn##_nb); \ 889 cpu_notifier_register_done(); \ 890 } while (0) 891 892 /* 893 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 894 * callback for already online CPUs. 895 */ 896 #define __perf_cpu_notifier(fn) \ 897 do { \ 898 static struct notifier_block fn##_nb = \ 899 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 900 \ 901 __register_cpu_notifier(&fn##_nb); \ 902 } while (0) 903 904 struct perf_pmu_events_attr { 905 struct device_attribute attr; 906 u64 id; 907 const char *event_str; 908 }; 909 910 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 911 static struct perf_pmu_events_attr _var = { \ 912 .attr = __ATTR(_name, 0444, _show, NULL), \ 913 .id = _id, \ 914 }; 915 916 #define PMU_FORMAT_ATTR(_name, _format) \ 917 static ssize_t \ 918 _name##_show(struct device *dev, \ 919 struct device_attribute *attr, \ 920 char *page) \ 921 { \ 922 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 923 return sprintf(page, _format "\n"); \ 924 } \ 925 \ 926 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 927 928 #endif /* _LINUX_PERF_EVENT_H */ 929