xref: /linux-6.15/include/linux/perf_event.h (revision c6d3aaa4)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 
35 	PERF_TYPE_MAX,				/* non-ABI */
36 };
37 
38 /*
39  * Generalized performance event event_id types, used by the
40  * attr.event_id parameter of the sys_perf_event_open()
41  * syscall:
42  */
43 enum perf_hw_id {
44 	/*
45 	 * Common hardware events, generalized by the kernel:
46 	 */
47 	PERF_COUNT_HW_CPU_CYCLES		= 0,
48 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
49 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
50 	PERF_COUNT_HW_CACHE_MISSES		= 3,
51 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
52 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
53 	PERF_COUNT_HW_BUS_CYCLES		= 6,
54 
55 	PERF_COUNT_HW_MAX,			/* non-ABI */
56 };
57 
58 /*
59  * Generalized hardware cache events:
60  *
61  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62  *       { read, write, prefetch } x
63  *       { accesses, misses }
64  */
65 enum perf_hw_cache_id {
66 	PERF_COUNT_HW_CACHE_L1D			= 0,
67 	PERF_COUNT_HW_CACHE_L1I			= 1,
68 	PERF_COUNT_HW_CACHE_LL			= 2,
69 	PERF_COUNT_HW_CACHE_DTLB		= 3,
70 	PERF_COUNT_HW_CACHE_ITLB		= 4,
71 	PERF_COUNT_HW_CACHE_BPU			= 5,
72 
73 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
74 };
75 
76 enum perf_hw_cache_op_id {
77 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
78 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
79 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
80 
81 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
82 };
83 
84 enum perf_hw_cache_op_result_id {
85 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
86 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
87 
88 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
89 };
90 
91 /*
92  * Special "software" events provided by the kernel, even if the hardware
93  * does not support performance events. These events measure various
94  * physical and sw events of the kernel (and allow the profiling of them as
95  * well):
96  */
97 enum perf_sw_ids {
98 	PERF_COUNT_SW_CPU_CLOCK			= 0,
99 	PERF_COUNT_SW_TASK_CLOCK		= 1,
100 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
101 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
102 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
103 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
104 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
105 
106 	PERF_COUNT_SW_MAX,			/* non-ABI */
107 };
108 
109 /*
110  * Bits that can be set in attr.sample_type to request information
111  * in the overflow packets.
112  */
113 enum perf_event_sample_format {
114 	PERF_SAMPLE_IP				= 1U << 0,
115 	PERF_SAMPLE_TID				= 1U << 1,
116 	PERF_SAMPLE_TIME			= 1U << 2,
117 	PERF_SAMPLE_ADDR			= 1U << 3,
118 	PERF_SAMPLE_READ			= 1U << 4,
119 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
120 	PERF_SAMPLE_ID				= 1U << 6,
121 	PERF_SAMPLE_CPU				= 1U << 7,
122 	PERF_SAMPLE_PERIOD			= 1U << 8,
123 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
124 	PERF_SAMPLE_RAW				= 1U << 10,
125 
126 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
127 };
128 
129 /*
130  * The format of the data returned by read() on a perf event fd,
131  * as specified by attr.read_format:
132  *
133  * struct read_format {
134  *	{ u64		value;
135  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
136  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
137  *	  { u64		id;           } && PERF_FORMAT_ID
138  *	} && !PERF_FORMAT_GROUP
139  *
140  *	{ u64		nr;
141  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
142  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
143  *	  { u64		value;
144  *	    { u64	id;           } && PERF_FORMAT_ID
145  *	  }		cntr[nr];
146  *	} && PERF_FORMAT_GROUP
147  * };
148  */
149 enum perf_event_read_format {
150 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
151 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
152 	PERF_FORMAT_ID				= 1U << 2,
153 	PERF_FORMAT_GROUP			= 1U << 3,
154 
155 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
156 };
157 
158 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
159 
160 /*
161  * Hardware event_id to monitor via a performance monitoring event:
162  */
163 struct perf_event_attr {
164 
165 	/*
166 	 * Major type: hardware/software/tracepoint/etc.
167 	 */
168 	__u32			type;
169 
170 	/*
171 	 * Size of the attr structure, for fwd/bwd compat.
172 	 */
173 	__u32			size;
174 
175 	/*
176 	 * Type specific configuration information.
177 	 */
178 	__u64			config;
179 
180 	union {
181 		__u64		sample_period;
182 		__u64		sample_freq;
183 	};
184 
185 	__u64			sample_type;
186 	__u64			read_format;
187 
188 	__u64			disabled       :  1, /* off by default        */
189 				inherit	       :  1, /* children inherit it   */
190 				pinned	       :  1, /* must always be on PMU */
191 				exclusive      :  1, /* only group on PMU     */
192 				exclude_user   :  1, /* don't count user      */
193 				exclude_kernel :  1, /* ditto kernel          */
194 				exclude_hv     :  1, /* ditto hypervisor      */
195 				exclude_idle   :  1, /* don't count when idle */
196 				mmap           :  1, /* include mmap data     */
197 				comm	       :  1, /* include comm data     */
198 				freq           :  1, /* use freq, not period  */
199 				inherit_stat   :  1, /* per task counts       */
200 				enable_on_exec :  1, /* next exec enables     */
201 				task           :  1, /* trace fork/exit       */
202 				watermark      :  1, /* wakeup_watermark      */
203 
204 				__reserved_1   : 49;
205 
206 	union {
207 		__u32		wakeup_events;	  /* wakeup every n events */
208 		__u32		wakeup_watermark; /* bytes before wakeup   */
209 	};
210 	__u32			__reserved_2;
211 
212 	__u64			__reserved_3;
213 };
214 
215 /*
216  * Ioctls that can be done on a perf event fd:
217  */
218 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
219 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
220 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
221 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
222 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, u64)
223 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
224 
225 enum perf_event_ioc_flags {
226 	PERF_IOC_FLAG_GROUP		= 1U << 0,
227 };
228 
229 /*
230  * Structure of the page that can be mapped via mmap
231  */
232 struct perf_event_mmap_page {
233 	__u32	version;		/* version number of this structure */
234 	__u32	compat_version;		/* lowest version this is compat with */
235 
236 	/*
237 	 * Bits needed to read the hw events in user-space.
238 	 *
239 	 *   u32 seq;
240 	 *   s64 count;
241 	 *
242 	 *   do {
243 	 *     seq = pc->lock;
244 	 *
245 	 *     barrier()
246 	 *     if (pc->index) {
247 	 *       count = pmc_read(pc->index - 1);
248 	 *       count += pc->offset;
249 	 *     } else
250 	 *       goto regular_read;
251 	 *
252 	 *     barrier();
253 	 *   } while (pc->lock != seq);
254 	 *
255 	 * NOTE: for obvious reason this only works on self-monitoring
256 	 *       processes.
257 	 */
258 	__u32	lock;			/* seqlock for synchronization */
259 	__u32	index;			/* hardware event identifier */
260 	__s64	offset;			/* add to hardware event value */
261 	__u64	time_enabled;		/* time event active */
262 	__u64	time_running;		/* time event on cpu */
263 
264 		/*
265 		 * Hole for extension of the self monitor capabilities
266 		 */
267 
268 	__u64	__reserved[123];	/* align to 1k */
269 
270 	/*
271 	 * Control data for the mmap() data buffer.
272 	 *
273 	 * User-space reading the @data_head value should issue an rmb(), on
274 	 * SMP capable platforms, after reading this value -- see
275 	 * perf_event_wakeup().
276 	 *
277 	 * When the mapping is PROT_WRITE the @data_tail value should be
278 	 * written by userspace to reflect the last read data. In this case
279 	 * the kernel will not over-write unread data.
280 	 */
281 	__u64   data_head;		/* head in the data section */
282 	__u64	data_tail;		/* user-space written tail */
283 };
284 
285 #define PERF_RECORD_MISC_CPUMODE_MASK		(3 << 0)
286 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN		(0 << 0)
287 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
288 #define PERF_RECORD_MISC_USER			(2 << 0)
289 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
290 
291 struct perf_event_header {
292 	__u32	type;
293 	__u16	misc;
294 	__u16	size;
295 };
296 
297 enum perf_event_type {
298 
299 	/*
300 	 * The MMAP events record the PROT_EXEC mappings so that we can
301 	 * correlate userspace IPs to code. They have the following structure:
302 	 *
303 	 * struct {
304 	 *	struct perf_event_header	header;
305 	 *
306 	 *	u32				pid, tid;
307 	 *	u64				addr;
308 	 *	u64				len;
309 	 *	u64				pgoff;
310 	 *	char				filename[];
311 	 * };
312 	 */
313 	PERF_RECORD_MMAP			= 1,
314 
315 	/*
316 	 * struct {
317 	 *	struct perf_event_header	header;
318 	 *	u64				id;
319 	 *	u64				lost;
320 	 * };
321 	 */
322 	PERF_RECORD_LOST			= 2,
323 
324 	/*
325 	 * struct {
326 	 *	struct perf_event_header	header;
327 	 *
328 	 *	u32				pid, tid;
329 	 *	char				comm[];
330 	 * };
331 	 */
332 	PERF_RECORD_COMM			= 3,
333 
334 	/*
335 	 * struct {
336 	 *	struct perf_event_header	header;
337 	 *	u32				pid, ppid;
338 	 *	u32				tid, ptid;
339 	 *	u64				time;
340 	 * };
341 	 */
342 	PERF_RECORD_EXIT			= 4,
343 
344 	/*
345 	 * struct {
346 	 *	struct perf_event_header	header;
347 	 *	u64				time;
348 	 *	u64				id;
349 	 *	u64				stream_id;
350 	 * };
351 	 */
352 	PERF_RECORD_THROTTLE		= 5,
353 	PERF_RECORD_UNTHROTTLE		= 6,
354 
355 	/*
356 	 * struct {
357 	 *	struct perf_event_header	header;
358 	 *	u32				pid, ppid;
359 	 *	u32				tid, ptid;
360 	 *	u64				time;
361 	 * };
362 	 */
363 	PERF_RECORD_FORK			= 7,
364 
365 	/*
366 	 * struct {
367 	 * 	struct perf_event_header	header;
368 	 * 	u32				pid, tid;
369 	 *
370 	 * 	struct read_format		values;
371 	 * };
372 	 */
373 	PERF_RECORD_READ			= 8,
374 
375 	/*
376 	 * struct {
377 	 *	struct perf_event_header	header;
378 	 *
379 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
380 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
381 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
382 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
383 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
384 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
385 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
386 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
387 	 *
388 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
389 	 *
390 	 *	{ u64			nr,
391 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
392 	 *
393 	 *	#
394 	 *	# The RAW record below is opaque data wrt the ABI
395 	 *	#
396 	 *	# That is, the ABI doesn't make any promises wrt to
397 	 *	# the stability of its content, it may vary depending
398 	 *	# on event, hardware, kernel version and phase of
399 	 *	# the moon.
400 	 *	#
401 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
402 	 *	#
403 	 *
404 	 *	{ u32			size;
405 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
406 	 * };
407 	 */
408 	PERF_RECORD_SAMPLE		= 9,
409 
410 	PERF_RECORD_MAX,			/* non-ABI */
411 };
412 
413 enum perf_callchain_context {
414 	PERF_CONTEXT_HV			= (__u64)-32,
415 	PERF_CONTEXT_KERNEL		= (__u64)-128,
416 	PERF_CONTEXT_USER		= (__u64)-512,
417 
418 	PERF_CONTEXT_GUEST		= (__u64)-2048,
419 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
420 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
421 
422 	PERF_CONTEXT_MAX		= (__u64)-4095,
423 };
424 
425 #define PERF_FLAG_FD_NO_GROUP	(1U << 0)
426 #define PERF_FLAG_FD_OUTPUT	(1U << 1)
427 
428 #ifdef __KERNEL__
429 /*
430  * Kernel-internal data types and definitions:
431  */
432 
433 #ifdef CONFIG_PERF_EVENTS
434 # include <asm/perf_event.h>
435 #endif
436 
437 #include <linux/list.h>
438 #include <linux/mutex.h>
439 #include <linux/rculist.h>
440 #include <linux/rcupdate.h>
441 #include <linux/spinlock.h>
442 #include <linux/hrtimer.h>
443 #include <linux/fs.h>
444 #include <linux/pid_namespace.h>
445 #include <asm/atomic.h>
446 
447 #define PERF_MAX_STACK_DEPTH		255
448 
449 struct perf_callchain_entry {
450 	__u64				nr;
451 	__u64				ip[PERF_MAX_STACK_DEPTH];
452 };
453 
454 struct perf_raw_record {
455 	u32				size;
456 	void				*data;
457 };
458 
459 struct task_struct;
460 
461 /**
462  * struct hw_perf_event - performance event hardware details:
463  */
464 struct hw_perf_event {
465 #ifdef CONFIG_PERF_EVENTS
466 	union {
467 		struct { /* hardware */
468 			u64		config;
469 			unsigned long	config_base;
470 			unsigned long	event_base;
471 			int		idx;
472 		};
473 		union { /* software */
474 			atomic64_t	count;
475 			struct hrtimer	hrtimer;
476 		};
477 	};
478 	atomic64_t			prev_count;
479 	u64				sample_period;
480 	u64				last_period;
481 	atomic64_t			period_left;
482 	u64				interrupts;
483 
484 	u64				freq_count;
485 	u64				freq_interrupts;
486 	u64				freq_stamp;
487 #endif
488 };
489 
490 struct perf_event;
491 
492 /**
493  * struct pmu - generic performance monitoring unit
494  */
495 struct pmu {
496 	int (*enable)			(struct perf_event *event);
497 	void (*disable)			(struct perf_event *event);
498 	void (*read)			(struct perf_event *event);
499 	void (*unthrottle)		(struct perf_event *event);
500 };
501 
502 /**
503  * enum perf_event_active_state - the states of a event
504  */
505 enum perf_event_active_state {
506 	PERF_EVENT_STATE_ERROR		= -2,
507 	PERF_EVENT_STATE_OFF		= -1,
508 	PERF_EVENT_STATE_INACTIVE	=  0,
509 	PERF_EVENT_STATE_ACTIVE		=  1,
510 };
511 
512 struct file;
513 
514 struct perf_mmap_data {
515 	struct rcu_head			rcu_head;
516 	int				nr_pages;	/* nr of data pages  */
517 	int				writable;	/* are we writable   */
518 	int				nr_locked;	/* nr pages mlocked  */
519 
520 	atomic_t			poll;		/* POLL_ for wakeups */
521 	atomic_t			events;		/* event_id limit       */
522 
523 	atomic_long_t			head;		/* write position    */
524 	atomic_long_t			done_head;	/* completed head    */
525 
526 	atomic_t			lock;		/* concurrent writes */
527 	atomic_t			wakeup;		/* needs a wakeup    */
528 	atomic_t			lost;		/* nr records lost   */
529 
530 	long				watermark;	/* wakeup watermark  */
531 
532 	struct perf_event_mmap_page	*user_page;
533 	void				*data_pages[0];
534 };
535 
536 struct perf_pending_entry {
537 	struct perf_pending_entry *next;
538 	void (*func)(struct perf_pending_entry *);
539 };
540 
541 /**
542  * struct perf_event - performance event kernel representation:
543  */
544 struct perf_event {
545 #ifdef CONFIG_PERF_EVENTS
546 	struct list_head		group_entry;
547 	struct list_head		event_entry;
548 	struct list_head		sibling_list;
549 	int				nr_siblings;
550 	struct perf_event		*group_leader;
551 	struct perf_event		*output;
552 	const struct pmu		*pmu;
553 
554 	enum perf_event_active_state	state;
555 	atomic64_t			count;
556 
557 	/*
558 	 * These are the total time in nanoseconds that the event
559 	 * has been enabled (i.e. eligible to run, and the task has
560 	 * been scheduled in, if this is a per-task event)
561 	 * and running (scheduled onto the CPU), respectively.
562 	 *
563 	 * They are computed from tstamp_enabled, tstamp_running and
564 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
565 	 */
566 	u64				total_time_enabled;
567 	u64				total_time_running;
568 
569 	/*
570 	 * These are timestamps used for computing total_time_enabled
571 	 * and total_time_running when the event is in INACTIVE or
572 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
573 	 * in time.
574 	 * tstamp_enabled: the notional time when the event was enabled
575 	 * tstamp_running: the notional time when the event was scheduled on
576 	 * tstamp_stopped: in INACTIVE state, the notional time when the
577 	 *	event was scheduled off.
578 	 */
579 	u64				tstamp_enabled;
580 	u64				tstamp_running;
581 	u64				tstamp_stopped;
582 
583 	struct perf_event_attr	attr;
584 	struct hw_perf_event		hw;
585 
586 	struct perf_event_context	*ctx;
587 	struct file			*filp;
588 
589 	/*
590 	 * These accumulate total time (in nanoseconds) that children
591 	 * events have been enabled and running, respectively.
592 	 */
593 	atomic64_t			child_total_time_enabled;
594 	atomic64_t			child_total_time_running;
595 
596 	/*
597 	 * Protect attach/detach and child_list:
598 	 */
599 	struct mutex			child_mutex;
600 	struct list_head		child_list;
601 	struct perf_event		*parent;
602 
603 	int				oncpu;
604 	int				cpu;
605 
606 	struct list_head		owner_entry;
607 	struct task_struct		*owner;
608 
609 	/* mmap bits */
610 	struct mutex			mmap_mutex;
611 	atomic_t			mmap_count;
612 	struct perf_mmap_data		*data;
613 
614 	/* poll related */
615 	wait_queue_head_t		waitq;
616 	struct fasync_struct		*fasync;
617 
618 	/* delayed work for NMIs and such */
619 	int				pending_wakeup;
620 	int				pending_kill;
621 	int				pending_disable;
622 	struct perf_pending_entry	pending;
623 
624 	atomic_t			event_limit;
625 
626 	void (*destroy)(struct perf_event *);
627 	struct rcu_head			rcu_head;
628 
629 	struct pid_namespace		*ns;
630 	u64				id;
631 #endif
632 };
633 
634 /**
635  * struct perf_event_context - event context structure
636  *
637  * Used as a container for task events and CPU events as well:
638  */
639 struct perf_event_context {
640 	/*
641 	 * Protect the states of the events in the list,
642 	 * nr_active, and the list:
643 	 */
644 	spinlock_t			lock;
645 	/*
646 	 * Protect the list of events.  Locking either mutex or lock
647 	 * is sufficient to ensure the list doesn't change; to change
648 	 * the list you need to lock both the mutex and the spinlock.
649 	 */
650 	struct mutex			mutex;
651 
652 	struct list_head		group_list;
653 	struct list_head		event_list;
654 	int				nr_events;
655 	int				nr_active;
656 	int				is_active;
657 	int				nr_stat;
658 	atomic_t			refcount;
659 	struct task_struct		*task;
660 
661 	/*
662 	 * Context clock, runs when context enabled.
663 	 */
664 	u64				time;
665 	u64				timestamp;
666 
667 	/*
668 	 * These fields let us detect when two contexts have both
669 	 * been cloned (inherited) from a common ancestor.
670 	 */
671 	struct perf_event_context	*parent_ctx;
672 	u64				parent_gen;
673 	u64				generation;
674 	int				pin_count;
675 	struct rcu_head			rcu_head;
676 };
677 
678 /**
679  * struct perf_event_cpu_context - per cpu event context structure
680  */
681 struct perf_cpu_context {
682 	struct perf_event_context	ctx;
683 	struct perf_event_context	*task_ctx;
684 	int				active_oncpu;
685 	int				max_pertask;
686 	int				exclusive;
687 
688 	/*
689 	 * Recursion avoidance:
690 	 *
691 	 * task, softirq, irq, nmi context
692 	 */
693 	int				recursion[4];
694 };
695 
696 struct perf_output_handle {
697 	struct perf_event		*event;
698 	struct perf_mmap_data		*data;
699 	unsigned long			head;
700 	unsigned long			offset;
701 	int				nmi;
702 	int				sample;
703 	int				locked;
704 	unsigned long			flags;
705 };
706 
707 #ifdef CONFIG_PERF_EVENTS
708 
709 /*
710  * Set by architecture code:
711  */
712 extern int perf_max_events;
713 
714 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
715 
716 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
717 extern void perf_event_task_sched_out(struct task_struct *task,
718 					struct task_struct *next, int cpu);
719 extern void perf_event_task_tick(struct task_struct *task, int cpu);
720 extern int perf_event_init_task(struct task_struct *child);
721 extern void perf_event_exit_task(struct task_struct *child);
722 extern void perf_event_free_task(struct task_struct *task);
723 extern void set_perf_event_pending(void);
724 extern void perf_event_do_pending(void);
725 extern void perf_event_print_debug(void);
726 extern void __perf_disable(void);
727 extern bool __perf_enable(void);
728 extern void perf_disable(void);
729 extern void perf_enable(void);
730 extern int perf_event_task_disable(void);
731 extern int perf_event_task_enable(void);
732 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
733 	       struct perf_cpu_context *cpuctx,
734 	       struct perf_event_context *ctx, int cpu);
735 extern void perf_event_update_userpage(struct perf_event *event);
736 
737 struct perf_sample_data {
738 	u64				type;
739 
740 	u64				ip;
741 	struct {
742 		u32	pid;
743 		u32	tid;
744 	}				tid_entry;
745 	u64				time;
746 	u64				addr;
747 	u64				id;
748 	u64				stream_id;
749 	struct {
750 		u32	cpu;
751 		u32	reserved;
752 	}				cpu_entry;
753 	u64				period;
754 	struct perf_callchain_entry	*callchain;
755 	struct perf_raw_record		*raw;
756 };
757 
758 extern void perf_output_sample(struct perf_output_handle *handle,
759 			       struct perf_event_header *header,
760 			       struct perf_sample_data *data,
761 			       struct perf_event *event);
762 extern void perf_prepare_sample(struct perf_event_header *header,
763 				struct perf_sample_data *data,
764 				struct perf_event *event,
765 				struct pt_regs *regs);
766 
767 extern int perf_event_overflow(struct perf_event *event, int nmi,
768 				 struct perf_sample_data *data,
769 				 struct pt_regs *regs);
770 
771 /*
772  * Return 1 for a software event, 0 for a hardware event
773  */
774 static inline int is_software_event(struct perf_event *event)
775 {
776 	return (event->attr.type != PERF_TYPE_RAW) &&
777 		(event->attr.type != PERF_TYPE_HARDWARE) &&
778 		(event->attr.type != PERF_TYPE_HW_CACHE);
779 }
780 
781 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
782 
783 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
784 
785 static inline void
786 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
787 {
788 	if (atomic_read(&perf_swevent_enabled[event_id]))
789 		__perf_sw_event(event_id, nr, nmi, regs, addr);
790 }
791 
792 extern void __perf_event_mmap(struct vm_area_struct *vma);
793 
794 static inline void perf_event_mmap(struct vm_area_struct *vma)
795 {
796 	if (vma->vm_flags & VM_EXEC)
797 		__perf_event_mmap(vma);
798 }
799 
800 extern void perf_event_comm(struct task_struct *tsk);
801 extern void perf_event_fork(struct task_struct *tsk);
802 
803 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
804 
805 extern int sysctl_perf_event_paranoid;
806 extern int sysctl_perf_event_mlock;
807 extern int sysctl_perf_event_sample_rate;
808 
809 extern void perf_event_init(void);
810 extern void perf_tp_event(int event_id, u64 addr, u64 count,
811 				 void *record, int entry_size);
812 
813 #ifndef perf_misc_flags
814 #define perf_misc_flags(regs)	(user_mode(regs) ? PERF_RECORD_MISC_USER : \
815 				 PERF_RECORD_MISC_KERNEL)
816 #define perf_instruction_pointer(regs)	instruction_pointer(regs)
817 #endif
818 
819 extern int perf_output_begin(struct perf_output_handle *handle,
820 			     struct perf_event *event, unsigned int size,
821 			     int nmi, int sample);
822 extern void perf_output_end(struct perf_output_handle *handle);
823 extern void perf_output_copy(struct perf_output_handle *handle,
824 			     const void *buf, unsigned int len);
825 #else
826 static inline void
827 perf_event_task_sched_in(struct task_struct *task, int cpu)		{ }
828 static inline void
829 perf_event_task_sched_out(struct task_struct *task,
830 			    struct task_struct *next, int cpu)		{ }
831 static inline void
832 perf_event_task_tick(struct task_struct *task, int cpu)			{ }
833 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
834 static inline void perf_event_exit_task(struct task_struct *child)	{ }
835 static inline void perf_event_free_task(struct task_struct *task)	{ }
836 static inline void perf_event_do_pending(void)				{ }
837 static inline void perf_event_print_debug(void)				{ }
838 static inline void perf_disable(void)					{ }
839 static inline void perf_enable(void)					{ }
840 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
841 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
842 
843 static inline void
844 perf_sw_event(u32 event_id, u64 nr, int nmi,
845 		     struct pt_regs *regs, u64 addr)			{ }
846 
847 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
848 static inline void perf_event_comm(struct task_struct *tsk)		{ }
849 static inline void perf_event_fork(struct task_struct *tsk)		{ }
850 static inline void perf_event_init(void)				{ }
851 
852 #endif
853 
854 #define perf_output_put(handle, x) \
855 	perf_output_copy((handle), &(x), sizeof(x))
856 
857 #endif /* __KERNEL__ */
858 #endif /* _LINUX_PERF_EVENT_H */
859