1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <asm/local.h> 57 58 struct perf_callchain_entry { 59 __u64 nr; 60 __u64 ip[PERF_MAX_STACK_DEPTH]; 61 }; 62 63 struct perf_raw_record { 64 u32 size; 65 void *data; 66 }; 67 68 /* 69 * branch stack layout: 70 * nr: number of taken branches stored in entries[] 71 * 72 * Note that nr can vary from sample to sample 73 * branches (to, from) are stored from most recent 74 * to least recent, i.e., entries[0] contains the most 75 * recent branch. 76 */ 77 struct perf_branch_stack { 78 __u64 nr; 79 struct perf_branch_entry entries[0]; 80 }; 81 82 struct task_struct; 83 84 /* 85 * extra PMU register associated with an event 86 */ 87 struct hw_perf_event_extra { 88 u64 config; /* register value */ 89 unsigned int reg; /* register address or index */ 90 int alloc; /* extra register already allocated */ 91 int idx; /* index in shared_regs->regs[] */ 92 }; 93 94 struct event_constraint; 95 96 /** 97 * struct hw_perf_event - performance event hardware details: 98 */ 99 struct hw_perf_event { 100 #ifdef CONFIG_PERF_EVENTS 101 union { 102 struct { /* hardware */ 103 u64 config; 104 u64 last_tag; 105 unsigned long config_base; 106 unsigned long event_base; 107 int event_base_rdpmc; 108 int idx; 109 int last_cpu; 110 int flags; 111 112 struct hw_perf_event_extra extra_reg; 113 struct hw_perf_event_extra branch_reg; 114 115 struct event_constraint *constraint; 116 }; 117 struct { /* software */ 118 struct hrtimer hrtimer; 119 }; 120 struct { /* tracepoint */ 121 struct task_struct *tp_target; 122 /* for tp_event->class */ 123 struct list_head tp_list; 124 }; 125 #ifdef CONFIG_HAVE_HW_BREAKPOINT 126 struct { /* breakpoint */ 127 /* 128 * Crufty hack to avoid the chicken and egg 129 * problem hw_breakpoint has with context 130 * creation and event initalization. 131 */ 132 struct task_struct *bp_target; 133 struct arch_hw_breakpoint info; 134 struct list_head bp_list; 135 }; 136 #endif 137 }; 138 int state; 139 local64_t prev_count; 140 u64 sample_period; 141 u64 last_period; 142 local64_t period_left; 143 u64 interrupts_seq; 144 u64 interrupts; 145 146 u64 freq_time_stamp; 147 u64 freq_count_stamp; 148 #endif 149 }; 150 151 /* 152 * hw_perf_event::state flags 153 */ 154 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 155 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 156 #define PERF_HES_ARCH 0x04 157 158 struct perf_event; 159 160 /* 161 * Common implementation detail of pmu::{start,commit,cancel}_txn 162 */ 163 #define PERF_EVENT_TXN 0x1 164 165 /** 166 * pmu::capabilities flags 167 */ 168 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 169 170 /** 171 * struct pmu - generic performance monitoring unit 172 */ 173 struct pmu { 174 struct list_head entry; 175 176 struct module *module; 177 struct device *dev; 178 const struct attribute_group **attr_groups; 179 const char *name; 180 int type; 181 182 /* 183 * various common per-pmu feature flags 184 */ 185 int capabilities; 186 187 int * __percpu pmu_disable_count; 188 struct perf_cpu_context * __percpu pmu_cpu_context; 189 int task_ctx_nr; 190 int hrtimer_interval_ms; 191 192 /* 193 * Fully disable/enable this PMU, can be used to protect from the PMI 194 * as well as for lazy/batch writing of the MSRs. 195 */ 196 void (*pmu_enable) (struct pmu *pmu); /* optional */ 197 void (*pmu_disable) (struct pmu *pmu); /* optional */ 198 199 /* 200 * Try and initialize the event for this PMU. 201 * Should return -ENOENT when the @event doesn't match this PMU. 202 */ 203 int (*event_init) (struct perf_event *event); 204 205 #define PERF_EF_START 0x01 /* start the counter when adding */ 206 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 207 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 208 209 /* 210 * Adds/Removes a counter to/from the PMU, can be done inside 211 * a transaction, see the ->*_txn() methods. 212 */ 213 int (*add) (struct perf_event *event, int flags); 214 void (*del) (struct perf_event *event, int flags); 215 216 /* 217 * Starts/Stops a counter present on the PMU. The PMI handler 218 * should stop the counter when perf_event_overflow() returns 219 * !0. ->start() will be used to continue. 220 */ 221 void (*start) (struct perf_event *event, int flags); 222 void (*stop) (struct perf_event *event, int flags); 223 224 /* 225 * Updates the counter value of the event. 226 */ 227 void (*read) (struct perf_event *event); 228 229 /* 230 * Group events scheduling is treated as a transaction, add 231 * group events as a whole and perform one schedulability test. 232 * If the test fails, roll back the whole group 233 * 234 * Start the transaction, after this ->add() doesn't need to 235 * do schedulability tests. 236 */ 237 void (*start_txn) (struct pmu *pmu); /* optional */ 238 /* 239 * If ->start_txn() disabled the ->add() schedulability test 240 * then ->commit_txn() is required to perform one. On success 241 * the transaction is closed. On error the transaction is kept 242 * open until ->cancel_txn() is called. 243 */ 244 int (*commit_txn) (struct pmu *pmu); /* optional */ 245 /* 246 * Will cancel the transaction, assumes ->del() is called 247 * for each successful ->add() during the transaction. 248 */ 249 void (*cancel_txn) (struct pmu *pmu); /* optional */ 250 251 /* 252 * Will return the value for perf_event_mmap_page::index for this event, 253 * if no implementation is provided it will default to: event->hw.idx + 1. 254 */ 255 int (*event_idx) (struct perf_event *event); /*optional */ 256 257 /* 258 * flush branch stack on context-switches (needed in cpu-wide mode) 259 */ 260 void (*flush_branch_stack) (void); 261 }; 262 263 /** 264 * enum perf_event_active_state - the states of a event 265 */ 266 enum perf_event_active_state { 267 PERF_EVENT_STATE_EXIT = -3, 268 PERF_EVENT_STATE_ERROR = -2, 269 PERF_EVENT_STATE_OFF = -1, 270 PERF_EVENT_STATE_INACTIVE = 0, 271 PERF_EVENT_STATE_ACTIVE = 1, 272 }; 273 274 struct file; 275 struct perf_sample_data; 276 277 typedef void (*perf_overflow_handler_t)(struct perf_event *, 278 struct perf_sample_data *, 279 struct pt_regs *regs); 280 281 enum perf_group_flag { 282 PERF_GROUP_SOFTWARE = 0x1, 283 }; 284 285 #define SWEVENT_HLIST_BITS 8 286 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 287 288 struct swevent_hlist { 289 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 290 struct rcu_head rcu_head; 291 }; 292 293 #define PERF_ATTACH_CONTEXT 0x01 294 #define PERF_ATTACH_GROUP 0x02 295 #define PERF_ATTACH_TASK 0x04 296 297 struct perf_cgroup; 298 struct ring_buffer; 299 300 /** 301 * struct perf_event - performance event kernel representation: 302 */ 303 struct perf_event { 304 #ifdef CONFIG_PERF_EVENTS 305 /* 306 * entry onto perf_event_context::event_list; 307 * modifications require ctx->lock 308 * RCU safe iterations. 309 */ 310 struct list_head event_entry; 311 312 /* 313 * XXX: group_entry and sibling_list should be mutually exclusive; 314 * either you're a sibling on a group, or you're the group leader. 315 * Rework the code to always use the same list element. 316 * 317 * Locked for modification by both ctx->mutex and ctx->lock; holding 318 * either sufficies for read. 319 */ 320 struct list_head group_entry; 321 struct list_head sibling_list; 322 323 /* 324 * We need storage to track the entries in perf_pmu_migrate_context; we 325 * cannot use the event_entry because of RCU and we want to keep the 326 * group in tact which avoids us using the other two entries. 327 */ 328 struct list_head migrate_entry; 329 330 struct hlist_node hlist_entry; 331 struct list_head active_entry; 332 int nr_siblings; 333 int group_flags; 334 struct perf_event *group_leader; 335 struct pmu *pmu; 336 337 enum perf_event_active_state state; 338 unsigned int attach_state; 339 local64_t count; 340 atomic64_t child_count; 341 342 /* 343 * These are the total time in nanoseconds that the event 344 * has been enabled (i.e. eligible to run, and the task has 345 * been scheduled in, if this is a per-task event) 346 * and running (scheduled onto the CPU), respectively. 347 * 348 * They are computed from tstamp_enabled, tstamp_running and 349 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 350 */ 351 u64 total_time_enabled; 352 u64 total_time_running; 353 354 /* 355 * These are timestamps used for computing total_time_enabled 356 * and total_time_running when the event is in INACTIVE or 357 * ACTIVE state, measured in nanoseconds from an arbitrary point 358 * in time. 359 * tstamp_enabled: the notional time when the event was enabled 360 * tstamp_running: the notional time when the event was scheduled on 361 * tstamp_stopped: in INACTIVE state, the notional time when the 362 * event was scheduled off. 363 */ 364 u64 tstamp_enabled; 365 u64 tstamp_running; 366 u64 tstamp_stopped; 367 368 /* 369 * timestamp shadows the actual context timing but it can 370 * be safely used in NMI interrupt context. It reflects the 371 * context time as it was when the event was last scheduled in. 372 * 373 * ctx_time already accounts for ctx->timestamp. Therefore to 374 * compute ctx_time for a sample, simply add perf_clock(). 375 */ 376 u64 shadow_ctx_time; 377 378 struct perf_event_attr attr; 379 u16 header_size; 380 u16 id_header_size; 381 u16 read_size; 382 struct hw_perf_event hw; 383 384 struct perf_event_context *ctx; 385 atomic_long_t refcount; 386 387 /* 388 * These accumulate total time (in nanoseconds) that children 389 * events have been enabled and running, respectively. 390 */ 391 atomic64_t child_total_time_enabled; 392 atomic64_t child_total_time_running; 393 394 /* 395 * Protect attach/detach and child_list: 396 */ 397 struct mutex child_mutex; 398 struct list_head child_list; 399 struct perf_event *parent; 400 401 int oncpu; 402 int cpu; 403 404 struct list_head owner_entry; 405 struct task_struct *owner; 406 407 /* mmap bits */ 408 struct mutex mmap_mutex; 409 atomic_t mmap_count; 410 411 struct ring_buffer *rb; 412 struct list_head rb_entry; 413 unsigned long rcu_batches; 414 int rcu_pending; 415 416 /* poll related */ 417 wait_queue_head_t waitq; 418 struct fasync_struct *fasync; 419 420 /* delayed work for NMIs and such */ 421 int pending_wakeup; 422 int pending_kill; 423 int pending_disable; 424 struct irq_work pending; 425 426 atomic_t event_limit; 427 428 void (*destroy)(struct perf_event *); 429 struct rcu_head rcu_head; 430 431 struct pid_namespace *ns; 432 u64 id; 433 434 perf_overflow_handler_t overflow_handler; 435 void *overflow_handler_context; 436 437 #ifdef CONFIG_EVENT_TRACING 438 struct ftrace_event_call *tp_event; 439 struct event_filter *filter; 440 #ifdef CONFIG_FUNCTION_TRACER 441 struct ftrace_ops ftrace_ops; 442 #endif 443 #endif 444 445 #ifdef CONFIG_CGROUP_PERF 446 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 447 int cgrp_defer_enabled; 448 #endif 449 450 #endif /* CONFIG_PERF_EVENTS */ 451 }; 452 453 enum perf_event_context_type { 454 task_context, 455 cpu_context, 456 }; 457 458 /** 459 * struct perf_event_context - event context structure 460 * 461 * Used as a container for task events and CPU events as well: 462 */ 463 struct perf_event_context { 464 struct pmu *pmu; 465 enum perf_event_context_type type; 466 /* 467 * Protect the states of the events in the list, 468 * nr_active, and the list: 469 */ 470 raw_spinlock_t lock; 471 /* 472 * Protect the list of events. Locking either mutex or lock 473 * is sufficient to ensure the list doesn't change; to change 474 * the list you need to lock both the mutex and the spinlock. 475 */ 476 struct mutex mutex; 477 478 struct list_head pinned_groups; 479 struct list_head flexible_groups; 480 struct list_head event_list; 481 int nr_events; 482 int nr_active; 483 int is_active; 484 int nr_stat; 485 int nr_freq; 486 int rotate_disable; 487 atomic_t refcount; 488 struct task_struct *task; 489 490 /* 491 * Context clock, runs when context enabled. 492 */ 493 u64 time; 494 u64 timestamp; 495 496 /* 497 * These fields let us detect when two contexts have both 498 * been cloned (inherited) from a common ancestor. 499 */ 500 struct perf_event_context *parent_ctx; 501 u64 parent_gen; 502 u64 generation; 503 int pin_count; 504 int nr_cgroups; /* cgroup evts */ 505 int nr_branch_stack; /* branch_stack evt */ 506 struct rcu_head rcu_head; 507 508 struct delayed_work orphans_remove; 509 bool orphans_remove_sched; 510 }; 511 512 /* 513 * Number of contexts where an event can trigger: 514 * task, softirq, hardirq, nmi. 515 */ 516 #define PERF_NR_CONTEXTS 4 517 518 /** 519 * struct perf_event_cpu_context - per cpu event context structure 520 */ 521 struct perf_cpu_context { 522 struct perf_event_context ctx; 523 struct perf_event_context *task_ctx; 524 int active_oncpu; 525 int exclusive; 526 struct hrtimer hrtimer; 527 ktime_t hrtimer_interval; 528 struct list_head rotation_list; 529 struct pmu *unique_pmu; 530 struct perf_cgroup *cgrp; 531 }; 532 533 struct perf_output_handle { 534 struct perf_event *event; 535 struct ring_buffer *rb; 536 unsigned long wakeup; 537 unsigned long size; 538 void *addr; 539 int page; 540 }; 541 542 #ifdef CONFIG_PERF_EVENTS 543 544 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 545 extern void perf_pmu_unregister(struct pmu *pmu); 546 547 extern int perf_num_counters(void); 548 extern const char *perf_pmu_name(void); 549 extern void __perf_event_task_sched_in(struct task_struct *prev, 550 struct task_struct *task); 551 extern void __perf_event_task_sched_out(struct task_struct *prev, 552 struct task_struct *next); 553 extern int perf_event_init_task(struct task_struct *child); 554 extern void perf_event_exit_task(struct task_struct *child); 555 extern void perf_event_free_task(struct task_struct *task); 556 extern void perf_event_delayed_put(struct task_struct *task); 557 extern void perf_event_print_debug(void); 558 extern void perf_pmu_disable(struct pmu *pmu); 559 extern void perf_pmu_enable(struct pmu *pmu); 560 extern int perf_event_task_disable(void); 561 extern int perf_event_task_enable(void); 562 extern int perf_event_refresh(struct perf_event *event, int refresh); 563 extern void perf_event_update_userpage(struct perf_event *event); 564 extern int perf_event_release_kernel(struct perf_event *event); 565 extern struct perf_event * 566 perf_event_create_kernel_counter(struct perf_event_attr *attr, 567 int cpu, 568 struct task_struct *task, 569 perf_overflow_handler_t callback, 570 void *context); 571 extern void perf_pmu_migrate_context(struct pmu *pmu, 572 int src_cpu, int dst_cpu); 573 extern u64 perf_event_read_value(struct perf_event *event, 574 u64 *enabled, u64 *running); 575 576 577 struct perf_sample_data { 578 /* 579 * Fields set by perf_sample_data_init(), group so as to 580 * minimize the cachelines touched. 581 */ 582 u64 addr; 583 struct perf_raw_record *raw; 584 struct perf_branch_stack *br_stack; 585 u64 period; 586 u64 weight; 587 u64 txn; 588 union perf_mem_data_src data_src; 589 590 /* 591 * The other fields, optionally {set,used} by 592 * perf_{prepare,output}_sample(). 593 */ 594 u64 type; 595 u64 ip; 596 struct { 597 u32 pid; 598 u32 tid; 599 } tid_entry; 600 u64 time; 601 u64 id; 602 u64 stream_id; 603 struct { 604 u32 cpu; 605 u32 reserved; 606 } cpu_entry; 607 struct perf_callchain_entry *callchain; 608 609 /* 610 * regs_user may point to task_pt_regs or to regs_user_copy, depending 611 * on arch details. 612 */ 613 struct perf_regs regs_user; 614 struct pt_regs regs_user_copy; 615 616 struct perf_regs regs_intr; 617 u64 stack_user_size; 618 } ____cacheline_aligned; 619 620 /* default value for data source */ 621 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 622 PERF_MEM_S(LVL, NA) |\ 623 PERF_MEM_S(SNOOP, NA) |\ 624 PERF_MEM_S(LOCK, NA) |\ 625 PERF_MEM_S(TLB, NA)) 626 627 static inline void perf_sample_data_init(struct perf_sample_data *data, 628 u64 addr, u64 period) 629 { 630 /* remaining struct members initialized in perf_prepare_sample() */ 631 data->addr = addr; 632 data->raw = NULL; 633 data->br_stack = NULL; 634 data->period = period; 635 data->weight = 0; 636 data->data_src.val = PERF_MEM_NA; 637 data->txn = 0; 638 } 639 640 extern void perf_output_sample(struct perf_output_handle *handle, 641 struct perf_event_header *header, 642 struct perf_sample_data *data, 643 struct perf_event *event); 644 extern void perf_prepare_sample(struct perf_event_header *header, 645 struct perf_sample_data *data, 646 struct perf_event *event, 647 struct pt_regs *regs); 648 649 extern int perf_event_overflow(struct perf_event *event, 650 struct perf_sample_data *data, 651 struct pt_regs *regs); 652 653 static inline bool is_sampling_event(struct perf_event *event) 654 { 655 return event->attr.sample_period != 0; 656 } 657 658 /* 659 * Return 1 for a software event, 0 for a hardware event 660 */ 661 static inline int is_software_event(struct perf_event *event) 662 { 663 return event->pmu->task_ctx_nr == perf_sw_context; 664 } 665 666 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 667 668 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 669 670 #ifndef perf_arch_fetch_caller_regs 671 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 672 #endif 673 674 /* 675 * Take a snapshot of the regs. Skip ip and frame pointer to 676 * the nth caller. We only need a few of the regs: 677 * - ip for PERF_SAMPLE_IP 678 * - cs for user_mode() tests 679 * - bp for callchains 680 * - eflags, for future purposes, just in case 681 */ 682 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 683 { 684 memset(regs, 0, sizeof(*regs)); 685 686 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 687 } 688 689 static __always_inline void 690 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 691 { 692 struct pt_regs hot_regs; 693 694 if (static_key_false(&perf_swevent_enabled[event_id])) { 695 if (!regs) { 696 perf_fetch_caller_regs(&hot_regs); 697 regs = &hot_regs; 698 } 699 __perf_sw_event(event_id, nr, regs, addr); 700 } 701 } 702 703 extern struct static_key_deferred perf_sched_events; 704 705 static inline void perf_event_task_sched_in(struct task_struct *prev, 706 struct task_struct *task) 707 { 708 if (static_key_false(&perf_sched_events.key)) 709 __perf_event_task_sched_in(prev, task); 710 } 711 712 static inline void perf_event_task_sched_out(struct task_struct *prev, 713 struct task_struct *next) 714 { 715 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 716 717 if (static_key_false(&perf_sched_events.key)) 718 __perf_event_task_sched_out(prev, next); 719 } 720 721 extern void perf_event_mmap(struct vm_area_struct *vma); 722 extern struct perf_guest_info_callbacks *perf_guest_cbs; 723 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 724 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 725 726 extern void perf_event_exec(void); 727 extern void perf_event_comm(struct task_struct *tsk, bool exec); 728 extern void perf_event_fork(struct task_struct *tsk); 729 730 /* Callchains */ 731 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 732 733 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 734 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 735 736 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 737 { 738 if (entry->nr < PERF_MAX_STACK_DEPTH) 739 entry->ip[entry->nr++] = ip; 740 } 741 742 extern int sysctl_perf_event_paranoid; 743 extern int sysctl_perf_event_mlock; 744 extern int sysctl_perf_event_sample_rate; 745 extern int sysctl_perf_cpu_time_max_percent; 746 747 extern void perf_sample_event_took(u64 sample_len_ns); 748 749 extern int perf_proc_update_handler(struct ctl_table *table, int write, 750 void __user *buffer, size_t *lenp, 751 loff_t *ppos); 752 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 753 void __user *buffer, size_t *lenp, 754 loff_t *ppos); 755 756 757 static inline bool perf_paranoid_tracepoint_raw(void) 758 { 759 return sysctl_perf_event_paranoid > -1; 760 } 761 762 static inline bool perf_paranoid_cpu(void) 763 { 764 return sysctl_perf_event_paranoid > 0; 765 } 766 767 static inline bool perf_paranoid_kernel(void) 768 { 769 return sysctl_perf_event_paranoid > 1; 770 } 771 772 extern void perf_event_init(void); 773 extern void perf_tp_event(u64 addr, u64 count, void *record, 774 int entry_size, struct pt_regs *regs, 775 struct hlist_head *head, int rctx, 776 struct task_struct *task); 777 extern void perf_bp_event(struct perf_event *event, void *data); 778 779 #ifndef perf_misc_flags 780 # define perf_misc_flags(regs) \ 781 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 782 # define perf_instruction_pointer(regs) instruction_pointer(regs) 783 #endif 784 785 static inline bool has_branch_stack(struct perf_event *event) 786 { 787 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 788 } 789 790 extern int perf_output_begin(struct perf_output_handle *handle, 791 struct perf_event *event, unsigned int size); 792 extern void perf_output_end(struct perf_output_handle *handle); 793 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 794 const void *buf, unsigned int len); 795 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 796 unsigned int len); 797 extern int perf_swevent_get_recursion_context(void); 798 extern void perf_swevent_put_recursion_context(int rctx); 799 extern u64 perf_swevent_set_period(struct perf_event *event); 800 extern void perf_event_enable(struct perf_event *event); 801 extern void perf_event_disable(struct perf_event *event); 802 extern int __perf_event_disable(void *info); 803 extern void perf_event_task_tick(void); 804 #else /* !CONFIG_PERF_EVENTS: */ 805 static inline void 806 perf_event_task_sched_in(struct task_struct *prev, 807 struct task_struct *task) { } 808 static inline void 809 perf_event_task_sched_out(struct task_struct *prev, 810 struct task_struct *next) { } 811 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 812 static inline void perf_event_exit_task(struct task_struct *child) { } 813 static inline void perf_event_free_task(struct task_struct *task) { } 814 static inline void perf_event_delayed_put(struct task_struct *task) { } 815 static inline void perf_event_print_debug(void) { } 816 static inline int perf_event_task_disable(void) { return -EINVAL; } 817 static inline int perf_event_task_enable(void) { return -EINVAL; } 818 static inline int perf_event_refresh(struct perf_event *event, int refresh) 819 { 820 return -EINVAL; 821 } 822 823 static inline void 824 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 825 static inline void 826 perf_bp_event(struct perf_event *event, void *data) { } 827 828 static inline int perf_register_guest_info_callbacks 829 (struct perf_guest_info_callbacks *callbacks) { return 0; } 830 static inline int perf_unregister_guest_info_callbacks 831 (struct perf_guest_info_callbacks *callbacks) { return 0; } 832 833 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 834 static inline void perf_event_exec(void) { } 835 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 836 static inline void perf_event_fork(struct task_struct *tsk) { } 837 static inline void perf_event_init(void) { } 838 static inline int perf_swevent_get_recursion_context(void) { return -1; } 839 static inline void perf_swevent_put_recursion_context(int rctx) { } 840 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 841 static inline void perf_event_enable(struct perf_event *event) { } 842 static inline void perf_event_disable(struct perf_event *event) { } 843 static inline int __perf_event_disable(void *info) { return -1; } 844 static inline void perf_event_task_tick(void) { } 845 #endif 846 847 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 848 extern bool perf_event_can_stop_tick(void); 849 #else 850 static inline bool perf_event_can_stop_tick(void) { return true; } 851 #endif 852 853 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 854 extern void perf_restore_debug_store(void); 855 #else 856 static inline void perf_restore_debug_store(void) { } 857 #endif 858 859 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 860 861 /* 862 * This has to have a higher priority than migration_notifier in sched/core.c. 863 */ 864 #define perf_cpu_notifier(fn) \ 865 do { \ 866 static struct notifier_block fn##_nb = \ 867 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 868 unsigned long cpu = smp_processor_id(); \ 869 unsigned long flags; \ 870 \ 871 cpu_notifier_register_begin(); \ 872 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 873 (void *)(unsigned long)cpu); \ 874 local_irq_save(flags); \ 875 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 876 (void *)(unsigned long)cpu); \ 877 local_irq_restore(flags); \ 878 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 879 (void *)(unsigned long)cpu); \ 880 __register_cpu_notifier(&fn##_nb); \ 881 cpu_notifier_register_done(); \ 882 } while (0) 883 884 /* 885 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 886 * callback for already online CPUs. 887 */ 888 #define __perf_cpu_notifier(fn) \ 889 do { \ 890 static struct notifier_block fn##_nb = \ 891 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 892 \ 893 __register_cpu_notifier(&fn##_nb); \ 894 } while (0) 895 896 struct perf_pmu_events_attr { 897 struct device_attribute attr; 898 u64 id; 899 const char *event_str; 900 }; 901 902 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 903 static struct perf_pmu_events_attr _var = { \ 904 .attr = __ATTR(_name, 0444, _show, NULL), \ 905 .id = _id, \ 906 }; 907 908 #define PMU_FORMAT_ATTR(_name, _format) \ 909 static ssize_t \ 910 _name##_show(struct device *dev, \ 911 struct device_attribute *attr, \ 912 char *page) \ 913 { \ 914 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 915 return sprintf(page, _format "\n"); \ 916 } \ 917 \ 918 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 919 920 #endif /* _LINUX_PERF_EVENT_H */ 921