1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 #define PERF_GUEST_ACTIVE 0x01 30 #define PERF_GUEST_USER 0x02 31 32 struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36 }; 37 38 #ifdef CONFIG_HAVE_HW_BREAKPOINT 39 #include <linux/rhashtable-types.h> 40 #include <asm/hw_breakpoint.h> 41 #endif 42 43 #include <linux/list.h> 44 #include <linux/mutex.h> 45 #include <linux/rculist.h> 46 #include <linux/rcupdate.h> 47 #include <linux/spinlock.h> 48 #include <linux/hrtimer.h> 49 #include <linux/fs.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/workqueue.h> 52 #include <linux/ftrace.h> 53 #include <linux/cpu.h> 54 #include <linux/irq_work.h> 55 #include <linux/static_key.h> 56 #include <linux/jump_label_ratelimit.h> 57 #include <linux/atomic.h> 58 #include <linux/sysfs.h> 59 #include <linux/perf_regs.h> 60 #include <linux/cgroup.h> 61 #include <linux/refcount.h> 62 #include <linux/security.h> 63 #include <linux/static_call.h> 64 #include <linux/lockdep.h> 65 #include <asm/local.h> 66 67 struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70 }; 71 72 struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78 }; 79 80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83 struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91 } __packed; 92 93 struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96 }; 97 98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 99 { 100 return frag->pad < sizeof(u64); 101 } 102 103 /* 104 * branch stack layout: 105 * nr: number of taken branches stored in entries[] 106 * hw_idx: The low level index of raw branch records 107 * for the most recent branch. 108 * -1ULL means invalid/unknown. 109 * 110 * Note that nr can vary from sample to sample 111 * branches (to, from) are stored from most recent 112 * to least recent, i.e., entries[0] contains the most 113 * recent branch. 114 * The entries[] is an abstraction of raw branch records, 115 * which may not be stored in age order in HW, e.g. Intel LBR. 116 * The hw_idx is to expose the low level index of raw 117 * branch record for the most recent branch aka entries[0]. 118 * The hw_idx index is between -1 (unknown) and max depth, 119 * which can be retrieved in /sys/devices/cpu/caps/branches. 120 * For the architectures whose raw branch records are 121 * already stored in age order, the hw_idx should be 0. 122 */ 123 struct perf_branch_stack { 124 __u64 nr; 125 __u64 hw_idx; 126 struct perf_branch_entry entries[]; 127 }; 128 129 struct task_struct; 130 131 /* 132 * extra PMU register associated with an event 133 */ 134 struct hw_perf_event_extra { 135 u64 config; /* register value */ 136 unsigned int reg; /* register address or index */ 137 int alloc; /* extra register already allocated */ 138 int idx; /* index in shared_regs->regs[] */ 139 }; 140 141 /** 142 * hw_perf_event::flag values 143 * 144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 145 * usage. 146 */ 147 #define PERF_EVENT_FLAG_ARCH 0x000fffff 148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 149 150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 151 152 /** 153 * struct hw_perf_event - performance event hardware details: 154 */ 155 struct hw_perf_event { 156 #ifdef CONFIG_PERF_EVENTS 157 union { 158 struct { /* hardware */ 159 u64 config; 160 u64 last_tag; 161 unsigned long config_base; 162 unsigned long event_base; 163 int event_base_rdpmc; 164 int idx; 165 int last_cpu; 166 int flags; 167 168 struct hw_perf_event_extra extra_reg; 169 struct hw_perf_event_extra branch_reg; 170 }; 171 struct { /* aux / Intel-PT */ 172 u64 aux_config; 173 /* 174 * For AUX area events, aux_paused cannot be a state 175 * flag because it can be updated asynchronously to 176 * state. 177 */ 178 unsigned int aux_paused; 179 }; 180 struct { /* software */ 181 struct hrtimer hrtimer; 182 }; 183 struct { /* tracepoint */ 184 /* for tp_event->class */ 185 struct list_head tp_list; 186 }; 187 struct { /* amd_power */ 188 u64 pwr_acc; 189 u64 ptsc; 190 }; 191 #ifdef CONFIG_HAVE_HW_BREAKPOINT 192 struct { /* breakpoint */ 193 /* 194 * Crufty hack to avoid the chicken and egg 195 * problem hw_breakpoint has with context 196 * creation and event initalization. 197 */ 198 struct arch_hw_breakpoint info; 199 struct rhlist_head bp_list; 200 }; 201 #endif 202 struct { /* amd_iommu */ 203 u8 iommu_bank; 204 u8 iommu_cntr; 205 u16 padding; 206 u64 conf; 207 u64 conf1; 208 }; 209 }; 210 /* 211 * If the event is a per task event, this will point to the task in 212 * question. See the comment in perf_event_alloc(). 213 */ 214 struct task_struct *target; 215 216 /* 217 * PMU would store hardware filter configuration 218 * here. 219 */ 220 void *addr_filters; 221 222 /* Last sync'ed generation of filters */ 223 unsigned long addr_filters_gen; 224 225 /* 226 * hw_perf_event::state flags; used to track the PERF_EF_* state. 227 */ 228 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 229 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 230 #define PERF_HES_ARCH 0x04 231 232 int state; 233 234 /* 235 * The last observed hardware counter value, updated with a 236 * local64_cmpxchg() such that pmu::read() can be called nested. 237 */ 238 local64_t prev_count; 239 240 /* 241 * The period to start the next sample with. 242 */ 243 u64 sample_period; 244 245 union { 246 struct { /* Sampling */ 247 /* 248 * The period we started this sample with. 249 */ 250 u64 last_period; 251 252 /* 253 * However much is left of the current period; 254 * note that this is a full 64bit value and 255 * allows for generation of periods longer 256 * than hardware might allow. 257 */ 258 local64_t period_left; 259 }; 260 struct { /* Topdown events counting for context switch */ 261 u64 saved_metric; 262 u64 saved_slots; 263 }; 264 }; 265 266 /* 267 * State for throttling the event, see __perf_event_overflow() and 268 * perf_adjust_freq_unthr_context(). 269 */ 270 u64 interrupts_seq; 271 u64 interrupts; 272 273 /* 274 * State for freq target events, see __perf_event_overflow() and 275 * perf_adjust_freq_unthr_context(). 276 */ 277 u64 freq_time_stamp; 278 u64 freq_count_stamp; 279 #endif 280 }; 281 282 struct perf_event; 283 struct perf_event_pmu_context; 284 285 /* 286 * Common implementation detail of pmu::{start,commit,cancel}_txn 287 */ 288 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 289 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 290 291 /** 292 * pmu::capabilities flags 293 */ 294 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 295 #define PERF_PMU_CAP_NO_NMI 0x0002 296 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 297 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 298 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 299 #define PERF_PMU_CAP_ITRACE 0x0020 300 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040 301 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080 302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 303 #define PERF_PMU_CAP_AUX_PAUSE 0x0200 304 305 /** 306 * pmu::scope 307 */ 308 enum perf_pmu_scope { 309 PERF_PMU_SCOPE_NONE = 0, 310 PERF_PMU_SCOPE_CORE, 311 PERF_PMU_SCOPE_DIE, 312 PERF_PMU_SCOPE_CLUSTER, 313 PERF_PMU_SCOPE_PKG, 314 PERF_PMU_SCOPE_SYS_WIDE, 315 PERF_PMU_MAX_SCOPE, 316 }; 317 318 struct perf_output_handle; 319 320 #define PMU_NULL_DEV ((void *)(~0UL)) 321 322 /** 323 * struct pmu - generic performance monitoring unit 324 */ 325 struct pmu { 326 struct list_head entry; 327 328 struct module *module; 329 struct device *dev; 330 struct device *parent; 331 const struct attribute_group **attr_groups; 332 const struct attribute_group **attr_update; 333 const char *name; 334 int type; 335 336 /* 337 * various common per-pmu feature flags 338 */ 339 int capabilities; 340 341 /* 342 * PMU scope 343 */ 344 unsigned int scope; 345 346 struct perf_cpu_pmu_context __percpu **cpu_pmu_context; 347 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 348 int task_ctx_nr; 349 int hrtimer_interval_ms; 350 351 /* number of address filters this PMU can do */ 352 unsigned int nr_addr_filters; 353 354 /* 355 * Fully disable/enable this PMU, can be used to protect from the PMI 356 * as well as for lazy/batch writing of the MSRs. 357 */ 358 void (*pmu_enable) (struct pmu *pmu); /* optional */ 359 void (*pmu_disable) (struct pmu *pmu); /* optional */ 360 361 /* 362 * Try and initialize the event for this PMU. 363 * 364 * Returns: 365 * -ENOENT -- @event is not for this PMU 366 * 367 * -ENODEV -- @event is for this PMU but PMU not present 368 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 369 * -EINVAL -- @event is for this PMU but @event is not valid 370 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 371 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 372 * 373 * 0 -- @event is for this PMU and valid 374 * 375 * Other error return values are allowed. 376 */ 377 int (*event_init) (struct perf_event *event); 378 379 /* 380 * Notification that the event was mapped or unmapped. Called 381 * in the context of the mapping task. 382 */ 383 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 384 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 385 386 /* 387 * Flags for ->add()/->del()/ ->start()/->stop(). There are 388 * matching hw_perf_event::state flags. 389 */ 390 #define PERF_EF_START 0x01 /* start the counter when adding */ 391 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 392 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 393 #define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */ 394 #define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */ 395 396 /* 397 * Adds/Removes a counter to/from the PMU, can be done inside a 398 * transaction, see the ->*_txn() methods. 399 * 400 * The add/del callbacks will reserve all hardware resources required 401 * to service the event, this includes any counter constraint 402 * scheduling etc. 403 * 404 * Called with IRQs disabled and the PMU disabled on the CPU the event 405 * is on. 406 * 407 * ->add() called without PERF_EF_START should result in the same state 408 * as ->add() followed by ->stop(). 409 * 410 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 411 * ->stop() that must deal with already being stopped without 412 * PERF_EF_UPDATE. 413 */ 414 int (*add) (struct perf_event *event, int flags); 415 void (*del) (struct perf_event *event, int flags); 416 417 /* 418 * Starts/Stops a counter present on the PMU. 419 * 420 * The PMI handler should stop the counter when perf_event_overflow() 421 * returns !0. ->start() will be used to continue. 422 * 423 * Also used to change the sample period. 424 * 425 * Called with IRQs disabled and the PMU disabled on the CPU the event 426 * is on -- will be called from NMI context with the PMU generates 427 * NMIs. 428 * 429 * ->stop() with PERF_EF_UPDATE will read the counter and update 430 * period/count values like ->read() would. 431 * 432 * ->start() with PERF_EF_RELOAD will reprogram the counter 433 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 434 * 435 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not 436 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with 437 * PERF_EF_RESUME. 438 * 439 * ->start() with PERF_EF_RESUME will start as simply as possible but 440 * only if the counter is not otherwise stopped. Will not overlap 441 * another ->start() with PERF_EF_RESUME nor ->stop() with 442 * PERF_EF_PAUSE. 443 * 444 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other 445 * ->stop()/->start() invocations, just not itself. 446 */ 447 void (*start) (struct perf_event *event, int flags); 448 void (*stop) (struct perf_event *event, int flags); 449 450 /* 451 * Updates the counter value of the event. 452 * 453 * For sampling capable PMUs this will also update the software period 454 * hw_perf_event::period_left field. 455 */ 456 void (*read) (struct perf_event *event); 457 458 /* 459 * Group events scheduling is treated as a transaction, add 460 * group events as a whole and perform one schedulability test. 461 * If the test fails, roll back the whole group 462 * 463 * Start the transaction, after this ->add() doesn't need to 464 * do schedulability tests. 465 * 466 * Optional. 467 */ 468 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 469 /* 470 * If ->start_txn() disabled the ->add() schedulability test 471 * then ->commit_txn() is required to perform one. On success 472 * the transaction is closed. On error the transaction is kept 473 * open until ->cancel_txn() is called. 474 * 475 * Optional. 476 */ 477 int (*commit_txn) (struct pmu *pmu); 478 /* 479 * Will cancel the transaction, assumes ->del() is called 480 * for each successful ->add() during the transaction. 481 * 482 * Optional. 483 */ 484 void (*cancel_txn) (struct pmu *pmu); 485 486 /* 487 * Will return the value for perf_event_mmap_page::index for this event, 488 * if no implementation is provided it will default to 0 (see 489 * perf_event_idx_default). 490 */ 491 int (*event_idx) (struct perf_event *event); /*optional */ 492 493 /* 494 * context-switches callback 495 */ 496 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, 497 struct task_struct *task, bool sched_in); 498 499 /* 500 * Kmem cache of PMU specific data 501 */ 502 struct kmem_cache *task_ctx_cache; 503 504 /* 505 * Set up pmu-private data structures for an AUX area 506 */ 507 void *(*setup_aux) (struct perf_event *event, void **pages, 508 int nr_pages, bool overwrite); 509 /* optional */ 510 511 /* 512 * Free pmu-private AUX data structures 513 */ 514 void (*free_aux) (void *aux); /* optional */ 515 516 /* 517 * Take a snapshot of the AUX buffer without touching the event 518 * state, so that preempting ->start()/->stop() callbacks does 519 * not interfere with their logic. Called in PMI context. 520 * 521 * Returns the size of AUX data copied to the output handle. 522 * 523 * Optional. 524 */ 525 long (*snapshot_aux) (struct perf_event *event, 526 struct perf_output_handle *handle, 527 unsigned long size); 528 529 /* 530 * Validate address range filters: make sure the HW supports the 531 * requested configuration and number of filters; return 0 if the 532 * supplied filters are valid, -errno otherwise. 533 * 534 * Runs in the context of the ioctl()ing process and is not serialized 535 * with the rest of the PMU callbacks. 536 */ 537 int (*addr_filters_validate) (struct list_head *filters); 538 /* optional */ 539 540 /* 541 * Synchronize address range filter configuration: 542 * translate hw-agnostic filters into hardware configuration in 543 * event::hw::addr_filters. 544 * 545 * Runs as a part of filter sync sequence that is done in ->start() 546 * callback by calling perf_event_addr_filters_sync(). 547 * 548 * May (and should) traverse event::addr_filters::list, for which its 549 * caller provides necessary serialization. 550 */ 551 void (*addr_filters_sync) (struct perf_event *event); 552 /* optional */ 553 554 /* 555 * Check if event can be used for aux_output purposes for 556 * events of this PMU. 557 * 558 * Runs from perf_event_open(). Should return 0 for "no match" 559 * or non-zero for "match". 560 */ 561 int (*aux_output_match) (struct perf_event *event); 562 /* optional */ 563 564 /* 565 * Skip programming this PMU on the given CPU. Typically needed for 566 * big.LITTLE things. 567 */ 568 bool (*filter) (struct pmu *pmu, int cpu); /* optional */ 569 570 /* 571 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 572 */ 573 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 574 }; 575 576 enum perf_addr_filter_action_t { 577 PERF_ADDR_FILTER_ACTION_STOP = 0, 578 PERF_ADDR_FILTER_ACTION_START, 579 PERF_ADDR_FILTER_ACTION_FILTER, 580 }; 581 582 /** 583 * struct perf_addr_filter - address range filter definition 584 * @entry: event's filter list linkage 585 * @path: object file's path for file-based filters 586 * @offset: filter range offset 587 * @size: filter range size (size==0 means single address trigger) 588 * @action: filter/start/stop 589 * 590 * This is a hardware-agnostic filter configuration as specified by the user. 591 */ 592 struct perf_addr_filter { 593 struct list_head entry; 594 struct path path; 595 unsigned long offset; 596 unsigned long size; 597 enum perf_addr_filter_action_t action; 598 }; 599 600 /** 601 * struct perf_addr_filters_head - container for address range filters 602 * @list: list of filters for this event 603 * @lock: spinlock that serializes accesses to the @list and event's 604 * (and its children's) filter generations. 605 * @nr_file_filters: number of file-based filters 606 * 607 * A child event will use parent's @list (and therefore @lock), so they are 608 * bundled together; see perf_event_addr_filters(). 609 */ 610 struct perf_addr_filters_head { 611 struct list_head list; 612 raw_spinlock_t lock; 613 unsigned int nr_file_filters; 614 }; 615 616 struct perf_addr_filter_range { 617 unsigned long start; 618 unsigned long size; 619 }; 620 621 /** 622 * enum perf_event_state - the states of an event: 623 */ 624 enum perf_event_state { 625 PERF_EVENT_STATE_DEAD = -4, 626 PERF_EVENT_STATE_EXIT = -3, 627 PERF_EVENT_STATE_ERROR = -2, 628 PERF_EVENT_STATE_OFF = -1, 629 PERF_EVENT_STATE_INACTIVE = 0, 630 PERF_EVENT_STATE_ACTIVE = 1, 631 }; 632 633 struct file; 634 struct perf_sample_data; 635 636 typedef void (*perf_overflow_handler_t)(struct perf_event *, 637 struct perf_sample_data *, 638 struct pt_regs *regs); 639 640 /* 641 * Event capabilities. For event_caps and groups caps. 642 * 643 * PERF_EV_CAP_SOFTWARE: Is a software event. 644 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 645 * from any CPU in the package where it is active. 646 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 647 * cannot be a group leader. If an event with this flag is detached from the 648 * group it is scheduled out and moved into an unrecoverable ERROR state. 649 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the 650 * PMU scope where it is active. 651 */ 652 #define PERF_EV_CAP_SOFTWARE BIT(0) 653 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 654 #define PERF_EV_CAP_SIBLING BIT(2) 655 #define PERF_EV_CAP_READ_SCOPE BIT(3) 656 657 #define SWEVENT_HLIST_BITS 8 658 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 659 660 struct swevent_hlist { 661 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 662 struct rcu_head rcu_head; 663 }; 664 665 #define PERF_ATTACH_CONTEXT 0x0001 666 #define PERF_ATTACH_GROUP 0x0002 667 #define PERF_ATTACH_TASK 0x0004 668 #define PERF_ATTACH_TASK_DATA 0x0008 669 #define PERF_ATTACH_GLOBAL_DATA 0x0010 670 #define PERF_ATTACH_SCHED_CB 0x0020 671 #define PERF_ATTACH_CHILD 0x0040 672 #define PERF_ATTACH_EXCLUSIVE 0x0080 673 #define PERF_ATTACH_CALLCHAIN 0x0100 674 #define PERF_ATTACH_ITRACE 0x0200 675 676 struct bpf_prog; 677 struct perf_cgroup; 678 struct perf_buffer; 679 680 struct pmu_event_list { 681 raw_spinlock_t lock; 682 struct list_head list; 683 }; 684 685 /* 686 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 687 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 688 * safe lock, and is only held by the CPU doing the modification, having IRQs 689 * disabled is sufficient since it will hold-off the IPIs. 690 */ 691 #ifdef CONFIG_PROVE_LOCKING 692 #define lockdep_assert_event_ctx(event) \ 693 WARN_ON_ONCE(__lockdep_enabled && \ 694 (this_cpu_read(hardirqs_enabled) && \ 695 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 696 #else 697 #define lockdep_assert_event_ctx(event) 698 #endif 699 700 #define for_each_sibling_event(sibling, event) \ 701 lockdep_assert_event_ctx(event); \ 702 if ((event)->group_leader == (event)) \ 703 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 704 705 /** 706 * struct perf_event - performance event kernel representation: 707 */ 708 struct perf_event { 709 #ifdef CONFIG_PERF_EVENTS 710 /* 711 * entry onto perf_event_context::event_list; 712 * modifications require ctx->lock 713 * RCU safe iterations. 714 */ 715 struct list_head event_entry; 716 717 /* 718 * Locked for modification by both ctx->mutex and ctx->lock; holding 719 * either sufficies for read. 720 */ 721 struct list_head sibling_list; 722 struct list_head active_list; 723 /* 724 * Node on the pinned or flexible tree located at the event context; 725 */ 726 struct rb_node group_node; 727 u64 group_index; 728 /* 729 * We need storage to track the entries in perf_pmu_migrate_context; we 730 * cannot use the event_entry because of RCU and we want to keep the 731 * group in tact which avoids us using the other two entries. 732 */ 733 struct list_head migrate_entry; 734 735 struct hlist_node hlist_entry; 736 struct list_head active_entry; 737 int nr_siblings; 738 739 /* Not serialized. Only written during event initialization. */ 740 int event_caps; 741 /* The cumulative AND of all event_caps for events in this group. */ 742 int group_caps; 743 744 unsigned int group_generation; 745 struct perf_event *group_leader; 746 /* 747 * event->pmu will always point to pmu in which this event belongs. 748 * Whereas event->pmu_ctx->pmu may point to other pmu when group of 749 * different pmu events is created. 750 */ 751 struct pmu *pmu; 752 void *pmu_private; 753 754 enum perf_event_state state; 755 unsigned int attach_state; 756 local64_t count; 757 atomic64_t child_count; 758 759 /* 760 * These are the total time in nanoseconds that the event 761 * has been enabled (i.e. eligible to run, and the task has 762 * been scheduled in, if this is a per-task event) 763 * and running (scheduled onto the CPU), respectively. 764 */ 765 u64 total_time_enabled; 766 u64 total_time_running; 767 u64 tstamp; 768 769 struct perf_event_attr attr; 770 u16 header_size; 771 u16 id_header_size; 772 u16 read_size; 773 struct hw_perf_event hw; 774 775 struct perf_event_context *ctx; 776 /* 777 * event->pmu_ctx points to perf_event_pmu_context in which the event 778 * is added. This pmu_ctx can be of other pmu for sw event when that 779 * sw event is part of a group which also contains non-sw events. 780 */ 781 struct perf_event_pmu_context *pmu_ctx; 782 atomic_long_t refcount; 783 784 /* 785 * These accumulate total time (in nanoseconds) that children 786 * events have been enabled and running, respectively. 787 */ 788 atomic64_t child_total_time_enabled; 789 atomic64_t child_total_time_running; 790 791 /* 792 * Protect attach/detach and child_list: 793 */ 794 struct mutex child_mutex; 795 struct list_head child_list; 796 struct perf_event *parent; 797 798 int oncpu; 799 int cpu; 800 801 struct list_head owner_entry; 802 struct task_struct *owner; 803 804 /* mmap bits */ 805 struct mutex mmap_mutex; 806 atomic_t mmap_count; 807 808 struct perf_buffer *rb; 809 struct list_head rb_entry; 810 unsigned long rcu_batches; 811 int rcu_pending; 812 813 /* poll related */ 814 wait_queue_head_t waitq; 815 struct fasync_struct *fasync; 816 817 /* delayed work for NMIs and such */ 818 unsigned int pending_wakeup; 819 unsigned int pending_kill; 820 unsigned int pending_disable; 821 unsigned long pending_addr; /* SIGTRAP */ 822 struct irq_work pending_irq; 823 struct irq_work pending_disable_irq; 824 struct callback_head pending_task; 825 unsigned int pending_work; 826 struct rcuwait pending_work_wait; 827 828 atomic_t event_limit; 829 830 /* address range filters */ 831 struct perf_addr_filters_head addr_filters; 832 /* vma address array for file-based filders */ 833 struct perf_addr_filter_range *addr_filter_ranges; 834 unsigned long addr_filters_gen; 835 836 /* for aux_output events */ 837 struct perf_event *aux_event; 838 839 void (*destroy)(struct perf_event *); 840 struct rcu_head rcu_head; 841 842 struct pid_namespace *ns; 843 u64 id; 844 845 atomic64_t lost_samples; 846 847 u64 (*clock)(void); 848 perf_overflow_handler_t overflow_handler; 849 void *overflow_handler_context; 850 struct bpf_prog *prog; 851 u64 bpf_cookie; 852 853 #ifdef CONFIG_EVENT_TRACING 854 struct trace_event_call *tp_event; 855 struct event_filter *filter; 856 #ifdef CONFIG_FUNCTION_TRACER 857 struct ftrace_ops ftrace_ops; 858 #endif 859 #endif 860 861 #ifdef CONFIG_CGROUP_PERF 862 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 863 #endif 864 865 #ifdef CONFIG_SECURITY 866 void *security; 867 #endif 868 struct list_head sb_list; 869 870 /* 871 * Certain events gets forwarded to another pmu internally by over- 872 * writing kernel copy of event->attr.type without user being aware 873 * of it. event->orig_type contains original 'type' requested by 874 * user. 875 */ 876 __u32 orig_type; 877 #endif /* CONFIG_PERF_EVENTS */ 878 }; 879 880 /* 881 * ,-----------------------[1:n]------------------------. 882 * V V 883 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event 884 * | | 885 * `--[n:1]-> pmu <-[1:n]--' 886 * 887 * 888 * struct perf_event_pmu_context lifetime is refcount based and RCU freed 889 * (similar to perf_event_context). Locking is as if it were a member of 890 * perf_event_context; specifically: 891 * 892 * modification, both: ctx->mutex && ctx->lock 893 * reading, either: ctx->mutex || ctx->lock 894 * 895 * There is one exception to this; namely put_pmu_ctx() isn't always called 896 * with ctx->mutex held; this means that as long as we can guarantee the epc 897 * has events the above rules hold. 898 * 899 * Specificially, sys_perf_event_open()'s group_leader case depends on 900 * ctx->mutex pinning the configuration. Since we hold a reference on 901 * group_leader (through the filedesc) it can't go away, therefore it's 902 * associated pmu_ctx must exist and cannot change due to ctx->mutex. 903 * 904 * perf_event holds a refcount on perf_event_context 905 * perf_event holds a refcount on perf_event_pmu_context 906 */ 907 struct perf_event_pmu_context { 908 struct pmu *pmu; 909 struct perf_event_context *ctx; 910 911 struct list_head pmu_ctx_entry; 912 913 struct list_head pinned_active; 914 struct list_head flexible_active; 915 916 /* Used to identify the per-cpu perf_event_pmu_context */ 917 unsigned int embedded : 1; 918 919 unsigned int nr_events; 920 unsigned int nr_cgroups; 921 unsigned int nr_freq; 922 923 atomic_t refcount; /* event <-> epc */ 924 struct rcu_head rcu_head; 925 926 /* 927 * Set when one or more (plausibly active) event can't be scheduled 928 * due to pmu overcommit or pmu constraints, except tolerant to 929 * events not necessary to be active due to scheduling constraints, 930 * such as cgroups. 931 */ 932 int rotate_necessary; 933 }; 934 935 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) 936 { 937 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active); 938 } 939 940 struct perf_event_groups { 941 struct rb_root tree; 942 u64 index; 943 }; 944 945 946 /** 947 * struct perf_event_context - event context structure 948 * 949 * Used as a container for task events and CPU events as well: 950 */ 951 struct perf_event_context { 952 /* 953 * Protect the states of the events in the list, 954 * nr_active, and the list: 955 */ 956 raw_spinlock_t lock; 957 /* 958 * Protect the list of events. Locking either mutex or lock 959 * is sufficient to ensure the list doesn't change; to change 960 * the list you need to lock both the mutex and the spinlock. 961 */ 962 struct mutex mutex; 963 964 struct list_head pmu_ctx_list; 965 struct perf_event_groups pinned_groups; 966 struct perf_event_groups flexible_groups; 967 struct list_head event_list; 968 969 int nr_events; 970 int nr_user; 971 int is_active; 972 973 int nr_stat; 974 int nr_freq; 975 int rotate_disable; 976 977 refcount_t refcount; /* event <-> ctx */ 978 struct task_struct *task; 979 980 /* 981 * Context clock, runs when context enabled. 982 */ 983 u64 time; 984 u64 timestamp; 985 u64 timeoffset; 986 987 /* 988 * These fields let us detect when two contexts have both 989 * been cloned (inherited) from a common ancestor. 990 */ 991 struct perf_event_context *parent_ctx; 992 u64 parent_gen; 993 u64 generation; 994 int pin_count; 995 #ifdef CONFIG_CGROUP_PERF 996 int nr_cgroups; /* cgroup evts */ 997 #endif 998 struct rcu_head rcu_head; 999 1000 /* 1001 * The count of events for which using the switch-out fast path 1002 * should be avoided. 1003 * 1004 * Sum (event->pending_work + events with 1005 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) 1006 * 1007 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 1008 * that until the signal is delivered. 1009 */ 1010 local_t nr_no_switch_fast; 1011 }; 1012 1013 /** 1014 * struct perf_ctx_data - PMU specific data for a task 1015 * @rcu_head: To avoid the race on free PMU specific data 1016 * @refcount: To track users 1017 * @global: To track system-wide users 1018 * @ctx_cache: Kmem cache of PMU specific data 1019 * @data: PMU specific data 1020 * 1021 * Currently, the struct is only used in Intel LBR call stack mode to 1022 * save/restore the call stack of a task on context switches. 1023 * 1024 * The rcu_head is used to prevent the race on free the data. 1025 * The data only be allocated when Intel LBR call stack mode is enabled. 1026 * The data will be freed when the mode is disabled. 1027 * The content of the data will only be accessed in context switch, which 1028 * should be protected by rcu_read_lock(). 1029 * 1030 * Because of the alignment requirement of Intel Arch LBR, the Kmem cache 1031 * is used to allocate the PMU specific data. The ctx_cache is to track 1032 * the Kmem cache. 1033 * 1034 * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct. 1035 * When system-wide Intel LBR call stack mode is enabled, a buffer with 1036 * constant size will be allocated for each task. 1037 * Also, system memory consumption can further grow when the size of 1038 * struct perf_ctx_data enlarges. 1039 */ 1040 struct perf_ctx_data { 1041 struct rcu_head rcu_head; 1042 refcount_t refcount; 1043 int global; 1044 struct kmem_cache *ctx_cache; 1045 void *data; 1046 }; 1047 1048 struct perf_cpu_pmu_context { 1049 struct perf_event_pmu_context epc; 1050 struct perf_event_pmu_context *task_epc; 1051 1052 struct list_head sched_cb_entry; 1053 int sched_cb_usage; 1054 1055 int active_oncpu; 1056 int exclusive; 1057 int pmu_disable_count; 1058 1059 raw_spinlock_t hrtimer_lock; 1060 struct hrtimer hrtimer; 1061 ktime_t hrtimer_interval; 1062 unsigned int hrtimer_active; 1063 }; 1064 1065 /** 1066 * struct perf_event_cpu_context - per cpu event context structure 1067 */ 1068 struct perf_cpu_context { 1069 struct perf_event_context ctx; 1070 struct perf_event_context *task_ctx; 1071 int online; 1072 1073 #ifdef CONFIG_CGROUP_PERF 1074 struct perf_cgroup *cgrp; 1075 #endif 1076 1077 /* 1078 * Per-CPU storage for iterators used in visit_groups_merge. The default 1079 * storage is of size 2 to hold the CPU and any CPU event iterators. 1080 */ 1081 int heap_size; 1082 struct perf_event **heap; 1083 struct perf_event *heap_default[2]; 1084 }; 1085 1086 struct perf_output_handle { 1087 struct perf_event *event; 1088 struct perf_buffer *rb; 1089 unsigned long wakeup; 1090 unsigned long size; 1091 union { 1092 u64 flags; /* perf_output*() */ 1093 u64 aux_flags; /* perf_aux_output*() */ 1094 struct { 1095 u64 skip_read : 1; 1096 }; 1097 }; 1098 union { 1099 void *addr; 1100 unsigned long head; 1101 }; 1102 int page; 1103 }; 1104 1105 struct bpf_perf_event_data_kern { 1106 bpf_user_pt_regs_t *regs; 1107 struct perf_sample_data *data; 1108 struct perf_event *event; 1109 }; 1110 1111 #ifdef CONFIG_CGROUP_PERF 1112 1113 /* 1114 * perf_cgroup_info keeps track of time_enabled for a cgroup. 1115 * This is a per-cpu dynamically allocated data structure. 1116 */ 1117 struct perf_cgroup_info { 1118 u64 time; 1119 u64 timestamp; 1120 u64 timeoffset; 1121 int active; 1122 }; 1123 1124 struct perf_cgroup { 1125 struct cgroup_subsys_state css; 1126 struct perf_cgroup_info __percpu *info; 1127 }; 1128 1129 /* 1130 * Must ensure cgroup is pinned (css_get) before calling 1131 * this function. In other words, we cannot call this function 1132 * if there is no cgroup event for the current CPU context. 1133 */ 1134 static inline struct perf_cgroup * 1135 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 1136 { 1137 return container_of(task_css_check(task, perf_event_cgrp_id, 1138 ctx ? lockdep_is_held(&ctx->lock) 1139 : true), 1140 struct perf_cgroup, css); 1141 } 1142 #endif /* CONFIG_CGROUP_PERF */ 1143 1144 #ifdef CONFIG_PERF_EVENTS 1145 1146 extern struct perf_event_context *perf_cpu_task_ctx(void); 1147 1148 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 1149 struct perf_event *event); 1150 extern void perf_aux_output_end(struct perf_output_handle *handle, 1151 unsigned long size); 1152 extern int perf_aux_output_skip(struct perf_output_handle *handle, 1153 unsigned long size); 1154 extern void *perf_get_aux(struct perf_output_handle *handle); 1155 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 1156 extern void perf_event_itrace_started(struct perf_event *event); 1157 1158 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 1159 extern void perf_pmu_unregister(struct pmu *pmu); 1160 1161 extern void __perf_event_task_sched_in(struct task_struct *prev, 1162 struct task_struct *task); 1163 extern void __perf_event_task_sched_out(struct task_struct *prev, 1164 struct task_struct *next); 1165 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1166 extern void perf_event_exit_task(struct task_struct *child); 1167 extern void perf_event_free_task(struct task_struct *task); 1168 extern void perf_event_delayed_put(struct task_struct *task); 1169 extern struct file *perf_event_get(unsigned int fd); 1170 extern const struct perf_event *perf_get_event(struct file *file); 1171 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1172 extern void perf_event_print_debug(void); 1173 extern void perf_pmu_disable(struct pmu *pmu); 1174 extern void perf_pmu_enable(struct pmu *pmu); 1175 extern void perf_sched_cb_dec(struct pmu *pmu); 1176 extern void perf_sched_cb_inc(struct pmu *pmu); 1177 extern int perf_event_task_disable(void); 1178 extern int perf_event_task_enable(void); 1179 1180 extern void perf_pmu_resched(struct pmu *pmu); 1181 1182 extern int perf_event_refresh(struct perf_event *event, int refresh); 1183 extern void perf_event_update_userpage(struct perf_event *event); 1184 extern int perf_event_release_kernel(struct perf_event *event); 1185 extern struct perf_event * 1186 perf_event_create_kernel_counter(struct perf_event_attr *attr, 1187 int cpu, 1188 struct task_struct *task, 1189 perf_overflow_handler_t callback, 1190 void *context); 1191 extern void perf_pmu_migrate_context(struct pmu *pmu, 1192 int src_cpu, int dst_cpu); 1193 int perf_event_read_local(struct perf_event *event, u64 *value, 1194 u64 *enabled, u64 *running); 1195 extern u64 perf_event_read_value(struct perf_event *event, 1196 u64 *enabled, u64 *running); 1197 1198 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1199 1200 static inline bool branch_sample_no_flags(const struct perf_event *event) 1201 { 1202 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1203 } 1204 1205 static inline bool branch_sample_no_cycles(const struct perf_event *event) 1206 { 1207 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1208 } 1209 1210 static inline bool branch_sample_type(const struct perf_event *event) 1211 { 1212 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1213 } 1214 1215 static inline bool branch_sample_hw_index(const struct perf_event *event) 1216 { 1217 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1218 } 1219 1220 static inline bool branch_sample_priv(const struct perf_event *event) 1221 { 1222 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1223 } 1224 1225 static inline bool branch_sample_counters(const struct perf_event *event) 1226 { 1227 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; 1228 } 1229 1230 static inline bool branch_sample_call_stack(const struct perf_event *event) 1231 { 1232 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; 1233 } 1234 1235 struct perf_sample_data { 1236 /* 1237 * Fields set by perf_sample_data_init() unconditionally, 1238 * group so as to minimize the cachelines touched. 1239 */ 1240 u64 sample_flags; 1241 u64 period; 1242 u64 dyn_size; 1243 1244 /* 1245 * Fields commonly set by __perf_event_header__init_id(), 1246 * group so as to minimize the cachelines touched. 1247 */ 1248 u64 type; 1249 struct { 1250 u32 pid; 1251 u32 tid; 1252 } tid_entry; 1253 u64 time; 1254 u64 id; 1255 struct { 1256 u32 cpu; 1257 u32 reserved; 1258 } cpu_entry; 1259 1260 /* 1261 * The other fields, optionally {set,used} by 1262 * perf_{prepare,output}_sample(). 1263 */ 1264 u64 ip; 1265 struct perf_callchain_entry *callchain; 1266 struct perf_raw_record *raw; 1267 struct perf_branch_stack *br_stack; 1268 u64 *br_stack_cntr; 1269 union perf_sample_weight weight; 1270 union perf_mem_data_src data_src; 1271 u64 txn; 1272 1273 struct perf_regs regs_user; 1274 struct perf_regs regs_intr; 1275 u64 stack_user_size; 1276 1277 u64 stream_id; 1278 u64 cgroup; 1279 u64 addr; 1280 u64 phys_addr; 1281 u64 data_page_size; 1282 u64 code_page_size; 1283 u64 aux_size; 1284 } ____cacheline_aligned; 1285 1286 /* default value for data source */ 1287 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1288 PERF_MEM_S(LVL, NA) |\ 1289 PERF_MEM_S(SNOOP, NA) |\ 1290 PERF_MEM_S(LOCK, NA) |\ 1291 PERF_MEM_S(TLB, NA) |\ 1292 PERF_MEM_S(LVLNUM, NA)) 1293 1294 static inline void perf_sample_data_init(struct perf_sample_data *data, 1295 u64 addr, u64 period) 1296 { 1297 /* remaining struct members initialized in perf_prepare_sample() */ 1298 data->sample_flags = PERF_SAMPLE_PERIOD; 1299 data->period = period; 1300 data->dyn_size = 0; 1301 1302 if (addr) { 1303 data->addr = addr; 1304 data->sample_flags |= PERF_SAMPLE_ADDR; 1305 } 1306 } 1307 1308 static inline void perf_sample_save_callchain(struct perf_sample_data *data, 1309 struct perf_event *event, 1310 struct pt_regs *regs) 1311 { 1312 int size = 1; 1313 1314 if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1315 return; 1316 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) 1317 return; 1318 1319 data->callchain = perf_callchain(event, regs); 1320 size += data->callchain->nr; 1321 1322 data->dyn_size += size * sizeof(u64); 1323 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1324 } 1325 1326 static inline void perf_sample_save_raw_data(struct perf_sample_data *data, 1327 struct perf_event *event, 1328 struct perf_raw_record *raw) 1329 { 1330 struct perf_raw_frag *frag = &raw->frag; 1331 u32 sum = 0; 1332 int size; 1333 1334 if (!(event->attr.sample_type & PERF_SAMPLE_RAW)) 1335 return; 1336 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW)) 1337 return; 1338 1339 do { 1340 sum += frag->size; 1341 if (perf_raw_frag_last(frag)) 1342 break; 1343 frag = frag->next; 1344 } while (1); 1345 1346 size = round_up(sum + sizeof(u32), sizeof(u64)); 1347 raw->size = size - sizeof(u32); 1348 frag->pad = raw->size - sum; 1349 1350 data->raw = raw; 1351 data->dyn_size += size; 1352 data->sample_flags |= PERF_SAMPLE_RAW; 1353 } 1354 1355 static inline bool has_branch_stack(struct perf_event *event) 1356 { 1357 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1358 } 1359 1360 static inline void perf_sample_save_brstack(struct perf_sample_data *data, 1361 struct perf_event *event, 1362 struct perf_branch_stack *brs, 1363 u64 *brs_cntr) 1364 { 1365 int size = sizeof(u64); /* nr */ 1366 1367 if (!has_branch_stack(event)) 1368 return; 1369 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK)) 1370 return; 1371 1372 if (branch_sample_hw_index(event)) 1373 size += sizeof(u64); 1374 1375 brs->nr = min_t(u16, event->attr.sample_max_stack, brs->nr); 1376 1377 size += brs->nr * sizeof(struct perf_branch_entry); 1378 1379 /* 1380 * The extension space for counters is appended after the 1381 * struct perf_branch_stack. It is used to store the occurrences 1382 * of events of each branch. 1383 */ 1384 if (brs_cntr) 1385 size += brs->nr * sizeof(u64); 1386 1387 data->br_stack = brs; 1388 data->br_stack_cntr = brs_cntr; 1389 data->dyn_size += size; 1390 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1391 } 1392 1393 static inline u32 perf_sample_data_size(struct perf_sample_data *data, 1394 struct perf_event *event) 1395 { 1396 u32 size = sizeof(struct perf_event_header); 1397 1398 size += event->header_size + event->id_header_size; 1399 size += data->dyn_size; 1400 1401 return size; 1402 } 1403 1404 /* 1405 * Clear all bitfields in the perf_branch_entry. 1406 * The to and from fields are not cleared because they are 1407 * systematically modified by caller. 1408 */ 1409 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1410 { 1411 br->mispred = 0; 1412 br->predicted = 0; 1413 br->in_tx = 0; 1414 br->abort = 0; 1415 br->cycles = 0; 1416 br->type = 0; 1417 br->spec = PERF_BR_SPEC_NA; 1418 br->reserved = 0; 1419 } 1420 1421 extern void perf_output_sample(struct perf_output_handle *handle, 1422 struct perf_event_header *header, 1423 struct perf_sample_data *data, 1424 struct perf_event *event); 1425 extern void perf_prepare_sample(struct perf_sample_data *data, 1426 struct perf_event *event, 1427 struct pt_regs *regs); 1428 extern void perf_prepare_header(struct perf_event_header *header, 1429 struct perf_sample_data *data, 1430 struct perf_event *event, 1431 struct pt_regs *regs); 1432 1433 extern int perf_event_overflow(struct perf_event *event, 1434 struct perf_sample_data *data, 1435 struct pt_regs *regs); 1436 1437 extern void perf_event_output_forward(struct perf_event *event, 1438 struct perf_sample_data *data, 1439 struct pt_regs *regs); 1440 extern void perf_event_output_backward(struct perf_event *event, 1441 struct perf_sample_data *data, 1442 struct pt_regs *regs); 1443 extern int perf_event_output(struct perf_event *event, 1444 struct perf_sample_data *data, 1445 struct pt_regs *regs); 1446 1447 static inline bool 1448 is_default_overflow_handler(struct perf_event *event) 1449 { 1450 perf_overflow_handler_t overflow_handler = event->overflow_handler; 1451 1452 if (likely(overflow_handler == perf_event_output_forward)) 1453 return true; 1454 if (unlikely(overflow_handler == perf_event_output_backward)) 1455 return true; 1456 return false; 1457 } 1458 1459 extern void 1460 perf_event_header__init_id(struct perf_event_header *header, 1461 struct perf_sample_data *data, 1462 struct perf_event *event); 1463 extern void 1464 perf_event__output_id_sample(struct perf_event *event, 1465 struct perf_output_handle *handle, 1466 struct perf_sample_data *sample); 1467 1468 extern void 1469 perf_log_lost_samples(struct perf_event *event, u64 lost); 1470 1471 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1472 { 1473 struct perf_event_attr *attr = &event->attr; 1474 1475 return attr->exclude_idle || attr->exclude_user || 1476 attr->exclude_kernel || attr->exclude_hv || 1477 attr->exclude_guest || attr->exclude_host; 1478 } 1479 1480 static inline bool is_sampling_event(struct perf_event *event) 1481 { 1482 return event->attr.sample_period != 0; 1483 } 1484 1485 /* 1486 * Return 1 for a software event, 0 for a hardware event 1487 */ 1488 static inline int is_software_event(struct perf_event *event) 1489 { 1490 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1491 } 1492 1493 /* 1494 * Return 1 for event in sw context, 0 for event in hw context 1495 */ 1496 static inline int in_software_context(struct perf_event *event) 1497 { 1498 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; 1499 } 1500 1501 static inline int is_exclusive_pmu(struct pmu *pmu) 1502 { 1503 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1504 } 1505 1506 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1507 1508 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1509 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1510 1511 #ifndef perf_arch_fetch_caller_regs 1512 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1513 #endif 1514 1515 /* 1516 * When generating a perf sample in-line, instead of from an interrupt / 1517 * exception, we lack a pt_regs. This is typically used from software events 1518 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1519 * 1520 * We typically don't need a full set, but (for x86) do require: 1521 * - ip for PERF_SAMPLE_IP 1522 * - cs for user_mode() tests 1523 * - sp for PERF_SAMPLE_CALLCHAIN 1524 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1525 * 1526 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1527 * things like PERF_SAMPLE_REGS_INTR. 1528 */ 1529 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1530 { 1531 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1532 } 1533 1534 static __always_inline void 1535 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1536 { 1537 if (static_key_false(&perf_swevent_enabled[event_id])) 1538 __perf_sw_event(event_id, nr, regs, addr); 1539 } 1540 1541 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1542 1543 /* 1544 * 'Special' version for the scheduler, it hard assumes no recursion, 1545 * which is guaranteed by us not actually scheduling inside other swevents 1546 * because those disable preemption. 1547 */ 1548 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1549 { 1550 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1551 1552 perf_fetch_caller_regs(regs); 1553 ___perf_sw_event(event_id, nr, regs, addr); 1554 } 1555 1556 extern struct static_key_false perf_sched_events; 1557 1558 static __always_inline bool __perf_sw_enabled(int swevt) 1559 { 1560 return static_key_false(&perf_swevent_enabled[swevt]); 1561 } 1562 1563 static inline void perf_event_task_migrate(struct task_struct *task) 1564 { 1565 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1566 task->sched_migrated = 1; 1567 } 1568 1569 static inline void perf_event_task_sched_in(struct task_struct *prev, 1570 struct task_struct *task) 1571 { 1572 if (static_branch_unlikely(&perf_sched_events)) 1573 __perf_event_task_sched_in(prev, task); 1574 1575 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1576 task->sched_migrated) { 1577 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1578 task->sched_migrated = 0; 1579 } 1580 } 1581 1582 static inline void perf_event_task_sched_out(struct task_struct *prev, 1583 struct task_struct *next) 1584 { 1585 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1586 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1587 1588 #ifdef CONFIG_CGROUP_PERF 1589 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1590 perf_cgroup_from_task(prev, NULL) != 1591 perf_cgroup_from_task(next, NULL)) 1592 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1593 #endif 1594 1595 if (static_branch_unlikely(&perf_sched_events)) 1596 __perf_event_task_sched_out(prev, next); 1597 } 1598 1599 extern void perf_event_mmap(struct vm_area_struct *vma); 1600 1601 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1602 bool unregister, const char *sym); 1603 extern void perf_event_bpf_event(struct bpf_prog *prog, 1604 enum perf_bpf_event_type type, 1605 u16 flags); 1606 1607 #ifdef CONFIG_GUEST_PERF_EVENTS 1608 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1609 1610 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1611 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1612 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1613 1614 static inline unsigned int perf_guest_state(void) 1615 { 1616 return static_call(__perf_guest_state)(); 1617 } 1618 static inline unsigned long perf_guest_get_ip(void) 1619 { 1620 return static_call(__perf_guest_get_ip)(); 1621 } 1622 static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1623 { 1624 return static_call(__perf_guest_handle_intel_pt_intr)(); 1625 } 1626 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1627 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1628 #else 1629 static inline unsigned int perf_guest_state(void) { return 0; } 1630 static inline unsigned long perf_guest_get_ip(void) { return 0; } 1631 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1632 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1633 1634 extern void perf_event_exec(void); 1635 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1636 extern void perf_event_namespaces(struct task_struct *tsk); 1637 extern void perf_event_fork(struct task_struct *tsk); 1638 extern void perf_event_text_poke(const void *addr, 1639 const void *old_bytes, size_t old_len, 1640 const void *new_bytes, size_t new_len); 1641 1642 /* Callchains */ 1643 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1644 1645 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1646 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1647 extern struct perf_callchain_entry * 1648 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1649 u32 max_stack, bool crosstask, bool add_mark); 1650 extern int get_callchain_buffers(int max_stack); 1651 extern void put_callchain_buffers(void); 1652 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1653 extern void put_callchain_entry(int rctx); 1654 1655 extern int sysctl_perf_event_max_stack; 1656 extern int sysctl_perf_event_max_contexts_per_stack; 1657 1658 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1659 { 1660 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1661 struct perf_callchain_entry *entry = ctx->entry; 1662 entry->ip[entry->nr++] = ip; 1663 ++ctx->contexts; 1664 return 0; 1665 } else { 1666 ctx->contexts_maxed = true; 1667 return -1; /* no more room, stop walking the stack */ 1668 } 1669 } 1670 1671 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1672 { 1673 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1674 struct perf_callchain_entry *entry = ctx->entry; 1675 entry->ip[entry->nr++] = ip; 1676 ++ctx->nr; 1677 return 0; 1678 } else { 1679 return -1; /* no more room, stop walking the stack */ 1680 } 1681 } 1682 1683 extern int sysctl_perf_event_paranoid; 1684 extern int sysctl_perf_event_sample_rate; 1685 1686 extern void perf_sample_event_took(u64 sample_len_ns); 1687 1688 /* Access to perf_event_open(2) syscall. */ 1689 #define PERF_SECURITY_OPEN 0 1690 1691 /* Finer grained perf_event_open(2) access control. */ 1692 #define PERF_SECURITY_CPU 1 1693 #define PERF_SECURITY_KERNEL 2 1694 #define PERF_SECURITY_TRACEPOINT 3 1695 1696 static inline int perf_is_paranoid(void) 1697 { 1698 return sysctl_perf_event_paranoid > -1; 1699 } 1700 1701 int perf_allow_kernel(struct perf_event_attr *attr); 1702 1703 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1704 { 1705 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1706 return -EACCES; 1707 1708 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1709 } 1710 1711 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1712 { 1713 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1714 return -EPERM; 1715 1716 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1717 } 1718 1719 extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs); 1720 1721 extern void perf_event_init(void); 1722 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1723 int entry_size, struct pt_regs *regs, 1724 struct hlist_head *head, int rctx, 1725 struct task_struct *task); 1726 extern void perf_bp_event(struct perf_event *event, void *data); 1727 1728 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs); 1729 extern unsigned long perf_instruction_pointer(struct perf_event *event, 1730 struct pt_regs *regs); 1731 1732 #ifndef perf_arch_misc_flags 1733 # define perf_arch_misc_flags(regs) \ 1734 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1735 # define perf_arch_instruction_pointer(regs) instruction_pointer(regs) 1736 #endif 1737 #ifndef perf_arch_bpf_user_pt_regs 1738 # define perf_arch_bpf_user_pt_regs(regs) regs 1739 #endif 1740 1741 #ifndef perf_arch_guest_misc_flags 1742 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 1743 { 1744 unsigned long guest_state = perf_guest_state(); 1745 1746 if (!(guest_state & PERF_GUEST_ACTIVE)) 1747 return 0; 1748 1749 if (guest_state & PERF_GUEST_USER) 1750 return PERF_RECORD_MISC_GUEST_USER; 1751 else 1752 return PERF_RECORD_MISC_GUEST_KERNEL; 1753 } 1754 # define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs) 1755 #endif 1756 1757 static inline bool needs_branch_stack(struct perf_event *event) 1758 { 1759 return event->attr.branch_sample_type != 0; 1760 } 1761 1762 static inline bool has_aux(struct perf_event *event) 1763 { 1764 return event->pmu->setup_aux; 1765 } 1766 1767 static inline bool has_aux_action(struct perf_event *event) 1768 { 1769 return event->attr.aux_sample_size || 1770 event->attr.aux_pause || 1771 event->attr.aux_resume; 1772 } 1773 1774 static inline bool is_write_backward(struct perf_event *event) 1775 { 1776 return !!event->attr.write_backward; 1777 } 1778 1779 static inline bool has_addr_filter(struct perf_event *event) 1780 { 1781 return event->pmu->nr_addr_filters; 1782 } 1783 1784 /* 1785 * An inherited event uses parent's filters 1786 */ 1787 static inline struct perf_addr_filters_head * 1788 perf_event_addr_filters(struct perf_event *event) 1789 { 1790 struct perf_addr_filters_head *ifh = &event->addr_filters; 1791 1792 if (event->parent) 1793 ifh = &event->parent->addr_filters; 1794 1795 return ifh; 1796 } 1797 1798 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 1799 { 1800 /* Only the parent has fasync state */ 1801 if (event->parent) 1802 event = event->parent; 1803 return &event->fasync; 1804 } 1805 1806 extern void perf_event_addr_filters_sync(struct perf_event *event); 1807 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1808 1809 extern int perf_output_begin(struct perf_output_handle *handle, 1810 struct perf_sample_data *data, 1811 struct perf_event *event, unsigned int size); 1812 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1813 struct perf_sample_data *data, 1814 struct perf_event *event, 1815 unsigned int size); 1816 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1817 struct perf_sample_data *data, 1818 struct perf_event *event, 1819 unsigned int size); 1820 1821 extern void perf_output_end(struct perf_output_handle *handle); 1822 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1823 const void *buf, unsigned int len); 1824 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1825 unsigned int len); 1826 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1827 struct perf_output_handle *handle, 1828 unsigned long from, unsigned long to); 1829 extern int perf_swevent_get_recursion_context(void); 1830 extern void perf_swevent_put_recursion_context(int rctx); 1831 extern u64 perf_swevent_set_period(struct perf_event *event); 1832 extern void perf_event_enable(struct perf_event *event); 1833 extern void perf_event_disable(struct perf_event *event); 1834 extern void perf_event_disable_local(struct perf_event *event); 1835 extern void perf_event_disable_inatomic(struct perf_event *event); 1836 extern void perf_event_task_tick(void); 1837 extern int perf_event_account_interrupt(struct perf_event *event); 1838 extern int perf_event_period(struct perf_event *event, u64 value); 1839 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1840 #else /* !CONFIG_PERF_EVENTS: */ 1841 static inline void * 1842 perf_aux_output_begin(struct perf_output_handle *handle, 1843 struct perf_event *event) { return NULL; } 1844 static inline void 1845 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1846 { } 1847 static inline int 1848 perf_aux_output_skip(struct perf_output_handle *handle, 1849 unsigned long size) { return -EINVAL; } 1850 static inline void * 1851 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1852 static inline void 1853 perf_event_task_migrate(struct task_struct *task) { } 1854 static inline void 1855 perf_event_task_sched_in(struct task_struct *prev, 1856 struct task_struct *task) { } 1857 static inline void 1858 perf_event_task_sched_out(struct task_struct *prev, 1859 struct task_struct *next) { } 1860 static inline int perf_event_init_task(struct task_struct *child, 1861 u64 clone_flags) { return 0; } 1862 static inline void perf_event_exit_task(struct task_struct *child) { } 1863 static inline void perf_event_free_task(struct task_struct *task) { } 1864 static inline void perf_event_delayed_put(struct task_struct *task) { } 1865 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1866 static inline const struct perf_event *perf_get_event(struct file *file) 1867 { 1868 return ERR_PTR(-EINVAL); 1869 } 1870 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1871 { 1872 return ERR_PTR(-EINVAL); 1873 } 1874 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1875 u64 *enabled, u64 *running) 1876 { 1877 return -EINVAL; 1878 } 1879 static inline void perf_event_print_debug(void) { } 1880 static inline int perf_event_task_disable(void) { return -EINVAL; } 1881 static inline int perf_event_task_enable(void) { return -EINVAL; } 1882 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1883 { 1884 return -EINVAL; 1885 } 1886 1887 static inline void 1888 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1889 static inline void 1890 perf_bp_event(struct perf_event *event, void *data) { } 1891 1892 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1893 1894 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1895 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1896 bool unregister, const char *sym) { } 1897 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1898 enum perf_bpf_event_type type, 1899 u16 flags) { } 1900 static inline void perf_event_exec(void) { } 1901 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1902 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1903 static inline void perf_event_fork(struct task_struct *tsk) { } 1904 static inline void perf_event_text_poke(const void *addr, 1905 const void *old_bytes, 1906 size_t old_len, 1907 const void *new_bytes, 1908 size_t new_len) { } 1909 static inline void perf_event_init(void) { } 1910 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1911 static inline void perf_swevent_put_recursion_context(int rctx) { } 1912 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1913 static inline void perf_event_enable(struct perf_event *event) { } 1914 static inline void perf_event_disable(struct perf_event *event) { } 1915 static inline int __perf_event_disable(void *info) { return -1; } 1916 static inline void perf_event_task_tick(void) { } 1917 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1918 static inline int perf_event_period(struct perf_event *event, u64 value) 1919 { 1920 return -EINVAL; 1921 } 1922 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1923 { 1924 return 0; 1925 } 1926 static inline int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 1927 { 1928 return 0; 1929 } 1930 #endif 1931 1932 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1933 extern void perf_restore_debug_store(void); 1934 #else 1935 static inline void perf_restore_debug_store(void) { } 1936 #endif 1937 1938 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1939 1940 struct perf_pmu_events_attr { 1941 struct device_attribute attr; 1942 u64 id; 1943 const char *event_str; 1944 }; 1945 1946 struct perf_pmu_events_ht_attr { 1947 struct device_attribute attr; 1948 u64 id; 1949 const char *event_str_ht; 1950 const char *event_str_noht; 1951 }; 1952 1953 struct perf_pmu_events_hybrid_attr { 1954 struct device_attribute attr; 1955 u64 id; 1956 const char *event_str; 1957 u64 pmu_type; 1958 }; 1959 1960 struct perf_pmu_format_hybrid_attr { 1961 struct device_attribute attr; 1962 u64 pmu_type; 1963 }; 1964 1965 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1966 char *page); 1967 1968 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1969 static struct perf_pmu_events_attr _var = { \ 1970 .attr = __ATTR(_name, 0444, _show, NULL), \ 1971 .id = _id, \ 1972 }; 1973 1974 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1975 static struct perf_pmu_events_attr _var = { \ 1976 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1977 .id = 0, \ 1978 .event_str = _str, \ 1979 }; 1980 1981 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1982 (&((struct perf_pmu_events_attr[]) { \ 1983 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1984 .id = _id, } \ 1985 })[0].attr.attr) 1986 1987 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1988 static ssize_t \ 1989 _name##_show(struct device *dev, \ 1990 struct device_attribute *attr, \ 1991 char *page) \ 1992 { \ 1993 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1994 return sprintf(page, _format "\n"); \ 1995 } \ 1996 1997 #define PMU_FORMAT_ATTR(_name, _format) \ 1998 PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1999 \ 2000 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 2001 2002 /* Performance counter hotplug functions */ 2003 #ifdef CONFIG_PERF_EVENTS 2004 int perf_event_init_cpu(unsigned int cpu); 2005 int perf_event_exit_cpu(unsigned int cpu); 2006 #else 2007 #define perf_event_init_cpu NULL 2008 #define perf_event_exit_cpu NULL 2009 #endif 2010 2011 extern void arch_perf_update_userpage(struct perf_event *event, 2012 struct perf_event_mmap_page *userpg, 2013 u64 now); 2014 2015 /* 2016 * Snapshot branch stack on software events. 2017 * 2018 * Branch stack can be very useful in understanding software events. For 2019 * example, when a long function, e.g. sys_perf_event_open, returns an 2020 * errno, it is not obvious why the function failed. Branch stack could 2021 * provide very helpful information in this type of scenarios. 2022 * 2023 * On software event, it is necessary to stop the hardware branch recorder 2024 * fast. Otherwise, the hardware register/buffer will be flushed with 2025 * entries of the triggering event. Therefore, static call is used to 2026 * stop the hardware recorder. 2027 */ 2028 2029 /* 2030 * cnt is the number of entries allocated for entries. 2031 * Return number of entries copied to . 2032 */ 2033 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 2034 unsigned int cnt); 2035 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 2036 2037 #ifndef PERF_NEEDS_LOPWR_CB 2038 static inline void perf_lopwr_cb(bool mode) 2039 { 2040 } 2041 #endif 2042 2043 #endif /* _LINUX_PERF_EVENT_H */ 2044