1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/types.h> 18 #include <linux/ioctl.h> 19 #include <asm/byteorder.h> 20 21 #ifdef CONFIG_HAVE_HW_BREAKPOINT 22 #include <asm/hw_breakpoint.h> 23 #endif 24 25 /* 26 * User-space ABI bits: 27 */ 28 29 /* 30 * attr.type 31 */ 32 enum perf_type_id { 33 PERF_TYPE_HARDWARE = 0, 34 PERF_TYPE_SOFTWARE = 1, 35 PERF_TYPE_TRACEPOINT = 2, 36 PERF_TYPE_HW_CACHE = 3, 37 PERF_TYPE_RAW = 4, 38 PERF_TYPE_BREAKPOINT = 5, 39 40 PERF_TYPE_MAX, /* non-ABI */ 41 }; 42 43 /* 44 * Generalized performance event event_id types, used by the 45 * attr.event_id parameter of the sys_perf_event_open() 46 * syscall: 47 */ 48 enum perf_hw_id { 49 /* 50 * Common hardware events, generalized by the kernel: 51 */ 52 PERF_COUNT_HW_CPU_CYCLES = 0, 53 PERF_COUNT_HW_INSTRUCTIONS = 1, 54 PERF_COUNT_HW_CACHE_REFERENCES = 2, 55 PERF_COUNT_HW_CACHE_MISSES = 3, 56 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 57 PERF_COUNT_HW_BRANCH_MISSES = 5, 58 PERF_COUNT_HW_BUS_CYCLES = 6, 59 60 PERF_COUNT_HW_MAX, /* non-ABI */ 61 }; 62 63 /* 64 * Generalized hardware cache events: 65 * 66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 67 * { read, write, prefetch } x 68 * { accesses, misses } 69 */ 70 enum perf_hw_cache_id { 71 PERF_COUNT_HW_CACHE_L1D = 0, 72 PERF_COUNT_HW_CACHE_L1I = 1, 73 PERF_COUNT_HW_CACHE_LL = 2, 74 PERF_COUNT_HW_CACHE_DTLB = 3, 75 PERF_COUNT_HW_CACHE_ITLB = 4, 76 PERF_COUNT_HW_CACHE_BPU = 5, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79 }; 80 81 enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87 }; 88 89 enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94 }; 95 96 /* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102 enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 113 PERF_COUNT_SW_MAX, /* non-ABI */ 114 }; 115 116 /* 117 * Bits that can be set in attr.sample_type to request information 118 * in the overflow packets. 119 */ 120 enum perf_event_sample_format { 121 PERF_SAMPLE_IP = 1U << 0, 122 PERF_SAMPLE_TID = 1U << 1, 123 PERF_SAMPLE_TIME = 1U << 2, 124 PERF_SAMPLE_ADDR = 1U << 3, 125 PERF_SAMPLE_READ = 1U << 4, 126 PERF_SAMPLE_CALLCHAIN = 1U << 5, 127 PERF_SAMPLE_ID = 1U << 6, 128 PERF_SAMPLE_CPU = 1U << 7, 129 PERF_SAMPLE_PERIOD = 1U << 8, 130 PERF_SAMPLE_STREAM_ID = 1U << 9, 131 PERF_SAMPLE_RAW = 1U << 10, 132 133 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 134 }; 135 136 /* 137 * The format of the data returned by read() on a perf event fd, 138 * as specified by attr.read_format: 139 * 140 * struct read_format { 141 * { u64 value; 142 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 143 * { u64 time_running; } && PERF_FORMAT_RUNNING 144 * { u64 id; } && PERF_FORMAT_ID 145 * } && !PERF_FORMAT_GROUP 146 * 147 * { u64 nr; 148 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 149 * { u64 time_running; } && PERF_FORMAT_RUNNING 150 * { u64 value; 151 * { u64 id; } && PERF_FORMAT_ID 152 * } cntr[nr]; 153 * } && PERF_FORMAT_GROUP 154 * }; 155 */ 156 enum perf_event_read_format { 157 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 158 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 159 PERF_FORMAT_ID = 1U << 2, 160 PERF_FORMAT_GROUP = 1U << 3, 161 162 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 163 }; 164 165 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 166 167 /* 168 * Hardware event_id to monitor via a performance monitoring event: 169 */ 170 struct perf_event_attr { 171 172 /* 173 * Major type: hardware/software/tracepoint/etc. 174 */ 175 __u32 type; 176 177 /* 178 * Size of the attr structure, for fwd/bwd compat. 179 */ 180 __u32 size; 181 182 /* 183 * Type specific configuration information. 184 */ 185 __u64 config; 186 187 union { 188 __u64 sample_period; 189 __u64 sample_freq; 190 }; 191 192 __u64 sample_type; 193 __u64 read_format; 194 195 __u64 disabled : 1, /* off by default */ 196 inherit : 1, /* children inherit it */ 197 pinned : 1, /* must always be on PMU */ 198 exclusive : 1, /* only group on PMU */ 199 exclude_user : 1, /* don't count user */ 200 exclude_kernel : 1, /* ditto kernel */ 201 exclude_hv : 1, /* ditto hypervisor */ 202 exclude_idle : 1, /* don't count when idle */ 203 mmap : 1, /* include mmap data */ 204 comm : 1, /* include comm data */ 205 freq : 1, /* use freq, not period */ 206 inherit_stat : 1, /* per task counts */ 207 enable_on_exec : 1, /* next exec enables */ 208 task : 1, /* trace fork/exit */ 209 watermark : 1, /* wakeup_watermark */ 210 211 __reserved_1 : 49; 212 213 union { 214 __u32 wakeup_events; /* wakeup every n events */ 215 __u32 wakeup_watermark; /* bytes before wakeup */ 216 }; 217 218 union { 219 struct { /* Hardware breakpoint info */ 220 __u64 bp_addr; 221 __u32 bp_type; 222 __u32 bp_len; 223 }; 224 }; 225 226 __u32 __reserved_2; 227 228 __u64 __reserved_3; 229 }; 230 231 /* 232 * Ioctls that can be done on a perf event fd: 233 */ 234 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 235 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 236 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 237 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 238 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 239 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 240 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 241 242 enum perf_event_ioc_flags { 243 PERF_IOC_FLAG_GROUP = 1U << 0, 244 }; 245 246 /* 247 * Structure of the page that can be mapped via mmap 248 */ 249 struct perf_event_mmap_page { 250 __u32 version; /* version number of this structure */ 251 __u32 compat_version; /* lowest version this is compat with */ 252 253 /* 254 * Bits needed to read the hw events in user-space. 255 * 256 * u32 seq; 257 * s64 count; 258 * 259 * do { 260 * seq = pc->lock; 261 * 262 * barrier() 263 * if (pc->index) { 264 * count = pmc_read(pc->index - 1); 265 * count += pc->offset; 266 * } else 267 * goto regular_read; 268 * 269 * barrier(); 270 * } while (pc->lock != seq); 271 * 272 * NOTE: for obvious reason this only works on self-monitoring 273 * processes. 274 */ 275 __u32 lock; /* seqlock for synchronization */ 276 __u32 index; /* hardware event identifier */ 277 __s64 offset; /* add to hardware event value */ 278 __u64 time_enabled; /* time event active */ 279 __u64 time_running; /* time event on cpu */ 280 281 /* 282 * Hole for extension of the self monitor capabilities 283 */ 284 285 __u64 __reserved[123]; /* align to 1k */ 286 287 /* 288 * Control data for the mmap() data buffer. 289 * 290 * User-space reading the @data_head value should issue an rmb(), on 291 * SMP capable platforms, after reading this value -- see 292 * perf_event_wakeup(). 293 * 294 * When the mapping is PROT_WRITE the @data_tail value should be 295 * written by userspace to reflect the last read data. In this case 296 * the kernel will not over-write unread data. 297 */ 298 __u64 data_head; /* head in the data section */ 299 __u64 data_tail; /* user-space written tail */ 300 }; 301 302 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0) 303 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 304 #define PERF_RECORD_MISC_KERNEL (1 << 0) 305 #define PERF_RECORD_MISC_USER (2 << 0) 306 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 307 308 struct perf_event_header { 309 __u32 type; 310 __u16 misc; 311 __u16 size; 312 }; 313 314 enum perf_event_type { 315 316 /* 317 * The MMAP events record the PROT_EXEC mappings so that we can 318 * correlate userspace IPs to code. They have the following structure: 319 * 320 * struct { 321 * struct perf_event_header header; 322 * 323 * u32 pid, tid; 324 * u64 addr; 325 * u64 len; 326 * u64 pgoff; 327 * char filename[]; 328 * }; 329 */ 330 PERF_RECORD_MMAP = 1, 331 332 /* 333 * struct { 334 * struct perf_event_header header; 335 * u64 id; 336 * u64 lost; 337 * }; 338 */ 339 PERF_RECORD_LOST = 2, 340 341 /* 342 * struct { 343 * struct perf_event_header header; 344 * 345 * u32 pid, tid; 346 * char comm[]; 347 * }; 348 */ 349 PERF_RECORD_COMM = 3, 350 351 /* 352 * struct { 353 * struct perf_event_header header; 354 * u32 pid, ppid; 355 * u32 tid, ptid; 356 * u64 time; 357 * }; 358 */ 359 PERF_RECORD_EXIT = 4, 360 361 /* 362 * struct { 363 * struct perf_event_header header; 364 * u64 time; 365 * u64 id; 366 * u64 stream_id; 367 * }; 368 */ 369 PERF_RECORD_THROTTLE = 5, 370 PERF_RECORD_UNTHROTTLE = 6, 371 372 /* 373 * struct { 374 * struct perf_event_header header; 375 * u32 pid, ppid; 376 * u32 tid, ptid; 377 * u64 time; 378 * }; 379 */ 380 PERF_RECORD_FORK = 7, 381 382 /* 383 * struct { 384 * struct perf_event_header header; 385 * u32 pid, tid; 386 * 387 * struct read_format values; 388 * }; 389 */ 390 PERF_RECORD_READ = 8, 391 392 /* 393 * struct { 394 * struct perf_event_header header; 395 * 396 * { u64 ip; } && PERF_SAMPLE_IP 397 * { u32 pid, tid; } && PERF_SAMPLE_TID 398 * { u64 time; } && PERF_SAMPLE_TIME 399 * { u64 addr; } && PERF_SAMPLE_ADDR 400 * { u64 id; } && PERF_SAMPLE_ID 401 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 402 * { u32 cpu, res; } && PERF_SAMPLE_CPU 403 * { u64 period; } && PERF_SAMPLE_PERIOD 404 * 405 * { struct read_format values; } && PERF_SAMPLE_READ 406 * 407 * { u64 nr, 408 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 409 * 410 * # 411 * # The RAW record below is opaque data wrt the ABI 412 * # 413 * # That is, the ABI doesn't make any promises wrt to 414 * # the stability of its content, it may vary depending 415 * # on event, hardware, kernel version and phase of 416 * # the moon. 417 * # 418 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 419 * # 420 * 421 * { u32 size; 422 * char data[size];}&& PERF_SAMPLE_RAW 423 * }; 424 */ 425 PERF_RECORD_SAMPLE = 9, 426 427 PERF_RECORD_MAX, /* non-ABI */ 428 }; 429 430 enum perf_callchain_context { 431 PERF_CONTEXT_HV = (__u64)-32, 432 PERF_CONTEXT_KERNEL = (__u64)-128, 433 PERF_CONTEXT_USER = (__u64)-512, 434 435 PERF_CONTEXT_GUEST = (__u64)-2048, 436 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 437 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 438 439 PERF_CONTEXT_MAX = (__u64)-4095, 440 }; 441 442 #define PERF_FLAG_FD_NO_GROUP (1U << 0) 443 #define PERF_FLAG_FD_OUTPUT (1U << 1) 444 445 #ifdef __KERNEL__ 446 /* 447 * Kernel-internal data types and definitions: 448 */ 449 450 #ifdef CONFIG_PERF_EVENTS 451 # include <asm/perf_event.h> 452 #endif 453 454 #include <linux/list.h> 455 #include <linux/mutex.h> 456 #include <linux/rculist.h> 457 #include <linux/rcupdate.h> 458 #include <linux/spinlock.h> 459 #include <linux/hrtimer.h> 460 #include <linux/fs.h> 461 #include <linux/pid_namespace.h> 462 #include <linux/workqueue.h> 463 #include <asm/atomic.h> 464 465 #define PERF_MAX_STACK_DEPTH 255 466 467 struct perf_callchain_entry { 468 __u64 nr; 469 __u64 ip[PERF_MAX_STACK_DEPTH]; 470 }; 471 472 struct perf_raw_record { 473 u32 size; 474 void *data; 475 }; 476 477 struct task_struct; 478 479 /** 480 * struct hw_perf_event - performance event hardware details: 481 */ 482 struct hw_perf_event { 483 #ifdef CONFIG_PERF_EVENTS 484 union { 485 struct { /* hardware */ 486 u64 config; 487 unsigned long config_base; 488 unsigned long event_base; 489 int idx; 490 }; 491 struct { /* software */ 492 s64 remaining; 493 struct hrtimer hrtimer; 494 }; 495 #ifdef CONFIG_HAVE_HW_BREAKPOINT 496 union { /* breakpoint */ 497 struct arch_hw_breakpoint info; 498 }; 499 #endif 500 }; 501 atomic64_t prev_count; 502 u64 sample_period; 503 u64 last_period; 504 atomic64_t period_left; 505 u64 interrupts; 506 507 u64 freq_count; 508 u64 freq_interrupts; 509 u64 freq_stamp; 510 #endif 511 }; 512 513 struct perf_event; 514 515 /** 516 * struct pmu - generic performance monitoring unit 517 */ 518 struct pmu { 519 int (*enable) (struct perf_event *event); 520 void (*disable) (struct perf_event *event); 521 void (*read) (struct perf_event *event); 522 void (*unthrottle) (struct perf_event *event); 523 }; 524 525 /** 526 * enum perf_event_active_state - the states of a event 527 */ 528 enum perf_event_active_state { 529 PERF_EVENT_STATE_ERROR = -2, 530 PERF_EVENT_STATE_OFF = -1, 531 PERF_EVENT_STATE_INACTIVE = 0, 532 PERF_EVENT_STATE_ACTIVE = 1, 533 }; 534 535 struct file; 536 537 struct perf_mmap_data { 538 struct rcu_head rcu_head; 539 #ifdef CONFIG_PERF_USE_VMALLOC 540 struct work_struct work; 541 #endif 542 int data_order; 543 int nr_pages; /* nr of data pages */ 544 int writable; /* are we writable */ 545 int nr_locked; /* nr pages mlocked */ 546 547 atomic_t poll; /* POLL_ for wakeups */ 548 atomic_t events; /* event_id limit */ 549 550 atomic_long_t head; /* write position */ 551 atomic_long_t done_head; /* completed head */ 552 553 atomic_t lock; /* concurrent writes */ 554 atomic_t wakeup; /* needs a wakeup */ 555 atomic_t lost; /* nr records lost */ 556 557 long watermark; /* wakeup watermark */ 558 559 struct perf_event_mmap_page *user_page; 560 void *data_pages[0]; 561 }; 562 563 struct perf_pending_entry { 564 struct perf_pending_entry *next; 565 void (*func)(struct perf_pending_entry *); 566 }; 567 568 typedef void (*perf_callback_t)(struct perf_event *, void *); 569 570 struct perf_sample_data; 571 572 /** 573 * struct perf_event - performance event kernel representation: 574 */ 575 struct perf_event { 576 #ifdef CONFIG_PERF_EVENTS 577 struct list_head group_entry; 578 struct list_head event_entry; 579 struct list_head sibling_list; 580 int nr_siblings; 581 struct perf_event *group_leader; 582 struct perf_event *output; 583 const struct pmu *pmu; 584 585 enum perf_event_active_state state; 586 atomic64_t count; 587 588 /* 589 * These are the total time in nanoseconds that the event 590 * has been enabled (i.e. eligible to run, and the task has 591 * been scheduled in, if this is a per-task event) 592 * and running (scheduled onto the CPU), respectively. 593 * 594 * They are computed from tstamp_enabled, tstamp_running and 595 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 596 */ 597 u64 total_time_enabled; 598 u64 total_time_running; 599 600 /* 601 * These are timestamps used for computing total_time_enabled 602 * and total_time_running when the event is in INACTIVE or 603 * ACTIVE state, measured in nanoseconds from an arbitrary point 604 * in time. 605 * tstamp_enabled: the notional time when the event was enabled 606 * tstamp_running: the notional time when the event was scheduled on 607 * tstamp_stopped: in INACTIVE state, the notional time when the 608 * event was scheduled off. 609 */ 610 u64 tstamp_enabled; 611 u64 tstamp_running; 612 u64 tstamp_stopped; 613 614 struct perf_event_attr attr; 615 struct hw_perf_event hw; 616 617 struct perf_event_context *ctx; 618 struct file *filp; 619 620 /* 621 * These accumulate total time (in nanoseconds) that children 622 * events have been enabled and running, respectively. 623 */ 624 atomic64_t child_total_time_enabled; 625 atomic64_t child_total_time_running; 626 627 /* 628 * Protect attach/detach and child_list: 629 */ 630 struct mutex child_mutex; 631 struct list_head child_list; 632 struct perf_event *parent; 633 634 int oncpu; 635 int cpu; 636 637 struct list_head owner_entry; 638 struct task_struct *owner; 639 640 /* mmap bits */ 641 struct mutex mmap_mutex; 642 atomic_t mmap_count; 643 struct perf_mmap_data *data; 644 645 /* poll related */ 646 wait_queue_head_t waitq; 647 struct fasync_struct *fasync; 648 649 /* delayed work for NMIs and such */ 650 int pending_wakeup; 651 int pending_kill; 652 int pending_disable; 653 struct perf_pending_entry pending; 654 655 atomic_t event_limit; 656 657 void (*destroy)(struct perf_event *); 658 struct rcu_head rcu_head; 659 660 struct pid_namespace *ns; 661 u64 id; 662 663 void (*overflow_handler)(struct perf_event *event, 664 int nmi, struct perf_sample_data *data, 665 struct pt_regs *regs); 666 667 #ifdef CONFIG_EVENT_PROFILE 668 struct event_filter *filter; 669 #endif 670 671 perf_callback_t callback; 672 673 perf_callback_t event_callback; 674 675 #endif /* CONFIG_PERF_EVENTS */ 676 }; 677 678 /** 679 * struct perf_event_context - event context structure 680 * 681 * Used as a container for task events and CPU events as well: 682 */ 683 struct perf_event_context { 684 /* 685 * Protect the states of the events in the list, 686 * nr_active, and the list: 687 */ 688 spinlock_t lock; 689 /* 690 * Protect the list of events. Locking either mutex or lock 691 * is sufficient to ensure the list doesn't change; to change 692 * the list you need to lock both the mutex and the spinlock. 693 */ 694 struct mutex mutex; 695 696 struct list_head group_list; 697 struct list_head event_list; 698 int nr_events; 699 int nr_active; 700 int is_active; 701 int nr_stat; 702 atomic_t refcount; 703 struct task_struct *task; 704 705 /* 706 * Context clock, runs when context enabled. 707 */ 708 u64 time; 709 u64 timestamp; 710 711 /* 712 * These fields let us detect when two contexts have both 713 * been cloned (inherited) from a common ancestor. 714 */ 715 struct perf_event_context *parent_ctx; 716 u64 parent_gen; 717 u64 generation; 718 int pin_count; 719 struct rcu_head rcu_head; 720 }; 721 722 /** 723 * struct perf_event_cpu_context - per cpu event context structure 724 */ 725 struct perf_cpu_context { 726 struct perf_event_context ctx; 727 struct perf_event_context *task_ctx; 728 int active_oncpu; 729 int max_pertask; 730 int exclusive; 731 732 /* 733 * Recursion avoidance: 734 * 735 * task, softirq, irq, nmi context 736 */ 737 int recursion[4]; 738 }; 739 740 struct perf_output_handle { 741 struct perf_event *event; 742 struct perf_mmap_data *data; 743 unsigned long head; 744 unsigned long offset; 745 int nmi; 746 int sample; 747 int locked; 748 }; 749 750 #ifdef CONFIG_PERF_EVENTS 751 752 /* 753 * Set by architecture code: 754 */ 755 extern int perf_max_events; 756 757 extern const struct pmu *hw_perf_event_init(struct perf_event *event); 758 759 extern void perf_event_task_sched_in(struct task_struct *task, int cpu); 760 extern void perf_event_task_sched_out(struct task_struct *task, 761 struct task_struct *next, int cpu); 762 extern void perf_event_task_tick(struct task_struct *task, int cpu); 763 extern int perf_event_init_task(struct task_struct *child); 764 extern void perf_event_exit_task(struct task_struct *child); 765 extern void perf_event_free_task(struct task_struct *task); 766 extern void set_perf_event_pending(void); 767 extern void perf_event_do_pending(void); 768 extern void perf_event_print_debug(void); 769 extern void __perf_disable(void); 770 extern bool __perf_enable(void); 771 extern void perf_disable(void); 772 extern void perf_enable(void); 773 extern int perf_event_task_disable(void); 774 extern int perf_event_task_enable(void); 775 extern int hw_perf_group_sched_in(struct perf_event *group_leader, 776 struct perf_cpu_context *cpuctx, 777 struct perf_event_context *ctx, int cpu); 778 extern void perf_event_update_userpage(struct perf_event *event); 779 extern int perf_event_release_kernel(struct perf_event *event); 780 extern struct perf_event * 781 perf_event_create_kernel_counter(struct perf_event_attr *attr, 782 int cpu, 783 pid_t pid, 784 perf_callback_t callback); 785 extern u64 perf_event_read_value(struct perf_event *event, 786 u64 *enabled, u64 *running); 787 788 struct perf_sample_data { 789 u64 type; 790 791 u64 ip; 792 struct { 793 u32 pid; 794 u32 tid; 795 } tid_entry; 796 u64 time; 797 u64 addr; 798 u64 id; 799 u64 stream_id; 800 struct { 801 u32 cpu; 802 u32 reserved; 803 } cpu_entry; 804 u64 period; 805 struct perf_callchain_entry *callchain; 806 struct perf_raw_record *raw; 807 }; 808 809 extern void perf_output_sample(struct perf_output_handle *handle, 810 struct perf_event_header *header, 811 struct perf_sample_data *data, 812 struct perf_event *event); 813 extern void perf_prepare_sample(struct perf_event_header *header, 814 struct perf_sample_data *data, 815 struct perf_event *event, 816 struct pt_regs *regs); 817 818 extern int perf_event_overflow(struct perf_event *event, int nmi, 819 struct perf_sample_data *data, 820 struct pt_regs *regs); 821 822 /* 823 * Return 1 for a software event, 0 for a hardware event 824 */ 825 static inline int is_software_event(struct perf_event *event) 826 { 827 return (event->attr.type != PERF_TYPE_RAW) && 828 (event->attr.type != PERF_TYPE_HARDWARE) && 829 (event->attr.type != PERF_TYPE_HW_CACHE); 830 } 831 832 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 833 834 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 835 836 static inline void 837 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 838 { 839 if (atomic_read(&perf_swevent_enabled[event_id])) 840 __perf_sw_event(event_id, nr, nmi, regs, addr); 841 } 842 843 extern void __perf_event_mmap(struct vm_area_struct *vma); 844 845 static inline void perf_event_mmap(struct vm_area_struct *vma) 846 { 847 if (vma->vm_flags & VM_EXEC) 848 __perf_event_mmap(vma); 849 } 850 851 extern void perf_event_comm(struct task_struct *tsk); 852 extern void perf_event_fork(struct task_struct *tsk); 853 854 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); 855 856 extern int sysctl_perf_event_paranoid; 857 extern int sysctl_perf_event_mlock; 858 extern int sysctl_perf_event_sample_rate; 859 860 extern void perf_event_init(void); 861 extern void perf_tp_event(int event_id, u64 addr, u64 count, 862 void *record, int entry_size); 863 extern void perf_bp_event(struct perf_event *event, void *data); 864 865 #ifndef perf_misc_flags 866 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 867 PERF_RECORD_MISC_KERNEL) 868 #define perf_instruction_pointer(regs) instruction_pointer(regs) 869 #endif 870 871 extern int perf_output_begin(struct perf_output_handle *handle, 872 struct perf_event *event, unsigned int size, 873 int nmi, int sample); 874 extern void perf_output_end(struct perf_output_handle *handle); 875 extern void perf_output_copy(struct perf_output_handle *handle, 876 const void *buf, unsigned int len); 877 extern int perf_swevent_get_recursion_context(void); 878 extern void perf_swevent_put_recursion_context(int rctx); 879 #else 880 static inline void 881 perf_event_task_sched_in(struct task_struct *task, int cpu) { } 882 static inline void 883 perf_event_task_sched_out(struct task_struct *task, 884 struct task_struct *next, int cpu) { } 885 static inline void 886 perf_event_task_tick(struct task_struct *task, int cpu) { } 887 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 888 static inline void perf_event_exit_task(struct task_struct *child) { } 889 static inline void perf_event_free_task(struct task_struct *task) { } 890 static inline void perf_event_do_pending(void) { } 891 static inline void perf_event_print_debug(void) { } 892 static inline void perf_disable(void) { } 893 static inline void perf_enable(void) { } 894 static inline int perf_event_task_disable(void) { return -EINVAL; } 895 static inline int perf_event_task_enable(void) { return -EINVAL; } 896 897 static inline void 898 perf_sw_event(u32 event_id, u64 nr, int nmi, 899 struct pt_regs *regs, u64 addr) { } 900 static inline void 901 perf_bp_event(struct perf_event *event, void *data) { } 902 903 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 904 static inline void perf_event_comm(struct task_struct *tsk) { } 905 static inline void perf_event_fork(struct task_struct *tsk) { } 906 static inline void perf_event_init(void) { } 907 static inline int perf_swevent_get_recursion_context(void) { return -1; } 908 static inline void perf_swevent_put_recursion_context(int rctx) { } 909 910 #endif 911 912 #define perf_output_put(handle, x) \ 913 perf_output_copy((handle), &(x), sizeof(x)) 914 915 #endif /* __KERNEL__ */ 916 #endif /* _LINUX_PERF_EVENT_H */ 917