xref: /linux-6.15/include/linux/perf_event.h (revision bbaf1ff0)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42 
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66 
67 struct perf_callchain_entry {
68 	__u64				nr;
69 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71 
72 struct perf_callchain_entry_ctx {
73 	struct perf_callchain_entry *entry;
74 	u32			    max_stack;
75 	u32			    nr;
76 	short			    contexts;
77 	bool			    contexts_maxed;
78 };
79 
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 				     unsigned long off, unsigned long len);
82 
83 struct perf_raw_frag {
84 	union {
85 		struct perf_raw_frag	*next;
86 		unsigned long		pad;
87 	};
88 	perf_copy_f			copy;
89 	void				*data;
90 	u32				size;
91 } __packed;
92 
93 struct perf_raw_record {
94 	struct perf_raw_frag		frag;
95 	u32				size;
96 };
97 
98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 	return frag->pad < sizeof(u64);
101 }
102 
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124 	__u64				nr;
125 	__u64				hw_idx;
126 	struct perf_branch_entry	entries[];
127 };
128 
129 struct task_struct;
130 
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135 	u64		config;	/* register value */
136 	unsigned int	reg;	/* register address or index */
137 	int		alloc;	/* extra register already allocated */
138 	int		idx;	/* index in shared_regs->regs[] */
139 };
140 
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH			0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149 
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 	union {
158 		struct { /* hardware */
159 			u64		config;
160 			u64		last_tag;
161 			unsigned long	config_base;
162 			unsigned long	event_base;
163 			int		event_base_rdpmc;
164 			int		idx;
165 			int		last_cpu;
166 			int		flags;
167 
168 			struct hw_perf_event_extra extra_reg;
169 			struct hw_perf_event_extra branch_reg;
170 		};
171 		struct { /* software */
172 			struct hrtimer	hrtimer;
173 		};
174 		struct { /* tracepoint */
175 			/* for tp_event->class */
176 			struct list_head	tp_list;
177 		};
178 		struct { /* amd_power */
179 			u64	pwr_acc;
180 			u64	ptsc;
181 		};
182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
183 		struct { /* breakpoint */
184 			/*
185 			 * Crufty hack to avoid the chicken and egg
186 			 * problem hw_breakpoint has with context
187 			 * creation and event initalization.
188 			 */
189 			struct arch_hw_breakpoint	info;
190 			struct rhlist_head		bp_list;
191 		};
192 #endif
193 		struct { /* amd_iommu */
194 			u8	iommu_bank;
195 			u8	iommu_cntr;
196 			u16	padding;
197 			u64	conf;
198 			u64	conf1;
199 		};
200 	};
201 	/*
202 	 * If the event is a per task event, this will point to the task in
203 	 * question. See the comment in perf_event_alloc().
204 	 */
205 	struct task_struct		*target;
206 
207 	/*
208 	 * PMU would store hardware filter configuration
209 	 * here.
210 	 */
211 	void				*addr_filters;
212 
213 	/* Last sync'ed generation of filters */
214 	unsigned long			addr_filters_gen;
215 
216 /*
217  * hw_perf_event::state flags; used to track the PERF_EF_* state.
218  */
219 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
220 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
221 #define PERF_HES_ARCH		0x04
222 
223 	int				state;
224 
225 	/*
226 	 * The last observed hardware counter value, updated with a
227 	 * local64_cmpxchg() such that pmu::read() can be called nested.
228 	 */
229 	local64_t			prev_count;
230 
231 	/*
232 	 * The period to start the next sample with.
233 	 */
234 	u64				sample_period;
235 
236 	union {
237 		struct { /* Sampling */
238 			/*
239 			 * The period we started this sample with.
240 			 */
241 			u64				last_period;
242 
243 			/*
244 			 * However much is left of the current period;
245 			 * note that this is a full 64bit value and
246 			 * allows for generation of periods longer
247 			 * than hardware might allow.
248 			 */
249 			local64_t			period_left;
250 		};
251 		struct { /* Topdown events counting for context switch */
252 			u64				saved_metric;
253 			u64				saved_slots;
254 		};
255 	};
256 
257 	/*
258 	 * State for throttling the event, see __perf_event_overflow() and
259 	 * perf_adjust_freq_unthr_context().
260 	 */
261 	u64                             interrupts_seq;
262 	u64				interrupts;
263 
264 	/*
265 	 * State for freq target events, see __perf_event_overflow() and
266 	 * perf_adjust_freq_unthr_context().
267 	 */
268 	u64				freq_time_stamp;
269 	u64				freq_count_stamp;
270 #endif
271 };
272 
273 struct perf_event;
274 struct perf_event_pmu_context;
275 
276 /*
277  * Common implementation detail of pmu::{start,commit,cancel}_txn
278  */
279 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
280 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
281 
282 /**
283  * pmu::capabilities flags
284  */
285 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
286 #define PERF_PMU_CAP_NO_NMI			0x0002
287 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
288 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
289 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
290 #define PERF_PMU_CAP_ITRACE			0x0020
291 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x0040
292 #define PERF_PMU_CAP_NO_EXCLUDE			0x0080
293 #define PERF_PMU_CAP_AUX_OUTPUT			0x0100
294 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0200
295 
296 struct perf_output_handle;
297 
298 #define PMU_NULL_DEV	((void *)(~0UL))
299 
300 /**
301  * struct pmu - generic performance monitoring unit
302  */
303 struct pmu {
304 	struct list_head		entry;
305 
306 	struct module			*module;
307 	struct device			*dev;
308 	const struct attribute_group	**attr_groups;
309 	const struct attribute_group	**attr_update;
310 	const char			*name;
311 	int				type;
312 
313 	/*
314 	 * various common per-pmu feature flags
315 	 */
316 	int				capabilities;
317 
318 	int __percpu			*pmu_disable_count;
319 	struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
320 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
321 	int				task_ctx_nr;
322 	int				hrtimer_interval_ms;
323 
324 	/* number of address filters this PMU can do */
325 	unsigned int			nr_addr_filters;
326 
327 	/*
328 	 * Fully disable/enable this PMU, can be used to protect from the PMI
329 	 * as well as for lazy/batch writing of the MSRs.
330 	 */
331 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
332 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
333 
334 	/*
335 	 * Try and initialize the event for this PMU.
336 	 *
337 	 * Returns:
338 	 *  -ENOENT	-- @event is not for this PMU
339 	 *
340 	 *  -ENODEV	-- @event is for this PMU but PMU not present
341 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
342 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
343 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
344 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
345 	 *
346 	 *  0		-- @event is for this PMU and valid
347 	 *
348 	 * Other error return values are allowed.
349 	 */
350 	int (*event_init)		(struct perf_event *event);
351 
352 	/*
353 	 * Notification that the event was mapped or unmapped.  Called
354 	 * in the context of the mapping task.
355 	 */
356 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
357 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
358 
359 	/*
360 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
361 	 * matching hw_perf_event::state flags.
362 	 */
363 #define PERF_EF_START	0x01		/* start the counter when adding    */
364 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
365 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
366 
367 	/*
368 	 * Adds/Removes a counter to/from the PMU, can be done inside a
369 	 * transaction, see the ->*_txn() methods.
370 	 *
371 	 * The add/del callbacks will reserve all hardware resources required
372 	 * to service the event, this includes any counter constraint
373 	 * scheduling etc.
374 	 *
375 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
376 	 * is on.
377 	 *
378 	 * ->add() called without PERF_EF_START should result in the same state
379 	 *  as ->add() followed by ->stop().
380 	 *
381 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
382 	 *  ->stop() that must deal with already being stopped without
383 	 *  PERF_EF_UPDATE.
384 	 */
385 	int  (*add)			(struct perf_event *event, int flags);
386 	void (*del)			(struct perf_event *event, int flags);
387 
388 	/*
389 	 * Starts/Stops a counter present on the PMU.
390 	 *
391 	 * The PMI handler should stop the counter when perf_event_overflow()
392 	 * returns !0. ->start() will be used to continue.
393 	 *
394 	 * Also used to change the sample period.
395 	 *
396 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
397 	 * is on -- will be called from NMI context with the PMU generates
398 	 * NMIs.
399 	 *
400 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
401 	 *  period/count values like ->read() would.
402 	 *
403 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
404 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
405 	 */
406 	void (*start)			(struct perf_event *event, int flags);
407 	void (*stop)			(struct perf_event *event, int flags);
408 
409 	/*
410 	 * Updates the counter value of the event.
411 	 *
412 	 * For sampling capable PMUs this will also update the software period
413 	 * hw_perf_event::period_left field.
414 	 */
415 	void (*read)			(struct perf_event *event);
416 
417 	/*
418 	 * Group events scheduling is treated as a transaction, add
419 	 * group events as a whole and perform one schedulability test.
420 	 * If the test fails, roll back the whole group
421 	 *
422 	 * Start the transaction, after this ->add() doesn't need to
423 	 * do schedulability tests.
424 	 *
425 	 * Optional.
426 	 */
427 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
428 	/*
429 	 * If ->start_txn() disabled the ->add() schedulability test
430 	 * then ->commit_txn() is required to perform one. On success
431 	 * the transaction is closed. On error the transaction is kept
432 	 * open until ->cancel_txn() is called.
433 	 *
434 	 * Optional.
435 	 */
436 	int  (*commit_txn)		(struct pmu *pmu);
437 	/*
438 	 * Will cancel the transaction, assumes ->del() is called
439 	 * for each successful ->add() during the transaction.
440 	 *
441 	 * Optional.
442 	 */
443 	void (*cancel_txn)		(struct pmu *pmu);
444 
445 	/*
446 	 * Will return the value for perf_event_mmap_page::index for this event,
447 	 * if no implementation is provided it will default to: event->hw.idx + 1.
448 	 */
449 	int (*event_idx)		(struct perf_event *event); /*optional */
450 
451 	/*
452 	 * context-switches callback
453 	 */
454 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
455 					bool sched_in);
456 
457 	/*
458 	 * Kmem cache of PMU specific data
459 	 */
460 	struct kmem_cache		*task_ctx_cache;
461 
462 	/*
463 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
464 	 * can be synchronized using this function. See Intel LBR callstack support
465 	 * implementation and Perf core context switch handling callbacks for usage
466 	 * examples.
467 	 */
468 	void (*swap_task_ctx)		(struct perf_event_pmu_context *prev_epc,
469 					 struct perf_event_pmu_context *next_epc);
470 					/* optional */
471 
472 	/*
473 	 * Set up pmu-private data structures for an AUX area
474 	 */
475 	void *(*setup_aux)		(struct perf_event *event, void **pages,
476 					 int nr_pages, bool overwrite);
477 					/* optional */
478 
479 	/*
480 	 * Free pmu-private AUX data structures
481 	 */
482 	void (*free_aux)		(void *aux); /* optional */
483 
484 	/*
485 	 * Take a snapshot of the AUX buffer without touching the event
486 	 * state, so that preempting ->start()/->stop() callbacks does
487 	 * not interfere with their logic. Called in PMI context.
488 	 *
489 	 * Returns the size of AUX data copied to the output handle.
490 	 *
491 	 * Optional.
492 	 */
493 	long (*snapshot_aux)		(struct perf_event *event,
494 					 struct perf_output_handle *handle,
495 					 unsigned long size);
496 
497 	/*
498 	 * Validate address range filters: make sure the HW supports the
499 	 * requested configuration and number of filters; return 0 if the
500 	 * supplied filters are valid, -errno otherwise.
501 	 *
502 	 * Runs in the context of the ioctl()ing process and is not serialized
503 	 * with the rest of the PMU callbacks.
504 	 */
505 	int (*addr_filters_validate)	(struct list_head *filters);
506 					/* optional */
507 
508 	/*
509 	 * Synchronize address range filter configuration:
510 	 * translate hw-agnostic filters into hardware configuration in
511 	 * event::hw::addr_filters.
512 	 *
513 	 * Runs as a part of filter sync sequence that is done in ->start()
514 	 * callback by calling perf_event_addr_filters_sync().
515 	 *
516 	 * May (and should) traverse event::addr_filters::list, for which its
517 	 * caller provides necessary serialization.
518 	 */
519 	void (*addr_filters_sync)	(struct perf_event *event);
520 					/* optional */
521 
522 	/*
523 	 * Check if event can be used for aux_output purposes for
524 	 * events of this PMU.
525 	 *
526 	 * Runs from perf_event_open(). Should return 0 for "no match"
527 	 * or non-zero for "match".
528 	 */
529 	int (*aux_output_match)		(struct perf_event *event);
530 					/* optional */
531 
532 	/*
533 	 * Skip programming this PMU on the given CPU. Typically needed for
534 	 * big.LITTLE things.
535 	 */
536 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
537 
538 	/*
539 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
540 	 */
541 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
542 };
543 
544 enum perf_addr_filter_action_t {
545 	PERF_ADDR_FILTER_ACTION_STOP = 0,
546 	PERF_ADDR_FILTER_ACTION_START,
547 	PERF_ADDR_FILTER_ACTION_FILTER,
548 };
549 
550 /**
551  * struct perf_addr_filter - address range filter definition
552  * @entry:	event's filter list linkage
553  * @path:	object file's path for file-based filters
554  * @offset:	filter range offset
555  * @size:	filter range size (size==0 means single address trigger)
556  * @action:	filter/start/stop
557  *
558  * This is a hardware-agnostic filter configuration as specified by the user.
559  */
560 struct perf_addr_filter {
561 	struct list_head	entry;
562 	struct path		path;
563 	unsigned long		offset;
564 	unsigned long		size;
565 	enum perf_addr_filter_action_t	action;
566 };
567 
568 /**
569  * struct perf_addr_filters_head - container for address range filters
570  * @list:	list of filters for this event
571  * @lock:	spinlock that serializes accesses to the @list and event's
572  *		(and its children's) filter generations.
573  * @nr_file_filters:	number of file-based filters
574  *
575  * A child event will use parent's @list (and therefore @lock), so they are
576  * bundled together; see perf_event_addr_filters().
577  */
578 struct perf_addr_filters_head {
579 	struct list_head	list;
580 	raw_spinlock_t		lock;
581 	unsigned int		nr_file_filters;
582 };
583 
584 struct perf_addr_filter_range {
585 	unsigned long		start;
586 	unsigned long		size;
587 };
588 
589 /**
590  * enum perf_event_state - the states of an event:
591  */
592 enum perf_event_state {
593 	PERF_EVENT_STATE_DEAD		= -4,
594 	PERF_EVENT_STATE_EXIT		= -3,
595 	PERF_EVENT_STATE_ERROR		= -2,
596 	PERF_EVENT_STATE_OFF		= -1,
597 	PERF_EVENT_STATE_INACTIVE	=  0,
598 	PERF_EVENT_STATE_ACTIVE		=  1,
599 };
600 
601 struct file;
602 struct perf_sample_data;
603 
604 typedef void (*perf_overflow_handler_t)(struct perf_event *,
605 					struct perf_sample_data *,
606 					struct pt_regs *regs);
607 
608 /*
609  * Event capabilities. For event_caps and groups caps.
610  *
611  * PERF_EV_CAP_SOFTWARE: Is a software event.
612  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
613  * from any CPU in the package where it is active.
614  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
615  * cannot be a group leader. If an event with this flag is detached from the
616  * group it is scheduled out and moved into an unrecoverable ERROR state.
617  */
618 #define PERF_EV_CAP_SOFTWARE		BIT(0)
619 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
620 #define PERF_EV_CAP_SIBLING		BIT(2)
621 
622 #define SWEVENT_HLIST_BITS		8
623 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
624 
625 struct swevent_hlist {
626 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
627 	struct rcu_head			rcu_head;
628 };
629 
630 #define PERF_ATTACH_CONTEXT	0x01
631 #define PERF_ATTACH_GROUP	0x02
632 #define PERF_ATTACH_TASK	0x04
633 #define PERF_ATTACH_TASK_DATA	0x08
634 #define PERF_ATTACH_ITRACE	0x10
635 #define PERF_ATTACH_SCHED_CB	0x20
636 #define PERF_ATTACH_CHILD	0x40
637 
638 struct bpf_prog;
639 struct perf_cgroup;
640 struct perf_buffer;
641 
642 struct pmu_event_list {
643 	raw_spinlock_t		lock;
644 	struct list_head	list;
645 };
646 
647 /*
648  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
649  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
650  * safe lock, and is only held by the CPU doing the modification, having IRQs
651  * disabled is sufficient since it will hold-off the IPIs.
652  */
653 #ifdef CONFIG_PROVE_LOCKING
654 #define lockdep_assert_event_ctx(event)				\
655 	WARN_ON_ONCE(__lockdep_enabled &&			\
656 		     (this_cpu_read(hardirqs_enabled) &&	\
657 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
658 #else
659 #define lockdep_assert_event_ctx(event)
660 #endif
661 
662 #define for_each_sibling_event(sibling, event)			\
663 	lockdep_assert_event_ctx(event);			\
664 	if ((event)->group_leader == (event))			\
665 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
666 
667 /**
668  * struct perf_event - performance event kernel representation:
669  */
670 struct perf_event {
671 #ifdef CONFIG_PERF_EVENTS
672 	/*
673 	 * entry onto perf_event_context::event_list;
674 	 *   modifications require ctx->lock
675 	 *   RCU safe iterations.
676 	 */
677 	struct list_head		event_entry;
678 
679 	/*
680 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
681 	 * either sufficies for read.
682 	 */
683 	struct list_head		sibling_list;
684 	struct list_head		active_list;
685 	/*
686 	 * Node on the pinned or flexible tree located at the event context;
687 	 */
688 	struct rb_node			group_node;
689 	u64				group_index;
690 	/*
691 	 * We need storage to track the entries in perf_pmu_migrate_context; we
692 	 * cannot use the event_entry because of RCU and we want to keep the
693 	 * group in tact which avoids us using the other two entries.
694 	 */
695 	struct list_head		migrate_entry;
696 
697 	struct hlist_node		hlist_entry;
698 	struct list_head		active_entry;
699 	int				nr_siblings;
700 
701 	/* Not serialized. Only written during event initialization. */
702 	int				event_caps;
703 	/* The cumulative AND of all event_caps for events in this group. */
704 	int				group_caps;
705 
706 	struct perf_event		*group_leader;
707 	/*
708 	 * event->pmu will always point to pmu in which this event belongs.
709 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
710 	 * different pmu events is created.
711 	 */
712 	struct pmu			*pmu;
713 	void				*pmu_private;
714 
715 	enum perf_event_state		state;
716 	unsigned int			attach_state;
717 	local64_t			count;
718 	atomic64_t			child_count;
719 
720 	/*
721 	 * These are the total time in nanoseconds that the event
722 	 * has been enabled (i.e. eligible to run, and the task has
723 	 * been scheduled in, if this is a per-task event)
724 	 * and running (scheduled onto the CPU), respectively.
725 	 */
726 	u64				total_time_enabled;
727 	u64				total_time_running;
728 	u64				tstamp;
729 
730 	struct perf_event_attr		attr;
731 	u16				header_size;
732 	u16				id_header_size;
733 	u16				read_size;
734 	struct hw_perf_event		hw;
735 
736 	struct perf_event_context	*ctx;
737 	/*
738 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
739 	 * is added. This pmu_ctx can be of other pmu for sw event when that
740 	 * sw event is part of a group which also contains non-sw events.
741 	 */
742 	struct perf_event_pmu_context	*pmu_ctx;
743 	atomic_long_t			refcount;
744 
745 	/*
746 	 * These accumulate total time (in nanoseconds) that children
747 	 * events have been enabled and running, respectively.
748 	 */
749 	atomic64_t			child_total_time_enabled;
750 	atomic64_t			child_total_time_running;
751 
752 	/*
753 	 * Protect attach/detach and child_list:
754 	 */
755 	struct mutex			child_mutex;
756 	struct list_head		child_list;
757 	struct perf_event		*parent;
758 
759 	int				oncpu;
760 	int				cpu;
761 
762 	struct list_head		owner_entry;
763 	struct task_struct		*owner;
764 
765 	/* mmap bits */
766 	struct mutex			mmap_mutex;
767 	atomic_t			mmap_count;
768 
769 	struct perf_buffer		*rb;
770 	struct list_head		rb_entry;
771 	unsigned long			rcu_batches;
772 	int				rcu_pending;
773 
774 	/* poll related */
775 	wait_queue_head_t		waitq;
776 	struct fasync_struct		*fasync;
777 
778 	/* delayed work for NMIs and such */
779 	unsigned int			pending_wakeup;
780 	unsigned int			pending_kill;
781 	unsigned int			pending_disable;
782 	unsigned int			pending_sigtrap;
783 	unsigned long			pending_addr;	/* SIGTRAP */
784 	struct irq_work			pending_irq;
785 	struct callback_head		pending_task;
786 	unsigned int			pending_work;
787 
788 	atomic_t			event_limit;
789 
790 	/* address range filters */
791 	struct perf_addr_filters_head	addr_filters;
792 	/* vma address array for file-based filders */
793 	struct perf_addr_filter_range	*addr_filter_ranges;
794 	unsigned long			addr_filters_gen;
795 
796 	/* for aux_output events */
797 	struct perf_event		*aux_event;
798 
799 	void (*destroy)(struct perf_event *);
800 	struct rcu_head			rcu_head;
801 
802 	struct pid_namespace		*ns;
803 	u64				id;
804 
805 	atomic64_t			lost_samples;
806 
807 	u64				(*clock)(void);
808 	perf_overflow_handler_t		overflow_handler;
809 	void				*overflow_handler_context;
810 #ifdef CONFIG_BPF_SYSCALL
811 	perf_overflow_handler_t		orig_overflow_handler;
812 	struct bpf_prog			*prog;
813 	u64				bpf_cookie;
814 #endif
815 
816 #ifdef CONFIG_EVENT_TRACING
817 	struct trace_event_call		*tp_event;
818 	struct event_filter		*filter;
819 #ifdef CONFIG_FUNCTION_TRACER
820 	struct ftrace_ops               ftrace_ops;
821 #endif
822 #endif
823 
824 #ifdef CONFIG_CGROUP_PERF
825 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
826 #endif
827 
828 #ifdef CONFIG_SECURITY
829 	void *security;
830 #endif
831 	struct list_head		sb_list;
832 
833 	/*
834 	 * Certain events gets forwarded to another pmu internally by over-
835 	 * writing kernel copy of event->attr.type without user being aware
836 	 * of it. event->orig_type contains original 'type' requested by
837 	 * user.
838 	 */
839 	__u32				orig_type;
840 #endif /* CONFIG_PERF_EVENTS */
841 };
842 
843 /*
844  *           ,-----------------------[1:n]----------------------.
845  *           V                                                  V
846  * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
847  *           ^                      ^     |                     |
848  *           `--------[1:n]---------'     `-[n:1]-> pmu <-[1:n]-'
849  *
850  *
851  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
852  * (similar to perf_event_context). Locking is as if it were a member of
853  * perf_event_context; specifically:
854  *
855  *   modification, both: ctx->mutex && ctx->lock
856  *   reading, either:    ctx->mutex || ctx->lock
857  *
858  * There is one exception to this; namely put_pmu_ctx() isn't always called
859  * with ctx->mutex held; this means that as long as we can guarantee the epc
860  * has events the above rules hold.
861  *
862  * Specificially, sys_perf_event_open()'s group_leader case depends on
863  * ctx->mutex pinning the configuration. Since we hold a reference on
864  * group_leader (through the filedesc) it can't go away, therefore it's
865  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
866  */
867 struct perf_event_pmu_context {
868 	struct pmu			*pmu;
869 	struct perf_event_context       *ctx;
870 
871 	struct list_head		pmu_ctx_entry;
872 
873 	struct list_head		pinned_active;
874 	struct list_head		flexible_active;
875 
876 	/* Used to avoid freeing per-cpu perf_event_pmu_context */
877 	unsigned int			embedded : 1;
878 
879 	unsigned int			nr_events;
880 
881 	atomic_t			refcount; /* event <-> epc */
882 	struct rcu_head			rcu_head;
883 
884 	void				*task_ctx_data; /* pmu specific data */
885 	/*
886 	 * Set when one or more (plausibly active) event can't be scheduled
887 	 * due to pmu overcommit or pmu constraints, except tolerant to
888 	 * events not necessary to be active due to scheduling constraints,
889 	 * such as cgroups.
890 	 */
891 	int				rotate_necessary;
892 };
893 
894 struct perf_event_groups {
895 	struct rb_root	tree;
896 	u64		index;
897 };
898 
899 
900 /**
901  * struct perf_event_context - event context structure
902  *
903  * Used as a container for task events and CPU events as well:
904  */
905 struct perf_event_context {
906 	/*
907 	 * Protect the states of the events in the list,
908 	 * nr_active, and the list:
909 	 */
910 	raw_spinlock_t			lock;
911 	/*
912 	 * Protect the list of events.  Locking either mutex or lock
913 	 * is sufficient to ensure the list doesn't change; to change
914 	 * the list you need to lock both the mutex and the spinlock.
915 	 */
916 	struct mutex			mutex;
917 
918 	struct list_head		pmu_ctx_list;
919 	struct perf_event_groups	pinned_groups;
920 	struct perf_event_groups	flexible_groups;
921 	struct list_head		event_list;
922 
923 	int				nr_events;
924 	int				nr_user;
925 	int				is_active;
926 
927 	int				nr_task_data;
928 	int				nr_stat;
929 	int				nr_freq;
930 	int				rotate_disable;
931 
932 	refcount_t			refcount; /* event <-> ctx */
933 	struct task_struct		*task;
934 
935 	/*
936 	 * Context clock, runs when context enabled.
937 	 */
938 	u64				time;
939 	u64				timestamp;
940 	u64				timeoffset;
941 
942 	/*
943 	 * These fields let us detect when two contexts have both
944 	 * been cloned (inherited) from a common ancestor.
945 	 */
946 	struct perf_event_context	*parent_ctx;
947 	u64				parent_gen;
948 	u64				generation;
949 	int				pin_count;
950 #ifdef CONFIG_CGROUP_PERF
951 	int				nr_cgroups;	 /* cgroup evts */
952 #endif
953 	struct rcu_head			rcu_head;
954 
955 	/*
956 	 * Sum (event->pending_sigtrap + event->pending_work)
957 	 *
958 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
959 	 * that until the signal is delivered.
960 	 */
961 	local_t				nr_pending;
962 };
963 
964 /*
965  * Number of contexts where an event can trigger:
966  *	task, softirq, hardirq, nmi.
967  */
968 #define PERF_NR_CONTEXTS	4
969 
970 struct perf_cpu_pmu_context {
971 	struct perf_event_pmu_context	epc;
972 	struct perf_event_pmu_context	*task_epc;
973 
974 	struct list_head		sched_cb_entry;
975 	int				sched_cb_usage;
976 
977 	int				active_oncpu;
978 	int				exclusive;
979 
980 	raw_spinlock_t			hrtimer_lock;
981 	struct hrtimer			hrtimer;
982 	ktime_t				hrtimer_interval;
983 	unsigned int			hrtimer_active;
984 };
985 
986 /**
987  * struct perf_event_cpu_context - per cpu event context structure
988  */
989 struct perf_cpu_context {
990 	struct perf_event_context	ctx;
991 	struct perf_event_context	*task_ctx;
992 	int				online;
993 
994 #ifdef CONFIG_CGROUP_PERF
995 	struct perf_cgroup		*cgrp;
996 #endif
997 
998 	/*
999 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1000 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1001 	 */
1002 	int				heap_size;
1003 	struct perf_event		**heap;
1004 	struct perf_event		*heap_default[2];
1005 };
1006 
1007 struct perf_output_handle {
1008 	struct perf_event		*event;
1009 	struct perf_buffer		*rb;
1010 	unsigned long			wakeup;
1011 	unsigned long			size;
1012 	u64				aux_flags;
1013 	union {
1014 		void			*addr;
1015 		unsigned long		head;
1016 	};
1017 	int				page;
1018 };
1019 
1020 struct bpf_perf_event_data_kern {
1021 	bpf_user_pt_regs_t *regs;
1022 	struct perf_sample_data *data;
1023 	struct perf_event *event;
1024 };
1025 
1026 #ifdef CONFIG_CGROUP_PERF
1027 
1028 /*
1029  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1030  * This is a per-cpu dynamically allocated data structure.
1031  */
1032 struct perf_cgroup_info {
1033 	u64				time;
1034 	u64				timestamp;
1035 	u64				timeoffset;
1036 	int				active;
1037 };
1038 
1039 struct perf_cgroup {
1040 	struct cgroup_subsys_state	css;
1041 	struct perf_cgroup_info	__percpu *info;
1042 };
1043 
1044 /*
1045  * Must ensure cgroup is pinned (css_get) before calling
1046  * this function. In other words, we cannot call this function
1047  * if there is no cgroup event for the current CPU context.
1048  */
1049 static inline struct perf_cgroup *
1050 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1051 {
1052 	return container_of(task_css_check(task, perf_event_cgrp_id,
1053 					   ctx ? lockdep_is_held(&ctx->lock)
1054 					       : true),
1055 			    struct perf_cgroup, css);
1056 }
1057 #endif /* CONFIG_CGROUP_PERF */
1058 
1059 #ifdef CONFIG_PERF_EVENTS
1060 
1061 extern struct perf_event_context *perf_cpu_task_ctx(void);
1062 
1063 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1064 				   struct perf_event *event);
1065 extern void perf_aux_output_end(struct perf_output_handle *handle,
1066 				unsigned long size);
1067 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1068 				unsigned long size);
1069 extern void *perf_get_aux(struct perf_output_handle *handle);
1070 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1071 extern void perf_event_itrace_started(struct perf_event *event);
1072 
1073 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1074 extern void perf_pmu_unregister(struct pmu *pmu);
1075 
1076 extern void __perf_event_task_sched_in(struct task_struct *prev,
1077 				       struct task_struct *task);
1078 extern void __perf_event_task_sched_out(struct task_struct *prev,
1079 					struct task_struct *next);
1080 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1081 extern void perf_event_exit_task(struct task_struct *child);
1082 extern void perf_event_free_task(struct task_struct *task);
1083 extern void perf_event_delayed_put(struct task_struct *task);
1084 extern struct file *perf_event_get(unsigned int fd);
1085 extern const struct perf_event *perf_get_event(struct file *file);
1086 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1087 extern void perf_event_print_debug(void);
1088 extern void perf_pmu_disable(struct pmu *pmu);
1089 extern void perf_pmu_enable(struct pmu *pmu);
1090 extern void perf_sched_cb_dec(struct pmu *pmu);
1091 extern void perf_sched_cb_inc(struct pmu *pmu);
1092 extern int perf_event_task_disable(void);
1093 extern int perf_event_task_enable(void);
1094 
1095 extern void perf_pmu_resched(struct pmu *pmu);
1096 
1097 extern int perf_event_refresh(struct perf_event *event, int refresh);
1098 extern void perf_event_update_userpage(struct perf_event *event);
1099 extern int perf_event_release_kernel(struct perf_event *event);
1100 extern struct perf_event *
1101 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1102 				int cpu,
1103 				struct task_struct *task,
1104 				perf_overflow_handler_t callback,
1105 				void *context);
1106 extern void perf_pmu_migrate_context(struct pmu *pmu,
1107 				int src_cpu, int dst_cpu);
1108 int perf_event_read_local(struct perf_event *event, u64 *value,
1109 			  u64 *enabled, u64 *running);
1110 extern u64 perf_event_read_value(struct perf_event *event,
1111 				 u64 *enabled, u64 *running);
1112 
1113 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1114 
1115 static inline bool branch_sample_no_flags(const struct perf_event *event)
1116 {
1117 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1118 }
1119 
1120 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1121 {
1122 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1123 }
1124 
1125 static inline bool branch_sample_type(const struct perf_event *event)
1126 {
1127 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1128 }
1129 
1130 static inline bool branch_sample_hw_index(const struct perf_event *event)
1131 {
1132 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1133 }
1134 
1135 static inline bool branch_sample_priv(const struct perf_event *event)
1136 {
1137 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1138 }
1139 
1140 
1141 struct perf_sample_data {
1142 	/*
1143 	 * Fields set by perf_sample_data_init() unconditionally,
1144 	 * group so as to minimize the cachelines touched.
1145 	 */
1146 	u64				sample_flags;
1147 	u64				period;
1148 	u64				dyn_size;
1149 
1150 	/*
1151 	 * Fields commonly set by __perf_event_header__init_id(),
1152 	 * group so as to minimize the cachelines touched.
1153 	 */
1154 	u64				type;
1155 	struct {
1156 		u32	pid;
1157 		u32	tid;
1158 	}				tid_entry;
1159 	u64				time;
1160 	u64				id;
1161 	struct {
1162 		u32	cpu;
1163 		u32	reserved;
1164 	}				cpu_entry;
1165 
1166 	/*
1167 	 * The other fields, optionally {set,used} by
1168 	 * perf_{prepare,output}_sample().
1169 	 */
1170 	u64				ip;
1171 	struct perf_callchain_entry	*callchain;
1172 	struct perf_raw_record		*raw;
1173 	struct perf_branch_stack	*br_stack;
1174 	union perf_sample_weight	weight;
1175 	union  perf_mem_data_src	data_src;
1176 	u64				txn;
1177 
1178 	struct perf_regs		regs_user;
1179 	struct perf_regs		regs_intr;
1180 	u64				stack_user_size;
1181 
1182 	u64				stream_id;
1183 	u64				cgroup;
1184 	u64				addr;
1185 	u64				phys_addr;
1186 	u64				data_page_size;
1187 	u64				code_page_size;
1188 	u64				aux_size;
1189 } ____cacheline_aligned;
1190 
1191 /* default value for data source */
1192 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1193 		    PERF_MEM_S(LVL, NA)   |\
1194 		    PERF_MEM_S(SNOOP, NA) |\
1195 		    PERF_MEM_S(LOCK, NA)  |\
1196 		    PERF_MEM_S(TLB, NA))
1197 
1198 static inline void perf_sample_data_init(struct perf_sample_data *data,
1199 					 u64 addr, u64 period)
1200 {
1201 	/* remaining struct members initialized in perf_prepare_sample() */
1202 	data->sample_flags = PERF_SAMPLE_PERIOD;
1203 	data->period = period;
1204 	data->dyn_size = 0;
1205 
1206 	if (addr) {
1207 		data->addr = addr;
1208 		data->sample_flags |= PERF_SAMPLE_ADDR;
1209 	}
1210 }
1211 
1212 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1213 					      struct perf_event *event,
1214 					      struct pt_regs *regs)
1215 {
1216 	int size = 1;
1217 
1218 	data->callchain = perf_callchain(event, regs);
1219 	size += data->callchain->nr;
1220 
1221 	data->dyn_size += size * sizeof(u64);
1222 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1223 }
1224 
1225 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1226 					     struct perf_raw_record *raw)
1227 {
1228 	struct perf_raw_frag *frag = &raw->frag;
1229 	u32 sum = 0;
1230 	int size;
1231 
1232 	do {
1233 		sum += frag->size;
1234 		if (perf_raw_frag_last(frag))
1235 			break;
1236 		frag = frag->next;
1237 	} while (1);
1238 
1239 	size = round_up(sum + sizeof(u32), sizeof(u64));
1240 	raw->size = size - sizeof(u32);
1241 	frag->pad = raw->size - sum;
1242 
1243 	data->raw = raw;
1244 	data->dyn_size += size;
1245 	data->sample_flags |= PERF_SAMPLE_RAW;
1246 }
1247 
1248 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1249 					    struct perf_event *event,
1250 					    struct perf_branch_stack *brs)
1251 {
1252 	int size = sizeof(u64); /* nr */
1253 
1254 	if (branch_sample_hw_index(event))
1255 		size += sizeof(u64);
1256 	size += brs->nr * sizeof(struct perf_branch_entry);
1257 
1258 	data->br_stack = brs;
1259 	data->dyn_size += size;
1260 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1261 }
1262 
1263 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1264 					struct perf_event *event)
1265 {
1266 	u32 size = sizeof(struct perf_event_header);
1267 
1268 	size += event->header_size + event->id_header_size;
1269 	size += data->dyn_size;
1270 
1271 	return size;
1272 }
1273 
1274 /*
1275  * Clear all bitfields in the perf_branch_entry.
1276  * The to and from fields are not cleared because they are
1277  * systematically modified by caller.
1278  */
1279 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1280 {
1281 	br->mispred = 0;
1282 	br->predicted = 0;
1283 	br->in_tx = 0;
1284 	br->abort = 0;
1285 	br->cycles = 0;
1286 	br->type = 0;
1287 	br->spec = PERF_BR_SPEC_NA;
1288 	br->reserved = 0;
1289 }
1290 
1291 extern void perf_output_sample(struct perf_output_handle *handle,
1292 			       struct perf_event_header *header,
1293 			       struct perf_sample_data *data,
1294 			       struct perf_event *event);
1295 extern void perf_prepare_sample(struct perf_sample_data *data,
1296 				struct perf_event *event,
1297 				struct pt_regs *regs);
1298 extern void perf_prepare_header(struct perf_event_header *header,
1299 				struct perf_sample_data *data,
1300 				struct perf_event *event,
1301 				struct pt_regs *regs);
1302 
1303 extern int perf_event_overflow(struct perf_event *event,
1304 				 struct perf_sample_data *data,
1305 				 struct pt_regs *regs);
1306 
1307 extern void perf_event_output_forward(struct perf_event *event,
1308 				     struct perf_sample_data *data,
1309 				     struct pt_regs *regs);
1310 extern void perf_event_output_backward(struct perf_event *event,
1311 				       struct perf_sample_data *data,
1312 				       struct pt_regs *regs);
1313 extern int perf_event_output(struct perf_event *event,
1314 			     struct perf_sample_data *data,
1315 			     struct pt_regs *regs);
1316 
1317 static inline bool
1318 is_default_overflow_handler(struct perf_event *event)
1319 {
1320 	if (likely(event->overflow_handler == perf_event_output_forward))
1321 		return true;
1322 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1323 		return true;
1324 	return false;
1325 }
1326 
1327 extern void
1328 perf_event_header__init_id(struct perf_event_header *header,
1329 			   struct perf_sample_data *data,
1330 			   struct perf_event *event);
1331 extern void
1332 perf_event__output_id_sample(struct perf_event *event,
1333 			     struct perf_output_handle *handle,
1334 			     struct perf_sample_data *sample);
1335 
1336 extern void
1337 perf_log_lost_samples(struct perf_event *event, u64 lost);
1338 
1339 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1340 {
1341 	struct perf_event_attr *attr = &event->attr;
1342 
1343 	return attr->exclude_idle || attr->exclude_user ||
1344 	       attr->exclude_kernel || attr->exclude_hv ||
1345 	       attr->exclude_guest || attr->exclude_host;
1346 }
1347 
1348 static inline bool is_sampling_event(struct perf_event *event)
1349 {
1350 	return event->attr.sample_period != 0;
1351 }
1352 
1353 /*
1354  * Return 1 for a software event, 0 for a hardware event
1355  */
1356 static inline int is_software_event(struct perf_event *event)
1357 {
1358 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1359 }
1360 
1361 /*
1362  * Return 1 for event in sw context, 0 for event in hw context
1363  */
1364 static inline int in_software_context(struct perf_event *event)
1365 {
1366 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1367 }
1368 
1369 static inline int is_exclusive_pmu(struct pmu *pmu)
1370 {
1371 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1372 }
1373 
1374 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1375 
1376 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1377 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1378 
1379 #ifndef perf_arch_fetch_caller_regs
1380 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1381 #endif
1382 
1383 /*
1384  * When generating a perf sample in-line, instead of from an interrupt /
1385  * exception, we lack a pt_regs. This is typically used from software events
1386  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1387  *
1388  * We typically don't need a full set, but (for x86) do require:
1389  * - ip for PERF_SAMPLE_IP
1390  * - cs for user_mode() tests
1391  * - sp for PERF_SAMPLE_CALLCHAIN
1392  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1393  *
1394  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1395  * things like PERF_SAMPLE_REGS_INTR.
1396  */
1397 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1398 {
1399 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1400 }
1401 
1402 static __always_inline void
1403 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1404 {
1405 	if (static_key_false(&perf_swevent_enabled[event_id]))
1406 		__perf_sw_event(event_id, nr, regs, addr);
1407 }
1408 
1409 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1410 
1411 /*
1412  * 'Special' version for the scheduler, it hard assumes no recursion,
1413  * which is guaranteed by us not actually scheduling inside other swevents
1414  * because those disable preemption.
1415  */
1416 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1417 {
1418 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1419 
1420 	perf_fetch_caller_regs(regs);
1421 	___perf_sw_event(event_id, nr, regs, addr);
1422 }
1423 
1424 extern struct static_key_false perf_sched_events;
1425 
1426 static __always_inline bool __perf_sw_enabled(int swevt)
1427 {
1428 	return static_key_false(&perf_swevent_enabled[swevt]);
1429 }
1430 
1431 static inline void perf_event_task_migrate(struct task_struct *task)
1432 {
1433 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1434 		task->sched_migrated = 1;
1435 }
1436 
1437 static inline void perf_event_task_sched_in(struct task_struct *prev,
1438 					    struct task_struct *task)
1439 {
1440 	if (static_branch_unlikely(&perf_sched_events))
1441 		__perf_event_task_sched_in(prev, task);
1442 
1443 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1444 	    task->sched_migrated) {
1445 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1446 		task->sched_migrated = 0;
1447 	}
1448 }
1449 
1450 static inline void perf_event_task_sched_out(struct task_struct *prev,
1451 					     struct task_struct *next)
1452 {
1453 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1454 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1455 
1456 #ifdef CONFIG_CGROUP_PERF
1457 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1458 	    perf_cgroup_from_task(prev, NULL) !=
1459 	    perf_cgroup_from_task(next, NULL))
1460 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1461 #endif
1462 
1463 	if (static_branch_unlikely(&perf_sched_events))
1464 		__perf_event_task_sched_out(prev, next);
1465 }
1466 
1467 extern void perf_event_mmap(struct vm_area_struct *vma);
1468 
1469 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1470 			       bool unregister, const char *sym);
1471 extern void perf_event_bpf_event(struct bpf_prog *prog,
1472 				 enum perf_bpf_event_type type,
1473 				 u16 flags);
1474 
1475 #ifdef CONFIG_GUEST_PERF_EVENTS
1476 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1477 
1478 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1479 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1480 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1481 
1482 static inline unsigned int perf_guest_state(void)
1483 {
1484 	return static_call(__perf_guest_state)();
1485 }
1486 static inline unsigned long perf_guest_get_ip(void)
1487 {
1488 	return static_call(__perf_guest_get_ip)();
1489 }
1490 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1491 {
1492 	return static_call(__perf_guest_handle_intel_pt_intr)();
1493 }
1494 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1495 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1496 #else
1497 static inline unsigned int perf_guest_state(void)		 { return 0; }
1498 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1499 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1500 #endif /* CONFIG_GUEST_PERF_EVENTS */
1501 
1502 extern void perf_event_exec(void);
1503 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1504 extern void perf_event_namespaces(struct task_struct *tsk);
1505 extern void perf_event_fork(struct task_struct *tsk);
1506 extern void perf_event_text_poke(const void *addr,
1507 				 const void *old_bytes, size_t old_len,
1508 				 const void *new_bytes, size_t new_len);
1509 
1510 /* Callchains */
1511 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1512 
1513 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1514 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1515 extern struct perf_callchain_entry *
1516 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1517 		   u32 max_stack, bool crosstask, bool add_mark);
1518 extern int get_callchain_buffers(int max_stack);
1519 extern void put_callchain_buffers(void);
1520 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1521 extern void put_callchain_entry(int rctx);
1522 
1523 extern int sysctl_perf_event_max_stack;
1524 extern int sysctl_perf_event_max_contexts_per_stack;
1525 
1526 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1527 {
1528 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1529 		struct perf_callchain_entry *entry = ctx->entry;
1530 		entry->ip[entry->nr++] = ip;
1531 		++ctx->contexts;
1532 		return 0;
1533 	} else {
1534 		ctx->contexts_maxed = true;
1535 		return -1; /* no more room, stop walking the stack */
1536 	}
1537 }
1538 
1539 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1540 {
1541 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1542 		struct perf_callchain_entry *entry = ctx->entry;
1543 		entry->ip[entry->nr++] = ip;
1544 		++ctx->nr;
1545 		return 0;
1546 	} else {
1547 		return -1; /* no more room, stop walking the stack */
1548 	}
1549 }
1550 
1551 extern int sysctl_perf_event_paranoid;
1552 extern int sysctl_perf_event_mlock;
1553 extern int sysctl_perf_event_sample_rate;
1554 extern int sysctl_perf_cpu_time_max_percent;
1555 
1556 extern void perf_sample_event_took(u64 sample_len_ns);
1557 
1558 int perf_proc_update_handler(struct ctl_table *table, int write,
1559 		void *buffer, size_t *lenp, loff_t *ppos);
1560 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1561 		void *buffer, size_t *lenp, loff_t *ppos);
1562 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1563 		void *buffer, size_t *lenp, loff_t *ppos);
1564 
1565 /* Access to perf_event_open(2) syscall. */
1566 #define PERF_SECURITY_OPEN		0
1567 
1568 /* Finer grained perf_event_open(2) access control. */
1569 #define PERF_SECURITY_CPU		1
1570 #define PERF_SECURITY_KERNEL		2
1571 #define PERF_SECURITY_TRACEPOINT	3
1572 
1573 static inline int perf_is_paranoid(void)
1574 {
1575 	return sysctl_perf_event_paranoid > -1;
1576 }
1577 
1578 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1579 {
1580 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1581 		return -EACCES;
1582 
1583 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1584 }
1585 
1586 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1587 {
1588 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1589 		return -EACCES;
1590 
1591 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1592 }
1593 
1594 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1595 {
1596 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1597 		return -EPERM;
1598 
1599 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1600 }
1601 
1602 extern void perf_event_init(void);
1603 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1604 			  int entry_size, struct pt_regs *regs,
1605 			  struct hlist_head *head, int rctx,
1606 			  struct task_struct *task);
1607 extern void perf_bp_event(struct perf_event *event, void *data);
1608 
1609 #ifndef perf_misc_flags
1610 # define perf_misc_flags(regs) \
1611 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1612 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1613 #endif
1614 #ifndef perf_arch_bpf_user_pt_regs
1615 # define perf_arch_bpf_user_pt_regs(regs) regs
1616 #endif
1617 
1618 static inline bool has_branch_stack(struct perf_event *event)
1619 {
1620 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1621 }
1622 
1623 static inline bool needs_branch_stack(struct perf_event *event)
1624 {
1625 	return event->attr.branch_sample_type != 0;
1626 }
1627 
1628 static inline bool has_aux(struct perf_event *event)
1629 {
1630 	return event->pmu->setup_aux;
1631 }
1632 
1633 static inline bool is_write_backward(struct perf_event *event)
1634 {
1635 	return !!event->attr.write_backward;
1636 }
1637 
1638 static inline bool has_addr_filter(struct perf_event *event)
1639 {
1640 	return event->pmu->nr_addr_filters;
1641 }
1642 
1643 /*
1644  * An inherited event uses parent's filters
1645  */
1646 static inline struct perf_addr_filters_head *
1647 perf_event_addr_filters(struct perf_event *event)
1648 {
1649 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1650 
1651 	if (event->parent)
1652 		ifh = &event->parent->addr_filters;
1653 
1654 	return ifh;
1655 }
1656 
1657 extern void perf_event_addr_filters_sync(struct perf_event *event);
1658 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1659 
1660 extern int perf_output_begin(struct perf_output_handle *handle,
1661 			     struct perf_sample_data *data,
1662 			     struct perf_event *event, unsigned int size);
1663 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1664 				     struct perf_sample_data *data,
1665 				     struct perf_event *event,
1666 				     unsigned int size);
1667 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1668 				      struct perf_sample_data *data,
1669 				      struct perf_event *event,
1670 				      unsigned int size);
1671 
1672 extern void perf_output_end(struct perf_output_handle *handle);
1673 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1674 			     const void *buf, unsigned int len);
1675 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1676 				     unsigned int len);
1677 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1678 				 struct perf_output_handle *handle,
1679 				 unsigned long from, unsigned long to);
1680 extern int perf_swevent_get_recursion_context(void);
1681 extern void perf_swevent_put_recursion_context(int rctx);
1682 extern u64 perf_swevent_set_period(struct perf_event *event);
1683 extern void perf_event_enable(struct perf_event *event);
1684 extern void perf_event_disable(struct perf_event *event);
1685 extern void perf_event_disable_local(struct perf_event *event);
1686 extern void perf_event_disable_inatomic(struct perf_event *event);
1687 extern void perf_event_task_tick(void);
1688 extern int perf_event_account_interrupt(struct perf_event *event);
1689 extern int perf_event_period(struct perf_event *event, u64 value);
1690 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1691 #else /* !CONFIG_PERF_EVENTS: */
1692 static inline void *
1693 perf_aux_output_begin(struct perf_output_handle *handle,
1694 		      struct perf_event *event)				{ return NULL; }
1695 static inline void
1696 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1697 									{ }
1698 static inline int
1699 perf_aux_output_skip(struct perf_output_handle *handle,
1700 		     unsigned long size)				{ return -EINVAL; }
1701 static inline void *
1702 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1703 static inline void
1704 perf_event_task_migrate(struct task_struct *task)			{ }
1705 static inline void
1706 perf_event_task_sched_in(struct task_struct *prev,
1707 			 struct task_struct *task)			{ }
1708 static inline void
1709 perf_event_task_sched_out(struct task_struct *prev,
1710 			  struct task_struct *next)			{ }
1711 static inline int perf_event_init_task(struct task_struct *child,
1712 				       u64 clone_flags)			{ return 0; }
1713 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1714 static inline void perf_event_free_task(struct task_struct *task)	{ }
1715 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1716 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1717 static inline const struct perf_event *perf_get_event(struct file *file)
1718 {
1719 	return ERR_PTR(-EINVAL);
1720 }
1721 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1722 {
1723 	return ERR_PTR(-EINVAL);
1724 }
1725 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1726 					u64 *enabled, u64 *running)
1727 {
1728 	return -EINVAL;
1729 }
1730 static inline void perf_event_print_debug(void)				{ }
1731 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1732 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1733 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1734 {
1735 	return -EINVAL;
1736 }
1737 
1738 static inline void
1739 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1740 static inline void
1741 perf_bp_event(struct perf_event *event, void *data)			{ }
1742 
1743 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1744 
1745 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1746 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1747 				      bool unregister, const char *sym)	{ }
1748 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1749 					enum perf_bpf_event_type type,
1750 					u16 flags)			{ }
1751 static inline void perf_event_exec(void)				{ }
1752 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1753 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1754 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1755 static inline void perf_event_text_poke(const void *addr,
1756 					const void *old_bytes,
1757 					size_t old_len,
1758 					const void *new_bytes,
1759 					size_t new_len)			{ }
1760 static inline void perf_event_init(void)				{ }
1761 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1762 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1763 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1764 static inline void perf_event_enable(struct perf_event *event)		{ }
1765 static inline void perf_event_disable(struct perf_event *event)		{ }
1766 static inline int __perf_event_disable(void *info)			{ return -1; }
1767 static inline void perf_event_task_tick(void)				{ }
1768 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1769 static inline int perf_event_period(struct perf_event *event, u64 value)
1770 {
1771 	return -EINVAL;
1772 }
1773 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1774 {
1775 	return 0;
1776 }
1777 #endif
1778 
1779 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1780 extern void perf_restore_debug_store(void);
1781 #else
1782 static inline void perf_restore_debug_store(void)			{ }
1783 #endif
1784 
1785 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1786 
1787 struct perf_pmu_events_attr {
1788 	struct device_attribute attr;
1789 	u64 id;
1790 	const char *event_str;
1791 };
1792 
1793 struct perf_pmu_events_ht_attr {
1794 	struct device_attribute			attr;
1795 	u64					id;
1796 	const char				*event_str_ht;
1797 	const char				*event_str_noht;
1798 };
1799 
1800 struct perf_pmu_events_hybrid_attr {
1801 	struct device_attribute			attr;
1802 	u64					id;
1803 	const char				*event_str;
1804 	u64					pmu_type;
1805 };
1806 
1807 struct perf_pmu_format_hybrid_attr {
1808 	struct device_attribute			attr;
1809 	u64					pmu_type;
1810 };
1811 
1812 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1813 			      char *page);
1814 
1815 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1816 static struct perf_pmu_events_attr _var = {				\
1817 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1818 	.id   =  _id,							\
1819 };
1820 
1821 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1822 static struct perf_pmu_events_attr _var = {				    \
1823 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1824 	.id		= 0,						    \
1825 	.event_str	= _str,						    \
1826 };
1827 
1828 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1829 	(&((struct perf_pmu_events_attr[]) {				\
1830 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1831 		  .id = _id, }						\
1832 	})[0].attr.attr)
1833 
1834 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1835 static ssize_t								\
1836 _name##_show(struct device *dev,					\
1837 			       struct device_attribute *attr,		\
1838 			       char *page)				\
1839 {									\
1840 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1841 	return sprintf(page, _format "\n");				\
1842 }									\
1843 
1844 #define PMU_FORMAT_ATTR(_name, _format)					\
1845 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1846 									\
1847 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1848 
1849 /* Performance counter hotplug functions */
1850 #ifdef CONFIG_PERF_EVENTS
1851 int perf_event_init_cpu(unsigned int cpu);
1852 int perf_event_exit_cpu(unsigned int cpu);
1853 #else
1854 #define perf_event_init_cpu	NULL
1855 #define perf_event_exit_cpu	NULL
1856 #endif
1857 
1858 extern void arch_perf_update_userpage(struct perf_event *event,
1859 				      struct perf_event_mmap_page *userpg,
1860 				      u64 now);
1861 
1862 #ifdef CONFIG_MMU
1863 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1864 #endif
1865 
1866 /*
1867  * Snapshot branch stack on software events.
1868  *
1869  * Branch stack can be very useful in understanding software events. For
1870  * example, when a long function, e.g. sys_perf_event_open, returns an
1871  * errno, it is not obvious why the function failed. Branch stack could
1872  * provide very helpful information in this type of scenarios.
1873  *
1874  * On software event, it is necessary to stop the hardware branch recorder
1875  * fast. Otherwise, the hardware register/buffer will be flushed with
1876  * entries of the triggering event. Therefore, static call is used to
1877  * stop the hardware recorder.
1878  */
1879 
1880 /*
1881  * cnt is the number of entries allocated for entries.
1882  * Return number of entries copied to .
1883  */
1884 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1885 					   unsigned int cnt);
1886 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1887 
1888 #ifndef PERF_NEEDS_LOPWR_CB
1889 static inline void perf_lopwr_cb(bool mode)
1890 {
1891 }
1892 #endif
1893 
1894 #endif /* _LINUX_PERF_EVENT_H */
1895