1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62 }; 63 64 struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70 }; 71 72 struct perf_raw_record { 73 u32 size; 74 void *data; 75 }; 76 77 /* 78 * branch stack layout: 79 * nr: number of taken branches stored in entries[] 80 * 81 * Note that nr can vary from sample to sample 82 * branches (to, from) are stored from most recent 83 * to least recent, i.e., entries[0] contains the most 84 * recent branch. 85 */ 86 struct perf_branch_stack { 87 __u64 nr; 88 struct perf_branch_entry entries[0]; 89 }; 90 91 struct task_struct; 92 93 /* 94 * extra PMU register associated with an event 95 */ 96 struct hw_perf_event_extra { 97 u64 config; /* register value */ 98 unsigned int reg; /* register address or index */ 99 int alloc; /* extra register already allocated */ 100 int idx; /* index in shared_regs->regs[] */ 101 }; 102 103 /** 104 * struct hw_perf_event - performance event hardware details: 105 */ 106 struct hw_perf_event { 107 #ifdef CONFIG_PERF_EVENTS 108 union { 109 struct { /* hardware */ 110 u64 config; 111 u64 last_tag; 112 unsigned long config_base; 113 unsigned long event_base; 114 int event_base_rdpmc; 115 int idx; 116 int last_cpu; 117 int flags; 118 119 struct hw_perf_event_extra extra_reg; 120 struct hw_perf_event_extra branch_reg; 121 }; 122 struct { /* software */ 123 struct hrtimer hrtimer; 124 }; 125 struct { /* tracepoint */ 126 /* for tp_event->class */ 127 struct list_head tp_list; 128 }; 129 struct { /* intel_cqm */ 130 int cqm_state; 131 u32 cqm_rmid; 132 int is_group_event; 133 struct list_head cqm_events_entry; 134 struct list_head cqm_groups_entry; 135 struct list_head cqm_group_entry; 136 }; 137 struct { /* itrace */ 138 int itrace_started; 139 }; 140 struct { /* amd_power */ 141 u64 pwr_acc; 142 u64 ptsc; 143 }; 144 #ifdef CONFIG_HAVE_HW_BREAKPOINT 145 struct { /* breakpoint */ 146 /* 147 * Crufty hack to avoid the chicken and egg 148 * problem hw_breakpoint has with context 149 * creation and event initalization. 150 */ 151 struct arch_hw_breakpoint info; 152 struct list_head bp_list; 153 }; 154 #endif 155 }; 156 /* 157 * If the event is a per task event, this will point to the task in 158 * question. See the comment in perf_event_alloc(). 159 */ 160 struct task_struct *target; 161 162 /* 163 * PMU would store hardware filter configuration 164 * here. 165 */ 166 void *addr_filters; 167 168 /* Last sync'ed generation of filters */ 169 unsigned long addr_filters_gen; 170 171 /* 172 * hw_perf_event::state flags; used to track the PERF_EF_* state. 173 */ 174 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 175 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 176 #define PERF_HES_ARCH 0x04 177 178 int state; 179 180 /* 181 * The last observed hardware counter value, updated with a 182 * local64_cmpxchg() such that pmu::read() can be called nested. 183 */ 184 local64_t prev_count; 185 186 /* 187 * The period to start the next sample with. 188 */ 189 u64 sample_period; 190 191 /* 192 * The period we started this sample with. 193 */ 194 u64 last_period; 195 196 /* 197 * However much is left of the current period; note that this is 198 * a full 64bit value and allows for generation of periods longer 199 * than hardware might allow. 200 */ 201 local64_t period_left; 202 203 /* 204 * State for throttling the event, see __perf_event_overflow() and 205 * perf_adjust_freq_unthr_context(). 206 */ 207 u64 interrupts_seq; 208 u64 interrupts; 209 210 /* 211 * State for freq target events, see __perf_event_overflow() and 212 * perf_adjust_freq_unthr_context(). 213 */ 214 u64 freq_time_stamp; 215 u64 freq_count_stamp; 216 #endif 217 }; 218 219 struct perf_event; 220 221 /* 222 * Common implementation detail of pmu::{start,commit,cancel}_txn 223 */ 224 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 225 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 226 227 /** 228 * pmu::capabilities flags 229 */ 230 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 231 #define PERF_PMU_CAP_NO_NMI 0x02 232 #define PERF_PMU_CAP_AUX_NO_SG 0x04 233 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 234 #define PERF_PMU_CAP_EXCLUSIVE 0x10 235 #define PERF_PMU_CAP_ITRACE 0x20 236 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 237 238 /** 239 * struct pmu - generic performance monitoring unit 240 */ 241 struct pmu { 242 struct list_head entry; 243 244 struct module *module; 245 struct device *dev; 246 const struct attribute_group **attr_groups; 247 const char *name; 248 int type; 249 250 /* 251 * various common per-pmu feature flags 252 */ 253 int capabilities; 254 255 int * __percpu pmu_disable_count; 256 struct perf_cpu_context * __percpu pmu_cpu_context; 257 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 258 int task_ctx_nr; 259 int hrtimer_interval_ms; 260 261 /* number of address filters this PMU can do */ 262 unsigned int nr_addr_filters; 263 264 /* 265 * Fully disable/enable this PMU, can be used to protect from the PMI 266 * as well as for lazy/batch writing of the MSRs. 267 */ 268 void (*pmu_enable) (struct pmu *pmu); /* optional */ 269 void (*pmu_disable) (struct pmu *pmu); /* optional */ 270 271 /* 272 * Try and initialize the event for this PMU. 273 * 274 * Returns: 275 * -ENOENT -- @event is not for this PMU 276 * 277 * -ENODEV -- @event is for this PMU but PMU not present 278 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 279 * -EINVAL -- @event is for this PMU but @event is not valid 280 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 281 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 282 * 283 * 0 -- @event is for this PMU and valid 284 * 285 * Other error return values are allowed. 286 */ 287 int (*event_init) (struct perf_event *event); 288 289 /* 290 * Notification that the event was mapped or unmapped. Called 291 * in the context of the mapping task. 292 */ 293 void (*event_mapped) (struct perf_event *event); /*optional*/ 294 void (*event_unmapped) (struct perf_event *event); /*optional*/ 295 296 /* 297 * Flags for ->add()/->del()/ ->start()/->stop(). There are 298 * matching hw_perf_event::state flags. 299 */ 300 #define PERF_EF_START 0x01 /* start the counter when adding */ 301 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 302 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 303 304 /* 305 * Adds/Removes a counter to/from the PMU, can be done inside a 306 * transaction, see the ->*_txn() methods. 307 * 308 * The add/del callbacks will reserve all hardware resources required 309 * to service the event, this includes any counter constraint 310 * scheduling etc. 311 * 312 * Called with IRQs disabled and the PMU disabled on the CPU the event 313 * is on. 314 * 315 * ->add() called without PERF_EF_START should result in the same state 316 * as ->add() followed by ->stop(). 317 * 318 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 319 * ->stop() that must deal with already being stopped without 320 * PERF_EF_UPDATE. 321 */ 322 int (*add) (struct perf_event *event, int flags); 323 void (*del) (struct perf_event *event, int flags); 324 325 /* 326 * Starts/Stops a counter present on the PMU. 327 * 328 * The PMI handler should stop the counter when perf_event_overflow() 329 * returns !0. ->start() will be used to continue. 330 * 331 * Also used to change the sample period. 332 * 333 * Called with IRQs disabled and the PMU disabled on the CPU the event 334 * is on -- will be called from NMI context with the PMU generates 335 * NMIs. 336 * 337 * ->stop() with PERF_EF_UPDATE will read the counter and update 338 * period/count values like ->read() would. 339 * 340 * ->start() with PERF_EF_RELOAD will reprogram the the counter 341 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 342 */ 343 void (*start) (struct perf_event *event, int flags); 344 void (*stop) (struct perf_event *event, int flags); 345 346 /* 347 * Updates the counter value of the event. 348 * 349 * For sampling capable PMUs this will also update the software period 350 * hw_perf_event::period_left field. 351 */ 352 void (*read) (struct perf_event *event); 353 354 /* 355 * Group events scheduling is treated as a transaction, add 356 * group events as a whole and perform one schedulability test. 357 * If the test fails, roll back the whole group 358 * 359 * Start the transaction, after this ->add() doesn't need to 360 * do schedulability tests. 361 * 362 * Optional. 363 */ 364 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 365 /* 366 * If ->start_txn() disabled the ->add() schedulability test 367 * then ->commit_txn() is required to perform one. On success 368 * the transaction is closed. On error the transaction is kept 369 * open until ->cancel_txn() is called. 370 * 371 * Optional. 372 */ 373 int (*commit_txn) (struct pmu *pmu); 374 /* 375 * Will cancel the transaction, assumes ->del() is called 376 * for each successful ->add() during the transaction. 377 * 378 * Optional. 379 */ 380 void (*cancel_txn) (struct pmu *pmu); 381 382 /* 383 * Will return the value for perf_event_mmap_page::index for this event, 384 * if no implementation is provided it will default to: event->hw.idx + 1. 385 */ 386 int (*event_idx) (struct perf_event *event); /*optional */ 387 388 /* 389 * context-switches callback 390 */ 391 void (*sched_task) (struct perf_event_context *ctx, 392 bool sched_in); 393 /* 394 * PMU specific data size 395 */ 396 size_t task_ctx_size; 397 398 399 /* 400 * Return the count value for a counter. 401 */ 402 u64 (*count) (struct perf_event *event); /*optional*/ 403 404 /* 405 * Set up pmu-private data structures for an AUX area 406 */ 407 void *(*setup_aux) (int cpu, void **pages, 408 int nr_pages, bool overwrite); 409 /* optional */ 410 411 /* 412 * Free pmu-private AUX data structures 413 */ 414 void (*free_aux) (void *aux); /* optional */ 415 416 /* 417 * Validate address range filters: make sure the HW supports the 418 * requested configuration and number of filters; return 0 if the 419 * supplied filters are valid, -errno otherwise. 420 * 421 * Runs in the context of the ioctl()ing process and is not serialized 422 * with the rest of the PMU callbacks. 423 */ 424 int (*addr_filters_validate) (struct list_head *filters); 425 /* optional */ 426 427 /* 428 * Synchronize address range filter configuration: 429 * translate hw-agnostic filters into hardware configuration in 430 * event::hw::addr_filters. 431 * 432 * Runs as a part of filter sync sequence that is done in ->start() 433 * callback by calling perf_event_addr_filters_sync(). 434 * 435 * May (and should) traverse event::addr_filters::list, for which its 436 * caller provides necessary serialization. 437 */ 438 void (*addr_filters_sync) (struct perf_event *event); 439 /* optional */ 440 441 /* 442 * Filter events for PMU-specific reasons. 443 */ 444 int (*filter_match) (struct perf_event *event); /* optional */ 445 }; 446 447 /** 448 * struct perf_addr_filter - address range filter definition 449 * @entry: event's filter list linkage 450 * @inode: object file's inode for file-based filters 451 * @offset: filter range offset 452 * @size: filter range size 453 * @range: 1: range, 0: address 454 * @filter: 1: filter/start, 0: stop 455 * 456 * This is a hardware-agnostic filter configuration as specified by the user. 457 */ 458 struct perf_addr_filter { 459 struct list_head entry; 460 struct inode *inode; 461 unsigned long offset; 462 unsigned long size; 463 unsigned int range : 1, 464 filter : 1; 465 }; 466 467 /** 468 * struct perf_addr_filters_head - container for address range filters 469 * @list: list of filters for this event 470 * @lock: spinlock that serializes accesses to the @list and event's 471 * (and its children's) filter generations. 472 * 473 * A child event will use parent's @list (and therefore @lock), so they are 474 * bundled together; see perf_event_addr_filters(). 475 */ 476 struct perf_addr_filters_head { 477 struct list_head list; 478 raw_spinlock_t lock; 479 }; 480 481 /** 482 * enum perf_event_active_state - the states of a event 483 */ 484 enum perf_event_active_state { 485 PERF_EVENT_STATE_DEAD = -4, 486 PERF_EVENT_STATE_EXIT = -3, 487 PERF_EVENT_STATE_ERROR = -2, 488 PERF_EVENT_STATE_OFF = -1, 489 PERF_EVENT_STATE_INACTIVE = 0, 490 PERF_EVENT_STATE_ACTIVE = 1, 491 }; 492 493 struct file; 494 struct perf_sample_data; 495 496 typedef void (*perf_overflow_handler_t)(struct perf_event *, 497 struct perf_sample_data *, 498 struct pt_regs *regs); 499 500 enum perf_group_flag { 501 PERF_GROUP_SOFTWARE = 0x1, 502 }; 503 504 #define SWEVENT_HLIST_BITS 8 505 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 506 507 struct swevent_hlist { 508 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 509 struct rcu_head rcu_head; 510 }; 511 512 #define PERF_ATTACH_CONTEXT 0x01 513 #define PERF_ATTACH_GROUP 0x02 514 #define PERF_ATTACH_TASK 0x04 515 #define PERF_ATTACH_TASK_DATA 0x08 516 517 struct perf_cgroup; 518 struct ring_buffer; 519 520 struct pmu_event_list { 521 raw_spinlock_t lock; 522 struct list_head list; 523 }; 524 525 /** 526 * struct perf_event - performance event kernel representation: 527 */ 528 struct perf_event { 529 #ifdef CONFIG_PERF_EVENTS 530 /* 531 * entry onto perf_event_context::event_list; 532 * modifications require ctx->lock 533 * RCU safe iterations. 534 */ 535 struct list_head event_entry; 536 537 /* 538 * XXX: group_entry and sibling_list should be mutually exclusive; 539 * either you're a sibling on a group, or you're the group leader. 540 * Rework the code to always use the same list element. 541 * 542 * Locked for modification by both ctx->mutex and ctx->lock; holding 543 * either sufficies for read. 544 */ 545 struct list_head group_entry; 546 struct list_head sibling_list; 547 548 /* 549 * We need storage to track the entries in perf_pmu_migrate_context; we 550 * cannot use the event_entry because of RCU and we want to keep the 551 * group in tact which avoids us using the other two entries. 552 */ 553 struct list_head migrate_entry; 554 555 struct hlist_node hlist_entry; 556 struct list_head active_entry; 557 int nr_siblings; 558 int group_flags; 559 struct perf_event *group_leader; 560 struct pmu *pmu; 561 void *pmu_private; 562 563 enum perf_event_active_state state; 564 unsigned int attach_state; 565 local64_t count; 566 atomic64_t child_count; 567 568 /* 569 * These are the total time in nanoseconds that the event 570 * has been enabled (i.e. eligible to run, and the task has 571 * been scheduled in, if this is a per-task event) 572 * and running (scheduled onto the CPU), respectively. 573 * 574 * They are computed from tstamp_enabled, tstamp_running and 575 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 576 */ 577 u64 total_time_enabled; 578 u64 total_time_running; 579 580 /* 581 * These are timestamps used for computing total_time_enabled 582 * and total_time_running when the event is in INACTIVE or 583 * ACTIVE state, measured in nanoseconds from an arbitrary point 584 * in time. 585 * tstamp_enabled: the notional time when the event was enabled 586 * tstamp_running: the notional time when the event was scheduled on 587 * tstamp_stopped: in INACTIVE state, the notional time when the 588 * event was scheduled off. 589 */ 590 u64 tstamp_enabled; 591 u64 tstamp_running; 592 u64 tstamp_stopped; 593 594 /* 595 * timestamp shadows the actual context timing but it can 596 * be safely used in NMI interrupt context. It reflects the 597 * context time as it was when the event was last scheduled in. 598 * 599 * ctx_time already accounts for ctx->timestamp. Therefore to 600 * compute ctx_time for a sample, simply add perf_clock(). 601 */ 602 u64 shadow_ctx_time; 603 604 struct perf_event_attr attr; 605 u16 header_size; 606 u16 id_header_size; 607 u16 read_size; 608 struct hw_perf_event hw; 609 610 struct perf_event_context *ctx; 611 atomic_long_t refcount; 612 613 /* 614 * These accumulate total time (in nanoseconds) that children 615 * events have been enabled and running, respectively. 616 */ 617 atomic64_t child_total_time_enabled; 618 atomic64_t child_total_time_running; 619 620 /* 621 * Protect attach/detach and child_list: 622 */ 623 struct mutex child_mutex; 624 struct list_head child_list; 625 struct perf_event *parent; 626 627 int oncpu; 628 int cpu; 629 630 struct list_head owner_entry; 631 struct task_struct *owner; 632 633 /* mmap bits */ 634 struct mutex mmap_mutex; 635 atomic_t mmap_count; 636 637 struct ring_buffer *rb; 638 struct list_head rb_entry; 639 unsigned long rcu_batches; 640 int rcu_pending; 641 642 /* poll related */ 643 wait_queue_head_t waitq; 644 struct fasync_struct *fasync; 645 646 /* delayed work for NMIs and such */ 647 int pending_wakeup; 648 int pending_kill; 649 int pending_disable; 650 struct irq_work pending; 651 652 atomic_t event_limit; 653 654 /* address range filters */ 655 struct perf_addr_filters_head addr_filters; 656 /* vma address array for file-based filders */ 657 unsigned long *addr_filters_offs; 658 unsigned long addr_filters_gen; 659 660 void (*destroy)(struct perf_event *); 661 struct rcu_head rcu_head; 662 663 struct pid_namespace *ns; 664 u64 id; 665 666 u64 (*clock)(void); 667 perf_overflow_handler_t overflow_handler; 668 void *overflow_handler_context; 669 670 #ifdef CONFIG_EVENT_TRACING 671 struct trace_event_call *tp_event; 672 struct event_filter *filter; 673 #ifdef CONFIG_FUNCTION_TRACER 674 struct ftrace_ops ftrace_ops; 675 #endif 676 #endif 677 678 #ifdef CONFIG_CGROUP_PERF 679 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 680 int cgrp_defer_enabled; 681 #endif 682 683 struct list_head sb_list; 684 #endif /* CONFIG_PERF_EVENTS */ 685 }; 686 687 /** 688 * struct perf_event_context - event context structure 689 * 690 * Used as a container for task events and CPU events as well: 691 */ 692 struct perf_event_context { 693 struct pmu *pmu; 694 /* 695 * Protect the states of the events in the list, 696 * nr_active, and the list: 697 */ 698 raw_spinlock_t lock; 699 /* 700 * Protect the list of events. Locking either mutex or lock 701 * is sufficient to ensure the list doesn't change; to change 702 * the list you need to lock both the mutex and the spinlock. 703 */ 704 struct mutex mutex; 705 706 struct list_head active_ctx_list; 707 struct list_head pinned_groups; 708 struct list_head flexible_groups; 709 struct list_head event_list; 710 int nr_events; 711 int nr_active; 712 int is_active; 713 int nr_stat; 714 int nr_freq; 715 int rotate_disable; 716 atomic_t refcount; 717 struct task_struct *task; 718 719 /* 720 * Context clock, runs when context enabled. 721 */ 722 u64 time; 723 u64 timestamp; 724 725 /* 726 * These fields let us detect when two contexts have both 727 * been cloned (inherited) from a common ancestor. 728 */ 729 struct perf_event_context *parent_ctx; 730 u64 parent_gen; 731 u64 generation; 732 int pin_count; 733 int nr_cgroups; /* cgroup evts */ 734 void *task_ctx_data; /* pmu specific data */ 735 struct rcu_head rcu_head; 736 }; 737 738 /* 739 * Number of contexts where an event can trigger: 740 * task, softirq, hardirq, nmi. 741 */ 742 #define PERF_NR_CONTEXTS 4 743 744 /** 745 * struct perf_event_cpu_context - per cpu event context structure 746 */ 747 struct perf_cpu_context { 748 struct perf_event_context ctx; 749 struct perf_event_context *task_ctx; 750 int active_oncpu; 751 int exclusive; 752 753 raw_spinlock_t hrtimer_lock; 754 struct hrtimer hrtimer; 755 ktime_t hrtimer_interval; 756 unsigned int hrtimer_active; 757 758 struct pmu *unique_pmu; 759 struct perf_cgroup *cgrp; 760 }; 761 762 struct perf_output_handle { 763 struct perf_event *event; 764 struct ring_buffer *rb; 765 unsigned long wakeup; 766 unsigned long size; 767 union { 768 void *addr; 769 unsigned long head; 770 }; 771 int page; 772 }; 773 774 #ifdef CONFIG_CGROUP_PERF 775 776 /* 777 * perf_cgroup_info keeps track of time_enabled for a cgroup. 778 * This is a per-cpu dynamically allocated data structure. 779 */ 780 struct perf_cgroup_info { 781 u64 time; 782 u64 timestamp; 783 }; 784 785 struct perf_cgroup { 786 struct cgroup_subsys_state css; 787 struct perf_cgroup_info __percpu *info; 788 }; 789 790 /* 791 * Must ensure cgroup is pinned (css_get) before calling 792 * this function. In other words, we cannot call this function 793 * if there is no cgroup event for the current CPU context. 794 */ 795 static inline struct perf_cgroup * 796 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 797 { 798 return container_of(task_css_check(task, perf_event_cgrp_id, 799 ctx ? lockdep_is_held(&ctx->lock) 800 : true), 801 struct perf_cgroup, css); 802 } 803 #endif /* CONFIG_CGROUP_PERF */ 804 805 #ifdef CONFIG_PERF_EVENTS 806 807 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 808 struct perf_event *event); 809 extern void perf_aux_output_end(struct perf_output_handle *handle, 810 unsigned long size, bool truncated); 811 extern int perf_aux_output_skip(struct perf_output_handle *handle, 812 unsigned long size); 813 extern void *perf_get_aux(struct perf_output_handle *handle); 814 815 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 816 extern void perf_pmu_unregister(struct pmu *pmu); 817 818 extern int perf_num_counters(void); 819 extern const char *perf_pmu_name(void); 820 extern void __perf_event_task_sched_in(struct task_struct *prev, 821 struct task_struct *task); 822 extern void __perf_event_task_sched_out(struct task_struct *prev, 823 struct task_struct *next); 824 extern int perf_event_init_task(struct task_struct *child); 825 extern void perf_event_exit_task(struct task_struct *child); 826 extern void perf_event_free_task(struct task_struct *task); 827 extern void perf_event_delayed_put(struct task_struct *task); 828 extern struct file *perf_event_get(unsigned int fd); 829 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 830 extern void perf_event_print_debug(void); 831 extern void perf_pmu_disable(struct pmu *pmu); 832 extern void perf_pmu_enable(struct pmu *pmu); 833 extern void perf_sched_cb_dec(struct pmu *pmu); 834 extern void perf_sched_cb_inc(struct pmu *pmu); 835 extern int perf_event_task_disable(void); 836 extern int perf_event_task_enable(void); 837 extern int perf_event_refresh(struct perf_event *event, int refresh); 838 extern void perf_event_update_userpage(struct perf_event *event); 839 extern int perf_event_release_kernel(struct perf_event *event); 840 extern struct perf_event * 841 perf_event_create_kernel_counter(struct perf_event_attr *attr, 842 int cpu, 843 struct task_struct *task, 844 perf_overflow_handler_t callback, 845 void *context); 846 extern void perf_pmu_migrate_context(struct pmu *pmu, 847 int src_cpu, int dst_cpu); 848 extern u64 perf_event_read_local(struct perf_event *event); 849 extern u64 perf_event_read_value(struct perf_event *event, 850 u64 *enabled, u64 *running); 851 852 853 struct perf_sample_data { 854 /* 855 * Fields set by perf_sample_data_init(), group so as to 856 * minimize the cachelines touched. 857 */ 858 u64 addr; 859 struct perf_raw_record *raw; 860 struct perf_branch_stack *br_stack; 861 u64 period; 862 u64 weight; 863 u64 txn; 864 union perf_mem_data_src data_src; 865 866 /* 867 * The other fields, optionally {set,used} by 868 * perf_{prepare,output}_sample(). 869 */ 870 u64 type; 871 u64 ip; 872 struct { 873 u32 pid; 874 u32 tid; 875 } tid_entry; 876 u64 time; 877 u64 id; 878 u64 stream_id; 879 struct { 880 u32 cpu; 881 u32 reserved; 882 } cpu_entry; 883 struct perf_callchain_entry *callchain; 884 885 /* 886 * regs_user may point to task_pt_regs or to regs_user_copy, depending 887 * on arch details. 888 */ 889 struct perf_regs regs_user; 890 struct pt_regs regs_user_copy; 891 892 struct perf_regs regs_intr; 893 u64 stack_user_size; 894 } ____cacheline_aligned; 895 896 /* default value for data source */ 897 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 898 PERF_MEM_S(LVL, NA) |\ 899 PERF_MEM_S(SNOOP, NA) |\ 900 PERF_MEM_S(LOCK, NA) |\ 901 PERF_MEM_S(TLB, NA)) 902 903 static inline void perf_sample_data_init(struct perf_sample_data *data, 904 u64 addr, u64 period) 905 { 906 /* remaining struct members initialized in perf_prepare_sample() */ 907 data->addr = addr; 908 data->raw = NULL; 909 data->br_stack = NULL; 910 data->period = period; 911 data->weight = 0; 912 data->data_src.val = PERF_MEM_NA; 913 data->txn = 0; 914 } 915 916 extern void perf_output_sample(struct perf_output_handle *handle, 917 struct perf_event_header *header, 918 struct perf_sample_data *data, 919 struct perf_event *event); 920 extern void perf_prepare_sample(struct perf_event_header *header, 921 struct perf_sample_data *data, 922 struct perf_event *event, 923 struct pt_regs *regs); 924 925 extern int perf_event_overflow(struct perf_event *event, 926 struct perf_sample_data *data, 927 struct pt_regs *regs); 928 929 extern void perf_event_output_forward(struct perf_event *event, 930 struct perf_sample_data *data, 931 struct pt_regs *regs); 932 extern void perf_event_output_backward(struct perf_event *event, 933 struct perf_sample_data *data, 934 struct pt_regs *regs); 935 extern void perf_event_output(struct perf_event *event, 936 struct perf_sample_data *data, 937 struct pt_regs *regs); 938 939 static inline bool 940 is_default_overflow_handler(struct perf_event *event) 941 { 942 if (likely(event->overflow_handler == perf_event_output_forward)) 943 return true; 944 if (unlikely(event->overflow_handler == perf_event_output_backward)) 945 return true; 946 return false; 947 } 948 949 extern void 950 perf_event_header__init_id(struct perf_event_header *header, 951 struct perf_sample_data *data, 952 struct perf_event *event); 953 extern void 954 perf_event__output_id_sample(struct perf_event *event, 955 struct perf_output_handle *handle, 956 struct perf_sample_data *sample); 957 958 extern void 959 perf_log_lost_samples(struct perf_event *event, u64 lost); 960 961 static inline bool is_sampling_event(struct perf_event *event) 962 { 963 return event->attr.sample_period != 0; 964 } 965 966 /* 967 * Return 1 for a software event, 0 for a hardware event 968 */ 969 static inline int is_software_event(struct perf_event *event) 970 { 971 return event->pmu->task_ctx_nr == perf_sw_context; 972 } 973 974 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 975 976 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 977 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 978 979 #ifndef perf_arch_fetch_caller_regs 980 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 981 #endif 982 983 /* 984 * Take a snapshot of the regs. Skip ip and frame pointer to 985 * the nth caller. We only need a few of the regs: 986 * - ip for PERF_SAMPLE_IP 987 * - cs for user_mode() tests 988 * - bp for callchains 989 * - eflags, for future purposes, just in case 990 */ 991 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 992 { 993 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 994 } 995 996 static __always_inline void 997 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 998 { 999 if (static_key_false(&perf_swevent_enabled[event_id])) 1000 __perf_sw_event(event_id, nr, regs, addr); 1001 } 1002 1003 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1004 1005 /* 1006 * 'Special' version for the scheduler, it hard assumes no recursion, 1007 * which is guaranteed by us not actually scheduling inside other swevents 1008 * because those disable preemption. 1009 */ 1010 static __always_inline void 1011 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1012 { 1013 if (static_key_false(&perf_swevent_enabled[event_id])) { 1014 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1015 1016 perf_fetch_caller_regs(regs); 1017 ___perf_sw_event(event_id, nr, regs, addr); 1018 } 1019 } 1020 1021 extern struct static_key_false perf_sched_events; 1022 1023 static __always_inline bool 1024 perf_sw_migrate_enabled(void) 1025 { 1026 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1027 return true; 1028 return false; 1029 } 1030 1031 static inline void perf_event_task_migrate(struct task_struct *task) 1032 { 1033 if (perf_sw_migrate_enabled()) 1034 task->sched_migrated = 1; 1035 } 1036 1037 static inline void perf_event_task_sched_in(struct task_struct *prev, 1038 struct task_struct *task) 1039 { 1040 if (static_branch_unlikely(&perf_sched_events)) 1041 __perf_event_task_sched_in(prev, task); 1042 1043 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1044 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1045 1046 perf_fetch_caller_regs(regs); 1047 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1048 task->sched_migrated = 0; 1049 } 1050 } 1051 1052 static inline void perf_event_task_sched_out(struct task_struct *prev, 1053 struct task_struct *next) 1054 { 1055 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1056 1057 if (static_branch_unlikely(&perf_sched_events)) 1058 __perf_event_task_sched_out(prev, next); 1059 } 1060 1061 static inline u64 __perf_event_count(struct perf_event *event) 1062 { 1063 return local64_read(&event->count) + atomic64_read(&event->child_count); 1064 } 1065 1066 extern void perf_event_mmap(struct vm_area_struct *vma); 1067 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1068 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1069 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1070 1071 extern void perf_event_exec(void); 1072 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1073 extern void perf_event_fork(struct task_struct *tsk); 1074 1075 /* Callchains */ 1076 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1077 1078 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1079 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1080 extern struct perf_callchain_entry * 1081 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1082 u32 max_stack, bool crosstask, bool add_mark); 1083 extern int get_callchain_buffers(int max_stack); 1084 extern void put_callchain_buffers(void); 1085 1086 extern int sysctl_perf_event_max_stack; 1087 extern int sysctl_perf_event_max_contexts_per_stack; 1088 1089 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1090 { 1091 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1092 struct perf_callchain_entry *entry = ctx->entry; 1093 entry->ip[entry->nr++] = ip; 1094 ++ctx->contexts; 1095 return 0; 1096 } else { 1097 ctx->contexts_maxed = true; 1098 return -1; /* no more room, stop walking the stack */ 1099 } 1100 } 1101 1102 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1103 { 1104 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1105 struct perf_callchain_entry *entry = ctx->entry; 1106 entry->ip[entry->nr++] = ip; 1107 ++ctx->nr; 1108 return 0; 1109 } else { 1110 return -1; /* no more room, stop walking the stack */ 1111 } 1112 } 1113 1114 extern int sysctl_perf_event_paranoid; 1115 extern int sysctl_perf_event_mlock; 1116 extern int sysctl_perf_event_sample_rate; 1117 extern int sysctl_perf_cpu_time_max_percent; 1118 1119 extern void perf_sample_event_took(u64 sample_len_ns); 1120 1121 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1122 void __user *buffer, size_t *lenp, 1123 loff_t *ppos); 1124 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1125 void __user *buffer, size_t *lenp, 1126 loff_t *ppos); 1127 1128 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1129 void __user *buffer, size_t *lenp, loff_t *ppos); 1130 1131 static inline bool perf_paranoid_tracepoint_raw(void) 1132 { 1133 return sysctl_perf_event_paranoid > -1; 1134 } 1135 1136 static inline bool perf_paranoid_cpu(void) 1137 { 1138 return sysctl_perf_event_paranoid > 0; 1139 } 1140 1141 static inline bool perf_paranoid_kernel(void) 1142 { 1143 return sysctl_perf_event_paranoid > 1; 1144 } 1145 1146 extern void perf_event_init(void); 1147 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1148 int entry_size, struct pt_regs *regs, 1149 struct hlist_head *head, int rctx, 1150 struct task_struct *task); 1151 extern void perf_bp_event(struct perf_event *event, void *data); 1152 1153 #ifndef perf_misc_flags 1154 # define perf_misc_flags(regs) \ 1155 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1156 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1157 #endif 1158 1159 static inline bool has_branch_stack(struct perf_event *event) 1160 { 1161 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1162 } 1163 1164 static inline bool needs_branch_stack(struct perf_event *event) 1165 { 1166 return event->attr.branch_sample_type != 0; 1167 } 1168 1169 static inline bool has_aux(struct perf_event *event) 1170 { 1171 return event->pmu->setup_aux; 1172 } 1173 1174 static inline bool is_write_backward(struct perf_event *event) 1175 { 1176 return !!event->attr.write_backward; 1177 } 1178 1179 static inline bool has_addr_filter(struct perf_event *event) 1180 { 1181 return event->pmu->nr_addr_filters; 1182 } 1183 1184 /* 1185 * An inherited event uses parent's filters 1186 */ 1187 static inline struct perf_addr_filters_head * 1188 perf_event_addr_filters(struct perf_event *event) 1189 { 1190 struct perf_addr_filters_head *ifh = &event->addr_filters; 1191 1192 if (event->parent) 1193 ifh = &event->parent->addr_filters; 1194 1195 return ifh; 1196 } 1197 1198 extern void perf_event_addr_filters_sync(struct perf_event *event); 1199 1200 extern int perf_output_begin(struct perf_output_handle *handle, 1201 struct perf_event *event, unsigned int size); 1202 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1203 struct perf_event *event, 1204 unsigned int size); 1205 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1206 struct perf_event *event, 1207 unsigned int size); 1208 1209 extern void perf_output_end(struct perf_output_handle *handle); 1210 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1211 const void *buf, unsigned int len); 1212 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1213 unsigned int len); 1214 extern int perf_swevent_get_recursion_context(void); 1215 extern void perf_swevent_put_recursion_context(int rctx); 1216 extern u64 perf_swevent_set_period(struct perf_event *event); 1217 extern void perf_event_enable(struct perf_event *event); 1218 extern void perf_event_disable(struct perf_event *event); 1219 extern void perf_event_disable_local(struct perf_event *event); 1220 extern void perf_event_task_tick(void); 1221 #else /* !CONFIG_PERF_EVENTS: */ 1222 static inline void * 1223 perf_aux_output_begin(struct perf_output_handle *handle, 1224 struct perf_event *event) { return NULL; } 1225 static inline void 1226 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1227 bool truncated) { } 1228 static inline int 1229 perf_aux_output_skip(struct perf_output_handle *handle, 1230 unsigned long size) { return -EINVAL; } 1231 static inline void * 1232 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1233 static inline void 1234 perf_event_task_migrate(struct task_struct *task) { } 1235 static inline void 1236 perf_event_task_sched_in(struct task_struct *prev, 1237 struct task_struct *task) { } 1238 static inline void 1239 perf_event_task_sched_out(struct task_struct *prev, 1240 struct task_struct *next) { } 1241 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1242 static inline void perf_event_exit_task(struct task_struct *child) { } 1243 static inline void perf_event_free_task(struct task_struct *task) { } 1244 static inline void perf_event_delayed_put(struct task_struct *task) { } 1245 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1246 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1247 { 1248 return ERR_PTR(-EINVAL); 1249 } 1250 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1251 static inline void perf_event_print_debug(void) { } 1252 static inline int perf_event_task_disable(void) { return -EINVAL; } 1253 static inline int perf_event_task_enable(void) { return -EINVAL; } 1254 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1255 { 1256 return -EINVAL; 1257 } 1258 1259 static inline void 1260 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1261 static inline void 1262 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1263 static inline void 1264 perf_bp_event(struct perf_event *event, void *data) { } 1265 1266 static inline int perf_register_guest_info_callbacks 1267 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1268 static inline int perf_unregister_guest_info_callbacks 1269 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1270 1271 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1272 static inline void perf_event_exec(void) { } 1273 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1274 static inline void perf_event_fork(struct task_struct *tsk) { } 1275 static inline void perf_event_init(void) { } 1276 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1277 static inline void perf_swevent_put_recursion_context(int rctx) { } 1278 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1279 static inline void perf_event_enable(struct perf_event *event) { } 1280 static inline void perf_event_disable(struct perf_event *event) { } 1281 static inline int __perf_event_disable(void *info) { return -1; } 1282 static inline void perf_event_task_tick(void) { } 1283 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1284 #endif 1285 1286 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1287 extern void perf_restore_debug_store(void); 1288 #else 1289 static inline void perf_restore_debug_store(void) { } 1290 #endif 1291 1292 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1293 1294 /* 1295 * This has to have a higher priority than migration_notifier in sched/core.c. 1296 */ 1297 #define perf_cpu_notifier(fn) \ 1298 do { \ 1299 static struct notifier_block fn##_nb = \ 1300 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1301 unsigned long cpu = smp_processor_id(); \ 1302 unsigned long flags; \ 1303 \ 1304 cpu_notifier_register_begin(); \ 1305 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1306 (void *)(unsigned long)cpu); \ 1307 local_irq_save(flags); \ 1308 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1309 (void *)(unsigned long)cpu); \ 1310 local_irq_restore(flags); \ 1311 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1312 (void *)(unsigned long)cpu); \ 1313 __register_cpu_notifier(&fn##_nb); \ 1314 cpu_notifier_register_done(); \ 1315 } while (0) 1316 1317 /* 1318 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 1319 * callback for already online CPUs. 1320 */ 1321 #define __perf_cpu_notifier(fn) \ 1322 do { \ 1323 static struct notifier_block fn##_nb = \ 1324 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1325 \ 1326 __register_cpu_notifier(&fn##_nb); \ 1327 } while (0) 1328 1329 struct perf_pmu_events_attr { 1330 struct device_attribute attr; 1331 u64 id; 1332 const char *event_str; 1333 }; 1334 1335 struct perf_pmu_events_ht_attr { 1336 struct device_attribute attr; 1337 u64 id; 1338 const char *event_str_ht; 1339 const char *event_str_noht; 1340 }; 1341 1342 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1343 char *page); 1344 1345 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1346 static struct perf_pmu_events_attr _var = { \ 1347 .attr = __ATTR(_name, 0444, _show, NULL), \ 1348 .id = _id, \ 1349 }; 1350 1351 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1352 static struct perf_pmu_events_attr _var = { \ 1353 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1354 .id = 0, \ 1355 .event_str = _str, \ 1356 }; 1357 1358 #define PMU_FORMAT_ATTR(_name, _format) \ 1359 static ssize_t \ 1360 _name##_show(struct device *dev, \ 1361 struct device_attribute *attr, \ 1362 char *page) \ 1363 { \ 1364 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1365 return sprintf(page, _format "\n"); \ 1366 } \ 1367 \ 1368 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1369 1370 #endif /* _LINUX_PERF_EVENT_H */ 1371