xref: /linux-6.15/include/linux/perf_event.h (revision bb970707)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 struct perf_raw_record {
73 	u32				size;
74 	void				*data;
75 };
76 
77 /*
78  * branch stack layout:
79  *  nr: number of taken branches stored in entries[]
80  *
81  * Note that nr can vary from sample to sample
82  * branches (to, from) are stored from most recent
83  * to least recent, i.e., entries[0] contains the most
84  * recent branch.
85  */
86 struct perf_branch_stack {
87 	__u64				nr;
88 	struct perf_branch_entry	entries[0];
89 };
90 
91 struct task_struct;
92 
93 /*
94  * extra PMU register associated with an event
95  */
96 struct hw_perf_event_extra {
97 	u64		config;	/* register value */
98 	unsigned int	reg;	/* register address or index */
99 	int		alloc;	/* extra register already allocated */
100 	int		idx;	/* index in shared_regs->regs[] */
101 };
102 
103 /**
104  * struct hw_perf_event - performance event hardware details:
105  */
106 struct hw_perf_event {
107 #ifdef CONFIG_PERF_EVENTS
108 	union {
109 		struct { /* hardware */
110 			u64		config;
111 			u64		last_tag;
112 			unsigned long	config_base;
113 			unsigned long	event_base;
114 			int		event_base_rdpmc;
115 			int		idx;
116 			int		last_cpu;
117 			int		flags;
118 
119 			struct hw_perf_event_extra extra_reg;
120 			struct hw_perf_event_extra branch_reg;
121 		};
122 		struct { /* software */
123 			struct hrtimer	hrtimer;
124 		};
125 		struct { /* tracepoint */
126 			/* for tp_event->class */
127 			struct list_head	tp_list;
128 		};
129 		struct { /* intel_cqm */
130 			int			cqm_state;
131 			u32			cqm_rmid;
132 			int			is_group_event;
133 			struct list_head	cqm_events_entry;
134 			struct list_head	cqm_groups_entry;
135 			struct list_head	cqm_group_entry;
136 		};
137 		struct { /* itrace */
138 			int			itrace_started;
139 		};
140 		struct { /* amd_power */
141 			u64	pwr_acc;
142 			u64	ptsc;
143 		};
144 #ifdef CONFIG_HAVE_HW_BREAKPOINT
145 		struct { /* breakpoint */
146 			/*
147 			 * Crufty hack to avoid the chicken and egg
148 			 * problem hw_breakpoint has with context
149 			 * creation and event initalization.
150 			 */
151 			struct arch_hw_breakpoint	info;
152 			struct list_head		bp_list;
153 		};
154 #endif
155 	};
156 	/*
157 	 * If the event is a per task event, this will point to the task in
158 	 * question. See the comment in perf_event_alloc().
159 	 */
160 	struct task_struct		*target;
161 
162 	/*
163 	 * PMU would store hardware filter configuration
164 	 * here.
165 	 */
166 	void				*addr_filters;
167 
168 	/* Last sync'ed generation of filters */
169 	unsigned long			addr_filters_gen;
170 
171 /*
172  * hw_perf_event::state flags; used to track the PERF_EF_* state.
173  */
174 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
175 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
176 #define PERF_HES_ARCH		0x04
177 
178 	int				state;
179 
180 	/*
181 	 * The last observed hardware counter value, updated with a
182 	 * local64_cmpxchg() such that pmu::read() can be called nested.
183 	 */
184 	local64_t			prev_count;
185 
186 	/*
187 	 * The period to start the next sample with.
188 	 */
189 	u64				sample_period;
190 
191 	/*
192 	 * The period we started this sample with.
193 	 */
194 	u64				last_period;
195 
196 	/*
197 	 * However much is left of the current period; note that this is
198 	 * a full 64bit value and allows for generation of periods longer
199 	 * than hardware might allow.
200 	 */
201 	local64_t			period_left;
202 
203 	/*
204 	 * State for throttling the event, see __perf_event_overflow() and
205 	 * perf_adjust_freq_unthr_context().
206 	 */
207 	u64                             interrupts_seq;
208 	u64				interrupts;
209 
210 	/*
211 	 * State for freq target events, see __perf_event_overflow() and
212 	 * perf_adjust_freq_unthr_context().
213 	 */
214 	u64				freq_time_stamp;
215 	u64				freq_count_stamp;
216 #endif
217 };
218 
219 struct perf_event;
220 
221 /*
222  * Common implementation detail of pmu::{start,commit,cancel}_txn
223  */
224 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
225 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
226 
227 /**
228  * pmu::capabilities flags
229  */
230 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
231 #define PERF_PMU_CAP_NO_NMI			0x02
232 #define PERF_PMU_CAP_AUX_NO_SG			0x04
233 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
234 #define PERF_PMU_CAP_EXCLUSIVE			0x10
235 #define PERF_PMU_CAP_ITRACE			0x20
236 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
237 
238 /**
239  * struct pmu - generic performance monitoring unit
240  */
241 struct pmu {
242 	struct list_head		entry;
243 
244 	struct module			*module;
245 	struct device			*dev;
246 	const struct attribute_group	**attr_groups;
247 	const char			*name;
248 	int				type;
249 
250 	/*
251 	 * various common per-pmu feature flags
252 	 */
253 	int				capabilities;
254 
255 	int * __percpu			pmu_disable_count;
256 	struct perf_cpu_context * __percpu pmu_cpu_context;
257 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
258 	int				task_ctx_nr;
259 	int				hrtimer_interval_ms;
260 
261 	/* number of address filters this PMU can do */
262 	unsigned int			nr_addr_filters;
263 
264 	/*
265 	 * Fully disable/enable this PMU, can be used to protect from the PMI
266 	 * as well as for lazy/batch writing of the MSRs.
267 	 */
268 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
269 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
270 
271 	/*
272 	 * Try and initialize the event for this PMU.
273 	 *
274 	 * Returns:
275 	 *  -ENOENT	-- @event is not for this PMU
276 	 *
277 	 *  -ENODEV	-- @event is for this PMU but PMU not present
278 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
279 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
280 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
281 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
282 	 *
283 	 *  0		-- @event is for this PMU and valid
284 	 *
285 	 * Other error return values are allowed.
286 	 */
287 	int (*event_init)		(struct perf_event *event);
288 
289 	/*
290 	 * Notification that the event was mapped or unmapped.  Called
291 	 * in the context of the mapping task.
292 	 */
293 	void (*event_mapped)		(struct perf_event *event); /*optional*/
294 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
295 
296 	/*
297 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
298 	 * matching hw_perf_event::state flags.
299 	 */
300 #define PERF_EF_START	0x01		/* start the counter when adding    */
301 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
302 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
303 
304 	/*
305 	 * Adds/Removes a counter to/from the PMU, can be done inside a
306 	 * transaction, see the ->*_txn() methods.
307 	 *
308 	 * The add/del callbacks will reserve all hardware resources required
309 	 * to service the event, this includes any counter constraint
310 	 * scheduling etc.
311 	 *
312 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
313 	 * is on.
314 	 *
315 	 * ->add() called without PERF_EF_START should result in the same state
316 	 *  as ->add() followed by ->stop().
317 	 *
318 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
319 	 *  ->stop() that must deal with already being stopped without
320 	 *  PERF_EF_UPDATE.
321 	 */
322 	int  (*add)			(struct perf_event *event, int flags);
323 	void (*del)			(struct perf_event *event, int flags);
324 
325 	/*
326 	 * Starts/Stops a counter present on the PMU.
327 	 *
328 	 * The PMI handler should stop the counter when perf_event_overflow()
329 	 * returns !0. ->start() will be used to continue.
330 	 *
331 	 * Also used to change the sample period.
332 	 *
333 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
334 	 * is on -- will be called from NMI context with the PMU generates
335 	 * NMIs.
336 	 *
337 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
338 	 *  period/count values like ->read() would.
339 	 *
340 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
341 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
342 	 */
343 	void (*start)			(struct perf_event *event, int flags);
344 	void (*stop)			(struct perf_event *event, int flags);
345 
346 	/*
347 	 * Updates the counter value of the event.
348 	 *
349 	 * For sampling capable PMUs this will also update the software period
350 	 * hw_perf_event::period_left field.
351 	 */
352 	void (*read)			(struct perf_event *event);
353 
354 	/*
355 	 * Group events scheduling is treated as a transaction, add
356 	 * group events as a whole and perform one schedulability test.
357 	 * If the test fails, roll back the whole group
358 	 *
359 	 * Start the transaction, after this ->add() doesn't need to
360 	 * do schedulability tests.
361 	 *
362 	 * Optional.
363 	 */
364 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
365 	/*
366 	 * If ->start_txn() disabled the ->add() schedulability test
367 	 * then ->commit_txn() is required to perform one. On success
368 	 * the transaction is closed. On error the transaction is kept
369 	 * open until ->cancel_txn() is called.
370 	 *
371 	 * Optional.
372 	 */
373 	int  (*commit_txn)		(struct pmu *pmu);
374 	/*
375 	 * Will cancel the transaction, assumes ->del() is called
376 	 * for each successful ->add() during the transaction.
377 	 *
378 	 * Optional.
379 	 */
380 	void (*cancel_txn)		(struct pmu *pmu);
381 
382 	/*
383 	 * Will return the value for perf_event_mmap_page::index for this event,
384 	 * if no implementation is provided it will default to: event->hw.idx + 1.
385 	 */
386 	int (*event_idx)		(struct perf_event *event); /*optional */
387 
388 	/*
389 	 * context-switches callback
390 	 */
391 	void (*sched_task)		(struct perf_event_context *ctx,
392 					bool sched_in);
393 	/*
394 	 * PMU specific data size
395 	 */
396 	size_t				task_ctx_size;
397 
398 
399 	/*
400 	 * Return the count value for a counter.
401 	 */
402 	u64 (*count)			(struct perf_event *event); /*optional*/
403 
404 	/*
405 	 * Set up pmu-private data structures for an AUX area
406 	 */
407 	void *(*setup_aux)		(int cpu, void **pages,
408 					 int nr_pages, bool overwrite);
409 					/* optional */
410 
411 	/*
412 	 * Free pmu-private AUX data structures
413 	 */
414 	void (*free_aux)		(void *aux); /* optional */
415 
416 	/*
417 	 * Validate address range filters: make sure the HW supports the
418 	 * requested configuration and number of filters; return 0 if the
419 	 * supplied filters are valid, -errno otherwise.
420 	 *
421 	 * Runs in the context of the ioctl()ing process and is not serialized
422 	 * with the rest of the PMU callbacks.
423 	 */
424 	int (*addr_filters_validate)	(struct list_head *filters);
425 					/* optional */
426 
427 	/*
428 	 * Synchronize address range filter configuration:
429 	 * translate hw-agnostic filters into hardware configuration in
430 	 * event::hw::addr_filters.
431 	 *
432 	 * Runs as a part of filter sync sequence that is done in ->start()
433 	 * callback by calling perf_event_addr_filters_sync().
434 	 *
435 	 * May (and should) traverse event::addr_filters::list, for which its
436 	 * caller provides necessary serialization.
437 	 */
438 	void (*addr_filters_sync)	(struct perf_event *event);
439 					/* optional */
440 
441 	/*
442 	 * Filter events for PMU-specific reasons.
443 	 */
444 	int (*filter_match)		(struct perf_event *event); /* optional */
445 };
446 
447 /**
448  * struct perf_addr_filter - address range filter definition
449  * @entry:	event's filter list linkage
450  * @inode:	object file's inode for file-based filters
451  * @offset:	filter range offset
452  * @size:	filter range size
453  * @range:	1: range, 0: address
454  * @filter:	1: filter/start, 0: stop
455  *
456  * This is a hardware-agnostic filter configuration as specified by the user.
457  */
458 struct perf_addr_filter {
459 	struct list_head	entry;
460 	struct inode		*inode;
461 	unsigned long		offset;
462 	unsigned long		size;
463 	unsigned int		range	: 1,
464 				filter	: 1;
465 };
466 
467 /**
468  * struct perf_addr_filters_head - container for address range filters
469  * @list:	list of filters for this event
470  * @lock:	spinlock that serializes accesses to the @list and event's
471  *		(and its children's) filter generations.
472  *
473  * A child event will use parent's @list (and therefore @lock), so they are
474  * bundled together; see perf_event_addr_filters().
475  */
476 struct perf_addr_filters_head {
477 	struct list_head	list;
478 	raw_spinlock_t		lock;
479 };
480 
481 /**
482  * enum perf_event_active_state - the states of a event
483  */
484 enum perf_event_active_state {
485 	PERF_EVENT_STATE_DEAD		= -4,
486 	PERF_EVENT_STATE_EXIT		= -3,
487 	PERF_EVENT_STATE_ERROR		= -2,
488 	PERF_EVENT_STATE_OFF		= -1,
489 	PERF_EVENT_STATE_INACTIVE	=  0,
490 	PERF_EVENT_STATE_ACTIVE		=  1,
491 };
492 
493 struct file;
494 struct perf_sample_data;
495 
496 typedef void (*perf_overflow_handler_t)(struct perf_event *,
497 					struct perf_sample_data *,
498 					struct pt_regs *regs);
499 
500 enum perf_group_flag {
501 	PERF_GROUP_SOFTWARE		= 0x1,
502 };
503 
504 #define SWEVENT_HLIST_BITS		8
505 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
506 
507 struct swevent_hlist {
508 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
509 	struct rcu_head			rcu_head;
510 };
511 
512 #define PERF_ATTACH_CONTEXT	0x01
513 #define PERF_ATTACH_GROUP	0x02
514 #define PERF_ATTACH_TASK	0x04
515 #define PERF_ATTACH_TASK_DATA	0x08
516 
517 struct perf_cgroup;
518 struct ring_buffer;
519 
520 struct pmu_event_list {
521 	raw_spinlock_t		lock;
522 	struct list_head	list;
523 };
524 
525 /**
526  * struct perf_event - performance event kernel representation:
527  */
528 struct perf_event {
529 #ifdef CONFIG_PERF_EVENTS
530 	/*
531 	 * entry onto perf_event_context::event_list;
532 	 *   modifications require ctx->lock
533 	 *   RCU safe iterations.
534 	 */
535 	struct list_head		event_entry;
536 
537 	/*
538 	 * XXX: group_entry and sibling_list should be mutually exclusive;
539 	 * either you're a sibling on a group, or you're the group leader.
540 	 * Rework the code to always use the same list element.
541 	 *
542 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
543 	 * either sufficies for read.
544 	 */
545 	struct list_head		group_entry;
546 	struct list_head		sibling_list;
547 
548 	/*
549 	 * We need storage to track the entries in perf_pmu_migrate_context; we
550 	 * cannot use the event_entry because of RCU and we want to keep the
551 	 * group in tact which avoids us using the other two entries.
552 	 */
553 	struct list_head		migrate_entry;
554 
555 	struct hlist_node		hlist_entry;
556 	struct list_head		active_entry;
557 	int				nr_siblings;
558 	int				group_flags;
559 	struct perf_event		*group_leader;
560 	struct pmu			*pmu;
561 	void				*pmu_private;
562 
563 	enum perf_event_active_state	state;
564 	unsigned int			attach_state;
565 	local64_t			count;
566 	atomic64_t			child_count;
567 
568 	/*
569 	 * These are the total time in nanoseconds that the event
570 	 * has been enabled (i.e. eligible to run, and the task has
571 	 * been scheduled in, if this is a per-task event)
572 	 * and running (scheduled onto the CPU), respectively.
573 	 *
574 	 * They are computed from tstamp_enabled, tstamp_running and
575 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
576 	 */
577 	u64				total_time_enabled;
578 	u64				total_time_running;
579 
580 	/*
581 	 * These are timestamps used for computing total_time_enabled
582 	 * and total_time_running when the event is in INACTIVE or
583 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
584 	 * in time.
585 	 * tstamp_enabled: the notional time when the event was enabled
586 	 * tstamp_running: the notional time when the event was scheduled on
587 	 * tstamp_stopped: in INACTIVE state, the notional time when the
588 	 *	event was scheduled off.
589 	 */
590 	u64				tstamp_enabled;
591 	u64				tstamp_running;
592 	u64				tstamp_stopped;
593 
594 	/*
595 	 * timestamp shadows the actual context timing but it can
596 	 * be safely used in NMI interrupt context. It reflects the
597 	 * context time as it was when the event was last scheduled in.
598 	 *
599 	 * ctx_time already accounts for ctx->timestamp. Therefore to
600 	 * compute ctx_time for a sample, simply add perf_clock().
601 	 */
602 	u64				shadow_ctx_time;
603 
604 	struct perf_event_attr		attr;
605 	u16				header_size;
606 	u16				id_header_size;
607 	u16				read_size;
608 	struct hw_perf_event		hw;
609 
610 	struct perf_event_context	*ctx;
611 	atomic_long_t			refcount;
612 
613 	/*
614 	 * These accumulate total time (in nanoseconds) that children
615 	 * events have been enabled and running, respectively.
616 	 */
617 	atomic64_t			child_total_time_enabled;
618 	atomic64_t			child_total_time_running;
619 
620 	/*
621 	 * Protect attach/detach and child_list:
622 	 */
623 	struct mutex			child_mutex;
624 	struct list_head		child_list;
625 	struct perf_event		*parent;
626 
627 	int				oncpu;
628 	int				cpu;
629 
630 	struct list_head		owner_entry;
631 	struct task_struct		*owner;
632 
633 	/* mmap bits */
634 	struct mutex			mmap_mutex;
635 	atomic_t			mmap_count;
636 
637 	struct ring_buffer		*rb;
638 	struct list_head		rb_entry;
639 	unsigned long			rcu_batches;
640 	int				rcu_pending;
641 
642 	/* poll related */
643 	wait_queue_head_t		waitq;
644 	struct fasync_struct		*fasync;
645 
646 	/* delayed work for NMIs and such */
647 	int				pending_wakeup;
648 	int				pending_kill;
649 	int				pending_disable;
650 	struct irq_work			pending;
651 
652 	atomic_t			event_limit;
653 
654 	/* address range filters */
655 	struct perf_addr_filters_head	addr_filters;
656 	/* vma address array for file-based filders */
657 	unsigned long			*addr_filters_offs;
658 	unsigned long			addr_filters_gen;
659 
660 	void (*destroy)(struct perf_event *);
661 	struct rcu_head			rcu_head;
662 
663 	struct pid_namespace		*ns;
664 	u64				id;
665 
666 	u64				(*clock)(void);
667 	perf_overflow_handler_t		overflow_handler;
668 	void				*overflow_handler_context;
669 
670 #ifdef CONFIG_EVENT_TRACING
671 	struct trace_event_call		*tp_event;
672 	struct event_filter		*filter;
673 #ifdef CONFIG_FUNCTION_TRACER
674 	struct ftrace_ops               ftrace_ops;
675 #endif
676 #endif
677 
678 #ifdef CONFIG_CGROUP_PERF
679 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
680 	int				cgrp_defer_enabled;
681 #endif
682 
683 	struct list_head		sb_list;
684 #endif /* CONFIG_PERF_EVENTS */
685 };
686 
687 /**
688  * struct perf_event_context - event context structure
689  *
690  * Used as a container for task events and CPU events as well:
691  */
692 struct perf_event_context {
693 	struct pmu			*pmu;
694 	/*
695 	 * Protect the states of the events in the list,
696 	 * nr_active, and the list:
697 	 */
698 	raw_spinlock_t			lock;
699 	/*
700 	 * Protect the list of events.  Locking either mutex or lock
701 	 * is sufficient to ensure the list doesn't change; to change
702 	 * the list you need to lock both the mutex and the spinlock.
703 	 */
704 	struct mutex			mutex;
705 
706 	struct list_head		active_ctx_list;
707 	struct list_head		pinned_groups;
708 	struct list_head		flexible_groups;
709 	struct list_head		event_list;
710 	int				nr_events;
711 	int				nr_active;
712 	int				is_active;
713 	int				nr_stat;
714 	int				nr_freq;
715 	int				rotate_disable;
716 	atomic_t			refcount;
717 	struct task_struct		*task;
718 
719 	/*
720 	 * Context clock, runs when context enabled.
721 	 */
722 	u64				time;
723 	u64				timestamp;
724 
725 	/*
726 	 * These fields let us detect when two contexts have both
727 	 * been cloned (inherited) from a common ancestor.
728 	 */
729 	struct perf_event_context	*parent_ctx;
730 	u64				parent_gen;
731 	u64				generation;
732 	int				pin_count;
733 	int				nr_cgroups;	 /* cgroup evts */
734 	void				*task_ctx_data; /* pmu specific data */
735 	struct rcu_head			rcu_head;
736 };
737 
738 /*
739  * Number of contexts where an event can trigger:
740  *	task, softirq, hardirq, nmi.
741  */
742 #define PERF_NR_CONTEXTS	4
743 
744 /**
745  * struct perf_event_cpu_context - per cpu event context structure
746  */
747 struct perf_cpu_context {
748 	struct perf_event_context	ctx;
749 	struct perf_event_context	*task_ctx;
750 	int				active_oncpu;
751 	int				exclusive;
752 
753 	raw_spinlock_t			hrtimer_lock;
754 	struct hrtimer			hrtimer;
755 	ktime_t				hrtimer_interval;
756 	unsigned int			hrtimer_active;
757 
758 	struct pmu			*unique_pmu;
759 	struct perf_cgroup		*cgrp;
760 };
761 
762 struct perf_output_handle {
763 	struct perf_event		*event;
764 	struct ring_buffer		*rb;
765 	unsigned long			wakeup;
766 	unsigned long			size;
767 	union {
768 		void			*addr;
769 		unsigned long		head;
770 	};
771 	int				page;
772 };
773 
774 #ifdef CONFIG_CGROUP_PERF
775 
776 /*
777  * perf_cgroup_info keeps track of time_enabled for a cgroup.
778  * This is a per-cpu dynamically allocated data structure.
779  */
780 struct perf_cgroup_info {
781 	u64				time;
782 	u64				timestamp;
783 };
784 
785 struct perf_cgroup {
786 	struct cgroup_subsys_state	css;
787 	struct perf_cgroup_info	__percpu *info;
788 };
789 
790 /*
791  * Must ensure cgroup is pinned (css_get) before calling
792  * this function. In other words, we cannot call this function
793  * if there is no cgroup event for the current CPU context.
794  */
795 static inline struct perf_cgroup *
796 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
797 {
798 	return container_of(task_css_check(task, perf_event_cgrp_id,
799 					   ctx ? lockdep_is_held(&ctx->lock)
800 					       : true),
801 			    struct perf_cgroup, css);
802 }
803 #endif /* CONFIG_CGROUP_PERF */
804 
805 #ifdef CONFIG_PERF_EVENTS
806 
807 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
808 				   struct perf_event *event);
809 extern void perf_aux_output_end(struct perf_output_handle *handle,
810 				unsigned long size, bool truncated);
811 extern int perf_aux_output_skip(struct perf_output_handle *handle,
812 				unsigned long size);
813 extern void *perf_get_aux(struct perf_output_handle *handle);
814 
815 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
816 extern void perf_pmu_unregister(struct pmu *pmu);
817 
818 extern int perf_num_counters(void);
819 extern const char *perf_pmu_name(void);
820 extern void __perf_event_task_sched_in(struct task_struct *prev,
821 				       struct task_struct *task);
822 extern void __perf_event_task_sched_out(struct task_struct *prev,
823 					struct task_struct *next);
824 extern int perf_event_init_task(struct task_struct *child);
825 extern void perf_event_exit_task(struct task_struct *child);
826 extern void perf_event_free_task(struct task_struct *task);
827 extern void perf_event_delayed_put(struct task_struct *task);
828 extern struct file *perf_event_get(unsigned int fd);
829 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
830 extern void perf_event_print_debug(void);
831 extern void perf_pmu_disable(struct pmu *pmu);
832 extern void perf_pmu_enable(struct pmu *pmu);
833 extern void perf_sched_cb_dec(struct pmu *pmu);
834 extern void perf_sched_cb_inc(struct pmu *pmu);
835 extern int perf_event_task_disable(void);
836 extern int perf_event_task_enable(void);
837 extern int perf_event_refresh(struct perf_event *event, int refresh);
838 extern void perf_event_update_userpage(struct perf_event *event);
839 extern int perf_event_release_kernel(struct perf_event *event);
840 extern struct perf_event *
841 perf_event_create_kernel_counter(struct perf_event_attr *attr,
842 				int cpu,
843 				struct task_struct *task,
844 				perf_overflow_handler_t callback,
845 				void *context);
846 extern void perf_pmu_migrate_context(struct pmu *pmu,
847 				int src_cpu, int dst_cpu);
848 extern u64 perf_event_read_local(struct perf_event *event);
849 extern u64 perf_event_read_value(struct perf_event *event,
850 				 u64 *enabled, u64 *running);
851 
852 
853 struct perf_sample_data {
854 	/*
855 	 * Fields set by perf_sample_data_init(), group so as to
856 	 * minimize the cachelines touched.
857 	 */
858 	u64				addr;
859 	struct perf_raw_record		*raw;
860 	struct perf_branch_stack	*br_stack;
861 	u64				period;
862 	u64				weight;
863 	u64				txn;
864 	union  perf_mem_data_src	data_src;
865 
866 	/*
867 	 * The other fields, optionally {set,used} by
868 	 * perf_{prepare,output}_sample().
869 	 */
870 	u64				type;
871 	u64				ip;
872 	struct {
873 		u32	pid;
874 		u32	tid;
875 	}				tid_entry;
876 	u64				time;
877 	u64				id;
878 	u64				stream_id;
879 	struct {
880 		u32	cpu;
881 		u32	reserved;
882 	}				cpu_entry;
883 	struct perf_callchain_entry	*callchain;
884 
885 	/*
886 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
887 	 * on arch details.
888 	 */
889 	struct perf_regs		regs_user;
890 	struct pt_regs			regs_user_copy;
891 
892 	struct perf_regs		regs_intr;
893 	u64				stack_user_size;
894 } ____cacheline_aligned;
895 
896 /* default value for data source */
897 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
898 		    PERF_MEM_S(LVL, NA)   |\
899 		    PERF_MEM_S(SNOOP, NA) |\
900 		    PERF_MEM_S(LOCK, NA)  |\
901 		    PERF_MEM_S(TLB, NA))
902 
903 static inline void perf_sample_data_init(struct perf_sample_data *data,
904 					 u64 addr, u64 period)
905 {
906 	/* remaining struct members initialized in perf_prepare_sample() */
907 	data->addr = addr;
908 	data->raw  = NULL;
909 	data->br_stack = NULL;
910 	data->period = period;
911 	data->weight = 0;
912 	data->data_src.val = PERF_MEM_NA;
913 	data->txn = 0;
914 }
915 
916 extern void perf_output_sample(struct perf_output_handle *handle,
917 			       struct perf_event_header *header,
918 			       struct perf_sample_data *data,
919 			       struct perf_event *event);
920 extern void perf_prepare_sample(struct perf_event_header *header,
921 				struct perf_sample_data *data,
922 				struct perf_event *event,
923 				struct pt_regs *regs);
924 
925 extern int perf_event_overflow(struct perf_event *event,
926 				 struct perf_sample_data *data,
927 				 struct pt_regs *regs);
928 
929 extern void perf_event_output_forward(struct perf_event *event,
930 				     struct perf_sample_data *data,
931 				     struct pt_regs *regs);
932 extern void perf_event_output_backward(struct perf_event *event,
933 				       struct perf_sample_data *data,
934 				       struct pt_regs *regs);
935 extern void perf_event_output(struct perf_event *event,
936 			      struct perf_sample_data *data,
937 			      struct pt_regs *regs);
938 
939 static inline bool
940 is_default_overflow_handler(struct perf_event *event)
941 {
942 	if (likely(event->overflow_handler == perf_event_output_forward))
943 		return true;
944 	if (unlikely(event->overflow_handler == perf_event_output_backward))
945 		return true;
946 	return false;
947 }
948 
949 extern void
950 perf_event_header__init_id(struct perf_event_header *header,
951 			   struct perf_sample_data *data,
952 			   struct perf_event *event);
953 extern void
954 perf_event__output_id_sample(struct perf_event *event,
955 			     struct perf_output_handle *handle,
956 			     struct perf_sample_data *sample);
957 
958 extern void
959 perf_log_lost_samples(struct perf_event *event, u64 lost);
960 
961 static inline bool is_sampling_event(struct perf_event *event)
962 {
963 	return event->attr.sample_period != 0;
964 }
965 
966 /*
967  * Return 1 for a software event, 0 for a hardware event
968  */
969 static inline int is_software_event(struct perf_event *event)
970 {
971 	return event->pmu->task_ctx_nr == perf_sw_context;
972 }
973 
974 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
975 
976 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
977 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
978 
979 #ifndef perf_arch_fetch_caller_regs
980 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
981 #endif
982 
983 /*
984  * Take a snapshot of the regs. Skip ip and frame pointer to
985  * the nth caller. We only need a few of the regs:
986  * - ip for PERF_SAMPLE_IP
987  * - cs for user_mode() tests
988  * - bp for callchains
989  * - eflags, for future purposes, just in case
990  */
991 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
992 {
993 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
994 }
995 
996 static __always_inline void
997 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
998 {
999 	if (static_key_false(&perf_swevent_enabled[event_id]))
1000 		__perf_sw_event(event_id, nr, regs, addr);
1001 }
1002 
1003 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1004 
1005 /*
1006  * 'Special' version for the scheduler, it hard assumes no recursion,
1007  * which is guaranteed by us not actually scheduling inside other swevents
1008  * because those disable preemption.
1009  */
1010 static __always_inline void
1011 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1012 {
1013 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1014 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1015 
1016 		perf_fetch_caller_regs(regs);
1017 		___perf_sw_event(event_id, nr, regs, addr);
1018 	}
1019 }
1020 
1021 extern struct static_key_false perf_sched_events;
1022 
1023 static __always_inline bool
1024 perf_sw_migrate_enabled(void)
1025 {
1026 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1027 		return true;
1028 	return false;
1029 }
1030 
1031 static inline void perf_event_task_migrate(struct task_struct *task)
1032 {
1033 	if (perf_sw_migrate_enabled())
1034 		task->sched_migrated = 1;
1035 }
1036 
1037 static inline void perf_event_task_sched_in(struct task_struct *prev,
1038 					    struct task_struct *task)
1039 {
1040 	if (static_branch_unlikely(&perf_sched_events))
1041 		__perf_event_task_sched_in(prev, task);
1042 
1043 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1044 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1045 
1046 		perf_fetch_caller_regs(regs);
1047 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1048 		task->sched_migrated = 0;
1049 	}
1050 }
1051 
1052 static inline void perf_event_task_sched_out(struct task_struct *prev,
1053 					     struct task_struct *next)
1054 {
1055 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1056 
1057 	if (static_branch_unlikely(&perf_sched_events))
1058 		__perf_event_task_sched_out(prev, next);
1059 }
1060 
1061 static inline u64 __perf_event_count(struct perf_event *event)
1062 {
1063 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1064 }
1065 
1066 extern void perf_event_mmap(struct vm_area_struct *vma);
1067 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1068 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1069 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1070 
1071 extern void perf_event_exec(void);
1072 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1073 extern void perf_event_fork(struct task_struct *tsk);
1074 
1075 /* Callchains */
1076 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1077 
1078 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1079 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1080 extern struct perf_callchain_entry *
1081 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1082 		   u32 max_stack, bool crosstask, bool add_mark);
1083 extern int get_callchain_buffers(int max_stack);
1084 extern void put_callchain_buffers(void);
1085 
1086 extern int sysctl_perf_event_max_stack;
1087 extern int sysctl_perf_event_max_contexts_per_stack;
1088 
1089 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1090 {
1091 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1092 		struct perf_callchain_entry *entry = ctx->entry;
1093 		entry->ip[entry->nr++] = ip;
1094 		++ctx->contexts;
1095 		return 0;
1096 	} else {
1097 		ctx->contexts_maxed = true;
1098 		return -1; /* no more room, stop walking the stack */
1099 	}
1100 }
1101 
1102 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1103 {
1104 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1105 		struct perf_callchain_entry *entry = ctx->entry;
1106 		entry->ip[entry->nr++] = ip;
1107 		++ctx->nr;
1108 		return 0;
1109 	} else {
1110 		return -1; /* no more room, stop walking the stack */
1111 	}
1112 }
1113 
1114 extern int sysctl_perf_event_paranoid;
1115 extern int sysctl_perf_event_mlock;
1116 extern int sysctl_perf_event_sample_rate;
1117 extern int sysctl_perf_cpu_time_max_percent;
1118 
1119 extern void perf_sample_event_took(u64 sample_len_ns);
1120 
1121 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1122 		void __user *buffer, size_t *lenp,
1123 		loff_t *ppos);
1124 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1125 		void __user *buffer, size_t *lenp,
1126 		loff_t *ppos);
1127 
1128 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1129 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1130 
1131 static inline bool perf_paranoid_tracepoint_raw(void)
1132 {
1133 	return sysctl_perf_event_paranoid > -1;
1134 }
1135 
1136 static inline bool perf_paranoid_cpu(void)
1137 {
1138 	return sysctl_perf_event_paranoid > 0;
1139 }
1140 
1141 static inline bool perf_paranoid_kernel(void)
1142 {
1143 	return sysctl_perf_event_paranoid > 1;
1144 }
1145 
1146 extern void perf_event_init(void);
1147 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1148 			  int entry_size, struct pt_regs *regs,
1149 			  struct hlist_head *head, int rctx,
1150 			  struct task_struct *task);
1151 extern void perf_bp_event(struct perf_event *event, void *data);
1152 
1153 #ifndef perf_misc_flags
1154 # define perf_misc_flags(regs) \
1155 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1156 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1157 #endif
1158 
1159 static inline bool has_branch_stack(struct perf_event *event)
1160 {
1161 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1162 }
1163 
1164 static inline bool needs_branch_stack(struct perf_event *event)
1165 {
1166 	return event->attr.branch_sample_type != 0;
1167 }
1168 
1169 static inline bool has_aux(struct perf_event *event)
1170 {
1171 	return event->pmu->setup_aux;
1172 }
1173 
1174 static inline bool is_write_backward(struct perf_event *event)
1175 {
1176 	return !!event->attr.write_backward;
1177 }
1178 
1179 static inline bool has_addr_filter(struct perf_event *event)
1180 {
1181 	return event->pmu->nr_addr_filters;
1182 }
1183 
1184 /*
1185  * An inherited event uses parent's filters
1186  */
1187 static inline struct perf_addr_filters_head *
1188 perf_event_addr_filters(struct perf_event *event)
1189 {
1190 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1191 
1192 	if (event->parent)
1193 		ifh = &event->parent->addr_filters;
1194 
1195 	return ifh;
1196 }
1197 
1198 extern void perf_event_addr_filters_sync(struct perf_event *event);
1199 
1200 extern int perf_output_begin(struct perf_output_handle *handle,
1201 			     struct perf_event *event, unsigned int size);
1202 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1203 				    struct perf_event *event,
1204 				    unsigned int size);
1205 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1206 				      struct perf_event *event,
1207 				      unsigned int size);
1208 
1209 extern void perf_output_end(struct perf_output_handle *handle);
1210 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1211 			     const void *buf, unsigned int len);
1212 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1213 				     unsigned int len);
1214 extern int perf_swevent_get_recursion_context(void);
1215 extern void perf_swevent_put_recursion_context(int rctx);
1216 extern u64 perf_swevent_set_period(struct perf_event *event);
1217 extern void perf_event_enable(struct perf_event *event);
1218 extern void perf_event_disable(struct perf_event *event);
1219 extern void perf_event_disable_local(struct perf_event *event);
1220 extern void perf_event_task_tick(void);
1221 #else /* !CONFIG_PERF_EVENTS: */
1222 static inline void *
1223 perf_aux_output_begin(struct perf_output_handle *handle,
1224 		      struct perf_event *event)				{ return NULL; }
1225 static inline void
1226 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1227 		    bool truncated)					{ }
1228 static inline int
1229 perf_aux_output_skip(struct perf_output_handle *handle,
1230 		     unsigned long size)				{ return -EINVAL; }
1231 static inline void *
1232 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1233 static inline void
1234 perf_event_task_migrate(struct task_struct *task)			{ }
1235 static inline void
1236 perf_event_task_sched_in(struct task_struct *prev,
1237 			 struct task_struct *task)			{ }
1238 static inline void
1239 perf_event_task_sched_out(struct task_struct *prev,
1240 			  struct task_struct *next)			{ }
1241 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1242 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1243 static inline void perf_event_free_task(struct task_struct *task)	{ }
1244 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1245 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1246 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1247 {
1248 	return ERR_PTR(-EINVAL);
1249 }
1250 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1251 static inline void perf_event_print_debug(void)				{ }
1252 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1253 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1254 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1255 {
1256 	return -EINVAL;
1257 }
1258 
1259 static inline void
1260 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1261 static inline void
1262 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1263 static inline void
1264 perf_bp_event(struct perf_event *event, void *data)			{ }
1265 
1266 static inline int perf_register_guest_info_callbacks
1267 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1268 static inline int perf_unregister_guest_info_callbacks
1269 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1270 
1271 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1272 static inline void perf_event_exec(void)				{ }
1273 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1274 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1275 static inline void perf_event_init(void)				{ }
1276 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1277 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1278 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1279 static inline void perf_event_enable(struct perf_event *event)		{ }
1280 static inline void perf_event_disable(struct perf_event *event)		{ }
1281 static inline int __perf_event_disable(void *info)			{ return -1; }
1282 static inline void perf_event_task_tick(void)				{ }
1283 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1284 #endif
1285 
1286 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1287 extern void perf_restore_debug_store(void);
1288 #else
1289 static inline void perf_restore_debug_store(void)			{ }
1290 #endif
1291 
1292 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1293 
1294 /*
1295  * This has to have a higher priority than migration_notifier in sched/core.c.
1296  */
1297 #define perf_cpu_notifier(fn)						\
1298 do {									\
1299 	static struct notifier_block fn##_nb =				\
1300 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1301 	unsigned long cpu = smp_processor_id();				\
1302 	unsigned long flags;						\
1303 									\
1304 	cpu_notifier_register_begin();					\
1305 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1306 		(void *)(unsigned long)cpu);				\
1307 	local_irq_save(flags);						\
1308 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1309 		(void *)(unsigned long)cpu);				\
1310 	local_irq_restore(flags);					\
1311 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1312 		(void *)(unsigned long)cpu);				\
1313 	__register_cpu_notifier(&fn##_nb);				\
1314 	cpu_notifier_register_done();					\
1315 } while (0)
1316 
1317 /*
1318  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1319  * callback for already online CPUs.
1320  */
1321 #define __perf_cpu_notifier(fn)						\
1322 do {									\
1323 	static struct notifier_block fn##_nb =				\
1324 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1325 									\
1326 	__register_cpu_notifier(&fn##_nb);				\
1327 } while (0)
1328 
1329 struct perf_pmu_events_attr {
1330 	struct device_attribute attr;
1331 	u64 id;
1332 	const char *event_str;
1333 };
1334 
1335 struct perf_pmu_events_ht_attr {
1336 	struct device_attribute			attr;
1337 	u64					id;
1338 	const char				*event_str_ht;
1339 	const char				*event_str_noht;
1340 };
1341 
1342 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1343 			      char *page);
1344 
1345 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1346 static struct perf_pmu_events_attr _var = {				\
1347 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1348 	.id   =  _id,							\
1349 };
1350 
1351 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1352 static struct perf_pmu_events_attr _var = {				    \
1353 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1354 	.id		= 0,						    \
1355 	.event_str	= _str,						    \
1356 };
1357 
1358 #define PMU_FORMAT_ATTR(_name, _format)					\
1359 static ssize_t								\
1360 _name##_show(struct device *dev,					\
1361 			       struct device_attribute *attr,		\
1362 			       char *page)				\
1363 {									\
1364 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1365 	return sprintf(page, _format "\n");				\
1366 }									\
1367 									\
1368 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1369 
1370 #endif /* _LINUX_PERF_EVENT_H */
1371