xref: /linux-6.15/include/linux/perf_event.h (revision bb4e9af0)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <asm/local.h>
60 
61 struct perf_callchain_entry {
62 	__u64				nr;
63 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
64 };
65 
66 struct perf_callchain_entry_ctx {
67 	struct perf_callchain_entry *entry;
68 	u32			    max_stack;
69 	u32			    nr;
70 	short			    contexts;
71 	bool			    contexts_maxed;
72 };
73 
74 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
75 				     unsigned long off, unsigned long len);
76 
77 struct perf_raw_frag {
78 	union {
79 		struct perf_raw_frag	*next;
80 		unsigned long		pad;
81 	};
82 	perf_copy_f			copy;
83 	void				*data;
84 	u32				size;
85 } __packed;
86 
87 struct perf_raw_record {
88 	struct perf_raw_frag		frag;
89 	u32				size;
90 };
91 
92 /*
93  * branch stack layout:
94  *  nr: number of taken branches stored in entries[]
95  *
96  * Note that nr can vary from sample to sample
97  * branches (to, from) are stored from most recent
98  * to least recent, i.e., entries[0] contains the most
99  * recent branch.
100  */
101 struct perf_branch_stack {
102 	__u64				nr;
103 	struct perf_branch_entry	entries[0];
104 };
105 
106 struct task_struct;
107 
108 /*
109  * extra PMU register associated with an event
110  */
111 struct hw_perf_event_extra {
112 	u64		config;	/* register value */
113 	unsigned int	reg;	/* register address or index */
114 	int		alloc;	/* extra register already allocated */
115 	int		idx;	/* index in shared_regs->regs[] */
116 };
117 
118 /**
119  * struct hw_perf_event - performance event hardware details:
120  */
121 struct hw_perf_event {
122 #ifdef CONFIG_PERF_EVENTS
123 	union {
124 		struct { /* hardware */
125 			u64		config;
126 			u64		last_tag;
127 			unsigned long	config_base;
128 			unsigned long	event_base;
129 			int		event_base_rdpmc;
130 			int		idx;
131 			int		last_cpu;
132 			int		flags;
133 
134 			struct hw_perf_event_extra extra_reg;
135 			struct hw_perf_event_extra branch_reg;
136 		};
137 		struct { /* software */
138 			struct hrtimer	hrtimer;
139 		};
140 		struct { /* tracepoint */
141 			/* for tp_event->class */
142 			struct list_head	tp_list;
143 		};
144 		struct { /* amd_power */
145 			u64	pwr_acc;
146 			u64	ptsc;
147 		};
148 #ifdef CONFIG_HAVE_HW_BREAKPOINT
149 		struct { /* breakpoint */
150 			/*
151 			 * Crufty hack to avoid the chicken and egg
152 			 * problem hw_breakpoint has with context
153 			 * creation and event initalization.
154 			 */
155 			struct arch_hw_breakpoint	info;
156 			struct list_head		bp_list;
157 		};
158 #endif
159 		struct { /* amd_iommu */
160 			u8	iommu_bank;
161 			u8	iommu_cntr;
162 			u16	padding;
163 			u64	conf;
164 			u64	conf1;
165 		};
166 	};
167 	/*
168 	 * If the event is a per task event, this will point to the task in
169 	 * question. See the comment in perf_event_alloc().
170 	 */
171 	struct task_struct		*target;
172 
173 	/*
174 	 * PMU would store hardware filter configuration
175 	 * here.
176 	 */
177 	void				*addr_filters;
178 
179 	/* Last sync'ed generation of filters */
180 	unsigned long			addr_filters_gen;
181 
182 /*
183  * hw_perf_event::state flags; used to track the PERF_EF_* state.
184  */
185 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
186 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
187 #define PERF_HES_ARCH		0x04
188 
189 	int				state;
190 
191 	/*
192 	 * The last observed hardware counter value, updated with a
193 	 * local64_cmpxchg() such that pmu::read() can be called nested.
194 	 */
195 	local64_t			prev_count;
196 
197 	/*
198 	 * The period to start the next sample with.
199 	 */
200 	u64				sample_period;
201 
202 	/*
203 	 * The period we started this sample with.
204 	 */
205 	u64				last_period;
206 
207 	/*
208 	 * However much is left of the current period; note that this is
209 	 * a full 64bit value and allows for generation of periods longer
210 	 * than hardware might allow.
211 	 */
212 	local64_t			period_left;
213 
214 	/*
215 	 * State for throttling the event, see __perf_event_overflow() and
216 	 * perf_adjust_freq_unthr_context().
217 	 */
218 	u64                             interrupts_seq;
219 	u64				interrupts;
220 
221 	/*
222 	 * State for freq target events, see __perf_event_overflow() and
223 	 * perf_adjust_freq_unthr_context().
224 	 */
225 	u64				freq_time_stamp;
226 	u64				freq_count_stamp;
227 #endif
228 };
229 
230 struct perf_event;
231 
232 /*
233  * Common implementation detail of pmu::{start,commit,cancel}_txn
234  */
235 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
236 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
237 
238 /**
239  * pmu::capabilities flags
240  */
241 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
242 #define PERF_PMU_CAP_NO_NMI			0x02
243 #define PERF_PMU_CAP_AUX_NO_SG			0x04
244 #define PERF_PMU_CAP_EXTENDED_REGS		0x08
245 #define PERF_PMU_CAP_EXCLUSIVE			0x10
246 #define PERF_PMU_CAP_ITRACE			0x20
247 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
248 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
249 
250 /**
251  * struct pmu - generic performance monitoring unit
252  */
253 struct pmu {
254 	struct list_head		entry;
255 
256 	struct module			*module;
257 	struct device			*dev;
258 	const struct attribute_group	**attr_groups;
259 	const struct attribute_group	**attr_update;
260 	const char			*name;
261 	int				type;
262 
263 	/*
264 	 * various common per-pmu feature flags
265 	 */
266 	int				capabilities;
267 
268 	int __percpu			*pmu_disable_count;
269 	struct perf_cpu_context __percpu *pmu_cpu_context;
270 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 	int				task_ctx_nr;
272 	int				hrtimer_interval_ms;
273 
274 	/* number of address filters this PMU can do */
275 	unsigned int			nr_addr_filters;
276 
277 	/*
278 	 * Fully disable/enable this PMU, can be used to protect from the PMI
279 	 * as well as for lazy/batch writing of the MSRs.
280 	 */
281 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
282 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
283 
284 	/*
285 	 * Try and initialize the event for this PMU.
286 	 *
287 	 * Returns:
288 	 *  -ENOENT	-- @event is not for this PMU
289 	 *
290 	 *  -ENODEV	-- @event is for this PMU but PMU not present
291 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
292 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
293 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
295 	 *
296 	 *  0		-- @event is for this PMU and valid
297 	 *
298 	 * Other error return values are allowed.
299 	 */
300 	int (*event_init)		(struct perf_event *event);
301 
302 	/*
303 	 * Notification that the event was mapped or unmapped.  Called
304 	 * in the context of the mapping task.
305 	 */
306 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
307 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
308 
309 	/*
310 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 	 * matching hw_perf_event::state flags.
312 	 */
313 #define PERF_EF_START	0x01		/* start the counter when adding    */
314 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
315 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
316 
317 	/*
318 	 * Adds/Removes a counter to/from the PMU, can be done inside a
319 	 * transaction, see the ->*_txn() methods.
320 	 *
321 	 * The add/del callbacks will reserve all hardware resources required
322 	 * to service the event, this includes any counter constraint
323 	 * scheduling etc.
324 	 *
325 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 	 * is on.
327 	 *
328 	 * ->add() called without PERF_EF_START should result in the same state
329 	 *  as ->add() followed by ->stop().
330 	 *
331 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 	 *  ->stop() that must deal with already being stopped without
333 	 *  PERF_EF_UPDATE.
334 	 */
335 	int  (*add)			(struct perf_event *event, int flags);
336 	void (*del)			(struct perf_event *event, int flags);
337 
338 	/*
339 	 * Starts/Stops a counter present on the PMU.
340 	 *
341 	 * The PMI handler should stop the counter when perf_event_overflow()
342 	 * returns !0. ->start() will be used to continue.
343 	 *
344 	 * Also used to change the sample period.
345 	 *
346 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 	 * is on -- will be called from NMI context with the PMU generates
348 	 * NMIs.
349 	 *
350 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 	 *  period/count values like ->read() would.
352 	 *
353 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 	 */
356 	void (*start)			(struct perf_event *event, int flags);
357 	void (*stop)			(struct perf_event *event, int flags);
358 
359 	/*
360 	 * Updates the counter value of the event.
361 	 *
362 	 * For sampling capable PMUs this will also update the software period
363 	 * hw_perf_event::period_left field.
364 	 */
365 	void (*read)			(struct perf_event *event);
366 
367 	/*
368 	 * Group events scheduling is treated as a transaction, add
369 	 * group events as a whole and perform one schedulability test.
370 	 * If the test fails, roll back the whole group
371 	 *
372 	 * Start the transaction, after this ->add() doesn't need to
373 	 * do schedulability tests.
374 	 *
375 	 * Optional.
376 	 */
377 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
378 	/*
379 	 * If ->start_txn() disabled the ->add() schedulability test
380 	 * then ->commit_txn() is required to perform one. On success
381 	 * the transaction is closed. On error the transaction is kept
382 	 * open until ->cancel_txn() is called.
383 	 *
384 	 * Optional.
385 	 */
386 	int  (*commit_txn)		(struct pmu *pmu);
387 	/*
388 	 * Will cancel the transaction, assumes ->del() is called
389 	 * for each successful ->add() during the transaction.
390 	 *
391 	 * Optional.
392 	 */
393 	void (*cancel_txn)		(struct pmu *pmu);
394 
395 	/*
396 	 * Will return the value for perf_event_mmap_page::index for this event,
397 	 * if no implementation is provided it will default to: event->hw.idx + 1.
398 	 */
399 	int (*event_idx)		(struct perf_event *event); /*optional */
400 
401 	/*
402 	 * context-switches callback
403 	 */
404 	void (*sched_task)		(struct perf_event_context *ctx,
405 					bool sched_in);
406 	/*
407 	 * PMU specific data size
408 	 */
409 	size_t				task_ctx_size;
410 
411 
412 	/*
413 	 * Set up pmu-private data structures for an AUX area
414 	 */
415 	void *(*setup_aux)		(struct perf_event *event, void **pages,
416 					 int nr_pages, bool overwrite);
417 					/* optional */
418 
419 	/*
420 	 * Free pmu-private AUX data structures
421 	 */
422 	void (*free_aux)		(void *aux); /* optional */
423 
424 	/*
425 	 * Validate address range filters: make sure the HW supports the
426 	 * requested configuration and number of filters; return 0 if the
427 	 * supplied filters are valid, -errno otherwise.
428 	 *
429 	 * Runs in the context of the ioctl()ing process and is not serialized
430 	 * with the rest of the PMU callbacks.
431 	 */
432 	int (*addr_filters_validate)	(struct list_head *filters);
433 					/* optional */
434 
435 	/*
436 	 * Synchronize address range filter configuration:
437 	 * translate hw-agnostic filters into hardware configuration in
438 	 * event::hw::addr_filters.
439 	 *
440 	 * Runs as a part of filter sync sequence that is done in ->start()
441 	 * callback by calling perf_event_addr_filters_sync().
442 	 *
443 	 * May (and should) traverse event::addr_filters::list, for which its
444 	 * caller provides necessary serialization.
445 	 */
446 	void (*addr_filters_sync)	(struct perf_event *event);
447 					/* optional */
448 
449 	/*
450 	 * Filter events for PMU-specific reasons.
451 	 */
452 	int (*filter_match)		(struct perf_event *event); /* optional */
453 
454 	/*
455 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
456 	 */
457 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
458 };
459 
460 enum perf_addr_filter_action_t {
461 	PERF_ADDR_FILTER_ACTION_STOP = 0,
462 	PERF_ADDR_FILTER_ACTION_START,
463 	PERF_ADDR_FILTER_ACTION_FILTER,
464 };
465 
466 /**
467  * struct perf_addr_filter - address range filter definition
468  * @entry:	event's filter list linkage
469  * @path:	object file's path for file-based filters
470  * @offset:	filter range offset
471  * @size:	filter range size (size==0 means single address trigger)
472  * @action:	filter/start/stop
473  *
474  * This is a hardware-agnostic filter configuration as specified by the user.
475  */
476 struct perf_addr_filter {
477 	struct list_head	entry;
478 	struct path		path;
479 	unsigned long		offset;
480 	unsigned long		size;
481 	enum perf_addr_filter_action_t	action;
482 };
483 
484 /**
485  * struct perf_addr_filters_head - container for address range filters
486  * @list:	list of filters for this event
487  * @lock:	spinlock that serializes accesses to the @list and event's
488  *		(and its children's) filter generations.
489  * @nr_file_filters:	number of file-based filters
490  *
491  * A child event will use parent's @list (and therefore @lock), so they are
492  * bundled together; see perf_event_addr_filters().
493  */
494 struct perf_addr_filters_head {
495 	struct list_head	list;
496 	raw_spinlock_t		lock;
497 	unsigned int		nr_file_filters;
498 };
499 
500 struct perf_addr_filter_range {
501 	unsigned long		start;
502 	unsigned long		size;
503 };
504 
505 /**
506  * enum perf_event_state - the states of an event:
507  */
508 enum perf_event_state {
509 	PERF_EVENT_STATE_DEAD		= -4,
510 	PERF_EVENT_STATE_EXIT		= -3,
511 	PERF_EVENT_STATE_ERROR		= -2,
512 	PERF_EVENT_STATE_OFF		= -1,
513 	PERF_EVENT_STATE_INACTIVE	=  0,
514 	PERF_EVENT_STATE_ACTIVE		=  1,
515 };
516 
517 struct file;
518 struct perf_sample_data;
519 
520 typedef void (*perf_overflow_handler_t)(struct perf_event *,
521 					struct perf_sample_data *,
522 					struct pt_regs *regs);
523 
524 /*
525  * Event capabilities. For event_caps and groups caps.
526  *
527  * PERF_EV_CAP_SOFTWARE: Is a software event.
528  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
529  * from any CPU in the package where it is active.
530  */
531 #define PERF_EV_CAP_SOFTWARE		BIT(0)
532 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
533 
534 #define SWEVENT_HLIST_BITS		8
535 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
536 
537 struct swevent_hlist {
538 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
539 	struct rcu_head			rcu_head;
540 };
541 
542 #define PERF_ATTACH_CONTEXT	0x01
543 #define PERF_ATTACH_GROUP	0x02
544 #define PERF_ATTACH_TASK	0x04
545 #define PERF_ATTACH_TASK_DATA	0x08
546 #define PERF_ATTACH_ITRACE	0x10
547 
548 struct perf_cgroup;
549 struct ring_buffer;
550 
551 struct pmu_event_list {
552 	raw_spinlock_t		lock;
553 	struct list_head	list;
554 };
555 
556 #define for_each_sibling_event(sibling, event)			\
557 	if ((event)->group_leader == (event))			\
558 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
559 
560 /**
561  * struct perf_event - performance event kernel representation:
562  */
563 struct perf_event {
564 #ifdef CONFIG_PERF_EVENTS
565 	/*
566 	 * entry onto perf_event_context::event_list;
567 	 *   modifications require ctx->lock
568 	 *   RCU safe iterations.
569 	 */
570 	struct list_head		event_entry;
571 
572 	/*
573 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
574 	 * either sufficies for read.
575 	 */
576 	struct list_head		sibling_list;
577 	struct list_head		active_list;
578 	/*
579 	 * Node on the pinned or flexible tree located at the event context;
580 	 */
581 	struct rb_node			group_node;
582 	u64				group_index;
583 	/*
584 	 * We need storage to track the entries in perf_pmu_migrate_context; we
585 	 * cannot use the event_entry because of RCU and we want to keep the
586 	 * group in tact which avoids us using the other two entries.
587 	 */
588 	struct list_head		migrate_entry;
589 
590 	struct hlist_node		hlist_entry;
591 	struct list_head		active_entry;
592 	int				nr_siblings;
593 
594 	/* Not serialized. Only written during event initialization. */
595 	int				event_caps;
596 	/* The cumulative AND of all event_caps for events in this group. */
597 	int				group_caps;
598 
599 	struct perf_event		*group_leader;
600 	struct pmu			*pmu;
601 	void				*pmu_private;
602 
603 	enum perf_event_state		state;
604 	unsigned int			attach_state;
605 	local64_t			count;
606 	atomic64_t			child_count;
607 
608 	/*
609 	 * These are the total time in nanoseconds that the event
610 	 * has been enabled (i.e. eligible to run, and the task has
611 	 * been scheduled in, if this is a per-task event)
612 	 * and running (scheduled onto the CPU), respectively.
613 	 */
614 	u64				total_time_enabled;
615 	u64				total_time_running;
616 	u64				tstamp;
617 
618 	/*
619 	 * timestamp shadows the actual context timing but it can
620 	 * be safely used in NMI interrupt context. It reflects the
621 	 * context time as it was when the event was last scheduled in.
622 	 *
623 	 * ctx_time already accounts for ctx->timestamp. Therefore to
624 	 * compute ctx_time for a sample, simply add perf_clock().
625 	 */
626 	u64				shadow_ctx_time;
627 
628 	struct perf_event_attr		attr;
629 	u16				header_size;
630 	u16				id_header_size;
631 	u16				read_size;
632 	struct hw_perf_event		hw;
633 
634 	struct perf_event_context	*ctx;
635 	atomic_long_t			refcount;
636 
637 	/*
638 	 * These accumulate total time (in nanoseconds) that children
639 	 * events have been enabled and running, respectively.
640 	 */
641 	atomic64_t			child_total_time_enabled;
642 	atomic64_t			child_total_time_running;
643 
644 	/*
645 	 * Protect attach/detach and child_list:
646 	 */
647 	struct mutex			child_mutex;
648 	struct list_head		child_list;
649 	struct perf_event		*parent;
650 
651 	int				oncpu;
652 	int				cpu;
653 
654 	struct list_head		owner_entry;
655 	struct task_struct		*owner;
656 
657 	/* mmap bits */
658 	struct mutex			mmap_mutex;
659 	atomic_t			mmap_count;
660 
661 	struct ring_buffer		*rb;
662 	struct list_head		rb_entry;
663 	unsigned long			rcu_batches;
664 	int				rcu_pending;
665 
666 	/* poll related */
667 	wait_queue_head_t		waitq;
668 	struct fasync_struct		*fasync;
669 
670 	/* delayed work for NMIs and such */
671 	int				pending_wakeup;
672 	int				pending_kill;
673 	int				pending_disable;
674 	struct irq_work			pending;
675 
676 	atomic_t			event_limit;
677 
678 	/* address range filters */
679 	struct perf_addr_filters_head	addr_filters;
680 	/* vma address array for file-based filders */
681 	struct perf_addr_filter_range	*addr_filter_ranges;
682 	unsigned long			addr_filters_gen;
683 
684 	void (*destroy)(struct perf_event *);
685 	struct rcu_head			rcu_head;
686 
687 	struct pid_namespace		*ns;
688 	u64				id;
689 
690 	u64				(*clock)(void);
691 	perf_overflow_handler_t		overflow_handler;
692 	void				*overflow_handler_context;
693 #ifdef CONFIG_BPF_SYSCALL
694 	perf_overflow_handler_t		orig_overflow_handler;
695 	struct bpf_prog			*prog;
696 #endif
697 
698 #ifdef CONFIG_EVENT_TRACING
699 	struct trace_event_call		*tp_event;
700 	struct event_filter		*filter;
701 #ifdef CONFIG_FUNCTION_TRACER
702 	struct ftrace_ops               ftrace_ops;
703 #endif
704 #endif
705 
706 #ifdef CONFIG_CGROUP_PERF
707 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
708 #endif
709 
710 	struct list_head		sb_list;
711 #endif /* CONFIG_PERF_EVENTS */
712 };
713 
714 
715 struct perf_event_groups {
716 	struct rb_root	tree;
717 	u64		index;
718 };
719 
720 /**
721  * struct perf_event_context - event context structure
722  *
723  * Used as a container for task events and CPU events as well:
724  */
725 struct perf_event_context {
726 	struct pmu			*pmu;
727 	/*
728 	 * Protect the states of the events in the list,
729 	 * nr_active, and the list:
730 	 */
731 	raw_spinlock_t			lock;
732 	/*
733 	 * Protect the list of events.  Locking either mutex or lock
734 	 * is sufficient to ensure the list doesn't change; to change
735 	 * the list you need to lock both the mutex and the spinlock.
736 	 */
737 	struct mutex			mutex;
738 
739 	struct list_head		active_ctx_list;
740 	struct perf_event_groups	pinned_groups;
741 	struct perf_event_groups	flexible_groups;
742 	struct list_head		event_list;
743 
744 	struct list_head		pinned_active;
745 	struct list_head		flexible_active;
746 
747 	int				nr_events;
748 	int				nr_active;
749 	int				is_active;
750 	int				nr_stat;
751 	int				nr_freq;
752 	int				rotate_disable;
753 	/*
754 	 * Set when nr_events != nr_active, except tolerant to events not
755 	 * necessary to be active due to scheduling constraints, such as cgroups.
756 	 */
757 	int				rotate_necessary;
758 	refcount_t			refcount;
759 	struct task_struct		*task;
760 
761 	/*
762 	 * Context clock, runs when context enabled.
763 	 */
764 	u64				time;
765 	u64				timestamp;
766 
767 	/*
768 	 * These fields let us detect when two contexts have both
769 	 * been cloned (inherited) from a common ancestor.
770 	 */
771 	struct perf_event_context	*parent_ctx;
772 	u64				parent_gen;
773 	u64				generation;
774 	int				pin_count;
775 #ifdef CONFIG_CGROUP_PERF
776 	int				nr_cgroups;	 /* cgroup evts */
777 #endif
778 	void				*task_ctx_data; /* pmu specific data */
779 	struct rcu_head			rcu_head;
780 };
781 
782 /*
783  * Number of contexts where an event can trigger:
784  *	task, softirq, hardirq, nmi.
785  */
786 #define PERF_NR_CONTEXTS	4
787 
788 /**
789  * struct perf_event_cpu_context - per cpu event context structure
790  */
791 struct perf_cpu_context {
792 	struct perf_event_context	ctx;
793 	struct perf_event_context	*task_ctx;
794 	int				active_oncpu;
795 	int				exclusive;
796 
797 	raw_spinlock_t			hrtimer_lock;
798 	struct hrtimer			hrtimer;
799 	ktime_t				hrtimer_interval;
800 	unsigned int			hrtimer_active;
801 
802 #ifdef CONFIG_CGROUP_PERF
803 	struct perf_cgroup		*cgrp;
804 	struct list_head		cgrp_cpuctx_entry;
805 #endif
806 
807 	struct list_head		sched_cb_entry;
808 	int				sched_cb_usage;
809 
810 	int				online;
811 };
812 
813 struct perf_output_handle {
814 	struct perf_event		*event;
815 	struct ring_buffer		*rb;
816 	unsigned long			wakeup;
817 	unsigned long			size;
818 	u64				aux_flags;
819 	union {
820 		void			*addr;
821 		unsigned long		head;
822 	};
823 	int				page;
824 };
825 
826 struct bpf_perf_event_data_kern {
827 	bpf_user_pt_regs_t *regs;
828 	struct perf_sample_data *data;
829 	struct perf_event *event;
830 };
831 
832 #ifdef CONFIG_CGROUP_PERF
833 
834 /*
835  * perf_cgroup_info keeps track of time_enabled for a cgroup.
836  * This is a per-cpu dynamically allocated data structure.
837  */
838 struct perf_cgroup_info {
839 	u64				time;
840 	u64				timestamp;
841 };
842 
843 struct perf_cgroup {
844 	struct cgroup_subsys_state	css;
845 	struct perf_cgroup_info	__percpu *info;
846 };
847 
848 /*
849  * Must ensure cgroup is pinned (css_get) before calling
850  * this function. In other words, we cannot call this function
851  * if there is no cgroup event for the current CPU context.
852  */
853 static inline struct perf_cgroup *
854 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
855 {
856 	return container_of(task_css_check(task, perf_event_cgrp_id,
857 					   ctx ? lockdep_is_held(&ctx->lock)
858 					       : true),
859 			    struct perf_cgroup, css);
860 }
861 #endif /* CONFIG_CGROUP_PERF */
862 
863 #ifdef CONFIG_PERF_EVENTS
864 
865 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
866 				   struct perf_event *event);
867 extern void perf_aux_output_end(struct perf_output_handle *handle,
868 				unsigned long size);
869 extern int perf_aux_output_skip(struct perf_output_handle *handle,
870 				unsigned long size);
871 extern void *perf_get_aux(struct perf_output_handle *handle);
872 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
873 extern void perf_event_itrace_started(struct perf_event *event);
874 
875 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
876 extern void perf_pmu_unregister(struct pmu *pmu);
877 
878 extern int perf_num_counters(void);
879 extern const char *perf_pmu_name(void);
880 extern void __perf_event_task_sched_in(struct task_struct *prev,
881 				       struct task_struct *task);
882 extern void __perf_event_task_sched_out(struct task_struct *prev,
883 					struct task_struct *next);
884 extern int perf_event_init_task(struct task_struct *child);
885 extern void perf_event_exit_task(struct task_struct *child);
886 extern void perf_event_free_task(struct task_struct *task);
887 extern void perf_event_delayed_put(struct task_struct *task);
888 extern struct file *perf_event_get(unsigned int fd);
889 extern const struct perf_event *perf_get_event(struct file *file);
890 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
891 extern void perf_event_print_debug(void);
892 extern void perf_pmu_disable(struct pmu *pmu);
893 extern void perf_pmu_enable(struct pmu *pmu);
894 extern void perf_sched_cb_dec(struct pmu *pmu);
895 extern void perf_sched_cb_inc(struct pmu *pmu);
896 extern int perf_event_task_disable(void);
897 extern int perf_event_task_enable(void);
898 
899 extern void perf_pmu_resched(struct pmu *pmu);
900 
901 extern int perf_event_refresh(struct perf_event *event, int refresh);
902 extern void perf_event_update_userpage(struct perf_event *event);
903 extern int perf_event_release_kernel(struct perf_event *event);
904 extern struct perf_event *
905 perf_event_create_kernel_counter(struct perf_event_attr *attr,
906 				int cpu,
907 				struct task_struct *task,
908 				perf_overflow_handler_t callback,
909 				void *context);
910 extern void perf_pmu_migrate_context(struct pmu *pmu,
911 				int src_cpu, int dst_cpu);
912 int perf_event_read_local(struct perf_event *event, u64 *value,
913 			  u64 *enabled, u64 *running);
914 extern u64 perf_event_read_value(struct perf_event *event,
915 				 u64 *enabled, u64 *running);
916 
917 
918 struct perf_sample_data {
919 	/*
920 	 * Fields set by perf_sample_data_init(), group so as to
921 	 * minimize the cachelines touched.
922 	 */
923 	u64				addr;
924 	struct perf_raw_record		*raw;
925 	struct perf_branch_stack	*br_stack;
926 	u64				period;
927 	u64				weight;
928 	u64				txn;
929 	union  perf_mem_data_src	data_src;
930 
931 	/*
932 	 * The other fields, optionally {set,used} by
933 	 * perf_{prepare,output}_sample().
934 	 */
935 	u64				type;
936 	u64				ip;
937 	struct {
938 		u32	pid;
939 		u32	tid;
940 	}				tid_entry;
941 	u64				time;
942 	u64				id;
943 	u64				stream_id;
944 	struct {
945 		u32	cpu;
946 		u32	reserved;
947 	}				cpu_entry;
948 	struct perf_callchain_entry	*callchain;
949 
950 	/*
951 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
952 	 * on arch details.
953 	 */
954 	struct perf_regs		regs_user;
955 	struct pt_regs			regs_user_copy;
956 
957 	struct perf_regs		regs_intr;
958 	u64				stack_user_size;
959 
960 	u64				phys_addr;
961 } ____cacheline_aligned;
962 
963 /* default value for data source */
964 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
965 		    PERF_MEM_S(LVL, NA)   |\
966 		    PERF_MEM_S(SNOOP, NA) |\
967 		    PERF_MEM_S(LOCK, NA)  |\
968 		    PERF_MEM_S(TLB, NA))
969 
970 static inline void perf_sample_data_init(struct perf_sample_data *data,
971 					 u64 addr, u64 period)
972 {
973 	/* remaining struct members initialized in perf_prepare_sample() */
974 	data->addr = addr;
975 	data->raw  = NULL;
976 	data->br_stack = NULL;
977 	data->period = period;
978 	data->weight = 0;
979 	data->data_src.val = PERF_MEM_NA;
980 	data->txn = 0;
981 }
982 
983 extern void perf_output_sample(struct perf_output_handle *handle,
984 			       struct perf_event_header *header,
985 			       struct perf_sample_data *data,
986 			       struct perf_event *event);
987 extern void perf_prepare_sample(struct perf_event_header *header,
988 				struct perf_sample_data *data,
989 				struct perf_event *event,
990 				struct pt_regs *regs);
991 
992 extern int perf_event_overflow(struct perf_event *event,
993 				 struct perf_sample_data *data,
994 				 struct pt_regs *regs);
995 
996 extern void perf_event_output_forward(struct perf_event *event,
997 				     struct perf_sample_data *data,
998 				     struct pt_regs *regs);
999 extern void perf_event_output_backward(struct perf_event *event,
1000 				       struct perf_sample_data *data,
1001 				       struct pt_regs *regs);
1002 extern int perf_event_output(struct perf_event *event,
1003 			     struct perf_sample_data *data,
1004 			     struct pt_regs *regs);
1005 
1006 static inline bool
1007 is_default_overflow_handler(struct perf_event *event)
1008 {
1009 	if (likely(event->overflow_handler == perf_event_output_forward))
1010 		return true;
1011 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1012 		return true;
1013 	return false;
1014 }
1015 
1016 extern void
1017 perf_event_header__init_id(struct perf_event_header *header,
1018 			   struct perf_sample_data *data,
1019 			   struct perf_event *event);
1020 extern void
1021 perf_event__output_id_sample(struct perf_event *event,
1022 			     struct perf_output_handle *handle,
1023 			     struct perf_sample_data *sample);
1024 
1025 extern void
1026 perf_log_lost_samples(struct perf_event *event, u64 lost);
1027 
1028 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1029 {
1030 	struct perf_event_attr *attr = &event->attr;
1031 
1032 	return attr->exclude_idle || attr->exclude_user ||
1033 	       attr->exclude_kernel || attr->exclude_hv ||
1034 	       attr->exclude_guest || attr->exclude_host;
1035 }
1036 
1037 static inline bool is_sampling_event(struct perf_event *event)
1038 {
1039 	return event->attr.sample_period != 0;
1040 }
1041 
1042 /*
1043  * Return 1 for a software event, 0 for a hardware event
1044  */
1045 static inline int is_software_event(struct perf_event *event)
1046 {
1047 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1048 }
1049 
1050 /*
1051  * Return 1 for event in sw context, 0 for event in hw context
1052  */
1053 static inline int in_software_context(struct perf_event *event)
1054 {
1055 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1056 }
1057 
1058 static inline int is_exclusive_pmu(struct pmu *pmu)
1059 {
1060 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1061 }
1062 
1063 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1064 
1065 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1066 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1067 
1068 #ifndef perf_arch_fetch_caller_regs
1069 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1070 #endif
1071 
1072 /*
1073  * When generating a perf sample in-line, instead of from an interrupt /
1074  * exception, we lack a pt_regs. This is typically used from software events
1075  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1076  *
1077  * We typically don't need a full set, but (for x86) do require:
1078  * - ip for PERF_SAMPLE_IP
1079  * - cs for user_mode() tests
1080  * - sp for PERF_SAMPLE_CALLCHAIN
1081  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1082  *
1083  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1084  * things like PERF_SAMPLE_REGS_INTR.
1085  */
1086 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1087 {
1088 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1089 }
1090 
1091 static __always_inline void
1092 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1093 {
1094 	if (static_key_false(&perf_swevent_enabled[event_id]))
1095 		__perf_sw_event(event_id, nr, regs, addr);
1096 }
1097 
1098 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1099 
1100 /*
1101  * 'Special' version for the scheduler, it hard assumes no recursion,
1102  * which is guaranteed by us not actually scheduling inside other swevents
1103  * because those disable preemption.
1104  */
1105 static __always_inline void
1106 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1107 {
1108 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1109 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1110 
1111 		perf_fetch_caller_regs(regs);
1112 		___perf_sw_event(event_id, nr, regs, addr);
1113 	}
1114 }
1115 
1116 extern struct static_key_false perf_sched_events;
1117 
1118 static __always_inline bool
1119 perf_sw_migrate_enabled(void)
1120 {
1121 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1122 		return true;
1123 	return false;
1124 }
1125 
1126 static inline void perf_event_task_migrate(struct task_struct *task)
1127 {
1128 	if (perf_sw_migrate_enabled())
1129 		task->sched_migrated = 1;
1130 }
1131 
1132 static inline void perf_event_task_sched_in(struct task_struct *prev,
1133 					    struct task_struct *task)
1134 {
1135 	if (static_branch_unlikely(&perf_sched_events))
1136 		__perf_event_task_sched_in(prev, task);
1137 
1138 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1139 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1140 
1141 		perf_fetch_caller_regs(regs);
1142 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1143 		task->sched_migrated = 0;
1144 	}
1145 }
1146 
1147 static inline void perf_event_task_sched_out(struct task_struct *prev,
1148 					     struct task_struct *next)
1149 {
1150 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1151 
1152 	if (static_branch_unlikely(&perf_sched_events))
1153 		__perf_event_task_sched_out(prev, next);
1154 }
1155 
1156 extern void perf_event_mmap(struct vm_area_struct *vma);
1157 
1158 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1159 			       bool unregister, const char *sym);
1160 extern void perf_event_bpf_event(struct bpf_prog *prog,
1161 				 enum perf_bpf_event_type type,
1162 				 u16 flags);
1163 
1164 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1165 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1166 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1167 
1168 extern void perf_event_exec(void);
1169 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1170 extern void perf_event_namespaces(struct task_struct *tsk);
1171 extern void perf_event_fork(struct task_struct *tsk);
1172 
1173 /* Callchains */
1174 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1175 
1176 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1177 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1178 extern struct perf_callchain_entry *
1179 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1180 		   u32 max_stack, bool crosstask, bool add_mark);
1181 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1182 extern int get_callchain_buffers(int max_stack);
1183 extern void put_callchain_buffers(void);
1184 
1185 extern int sysctl_perf_event_max_stack;
1186 extern int sysctl_perf_event_max_contexts_per_stack;
1187 
1188 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1189 {
1190 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1191 		struct perf_callchain_entry *entry = ctx->entry;
1192 		entry->ip[entry->nr++] = ip;
1193 		++ctx->contexts;
1194 		return 0;
1195 	} else {
1196 		ctx->contexts_maxed = true;
1197 		return -1; /* no more room, stop walking the stack */
1198 	}
1199 }
1200 
1201 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1202 {
1203 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1204 		struct perf_callchain_entry *entry = ctx->entry;
1205 		entry->ip[entry->nr++] = ip;
1206 		++ctx->nr;
1207 		return 0;
1208 	} else {
1209 		return -1; /* no more room, stop walking the stack */
1210 	}
1211 }
1212 
1213 extern int sysctl_perf_event_paranoid;
1214 extern int sysctl_perf_event_mlock;
1215 extern int sysctl_perf_event_sample_rate;
1216 extern int sysctl_perf_cpu_time_max_percent;
1217 
1218 extern void perf_sample_event_took(u64 sample_len_ns);
1219 
1220 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1221 		void __user *buffer, size_t *lenp,
1222 		loff_t *ppos);
1223 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1224 		void __user *buffer, size_t *lenp,
1225 		loff_t *ppos);
1226 
1227 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1228 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1229 
1230 static inline bool perf_paranoid_tracepoint_raw(void)
1231 {
1232 	return sysctl_perf_event_paranoid > -1;
1233 }
1234 
1235 static inline bool perf_paranoid_cpu(void)
1236 {
1237 	return sysctl_perf_event_paranoid > 0;
1238 }
1239 
1240 static inline bool perf_paranoid_kernel(void)
1241 {
1242 	return sysctl_perf_event_paranoid > 1;
1243 }
1244 
1245 extern void perf_event_init(void);
1246 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1247 			  int entry_size, struct pt_regs *regs,
1248 			  struct hlist_head *head, int rctx,
1249 			  struct task_struct *task);
1250 extern void perf_bp_event(struct perf_event *event, void *data);
1251 
1252 #ifndef perf_misc_flags
1253 # define perf_misc_flags(regs) \
1254 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1255 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1256 #endif
1257 #ifndef perf_arch_bpf_user_pt_regs
1258 # define perf_arch_bpf_user_pt_regs(regs) regs
1259 #endif
1260 
1261 static inline bool has_branch_stack(struct perf_event *event)
1262 {
1263 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1264 }
1265 
1266 static inline bool needs_branch_stack(struct perf_event *event)
1267 {
1268 	return event->attr.branch_sample_type != 0;
1269 }
1270 
1271 static inline bool has_aux(struct perf_event *event)
1272 {
1273 	return event->pmu->setup_aux;
1274 }
1275 
1276 static inline bool is_write_backward(struct perf_event *event)
1277 {
1278 	return !!event->attr.write_backward;
1279 }
1280 
1281 static inline bool has_addr_filter(struct perf_event *event)
1282 {
1283 	return event->pmu->nr_addr_filters;
1284 }
1285 
1286 /*
1287  * An inherited event uses parent's filters
1288  */
1289 static inline struct perf_addr_filters_head *
1290 perf_event_addr_filters(struct perf_event *event)
1291 {
1292 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1293 
1294 	if (event->parent)
1295 		ifh = &event->parent->addr_filters;
1296 
1297 	return ifh;
1298 }
1299 
1300 extern void perf_event_addr_filters_sync(struct perf_event *event);
1301 
1302 extern int perf_output_begin(struct perf_output_handle *handle,
1303 			     struct perf_event *event, unsigned int size);
1304 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1305 				    struct perf_event *event,
1306 				    unsigned int size);
1307 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1308 				      struct perf_event *event,
1309 				      unsigned int size);
1310 
1311 extern void perf_output_end(struct perf_output_handle *handle);
1312 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1313 			     const void *buf, unsigned int len);
1314 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1315 				     unsigned int len);
1316 extern int perf_swevent_get_recursion_context(void);
1317 extern void perf_swevent_put_recursion_context(int rctx);
1318 extern u64 perf_swevent_set_period(struct perf_event *event);
1319 extern void perf_event_enable(struct perf_event *event);
1320 extern void perf_event_disable(struct perf_event *event);
1321 extern void perf_event_disable_local(struct perf_event *event);
1322 extern void perf_event_disable_inatomic(struct perf_event *event);
1323 extern void perf_event_task_tick(void);
1324 extern int perf_event_account_interrupt(struct perf_event *event);
1325 #else /* !CONFIG_PERF_EVENTS: */
1326 static inline void *
1327 perf_aux_output_begin(struct perf_output_handle *handle,
1328 		      struct perf_event *event)				{ return NULL; }
1329 static inline void
1330 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1331 									{ }
1332 static inline int
1333 perf_aux_output_skip(struct perf_output_handle *handle,
1334 		     unsigned long size)				{ return -EINVAL; }
1335 static inline void *
1336 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1337 static inline void
1338 perf_event_task_migrate(struct task_struct *task)			{ }
1339 static inline void
1340 perf_event_task_sched_in(struct task_struct *prev,
1341 			 struct task_struct *task)			{ }
1342 static inline void
1343 perf_event_task_sched_out(struct task_struct *prev,
1344 			  struct task_struct *next)			{ }
1345 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1346 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1347 static inline void perf_event_free_task(struct task_struct *task)	{ }
1348 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1349 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1350 static inline const struct perf_event *perf_get_event(struct file *file)
1351 {
1352 	return ERR_PTR(-EINVAL);
1353 }
1354 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1355 {
1356 	return ERR_PTR(-EINVAL);
1357 }
1358 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1359 					u64 *enabled, u64 *running)
1360 {
1361 	return -EINVAL;
1362 }
1363 static inline void perf_event_print_debug(void)				{ }
1364 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1365 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1366 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1367 {
1368 	return -EINVAL;
1369 }
1370 
1371 static inline void
1372 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1373 static inline void
1374 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1375 static inline void
1376 perf_bp_event(struct perf_event *event, void *data)			{ }
1377 
1378 static inline int perf_register_guest_info_callbacks
1379 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1380 static inline int perf_unregister_guest_info_callbacks
1381 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1382 
1383 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1384 
1385 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1386 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1387 				      bool unregister, const char *sym)	{ }
1388 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1389 					enum perf_bpf_event_type type,
1390 					u16 flags)			{ }
1391 static inline void perf_event_exec(void)				{ }
1392 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1393 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1394 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1395 static inline void perf_event_init(void)				{ }
1396 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1397 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1398 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1399 static inline void perf_event_enable(struct perf_event *event)		{ }
1400 static inline void perf_event_disable(struct perf_event *event)		{ }
1401 static inline int __perf_event_disable(void *info)			{ return -1; }
1402 static inline void perf_event_task_tick(void)				{ }
1403 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1404 #endif
1405 
1406 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1407 extern void perf_restore_debug_store(void);
1408 #else
1409 static inline void perf_restore_debug_store(void)			{ }
1410 #endif
1411 
1412 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1413 {
1414 	return frag->pad < sizeof(u64);
1415 }
1416 
1417 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1418 
1419 struct perf_pmu_events_attr {
1420 	struct device_attribute attr;
1421 	u64 id;
1422 	const char *event_str;
1423 };
1424 
1425 struct perf_pmu_events_ht_attr {
1426 	struct device_attribute			attr;
1427 	u64					id;
1428 	const char				*event_str_ht;
1429 	const char				*event_str_noht;
1430 };
1431 
1432 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1433 			      char *page);
1434 
1435 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1436 static struct perf_pmu_events_attr _var = {				\
1437 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1438 	.id   =  _id,							\
1439 };
1440 
1441 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1442 static struct perf_pmu_events_attr _var = {				    \
1443 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1444 	.id		= 0,						    \
1445 	.event_str	= _str,						    \
1446 };
1447 
1448 #define PMU_FORMAT_ATTR(_name, _format)					\
1449 static ssize_t								\
1450 _name##_show(struct device *dev,					\
1451 			       struct device_attribute *attr,		\
1452 			       char *page)				\
1453 {									\
1454 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1455 	return sprintf(page, _format "\n");				\
1456 }									\
1457 									\
1458 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1459 
1460 /* Performance counter hotplug functions */
1461 #ifdef CONFIG_PERF_EVENTS
1462 int perf_event_init_cpu(unsigned int cpu);
1463 int perf_event_exit_cpu(unsigned int cpu);
1464 #else
1465 #define perf_event_init_cpu	NULL
1466 #define perf_event_exit_cpu	NULL
1467 #endif
1468 
1469 #endif /* _LINUX_PERF_EVENT_H */
1470