xref: /linux-6.15/include/linux/perf_event.h (revision 93f14468)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/atomic.h>
52 #include <linux/sysfs.h>
53 #include <linux/perf_regs.h>
54 #include <asm/local.h>
55 
56 struct perf_callchain_entry {
57 	__u64				nr;
58 	__u64				ip[PERF_MAX_STACK_DEPTH];
59 };
60 
61 struct perf_raw_record {
62 	u32				size;
63 	void				*data;
64 };
65 
66 /*
67  * single taken branch record layout:
68  *
69  *      from: source instruction (may not always be a branch insn)
70  *        to: branch target
71  *   mispred: branch target was mispredicted
72  * predicted: branch target was predicted
73  *
74  * support for mispred, predicted is optional. In case it
75  * is not supported mispred = predicted = 0.
76  */
77 struct perf_branch_entry {
78 	__u64	from;
79 	__u64	to;
80 	__u64	mispred:1,  /* target mispredicted */
81 		predicted:1,/* target predicted */
82 		reserved:62;
83 };
84 
85 /*
86  * branch stack layout:
87  *  nr: number of taken branches stored in entries[]
88  *
89  * Note that nr can vary from sample to sample
90  * branches (to, from) are stored from most recent
91  * to least recent, i.e., entries[0] contains the most
92  * recent branch.
93  */
94 struct perf_branch_stack {
95 	__u64				nr;
96 	struct perf_branch_entry	entries[0];
97 };
98 
99 struct perf_regs_user {
100 	__u64		abi;
101 	struct pt_regs	*regs;
102 };
103 
104 struct task_struct;
105 
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110 	u64		config;	/* register value */
111 	unsigned int	reg;	/* register address or index */
112 	int		alloc;	/* extra register already allocated */
113 	int		idx;	/* index in shared_regs->regs[] */
114 };
115 
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 	union {
122 		struct { /* hardware */
123 			u64		config;
124 			u64		last_tag;
125 			unsigned long	config_base;
126 			unsigned long	event_base;
127 			int		event_base_rdpmc;
128 			int		idx;
129 			int		last_cpu;
130 			int		flags;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			struct task_struct	*tp_target;
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 #ifdef CONFIG_HAVE_HW_BREAKPOINT
144 		struct { /* breakpoint */
145 			/*
146 			 * Crufty hack to avoid the chicken and egg
147 			 * problem hw_breakpoint has with context
148 			 * creation and event initalization.
149 			 */
150 			struct task_struct		*bp_target;
151 			struct arch_hw_breakpoint	info;
152 			struct list_head		bp_list;
153 		};
154 #endif
155 	};
156 	int				state;
157 	local64_t			prev_count;
158 	u64				sample_period;
159 	u64				last_period;
160 	local64_t			period_left;
161 	u64                             interrupts_seq;
162 	u64				interrupts;
163 
164 	u64				freq_time_stamp;
165 	u64				freq_count_stamp;
166 #endif
167 };
168 
169 /*
170  * hw_perf_event::state flags
171  */
172 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
173 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
174 #define PERF_HES_ARCH		0x04
175 
176 struct perf_event;
177 
178 /*
179  * Common implementation detail of pmu::{start,commit,cancel}_txn
180  */
181 #define PERF_EVENT_TXN 0x1
182 
183 /**
184  * struct pmu - generic performance monitoring unit
185  */
186 struct pmu {
187 	struct list_head		entry;
188 
189 	struct device			*dev;
190 	const struct attribute_group	**attr_groups;
191 	char				*name;
192 	int				type;
193 
194 	int * __percpu			pmu_disable_count;
195 	struct perf_cpu_context * __percpu pmu_cpu_context;
196 	int				task_ctx_nr;
197 
198 	/*
199 	 * Fully disable/enable this PMU, can be used to protect from the PMI
200 	 * as well as for lazy/batch writing of the MSRs.
201 	 */
202 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
203 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
204 
205 	/*
206 	 * Try and initialize the event for this PMU.
207 	 * Should return -ENOENT when the @event doesn't match this PMU.
208 	 */
209 	int (*event_init)		(struct perf_event *event);
210 
211 #define PERF_EF_START	0x01		/* start the counter when adding    */
212 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
213 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
214 
215 	/*
216 	 * Adds/Removes a counter to/from the PMU, can be done inside
217 	 * a transaction, see the ->*_txn() methods.
218 	 */
219 	int  (*add)			(struct perf_event *event, int flags);
220 	void (*del)			(struct perf_event *event, int flags);
221 
222 	/*
223 	 * Starts/Stops a counter present on the PMU. The PMI handler
224 	 * should stop the counter when perf_event_overflow() returns
225 	 * !0. ->start() will be used to continue.
226 	 */
227 	void (*start)			(struct perf_event *event, int flags);
228 	void (*stop)			(struct perf_event *event, int flags);
229 
230 	/*
231 	 * Updates the counter value of the event.
232 	 */
233 	void (*read)			(struct perf_event *event);
234 
235 	/*
236 	 * Group events scheduling is treated as a transaction, add
237 	 * group events as a whole and perform one schedulability test.
238 	 * If the test fails, roll back the whole group
239 	 *
240 	 * Start the transaction, after this ->add() doesn't need to
241 	 * do schedulability tests.
242 	 */
243 	void (*start_txn)		(struct pmu *pmu); /* optional */
244 	/*
245 	 * If ->start_txn() disabled the ->add() schedulability test
246 	 * then ->commit_txn() is required to perform one. On success
247 	 * the transaction is closed. On error the transaction is kept
248 	 * open until ->cancel_txn() is called.
249 	 */
250 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
251 	/*
252 	 * Will cancel the transaction, assumes ->del() is called
253 	 * for each successful ->add() during the transaction.
254 	 */
255 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
256 
257 	/*
258 	 * Will return the value for perf_event_mmap_page::index for this event,
259 	 * if no implementation is provided it will default to: event->hw.idx + 1.
260 	 */
261 	int (*event_idx)		(struct perf_event *event); /*optional */
262 
263 	/*
264 	 * flush branch stack on context-switches (needed in cpu-wide mode)
265 	 */
266 	void (*flush_branch_stack)	(void);
267 };
268 
269 /**
270  * enum perf_event_active_state - the states of a event
271  */
272 enum perf_event_active_state {
273 	PERF_EVENT_STATE_ERROR		= -2,
274 	PERF_EVENT_STATE_OFF		= -1,
275 	PERF_EVENT_STATE_INACTIVE	=  0,
276 	PERF_EVENT_STATE_ACTIVE		=  1,
277 };
278 
279 struct file;
280 struct perf_sample_data;
281 
282 typedef void (*perf_overflow_handler_t)(struct perf_event *,
283 					struct perf_sample_data *,
284 					struct pt_regs *regs);
285 
286 enum perf_group_flag {
287 	PERF_GROUP_SOFTWARE		= 0x1,
288 };
289 
290 #define SWEVENT_HLIST_BITS		8
291 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
292 
293 struct swevent_hlist {
294 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
295 	struct rcu_head			rcu_head;
296 };
297 
298 #define PERF_ATTACH_CONTEXT	0x01
299 #define PERF_ATTACH_GROUP	0x02
300 #define PERF_ATTACH_TASK	0x04
301 
302 struct perf_cgroup;
303 struct ring_buffer;
304 
305 /**
306  * struct perf_event - performance event kernel representation:
307  */
308 struct perf_event {
309 #ifdef CONFIG_PERF_EVENTS
310 	struct list_head		group_entry;
311 	struct list_head		event_entry;
312 	struct list_head		sibling_list;
313 	struct hlist_node		hlist_entry;
314 	int				nr_siblings;
315 	int				group_flags;
316 	struct perf_event		*group_leader;
317 	struct pmu			*pmu;
318 
319 	enum perf_event_active_state	state;
320 	unsigned int			attach_state;
321 	local64_t			count;
322 	atomic64_t			child_count;
323 
324 	/*
325 	 * These are the total time in nanoseconds that the event
326 	 * has been enabled (i.e. eligible to run, and the task has
327 	 * been scheduled in, if this is a per-task event)
328 	 * and running (scheduled onto the CPU), respectively.
329 	 *
330 	 * They are computed from tstamp_enabled, tstamp_running and
331 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
332 	 */
333 	u64				total_time_enabled;
334 	u64				total_time_running;
335 
336 	/*
337 	 * These are timestamps used for computing total_time_enabled
338 	 * and total_time_running when the event is in INACTIVE or
339 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
340 	 * in time.
341 	 * tstamp_enabled: the notional time when the event was enabled
342 	 * tstamp_running: the notional time when the event was scheduled on
343 	 * tstamp_stopped: in INACTIVE state, the notional time when the
344 	 *	event was scheduled off.
345 	 */
346 	u64				tstamp_enabled;
347 	u64				tstamp_running;
348 	u64				tstamp_stopped;
349 
350 	/*
351 	 * timestamp shadows the actual context timing but it can
352 	 * be safely used in NMI interrupt context. It reflects the
353 	 * context time as it was when the event was last scheduled in.
354 	 *
355 	 * ctx_time already accounts for ctx->timestamp. Therefore to
356 	 * compute ctx_time for a sample, simply add perf_clock().
357 	 */
358 	u64				shadow_ctx_time;
359 
360 	struct perf_event_attr		attr;
361 	u16				header_size;
362 	u16				id_header_size;
363 	u16				read_size;
364 	struct hw_perf_event		hw;
365 
366 	struct perf_event_context	*ctx;
367 	atomic_long_t			refcount;
368 
369 	/*
370 	 * These accumulate total time (in nanoseconds) that children
371 	 * events have been enabled and running, respectively.
372 	 */
373 	atomic64_t			child_total_time_enabled;
374 	atomic64_t			child_total_time_running;
375 
376 	/*
377 	 * Protect attach/detach and child_list:
378 	 */
379 	struct mutex			child_mutex;
380 	struct list_head		child_list;
381 	struct perf_event		*parent;
382 
383 	int				oncpu;
384 	int				cpu;
385 
386 	struct list_head		owner_entry;
387 	struct task_struct		*owner;
388 
389 	/* mmap bits */
390 	struct mutex			mmap_mutex;
391 	atomic_t			mmap_count;
392 	int				mmap_locked;
393 	struct user_struct		*mmap_user;
394 	struct ring_buffer		*rb;
395 	struct list_head		rb_entry;
396 
397 	/* poll related */
398 	wait_queue_head_t		waitq;
399 	struct fasync_struct		*fasync;
400 
401 	/* delayed work for NMIs and such */
402 	int				pending_wakeup;
403 	int				pending_kill;
404 	int				pending_disable;
405 	struct irq_work			pending;
406 
407 	atomic_t			event_limit;
408 
409 	void (*destroy)(struct perf_event *);
410 	struct rcu_head			rcu_head;
411 
412 	struct pid_namespace		*ns;
413 	u64				id;
414 
415 	perf_overflow_handler_t		overflow_handler;
416 	void				*overflow_handler_context;
417 
418 #ifdef CONFIG_EVENT_TRACING
419 	struct ftrace_event_call	*tp_event;
420 	struct event_filter		*filter;
421 #ifdef CONFIG_FUNCTION_TRACER
422 	struct ftrace_ops               ftrace_ops;
423 #endif
424 #endif
425 
426 #ifdef CONFIG_CGROUP_PERF
427 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
428 	int				cgrp_defer_enabled;
429 #endif
430 
431 #endif /* CONFIG_PERF_EVENTS */
432 };
433 
434 enum perf_event_context_type {
435 	task_context,
436 	cpu_context,
437 };
438 
439 /**
440  * struct perf_event_context - event context structure
441  *
442  * Used as a container for task events and CPU events as well:
443  */
444 struct perf_event_context {
445 	struct pmu			*pmu;
446 	enum perf_event_context_type	type;
447 	/*
448 	 * Protect the states of the events in the list,
449 	 * nr_active, and the list:
450 	 */
451 	raw_spinlock_t			lock;
452 	/*
453 	 * Protect the list of events.  Locking either mutex or lock
454 	 * is sufficient to ensure the list doesn't change; to change
455 	 * the list you need to lock both the mutex and the spinlock.
456 	 */
457 	struct mutex			mutex;
458 
459 	struct list_head		pinned_groups;
460 	struct list_head		flexible_groups;
461 	struct list_head		event_list;
462 	int				nr_events;
463 	int				nr_active;
464 	int				is_active;
465 	int				nr_stat;
466 	int				nr_freq;
467 	int				rotate_disable;
468 	atomic_t			refcount;
469 	struct task_struct		*task;
470 
471 	/*
472 	 * Context clock, runs when context enabled.
473 	 */
474 	u64				time;
475 	u64				timestamp;
476 
477 	/*
478 	 * These fields let us detect when two contexts have both
479 	 * been cloned (inherited) from a common ancestor.
480 	 */
481 	struct perf_event_context	*parent_ctx;
482 	u64				parent_gen;
483 	u64				generation;
484 	int				pin_count;
485 	int				nr_cgroups;	 /* cgroup evts */
486 	int				nr_branch_stack; /* branch_stack evt */
487 	struct rcu_head			rcu_head;
488 };
489 
490 /*
491  * Number of contexts where an event can trigger:
492  *	task, softirq, hardirq, nmi.
493  */
494 #define PERF_NR_CONTEXTS	4
495 
496 /**
497  * struct perf_event_cpu_context - per cpu event context structure
498  */
499 struct perf_cpu_context {
500 	struct perf_event_context	ctx;
501 	struct perf_event_context	*task_ctx;
502 	int				active_oncpu;
503 	int				exclusive;
504 	struct list_head		rotation_list;
505 	int				jiffies_interval;
506 	struct pmu			*unique_pmu;
507 	struct perf_cgroup		*cgrp;
508 };
509 
510 struct perf_output_handle {
511 	struct perf_event		*event;
512 	struct ring_buffer		*rb;
513 	unsigned long			wakeup;
514 	unsigned long			size;
515 	void				*addr;
516 	int				page;
517 };
518 
519 #ifdef CONFIG_PERF_EVENTS
520 
521 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
522 extern void perf_pmu_unregister(struct pmu *pmu);
523 
524 extern int perf_num_counters(void);
525 extern const char *perf_pmu_name(void);
526 extern void __perf_event_task_sched_in(struct task_struct *prev,
527 				       struct task_struct *task);
528 extern void __perf_event_task_sched_out(struct task_struct *prev,
529 					struct task_struct *next);
530 extern int perf_event_init_task(struct task_struct *child);
531 extern void perf_event_exit_task(struct task_struct *child);
532 extern void perf_event_free_task(struct task_struct *task);
533 extern void perf_event_delayed_put(struct task_struct *task);
534 extern void perf_event_print_debug(void);
535 extern void perf_pmu_disable(struct pmu *pmu);
536 extern void perf_pmu_enable(struct pmu *pmu);
537 extern int perf_event_task_disable(void);
538 extern int perf_event_task_enable(void);
539 extern int perf_event_refresh(struct perf_event *event, int refresh);
540 extern void perf_event_update_userpage(struct perf_event *event);
541 extern int perf_event_release_kernel(struct perf_event *event);
542 extern struct perf_event *
543 perf_event_create_kernel_counter(struct perf_event_attr *attr,
544 				int cpu,
545 				struct task_struct *task,
546 				perf_overflow_handler_t callback,
547 				void *context);
548 extern void perf_pmu_migrate_context(struct pmu *pmu,
549 				int src_cpu, int dst_cpu);
550 extern u64 perf_event_read_value(struct perf_event *event,
551 				 u64 *enabled, u64 *running);
552 
553 
554 struct perf_sample_data {
555 	u64				type;
556 
557 	u64				ip;
558 	struct {
559 		u32	pid;
560 		u32	tid;
561 	}				tid_entry;
562 	u64				time;
563 	u64				addr;
564 	u64				id;
565 	u64				stream_id;
566 	struct {
567 		u32	cpu;
568 		u32	reserved;
569 	}				cpu_entry;
570 	u64				period;
571 	union  perf_mem_data_src	data_src;
572 	struct perf_callchain_entry	*callchain;
573 	struct perf_raw_record		*raw;
574 	struct perf_branch_stack	*br_stack;
575 	struct perf_regs_user		regs_user;
576 	u64				stack_user_size;
577 	u64				weight;
578 };
579 
580 static inline void perf_sample_data_init(struct perf_sample_data *data,
581 					 u64 addr, u64 period)
582 {
583 	/* remaining struct members initialized in perf_prepare_sample() */
584 	data->addr = addr;
585 	data->raw  = NULL;
586 	data->br_stack = NULL;
587 	data->period = period;
588 	data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
589 	data->regs_user.regs = NULL;
590 	data->stack_user_size = 0;
591 	data->weight = 0;
592 	data->data_src.val = 0;
593 }
594 
595 extern void perf_output_sample(struct perf_output_handle *handle,
596 			       struct perf_event_header *header,
597 			       struct perf_sample_data *data,
598 			       struct perf_event *event);
599 extern void perf_prepare_sample(struct perf_event_header *header,
600 				struct perf_sample_data *data,
601 				struct perf_event *event,
602 				struct pt_regs *regs);
603 
604 extern int perf_event_overflow(struct perf_event *event,
605 				 struct perf_sample_data *data,
606 				 struct pt_regs *regs);
607 
608 static inline bool is_sampling_event(struct perf_event *event)
609 {
610 	return event->attr.sample_period != 0;
611 }
612 
613 /*
614  * Return 1 for a software event, 0 for a hardware event
615  */
616 static inline int is_software_event(struct perf_event *event)
617 {
618 	return event->pmu->task_ctx_nr == perf_sw_context;
619 }
620 
621 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
622 
623 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
624 
625 #ifndef perf_arch_fetch_caller_regs
626 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
627 #endif
628 
629 /*
630  * Take a snapshot of the regs. Skip ip and frame pointer to
631  * the nth caller. We only need a few of the regs:
632  * - ip for PERF_SAMPLE_IP
633  * - cs for user_mode() tests
634  * - bp for callchains
635  * - eflags, for future purposes, just in case
636  */
637 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
638 {
639 	memset(regs, 0, sizeof(*regs));
640 
641 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
642 }
643 
644 static __always_inline void
645 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
646 {
647 	struct pt_regs hot_regs;
648 
649 	if (static_key_false(&perf_swevent_enabled[event_id])) {
650 		if (!regs) {
651 			perf_fetch_caller_regs(&hot_regs);
652 			regs = &hot_regs;
653 		}
654 		__perf_sw_event(event_id, nr, regs, addr);
655 	}
656 }
657 
658 extern struct static_key_deferred perf_sched_events;
659 
660 static inline void perf_event_task_sched_in(struct task_struct *prev,
661 					    struct task_struct *task)
662 {
663 	if (static_key_false(&perf_sched_events.key))
664 		__perf_event_task_sched_in(prev, task);
665 }
666 
667 static inline void perf_event_task_sched_out(struct task_struct *prev,
668 					     struct task_struct *next)
669 {
670 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
671 
672 	if (static_key_false(&perf_sched_events.key))
673 		__perf_event_task_sched_out(prev, next);
674 }
675 
676 extern void perf_event_mmap(struct vm_area_struct *vma);
677 extern struct perf_guest_info_callbacks *perf_guest_cbs;
678 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
679 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
680 
681 extern void perf_event_comm(struct task_struct *tsk);
682 extern void perf_event_fork(struct task_struct *tsk);
683 
684 /* Callchains */
685 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
686 
687 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
688 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
689 
690 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
691 {
692 	if (entry->nr < PERF_MAX_STACK_DEPTH)
693 		entry->ip[entry->nr++] = ip;
694 }
695 
696 extern int sysctl_perf_event_paranoid;
697 extern int sysctl_perf_event_mlock;
698 extern int sysctl_perf_event_sample_rate;
699 
700 extern int perf_proc_update_handler(struct ctl_table *table, int write,
701 		void __user *buffer, size_t *lenp,
702 		loff_t *ppos);
703 
704 static inline bool perf_paranoid_tracepoint_raw(void)
705 {
706 	return sysctl_perf_event_paranoid > -1;
707 }
708 
709 static inline bool perf_paranoid_cpu(void)
710 {
711 	return sysctl_perf_event_paranoid > 0;
712 }
713 
714 static inline bool perf_paranoid_kernel(void)
715 {
716 	return sysctl_perf_event_paranoid > 1;
717 }
718 
719 extern void perf_event_init(void);
720 extern void perf_tp_event(u64 addr, u64 count, void *record,
721 			  int entry_size, struct pt_regs *regs,
722 			  struct hlist_head *head, int rctx,
723 			  struct task_struct *task);
724 extern void perf_bp_event(struct perf_event *event, void *data);
725 
726 #ifndef perf_misc_flags
727 # define perf_misc_flags(regs) \
728 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
729 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
730 #endif
731 
732 static inline bool has_branch_stack(struct perf_event *event)
733 {
734 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
735 }
736 
737 extern int perf_output_begin(struct perf_output_handle *handle,
738 			     struct perf_event *event, unsigned int size);
739 extern void perf_output_end(struct perf_output_handle *handle);
740 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
741 			     const void *buf, unsigned int len);
742 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
743 				     unsigned int len);
744 extern int perf_swevent_get_recursion_context(void);
745 extern void perf_swevent_put_recursion_context(int rctx);
746 extern void perf_event_enable(struct perf_event *event);
747 extern void perf_event_disable(struct perf_event *event);
748 extern int __perf_event_disable(void *info);
749 extern void perf_event_task_tick(void);
750 #else
751 static inline void
752 perf_event_task_sched_in(struct task_struct *prev,
753 			 struct task_struct *task)			{ }
754 static inline void
755 perf_event_task_sched_out(struct task_struct *prev,
756 			  struct task_struct *next)			{ }
757 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
758 static inline void perf_event_exit_task(struct task_struct *child)	{ }
759 static inline void perf_event_free_task(struct task_struct *task)	{ }
760 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
761 static inline void perf_event_print_debug(void)				{ }
762 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
763 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
764 static inline int perf_event_refresh(struct perf_event *event, int refresh)
765 {
766 	return -EINVAL;
767 }
768 
769 static inline void
770 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
771 static inline void
772 perf_bp_event(struct perf_event *event, void *data)			{ }
773 
774 static inline int perf_register_guest_info_callbacks
775 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
776 static inline int perf_unregister_guest_info_callbacks
777 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
778 
779 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
780 static inline void perf_event_comm(struct task_struct *tsk)		{ }
781 static inline void perf_event_fork(struct task_struct *tsk)		{ }
782 static inline void perf_event_init(void)				{ }
783 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
784 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
785 static inline void perf_event_enable(struct perf_event *event)		{ }
786 static inline void perf_event_disable(struct perf_event *event)		{ }
787 static inline int __perf_event_disable(void *info)			{ return -1; }
788 static inline void perf_event_task_tick(void)				{ }
789 #endif
790 
791 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
792 extern bool perf_event_can_stop_tick(void);
793 #else
794 static inline bool perf_event_can_stop_tick(void)			{ return true; }
795 #endif
796 
797 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
798 extern void perf_restore_debug_store(void);
799 #else
800 static inline void perf_restore_debug_store(void)			{ }
801 #endif
802 
803 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
804 
805 /*
806  * This has to have a higher priority than migration_notifier in sched.c.
807  */
808 #define perf_cpu_notifier(fn)						\
809 do {									\
810 	static struct notifier_block fn##_nb __cpuinitdata =		\
811 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
812 	unsigned long cpu = smp_processor_id();				\
813 	unsigned long flags;						\
814 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
815 		(void *)(unsigned long)cpu);				\
816 	local_irq_save(flags);						\
817 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
818 		(void *)(unsigned long)cpu);				\
819 	local_irq_restore(flags);					\
820 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
821 		(void *)(unsigned long)cpu);				\
822 	register_cpu_notifier(&fn##_nb);				\
823 } while (0)
824 
825 
826 struct perf_pmu_events_attr {
827 	struct device_attribute attr;
828 	u64 id;
829 	const char *event_str;
830 };
831 
832 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
833 static struct perf_pmu_events_attr _var = {				\
834 	.attr = __ATTR(_name, 0444, _show, NULL),			\
835 	.id   =  _id,							\
836 };
837 
838 #define PMU_FORMAT_ATTR(_name, _format)					\
839 static ssize_t								\
840 _name##_show(struct device *dev,					\
841 			       struct device_attribute *attr,		\
842 			       char *page)				\
843 {									\
844 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
845 	return sprintf(page, _format "\n");				\
846 }									\
847 									\
848 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
849 
850 #endif /* _LINUX_PERF_EVENT_H */
851