xref: /linux-6.15/include/linux/perf_event.h (revision 90bb7664)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 				     unsigned long off, unsigned long len);
74 
75 struct perf_raw_frag {
76 	union {
77 		struct perf_raw_frag	*next;
78 		unsigned long		pad;
79 	};
80 	perf_copy_f			copy;
81 	void				*data;
82 	u32				size;
83 } __packed;
84 
85 struct perf_raw_record {
86 	struct perf_raw_frag		frag;
87 	u32				size;
88 };
89 
90 /*
91  * branch stack layout:
92  *  nr: number of taken branches stored in entries[]
93  *
94  * Note that nr can vary from sample to sample
95  * branches (to, from) are stored from most recent
96  * to least recent, i.e., entries[0] contains the most
97  * recent branch.
98  */
99 struct perf_branch_stack {
100 	__u64				nr;
101 	struct perf_branch_entry	entries[0];
102 };
103 
104 struct task_struct;
105 
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110 	u64		config;	/* register value */
111 	unsigned int	reg;	/* register address or index */
112 	int		alloc;	/* extra register already allocated */
113 	int		idx;	/* index in shared_regs->regs[] */
114 };
115 
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 	union {
122 		struct { /* hardware */
123 			u64		config;
124 			u64		last_tag;
125 			unsigned long	config_base;
126 			unsigned long	event_base;
127 			int		event_base_rdpmc;
128 			int		idx;
129 			int		last_cpu;
130 			int		flags;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			/* for tp_event->class */
140 			struct list_head	tp_list;
141 		};
142 		struct { /* intel_cqm */
143 			int			cqm_state;
144 			u32			cqm_rmid;
145 			int			is_group_event;
146 			struct list_head	cqm_events_entry;
147 			struct list_head	cqm_groups_entry;
148 			struct list_head	cqm_group_entry;
149 		};
150 		struct { /* itrace */
151 			int			itrace_started;
152 		};
153 		struct { /* amd_power */
154 			u64	pwr_acc;
155 			u64	ptsc;
156 		};
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 		struct { /* breakpoint */
159 			/*
160 			 * Crufty hack to avoid the chicken and egg
161 			 * problem hw_breakpoint has with context
162 			 * creation and event initalization.
163 			 */
164 			struct arch_hw_breakpoint	info;
165 			struct list_head		bp_list;
166 		};
167 #endif
168 		struct { /* amd_iommu */
169 			u8	iommu_bank;
170 			u8	iommu_cntr;
171 			u16	padding;
172 			u64	conf;
173 			u64	conf1;
174 		};
175 	};
176 	/*
177 	 * If the event is a per task event, this will point to the task in
178 	 * question. See the comment in perf_event_alloc().
179 	 */
180 	struct task_struct		*target;
181 
182 	/*
183 	 * PMU would store hardware filter configuration
184 	 * here.
185 	 */
186 	void				*addr_filters;
187 
188 	/* Last sync'ed generation of filters */
189 	unsigned long			addr_filters_gen;
190 
191 /*
192  * hw_perf_event::state flags; used to track the PERF_EF_* state.
193  */
194 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
195 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
196 #define PERF_HES_ARCH		0x04
197 
198 	int				state;
199 
200 	/*
201 	 * The last observed hardware counter value, updated with a
202 	 * local64_cmpxchg() such that pmu::read() can be called nested.
203 	 */
204 	local64_t			prev_count;
205 
206 	/*
207 	 * The period to start the next sample with.
208 	 */
209 	u64				sample_period;
210 
211 	/*
212 	 * The period we started this sample with.
213 	 */
214 	u64				last_period;
215 
216 	/*
217 	 * However much is left of the current period; note that this is
218 	 * a full 64bit value and allows for generation of periods longer
219 	 * than hardware might allow.
220 	 */
221 	local64_t			period_left;
222 
223 	/*
224 	 * State for throttling the event, see __perf_event_overflow() and
225 	 * perf_adjust_freq_unthr_context().
226 	 */
227 	u64                             interrupts_seq;
228 	u64				interrupts;
229 
230 	/*
231 	 * State for freq target events, see __perf_event_overflow() and
232 	 * perf_adjust_freq_unthr_context().
233 	 */
234 	u64				freq_time_stamp;
235 	u64				freq_count_stamp;
236 #endif
237 };
238 
239 struct perf_event;
240 
241 /*
242  * Common implementation detail of pmu::{start,commit,cancel}_txn
243  */
244 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
245 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
246 
247 /**
248  * pmu::capabilities flags
249  */
250 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
251 #define PERF_PMU_CAP_NO_NMI			0x02
252 #define PERF_PMU_CAP_AUX_NO_SG			0x04
253 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
254 #define PERF_PMU_CAP_EXCLUSIVE			0x10
255 #define PERF_PMU_CAP_ITRACE			0x20
256 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
257 
258 /**
259  * struct pmu - generic performance monitoring unit
260  */
261 struct pmu {
262 	struct list_head		entry;
263 
264 	struct module			*module;
265 	struct device			*dev;
266 	const struct attribute_group	**attr_groups;
267 	const char			*name;
268 	int				type;
269 
270 	/*
271 	 * various common per-pmu feature flags
272 	 */
273 	int				capabilities;
274 
275 	int * __percpu			pmu_disable_count;
276 	struct perf_cpu_context * __percpu pmu_cpu_context;
277 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
278 	int				task_ctx_nr;
279 	int				hrtimer_interval_ms;
280 
281 	/* number of address filters this PMU can do */
282 	unsigned int			nr_addr_filters;
283 
284 	/*
285 	 * Fully disable/enable this PMU, can be used to protect from the PMI
286 	 * as well as for lazy/batch writing of the MSRs.
287 	 */
288 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
289 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
290 
291 	/*
292 	 * Try and initialize the event for this PMU.
293 	 *
294 	 * Returns:
295 	 *  -ENOENT	-- @event is not for this PMU
296 	 *
297 	 *  -ENODEV	-- @event is for this PMU but PMU not present
298 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
299 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
300 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
301 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
302 	 *
303 	 *  0		-- @event is for this PMU and valid
304 	 *
305 	 * Other error return values are allowed.
306 	 */
307 	int (*event_init)		(struct perf_event *event);
308 
309 	/*
310 	 * Notification that the event was mapped or unmapped.  Called
311 	 * in the context of the mapping task.
312 	 */
313 	void (*event_mapped)		(struct perf_event *event); /*optional*/
314 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
315 
316 	/*
317 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
318 	 * matching hw_perf_event::state flags.
319 	 */
320 #define PERF_EF_START	0x01		/* start the counter when adding    */
321 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
322 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
323 
324 	/*
325 	 * Adds/Removes a counter to/from the PMU, can be done inside a
326 	 * transaction, see the ->*_txn() methods.
327 	 *
328 	 * The add/del callbacks will reserve all hardware resources required
329 	 * to service the event, this includes any counter constraint
330 	 * scheduling etc.
331 	 *
332 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
333 	 * is on.
334 	 *
335 	 * ->add() called without PERF_EF_START should result in the same state
336 	 *  as ->add() followed by ->stop().
337 	 *
338 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
339 	 *  ->stop() that must deal with already being stopped without
340 	 *  PERF_EF_UPDATE.
341 	 */
342 	int  (*add)			(struct perf_event *event, int flags);
343 	void (*del)			(struct perf_event *event, int flags);
344 
345 	/*
346 	 * Starts/Stops a counter present on the PMU.
347 	 *
348 	 * The PMI handler should stop the counter when perf_event_overflow()
349 	 * returns !0. ->start() will be used to continue.
350 	 *
351 	 * Also used to change the sample period.
352 	 *
353 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
354 	 * is on -- will be called from NMI context with the PMU generates
355 	 * NMIs.
356 	 *
357 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
358 	 *  period/count values like ->read() would.
359 	 *
360 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
361 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
362 	 */
363 	void (*start)			(struct perf_event *event, int flags);
364 	void (*stop)			(struct perf_event *event, int flags);
365 
366 	/*
367 	 * Updates the counter value of the event.
368 	 *
369 	 * For sampling capable PMUs this will also update the software period
370 	 * hw_perf_event::period_left field.
371 	 */
372 	void (*read)			(struct perf_event *event);
373 
374 	/*
375 	 * Group events scheduling is treated as a transaction, add
376 	 * group events as a whole and perform one schedulability test.
377 	 * If the test fails, roll back the whole group
378 	 *
379 	 * Start the transaction, after this ->add() doesn't need to
380 	 * do schedulability tests.
381 	 *
382 	 * Optional.
383 	 */
384 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
385 	/*
386 	 * If ->start_txn() disabled the ->add() schedulability test
387 	 * then ->commit_txn() is required to perform one. On success
388 	 * the transaction is closed. On error the transaction is kept
389 	 * open until ->cancel_txn() is called.
390 	 *
391 	 * Optional.
392 	 */
393 	int  (*commit_txn)		(struct pmu *pmu);
394 	/*
395 	 * Will cancel the transaction, assumes ->del() is called
396 	 * for each successful ->add() during the transaction.
397 	 *
398 	 * Optional.
399 	 */
400 	void (*cancel_txn)		(struct pmu *pmu);
401 
402 	/*
403 	 * Will return the value for perf_event_mmap_page::index for this event,
404 	 * if no implementation is provided it will default to: event->hw.idx + 1.
405 	 */
406 	int (*event_idx)		(struct perf_event *event); /*optional */
407 
408 	/*
409 	 * context-switches callback
410 	 */
411 	void (*sched_task)		(struct perf_event_context *ctx,
412 					bool sched_in);
413 	/*
414 	 * PMU specific data size
415 	 */
416 	size_t				task_ctx_size;
417 
418 
419 	/*
420 	 * Return the count value for a counter.
421 	 */
422 	u64 (*count)			(struct perf_event *event); /*optional*/
423 
424 	/*
425 	 * Set up pmu-private data structures for an AUX area
426 	 */
427 	void *(*setup_aux)		(int cpu, void **pages,
428 					 int nr_pages, bool overwrite);
429 					/* optional */
430 
431 	/*
432 	 * Free pmu-private AUX data structures
433 	 */
434 	void (*free_aux)		(void *aux); /* optional */
435 
436 	/*
437 	 * Validate address range filters: make sure the HW supports the
438 	 * requested configuration and number of filters; return 0 if the
439 	 * supplied filters are valid, -errno otherwise.
440 	 *
441 	 * Runs in the context of the ioctl()ing process and is not serialized
442 	 * with the rest of the PMU callbacks.
443 	 */
444 	int (*addr_filters_validate)	(struct list_head *filters);
445 					/* optional */
446 
447 	/*
448 	 * Synchronize address range filter configuration:
449 	 * translate hw-agnostic filters into hardware configuration in
450 	 * event::hw::addr_filters.
451 	 *
452 	 * Runs as a part of filter sync sequence that is done in ->start()
453 	 * callback by calling perf_event_addr_filters_sync().
454 	 *
455 	 * May (and should) traverse event::addr_filters::list, for which its
456 	 * caller provides necessary serialization.
457 	 */
458 	void (*addr_filters_sync)	(struct perf_event *event);
459 					/* optional */
460 
461 	/*
462 	 * Filter events for PMU-specific reasons.
463 	 */
464 	int (*filter_match)		(struct perf_event *event); /* optional */
465 };
466 
467 /**
468  * struct perf_addr_filter - address range filter definition
469  * @entry:	event's filter list linkage
470  * @inode:	object file's inode for file-based filters
471  * @offset:	filter range offset
472  * @size:	filter range size
473  * @range:	1: range, 0: address
474  * @filter:	1: filter/start, 0: stop
475  *
476  * This is a hardware-agnostic filter configuration as specified by the user.
477  */
478 struct perf_addr_filter {
479 	struct list_head	entry;
480 	struct inode		*inode;
481 	unsigned long		offset;
482 	unsigned long		size;
483 	unsigned int		range	: 1,
484 				filter	: 1;
485 };
486 
487 /**
488  * struct perf_addr_filters_head - container for address range filters
489  * @list:	list of filters for this event
490  * @lock:	spinlock that serializes accesses to the @list and event's
491  *		(and its children's) filter generations.
492  * @nr_file_filters:	number of file-based filters
493  *
494  * A child event will use parent's @list (and therefore @lock), so they are
495  * bundled together; see perf_event_addr_filters().
496  */
497 struct perf_addr_filters_head {
498 	struct list_head	list;
499 	raw_spinlock_t		lock;
500 	unsigned int		nr_file_filters;
501 };
502 
503 /**
504  * enum perf_event_active_state - the states of a event
505  */
506 enum perf_event_active_state {
507 	PERF_EVENT_STATE_DEAD		= -4,
508 	PERF_EVENT_STATE_EXIT		= -3,
509 	PERF_EVENT_STATE_ERROR		= -2,
510 	PERF_EVENT_STATE_OFF		= -1,
511 	PERF_EVENT_STATE_INACTIVE	=  0,
512 	PERF_EVENT_STATE_ACTIVE		=  1,
513 };
514 
515 struct file;
516 struct perf_sample_data;
517 
518 typedef void (*perf_overflow_handler_t)(struct perf_event *,
519 					struct perf_sample_data *,
520 					struct pt_regs *regs);
521 
522 /*
523  * Event capabilities. For event_caps and groups caps.
524  *
525  * PERF_EV_CAP_SOFTWARE: Is a software event.
526  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
527  * from any CPU in the package where it is active.
528  */
529 #define PERF_EV_CAP_SOFTWARE		BIT(0)
530 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
531 
532 #define SWEVENT_HLIST_BITS		8
533 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
534 
535 struct swevent_hlist {
536 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
537 	struct rcu_head			rcu_head;
538 };
539 
540 #define PERF_ATTACH_CONTEXT	0x01
541 #define PERF_ATTACH_GROUP	0x02
542 #define PERF_ATTACH_TASK	0x04
543 #define PERF_ATTACH_TASK_DATA	0x08
544 
545 struct perf_cgroup;
546 struct ring_buffer;
547 
548 struct pmu_event_list {
549 	raw_spinlock_t		lock;
550 	struct list_head	list;
551 };
552 
553 /**
554  * struct perf_event - performance event kernel representation:
555  */
556 struct perf_event {
557 #ifdef CONFIG_PERF_EVENTS
558 	/*
559 	 * entry onto perf_event_context::event_list;
560 	 *   modifications require ctx->lock
561 	 *   RCU safe iterations.
562 	 */
563 	struct list_head		event_entry;
564 
565 	/*
566 	 * XXX: group_entry and sibling_list should be mutually exclusive;
567 	 * either you're a sibling on a group, or you're the group leader.
568 	 * Rework the code to always use the same list element.
569 	 *
570 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
571 	 * either sufficies for read.
572 	 */
573 	struct list_head		group_entry;
574 	struct list_head		sibling_list;
575 
576 	/*
577 	 * We need storage to track the entries in perf_pmu_migrate_context; we
578 	 * cannot use the event_entry because of RCU and we want to keep the
579 	 * group in tact which avoids us using the other two entries.
580 	 */
581 	struct list_head		migrate_entry;
582 
583 	struct hlist_node		hlist_entry;
584 	struct list_head		active_entry;
585 	int				nr_siblings;
586 
587 	/* Not serialized. Only written during event initialization. */
588 	int				event_caps;
589 	/* The cumulative AND of all event_caps for events in this group. */
590 	int				group_caps;
591 
592 	struct perf_event		*group_leader;
593 	struct pmu			*pmu;
594 	void				*pmu_private;
595 
596 	enum perf_event_active_state	state;
597 	unsigned int			attach_state;
598 	local64_t			count;
599 	atomic64_t			child_count;
600 
601 	/*
602 	 * These are the total time in nanoseconds that the event
603 	 * has been enabled (i.e. eligible to run, and the task has
604 	 * been scheduled in, if this is a per-task event)
605 	 * and running (scheduled onto the CPU), respectively.
606 	 *
607 	 * They are computed from tstamp_enabled, tstamp_running and
608 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
609 	 */
610 	u64				total_time_enabled;
611 	u64				total_time_running;
612 
613 	/*
614 	 * These are timestamps used for computing total_time_enabled
615 	 * and total_time_running when the event is in INACTIVE or
616 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
617 	 * in time.
618 	 * tstamp_enabled: the notional time when the event was enabled
619 	 * tstamp_running: the notional time when the event was scheduled on
620 	 * tstamp_stopped: in INACTIVE state, the notional time when the
621 	 *	event was scheduled off.
622 	 */
623 	u64				tstamp_enabled;
624 	u64				tstamp_running;
625 	u64				tstamp_stopped;
626 
627 	/*
628 	 * timestamp shadows the actual context timing but it can
629 	 * be safely used in NMI interrupt context. It reflects the
630 	 * context time as it was when the event was last scheduled in.
631 	 *
632 	 * ctx_time already accounts for ctx->timestamp. Therefore to
633 	 * compute ctx_time for a sample, simply add perf_clock().
634 	 */
635 	u64				shadow_ctx_time;
636 
637 	struct perf_event_attr		attr;
638 	u16				header_size;
639 	u16				id_header_size;
640 	u16				read_size;
641 	struct hw_perf_event		hw;
642 
643 	struct perf_event_context	*ctx;
644 	atomic_long_t			refcount;
645 
646 	/*
647 	 * These accumulate total time (in nanoseconds) that children
648 	 * events have been enabled and running, respectively.
649 	 */
650 	atomic64_t			child_total_time_enabled;
651 	atomic64_t			child_total_time_running;
652 
653 	/*
654 	 * Protect attach/detach and child_list:
655 	 */
656 	struct mutex			child_mutex;
657 	struct list_head		child_list;
658 	struct perf_event		*parent;
659 
660 	int				oncpu;
661 	int				cpu;
662 
663 	struct list_head		owner_entry;
664 	struct task_struct		*owner;
665 
666 	/* mmap bits */
667 	struct mutex			mmap_mutex;
668 	atomic_t			mmap_count;
669 
670 	struct ring_buffer		*rb;
671 	struct list_head		rb_entry;
672 	unsigned long			rcu_batches;
673 	int				rcu_pending;
674 
675 	/* poll related */
676 	wait_queue_head_t		waitq;
677 	struct fasync_struct		*fasync;
678 
679 	/* delayed work for NMIs and such */
680 	int				pending_wakeup;
681 	int				pending_kill;
682 	int				pending_disable;
683 	struct irq_work			pending;
684 
685 	atomic_t			event_limit;
686 
687 	/* address range filters */
688 	struct perf_addr_filters_head	addr_filters;
689 	/* vma address array for file-based filders */
690 	unsigned long			*addr_filters_offs;
691 	unsigned long			addr_filters_gen;
692 
693 	void (*destroy)(struct perf_event *);
694 	struct rcu_head			rcu_head;
695 
696 	struct pid_namespace		*ns;
697 	u64				id;
698 
699 	u64				(*clock)(void);
700 	perf_overflow_handler_t		overflow_handler;
701 	void				*overflow_handler_context;
702 #ifdef CONFIG_BPF_SYSCALL
703 	perf_overflow_handler_t		orig_overflow_handler;
704 	struct bpf_prog			*prog;
705 #endif
706 
707 #ifdef CONFIG_EVENT_TRACING
708 	struct trace_event_call		*tp_event;
709 	struct event_filter		*filter;
710 #ifdef CONFIG_FUNCTION_TRACER
711 	struct ftrace_ops               ftrace_ops;
712 #endif
713 #endif
714 
715 #ifdef CONFIG_CGROUP_PERF
716 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
717 	int				cgrp_defer_enabled;
718 #endif
719 
720 	struct list_head		sb_list;
721 #endif /* CONFIG_PERF_EVENTS */
722 };
723 
724 /**
725  * struct perf_event_context - event context structure
726  *
727  * Used as a container for task events and CPU events as well:
728  */
729 struct perf_event_context {
730 	struct pmu			*pmu;
731 	/*
732 	 * Protect the states of the events in the list,
733 	 * nr_active, and the list:
734 	 */
735 	raw_spinlock_t			lock;
736 	/*
737 	 * Protect the list of events.  Locking either mutex or lock
738 	 * is sufficient to ensure the list doesn't change; to change
739 	 * the list you need to lock both the mutex and the spinlock.
740 	 */
741 	struct mutex			mutex;
742 
743 	struct list_head		active_ctx_list;
744 	struct list_head		pinned_groups;
745 	struct list_head		flexible_groups;
746 	struct list_head		event_list;
747 	int				nr_events;
748 	int				nr_active;
749 	int				is_active;
750 	int				nr_stat;
751 	int				nr_freq;
752 	int				rotate_disable;
753 	atomic_t			refcount;
754 	struct task_struct		*task;
755 
756 	/*
757 	 * Context clock, runs when context enabled.
758 	 */
759 	u64				time;
760 	u64				timestamp;
761 
762 	/*
763 	 * These fields let us detect when two contexts have both
764 	 * been cloned (inherited) from a common ancestor.
765 	 */
766 	struct perf_event_context	*parent_ctx;
767 	u64				parent_gen;
768 	u64				generation;
769 	int				pin_count;
770 #ifdef CONFIG_CGROUP_PERF
771 	int				nr_cgroups;	 /* cgroup evts */
772 #endif
773 	void				*task_ctx_data; /* pmu specific data */
774 	struct rcu_head			rcu_head;
775 };
776 
777 /*
778  * Number of contexts where an event can trigger:
779  *	task, softirq, hardirq, nmi.
780  */
781 #define PERF_NR_CONTEXTS	4
782 
783 /**
784  * struct perf_event_cpu_context - per cpu event context structure
785  */
786 struct perf_cpu_context {
787 	struct perf_event_context	ctx;
788 	struct perf_event_context	*task_ctx;
789 	int				active_oncpu;
790 	int				exclusive;
791 
792 	raw_spinlock_t			hrtimer_lock;
793 	struct hrtimer			hrtimer;
794 	ktime_t				hrtimer_interval;
795 	unsigned int			hrtimer_active;
796 
797 #ifdef CONFIG_CGROUP_PERF
798 	struct perf_cgroup		*cgrp;
799 	struct list_head		cgrp_cpuctx_entry;
800 #endif
801 
802 	struct list_head		sched_cb_entry;
803 	int				sched_cb_usage;
804 };
805 
806 struct perf_output_handle {
807 	struct perf_event		*event;
808 	struct ring_buffer		*rb;
809 	unsigned long			wakeup;
810 	unsigned long			size;
811 	u64				aux_flags;
812 	union {
813 		void			*addr;
814 		unsigned long		head;
815 	};
816 	int				page;
817 };
818 
819 struct bpf_perf_event_data_kern {
820 	struct pt_regs *regs;
821 	struct perf_sample_data *data;
822 };
823 
824 #ifdef CONFIG_CGROUP_PERF
825 
826 /*
827  * perf_cgroup_info keeps track of time_enabled for a cgroup.
828  * This is a per-cpu dynamically allocated data structure.
829  */
830 struct perf_cgroup_info {
831 	u64				time;
832 	u64				timestamp;
833 };
834 
835 struct perf_cgroup {
836 	struct cgroup_subsys_state	css;
837 	struct perf_cgroup_info	__percpu *info;
838 };
839 
840 /*
841  * Must ensure cgroup is pinned (css_get) before calling
842  * this function. In other words, we cannot call this function
843  * if there is no cgroup event for the current CPU context.
844  */
845 static inline struct perf_cgroup *
846 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
847 {
848 	return container_of(task_css_check(task, perf_event_cgrp_id,
849 					   ctx ? lockdep_is_held(&ctx->lock)
850 					       : true),
851 			    struct perf_cgroup, css);
852 }
853 #endif /* CONFIG_CGROUP_PERF */
854 
855 #ifdef CONFIG_PERF_EVENTS
856 
857 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
858 				   struct perf_event *event);
859 extern void perf_aux_output_end(struct perf_output_handle *handle,
860 				unsigned long size);
861 extern int perf_aux_output_skip(struct perf_output_handle *handle,
862 				unsigned long size);
863 extern void *perf_get_aux(struct perf_output_handle *handle);
864 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
865 
866 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
867 extern void perf_pmu_unregister(struct pmu *pmu);
868 
869 extern int perf_num_counters(void);
870 extern const char *perf_pmu_name(void);
871 extern void __perf_event_task_sched_in(struct task_struct *prev,
872 				       struct task_struct *task);
873 extern void __perf_event_task_sched_out(struct task_struct *prev,
874 					struct task_struct *next);
875 extern int perf_event_init_task(struct task_struct *child);
876 extern void perf_event_exit_task(struct task_struct *child);
877 extern void perf_event_free_task(struct task_struct *task);
878 extern void perf_event_delayed_put(struct task_struct *task);
879 extern struct file *perf_event_get(unsigned int fd);
880 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
881 extern void perf_event_print_debug(void);
882 extern void perf_pmu_disable(struct pmu *pmu);
883 extern void perf_pmu_enable(struct pmu *pmu);
884 extern void perf_sched_cb_dec(struct pmu *pmu);
885 extern void perf_sched_cb_inc(struct pmu *pmu);
886 extern int perf_event_task_disable(void);
887 extern int perf_event_task_enable(void);
888 extern int perf_event_refresh(struct perf_event *event, int refresh);
889 extern void perf_event_update_userpage(struct perf_event *event);
890 extern int perf_event_release_kernel(struct perf_event *event);
891 extern struct perf_event *
892 perf_event_create_kernel_counter(struct perf_event_attr *attr,
893 				int cpu,
894 				struct task_struct *task,
895 				perf_overflow_handler_t callback,
896 				void *context);
897 extern void perf_pmu_migrate_context(struct pmu *pmu,
898 				int src_cpu, int dst_cpu);
899 extern u64 perf_event_read_local(struct perf_event *event);
900 extern u64 perf_event_read_value(struct perf_event *event,
901 				 u64 *enabled, u64 *running);
902 
903 
904 struct perf_sample_data {
905 	/*
906 	 * Fields set by perf_sample_data_init(), group so as to
907 	 * minimize the cachelines touched.
908 	 */
909 	u64				addr;
910 	struct perf_raw_record		*raw;
911 	struct perf_branch_stack	*br_stack;
912 	u64				period;
913 	u64				weight;
914 	u64				txn;
915 	union  perf_mem_data_src	data_src;
916 
917 	/*
918 	 * The other fields, optionally {set,used} by
919 	 * perf_{prepare,output}_sample().
920 	 */
921 	u64				type;
922 	u64				ip;
923 	struct {
924 		u32	pid;
925 		u32	tid;
926 	}				tid_entry;
927 	u64				time;
928 	u64				id;
929 	u64				stream_id;
930 	struct {
931 		u32	cpu;
932 		u32	reserved;
933 	}				cpu_entry;
934 	struct perf_callchain_entry	*callchain;
935 
936 	/*
937 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
938 	 * on arch details.
939 	 */
940 	struct perf_regs		regs_user;
941 	struct pt_regs			regs_user_copy;
942 
943 	struct perf_regs		regs_intr;
944 	u64				stack_user_size;
945 } ____cacheline_aligned;
946 
947 /* default value for data source */
948 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
949 		    PERF_MEM_S(LVL, NA)   |\
950 		    PERF_MEM_S(SNOOP, NA) |\
951 		    PERF_MEM_S(LOCK, NA)  |\
952 		    PERF_MEM_S(TLB, NA))
953 
954 static inline void perf_sample_data_init(struct perf_sample_data *data,
955 					 u64 addr, u64 period)
956 {
957 	/* remaining struct members initialized in perf_prepare_sample() */
958 	data->addr = addr;
959 	data->raw  = NULL;
960 	data->br_stack = NULL;
961 	data->period = period;
962 	data->weight = 0;
963 	data->data_src.val = PERF_MEM_NA;
964 	data->txn = 0;
965 }
966 
967 extern void perf_output_sample(struct perf_output_handle *handle,
968 			       struct perf_event_header *header,
969 			       struct perf_sample_data *data,
970 			       struct perf_event *event);
971 extern void perf_prepare_sample(struct perf_event_header *header,
972 				struct perf_sample_data *data,
973 				struct perf_event *event,
974 				struct pt_regs *regs);
975 
976 extern int perf_event_overflow(struct perf_event *event,
977 				 struct perf_sample_data *data,
978 				 struct pt_regs *regs);
979 
980 extern void perf_event_output_forward(struct perf_event *event,
981 				     struct perf_sample_data *data,
982 				     struct pt_regs *regs);
983 extern void perf_event_output_backward(struct perf_event *event,
984 				       struct perf_sample_data *data,
985 				       struct pt_regs *regs);
986 extern void perf_event_output(struct perf_event *event,
987 			      struct perf_sample_data *data,
988 			      struct pt_regs *regs);
989 
990 static inline bool
991 is_default_overflow_handler(struct perf_event *event)
992 {
993 	if (likely(event->overflow_handler == perf_event_output_forward))
994 		return true;
995 	if (unlikely(event->overflow_handler == perf_event_output_backward))
996 		return true;
997 	return false;
998 }
999 
1000 extern void
1001 perf_event_header__init_id(struct perf_event_header *header,
1002 			   struct perf_sample_data *data,
1003 			   struct perf_event *event);
1004 extern void
1005 perf_event__output_id_sample(struct perf_event *event,
1006 			     struct perf_output_handle *handle,
1007 			     struct perf_sample_data *sample);
1008 
1009 extern void
1010 perf_log_lost_samples(struct perf_event *event, u64 lost);
1011 
1012 static inline bool is_sampling_event(struct perf_event *event)
1013 {
1014 	return event->attr.sample_period != 0;
1015 }
1016 
1017 /*
1018  * Return 1 for a software event, 0 for a hardware event
1019  */
1020 static inline int is_software_event(struct perf_event *event)
1021 {
1022 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1023 }
1024 
1025 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1026 
1027 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1028 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1029 
1030 #ifndef perf_arch_fetch_caller_regs
1031 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1032 #endif
1033 
1034 /*
1035  * Take a snapshot of the regs. Skip ip and frame pointer to
1036  * the nth caller. We only need a few of the regs:
1037  * - ip for PERF_SAMPLE_IP
1038  * - cs for user_mode() tests
1039  * - bp for callchains
1040  * - eflags, for future purposes, just in case
1041  */
1042 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1043 {
1044 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1045 }
1046 
1047 static __always_inline void
1048 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1049 {
1050 	if (static_key_false(&perf_swevent_enabled[event_id]))
1051 		__perf_sw_event(event_id, nr, regs, addr);
1052 }
1053 
1054 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1055 
1056 /*
1057  * 'Special' version for the scheduler, it hard assumes no recursion,
1058  * which is guaranteed by us not actually scheduling inside other swevents
1059  * because those disable preemption.
1060  */
1061 static __always_inline void
1062 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1063 {
1064 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1065 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1066 
1067 		perf_fetch_caller_regs(regs);
1068 		___perf_sw_event(event_id, nr, regs, addr);
1069 	}
1070 }
1071 
1072 extern struct static_key_false perf_sched_events;
1073 
1074 static __always_inline bool
1075 perf_sw_migrate_enabled(void)
1076 {
1077 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1078 		return true;
1079 	return false;
1080 }
1081 
1082 static inline void perf_event_task_migrate(struct task_struct *task)
1083 {
1084 	if (perf_sw_migrate_enabled())
1085 		task->sched_migrated = 1;
1086 }
1087 
1088 static inline void perf_event_task_sched_in(struct task_struct *prev,
1089 					    struct task_struct *task)
1090 {
1091 	if (static_branch_unlikely(&perf_sched_events))
1092 		__perf_event_task_sched_in(prev, task);
1093 
1094 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1095 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1096 
1097 		perf_fetch_caller_regs(regs);
1098 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1099 		task->sched_migrated = 0;
1100 	}
1101 }
1102 
1103 static inline void perf_event_task_sched_out(struct task_struct *prev,
1104 					     struct task_struct *next)
1105 {
1106 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1107 
1108 	if (static_branch_unlikely(&perf_sched_events))
1109 		__perf_event_task_sched_out(prev, next);
1110 }
1111 
1112 static inline u64 __perf_event_count(struct perf_event *event)
1113 {
1114 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1115 }
1116 
1117 extern void perf_event_mmap(struct vm_area_struct *vma);
1118 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1119 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1120 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1121 
1122 extern void perf_event_exec(void);
1123 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1124 extern void perf_event_namespaces(struct task_struct *tsk);
1125 extern void perf_event_fork(struct task_struct *tsk);
1126 
1127 /* Callchains */
1128 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1129 
1130 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1131 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1132 extern struct perf_callchain_entry *
1133 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1134 		   u32 max_stack, bool crosstask, bool add_mark);
1135 extern int get_callchain_buffers(int max_stack);
1136 extern void put_callchain_buffers(void);
1137 
1138 extern int sysctl_perf_event_max_stack;
1139 extern int sysctl_perf_event_max_contexts_per_stack;
1140 
1141 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1142 {
1143 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1144 		struct perf_callchain_entry *entry = ctx->entry;
1145 		entry->ip[entry->nr++] = ip;
1146 		++ctx->contexts;
1147 		return 0;
1148 	} else {
1149 		ctx->contexts_maxed = true;
1150 		return -1; /* no more room, stop walking the stack */
1151 	}
1152 }
1153 
1154 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1155 {
1156 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1157 		struct perf_callchain_entry *entry = ctx->entry;
1158 		entry->ip[entry->nr++] = ip;
1159 		++ctx->nr;
1160 		return 0;
1161 	} else {
1162 		return -1; /* no more room, stop walking the stack */
1163 	}
1164 }
1165 
1166 extern int sysctl_perf_event_paranoid;
1167 extern int sysctl_perf_event_mlock;
1168 extern int sysctl_perf_event_sample_rate;
1169 extern int sysctl_perf_cpu_time_max_percent;
1170 
1171 extern void perf_sample_event_took(u64 sample_len_ns);
1172 
1173 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1174 		void __user *buffer, size_t *lenp,
1175 		loff_t *ppos);
1176 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1177 		void __user *buffer, size_t *lenp,
1178 		loff_t *ppos);
1179 
1180 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1181 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1182 
1183 static inline bool perf_paranoid_tracepoint_raw(void)
1184 {
1185 	return sysctl_perf_event_paranoid > -1;
1186 }
1187 
1188 static inline bool perf_paranoid_cpu(void)
1189 {
1190 	return sysctl_perf_event_paranoid > 0;
1191 }
1192 
1193 static inline bool perf_paranoid_kernel(void)
1194 {
1195 	return sysctl_perf_event_paranoid > 1;
1196 }
1197 
1198 extern void perf_event_init(void);
1199 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1200 			  int entry_size, struct pt_regs *regs,
1201 			  struct hlist_head *head, int rctx,
1202 			  struct task_struct *task);
1203 extern void perf_bp_event(struct perf_event *event, void *data);
1204 
1205 #ifndef perf_misc_flags
1206 # define perf_misc_flags(regs) \
1207 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1208 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1209 #endif
1210 
1211 static inline bool has_branch_stack(struct perf_event *event)
1212 {
1213 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1214 }
1215 
1216 static inline bool needs_branch_stack(struct perf_event *event)
1217 {
1218 	return event->attr.branch_sample_type != 0;
1219 }
1220 
1221 static inline bool has_aux(struct perf_event *event)
1222 {
1223 	return event->pmu->setup_aux;
1224 }
1225 
1226 static inline bool is_write_backward(struct perf_event *event)
1227 {
1228 	return !!event->attr.write_backward;
1229 }
1230 
1231 static inline bool has_addr_filter(struct perf_event *event)
1232 {
1233 	return event->pmu->nr_addr_filters;
1234 }
1235 
1236 /*
1237  * An inherited event uses parent's filters
1238  */
1239 static inline struct perf_addr_filters_head *
1240 perf_event_addr_filters(struct perf_event *event)
1241 {
1242 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1243 
1244 	if (event->parent)
1245 		ifh = &event->parent->addr_filters;
1246 
1247 	return ifh;
1248 }
1249 
1250 extern void perf_event_addr_filters_sync(struct perf_event *event);
1251 
1252 extern int perf_output_begin(struct perf_output_handle *handle,
1253 			     struct perf_event *event, unsigned int size);
1254 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1255 				    struct perf_event *event,
1256 				    unsigned int size);
1257 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1258 				      struct perf_event *event,
1259 				      unsigned int size);
1260 
1261 extern void perf_output_end(struct perf_output_handle *handle);
1262 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1263 			     const void *buf, unsigned int len);
1264 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1265 				     unsigned int len);
1266 extern int perf_swevent_get_recursion_context(void);
1267 extern void perf_swevent_put_recursion_context(int rctx);
1268 extern u64 perf_swevent_set_period(struct perf_event *event);
1269 extern void perf_event_enable(struct perf_event *event);
1270 extern void perf_event_disable(struct perf_event *event);
1271 extern void perf_event_disable_local(struct perf_event *event);
1272 extern void perf_event_disable_inatomic(struct perf_event *event);
1273 extern void perf_event_task_tick(void);
1274 extern int perf_event_account_interrupt(struct perf_event *event);
1275 #else /* !CONFIG_PERF_EVENTS: */
1276 static inline void *
1277 perf_aux_output_begin(struct perf_output_handle *handle,
1278 		      struct perf_event *event)				{ return NULL; }
1279 static inline void
1280 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1281 									{ }
1282 static inline int
1283 perf_aux_output_skip(struct perf_output_handle *handle,
1284 		     unsigned long size)				{ return -EINVAL; }
1285 static inline void *
1286 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1287 static inline void
1288 perf_event_task_migrate(struct task_struct *task)			{ }
1289 static inline void
1290 perf_event_task_sched_in(struct task_struct *prev,
1291 			 struct task_struct *task)			{ }
1292 static inline void
1293 perf_event_task_sched_out(struct task_struct *prev,
1294 			  struct task_struct *next)			{ }
1295 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1296 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1297 static inline void perf_event_free_task(struct task_struct *task)	{ }
1298 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1299 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1300 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1301 {
1302 	return ERR_PTR(-EINVAL);
1303 }
1304 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1305 static inline void perf_event_print_debug(void)				{ }
1306 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1307 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1308 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1309 {
1310 	return -EINVAL;
1311 }
1312 
1313 static inline void
1314 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1315 static inline void
1316 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1317 static inline void
1318 perf_bp_event(struct perf_event *event, void *data)			{ }
1319 
1320 static inline int perf_register_guest_info_callbacks
1321 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1322 static inline int perf_unregister_guest_info_callbacks
1323 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1324 
1325 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1326 static inline void perf_event_exec(void)				{ }
1327 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1328 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1329 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1330 static inline void perf_event_init(void)				{ }
1331 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1332 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1333 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1334 static inline void perf_event_enable(struct perf_event *event)		{ }
1335 static inline void perf_event_disable(struct perf_event *event)		{ }
1336 static inline int __perf_event_disable(void *info)			{ return -1; }
1337 static inline void perf_event_task_tick(void)				{ }
1338 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1339 #endif
1340 
1341 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1342 extern void perf_restore_debug_store(void);
1343 #else
1344 static inline void perf_restore_debug_store(void)			{ }
1345 #endif
1346 
1347 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1348 {
1349 	return frag->pad < sizeof(u64);
1350 }
1351 
1352 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1353 
1354 struct perf_pmu_events_attr {
1355 	struct device_attribute attr;
1356 	u64 id;
1357 	const char *event_str;
1358 };
1359 
1360 struct perf_pmu_events_ht_attr {
1361 	struct device_attribute			attr;
1362 	u64					id;
1363 	const char				*event_str_ht;
1364 	const char				*event_str_noht;
1365 };
1366 
1367 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1368 			      char *page);
1369 
1370 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1371 static struct perf_pmu_events_attr _var = {				\
1372 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1373 	.id   =  _id,							\
1374 };
1375 
1376 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1377 static struct perf_pmu_events_attr _var = {				    \
1378 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1379 	.id		= 0,						    \
1380 	.event_str	= _str,						    \
1381 };
1382 
1383 #define PMU_FORMAT_ATTR(_name, _format)					\
1384 static ssize_t								\
1385 _name##_show(struct device *dev,					\
1386 			       struct device_attribute *attr,		\
1387 			       char *page)				\
1388 {									\
1389 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1390 	return sprintf(page, _format "\n");				\
1391 }									\
1392 									\
1393 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1394 
1395 /* Performance counter hotplug functions */
1396 #ifdef CONFIG_PERF_EVENTS
1397 int perf_event_init_cpu(unsigned int cpu);
1398 int perf_event_exit_cpu(unsigned int cpu);
1399 #else
1400 #define perf_event_init_cpu	NULL
1401 #define perf_event_exit_cpu	NULL
1402 #endif
1403 
1404 #endif /* _LINUX_PERF_EVENT_H */
1405