xref: /linux-6.15/include/linux/perf_event.h (revision 8fdff1dc)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <linux/cgroup.h>
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56 
57 struct perf_callchain_entry {
58 	__u64				nr;
59 	__u64				ip[PERF_MAX_STACK_DEPTH];
60 };
61 
62 struct perf_raw_record {
63 	u32				size;
64 	void				*data;
65 };
66 
67 /*
68  * single taken branch record layout:
69  *
70  *      from: source instruction (may not always be a branch insn)
71  *        to: branch target
72  *   mispred: branch target was mispredicted
73  * predicted: branch target was predicted
74  *
75  * support for mispred, predicted is optional. In case it
76  * is not supported mispred = predicted = 0.
77  */
78 struct perf_branch_entry {
79 	__u64	from;
80 	__u64	to;
81 	__u64	mispred:1,  /* target mispredicted */
82 		predicted:1,/* target predicted */
83 		reserved:62;
84 };
85 
86 /*
87  * branch stack layout:
88  *  nr: number of taken branches stored in entries[]
89  *
90  * Note that nr can vary from sample to sample
91  * branches (to, from) are stored from most recent
92  * to least recent, i.e., entries[0] contains the most
93  * recent branch.
94  */
95 struct perf_branch_stack {
96 	__u64				nr;
97 	struct perf_branch_entry	entries[0];
98 };
99 
100 struct perf_regs_user {
101 	__u64		abi;
102 	struct pt_regs	*regs;
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 #ifdef CONFIG_HAVE_HW_BREAKPOINT
139 		struct { /* breakpoint */
140 			struct arch_hw_breakpoint	info;
141 			struct list_head		bp_list;
142 			/*
143 			 * Crufty hack to avoid the chicken and egg
144 			 * problem hw_breakpoint has with context
145 			 * creation and event initalization.
146 			 */
147 			struct task_struct		*bp_target;
148 		};
149 #endif
150 	};
151 	int				state;
152 	local64_t			prev_count;
153 	u64				sample_period;
154 	u64				last_period;
155 	local64_t			period_left;
156 	u64                             interrupts_seq;
157 	u64				interrupts;
158 
159 	u64				freq_time_stamp;
160 	u64				freq_count_stamp;
161 #endif
162 };
163 
164 /*
165  * hw_perf_event::state flags
166  */
167 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
168 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
169 #define PERF_HES_ARCH		0x04
170 
171 struct perf_event;
172 
173 /*
174  * Common implementation detail of pmu::{start,commit,cancel}_txn
175  */
176 #define PERF_EVENT_TXN 0x1
177 
178 /**
179  * struct pmu - generic performance monitoring unit
180  */
181 struct pmu {
182 	struct list_head		entry;
183 
184 	struct device			*dev;
185 	const struct attribute_group	**attr_groups;
186 	char				*name;
187 	int				type;
188 
189 	int * __percpu			pmu_disable_count;
190 	struct perf_cpu_context * __percpu pmu_cpu_context;
191 	int				task_ctx_nr;
192 
193 	/*
194 	 * Fully disable/enable this PMU, can be used to protect from the PMI
195 	 * as well as for lazy/batch writing of the MSRs.
196 	 */
197 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
198 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
199 
200 	/*
201 	 * Try and initialize the event for this PMU.
202 	 * Should return -ENOENT when the @event doesn't match this PMU.
203 	 */
204 	int (*event_init)		(struct perf_event *event);
205 
206 #define PERF_EF_START	0x01		/* start the counter when adding    */
207 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
208 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
209 
210 	/*
211 	 * Adds/Removes a counter to/from the PMU, can be done inside
212 	 * a transaction, see the ->*_txn() methods.
213 	 */
214 	int  (*add)			(struct perf_event *event, int flags);
215 	void (*del)			(struct perf_event *event, int flags);
216 
217 	/*
218 	 * Starts/Stops a counter present on the PMU. The PMI handler
219 	 * should stop the counter when perf_event_overflow() returns
220 	 * !0. ->start() will be used to continue.
221 	 */
222 	void (*start)			(struct perf_event *event, int flags);
223 	void (*stop)			(struct perf_event *event, int flags);
224 
225 	/*
226 	 * Updates the counter value of the event.
227 	 */
228 	void (*read)			(struct perf_event *event);
229 
230 	/*
231 	 * Group events scheduling is treated as a transaction, add
232 	 * group events as a whole and perform one schedulability test.
233 	 * If the test fails, roll back the whole group
234 	 *
235 	 * Start the transaction, after this ->add() doesn't need to
236 	 * do schedulability tests.
237 	 */
238 	void (*start_txn)		(struct pmu *pmu); /* optional */
239 	/*
240 	 * If ->start_txn() disabled the ->add() schedulability test
241 	 * then ->commit_txn() is required to perform one. On success
242 	 * the transaction is closed. On error the transaction is kept
243 	 * open until ->cancel_txn() is called.
244 	 */
245 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
246 	/*
247 	 * Will cancel the transaction, assumes ->del() is called
248 	 * for each successful ->add() during the transaction.
249 	 */
250 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
251 
252 	/*
253 	 * Will return the value for perf_event_mmap_page::index for this event,
254 	 * if no implementation is provided it will default to: event->hw.idx + 1.
255 	 */
256 	int (*event_idx)		(struct perf_event *event); /*optional */
257 
258 	/*
259 	 * flush branch stack on context-switches (needed in cpu-wide mode)
260 	 */
261 	void (*flush_branch_stack)	(void);
262 };
263 
264 /**
265  * enum perf_event_active_state - the states of a event
266  */
267 enum perf_event_active_state {
268 	PERF_EVENT_STATE_ERROR		= -2,
269 	PERF_EVENT_STATE_OFF		= -1,
270 	PERF_EVENT_STATE_INACTIVE	=  0,
271 	PERF_EVENT_STATE_ACTIVE		=  1,
272 };
273 
274 struct file;
275 struct perf_sample_data;
276 
277 typedef void (*perf_overflow_handler_t)(struct perf_event *,
278 					struct perf_sample_data *,
279 					struct pt_regs *regs);
280 
281 enum perf_group_flag {
282 	PERF_GROUP_SOFTWARE		= 0x1,
283 };
284 
285 #define SWEVENT_HLIST_BITS		8
286 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
287 
288 struct swevent_hlist {
289 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
290 	struct rcu_head			rcu_head;
291 };
292 
293 #define PERF_ATTACH_CONTEXT	0x01
294 #define PERF_ATTACH_GROUP	0x02
295 #define PERF_ATTACH_TASK	0x04
296 
297 #ifdef CONFIG_CGROUP_PERF
298 /*
299  * perf_cgroup_info keeps track of time_enabled for a cgroup.
300  * This is a per-cpu dynamically allocated data structure.
301  */
302 struct perf_cgroup_info {
303 	u64				time;
304 	u64				timestamp;
305 };
306 
307 struct perf_cgroup {
308 	struct				cgroup_subsys_state css;
309 	struct				perf_cgroup_info *info;	/* timing info, one per cpu */
310 };
311 #endif
312 
313 struct ring_buffer;
314 
315 /**
316  * struct perf_event - performance event kernel representation:
317  */
318 struct perf_event {
319 #ifdef CONFIG_PERF_EVENTS
320 	struct list_head		group_entry;
321 	struct list_head		event_entry;
322 	struct list_head		sibling_list;
323 	struct hlist_node		hlist_entry;
324 	int				nr_siblings;
325 	int				group_flags;
326 	struct perf_event		*group_leader;
327 	struct pmu			*pmu;
328 
329 	enum perf_event_active_state	state;
330 	unsigned int			attach_state;
331 	local64_t			count;
332 	atomic64_t			child_count;
333 
334 	/*
335 	 * These are the total time in nanoseconds that the event
336 	 * has been enabled (i.e. eligible to run, and the task has
337 	 * been scheduled in, if this is a per-task event)
338 	 * and running (scheduled onto the CPU), respectively.
339 	 *
340 	 * They are computed from tstamp_enabled, tstamp_running and
341 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
342 	 */
343 	u64				total_time_enabled;
344 	u64				total_time_running;
345 
346 	/*
347 	 * These are timestamps used for computing total_time_enabled
348 	 * and total_time_running when the event is in INACTIVE or
349 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
350 	 * in time.
351 	 * tstamp_enabled: the notional time when the event was enabled
352 	 * tstamp_running: the notional time when the event was scheduled on
353 	 * tstamp_stopped: in INACTIVE state, the notional time when the
354 	 *	event was scheduled off.
355 	 */
356 	u64				tstamp_enabled;
357 	u64				tstamp_running;
358 	u64				tstamp_stopped;
359 
360 	/*
361 	 * timestamp shadows the actual context timing but it can
362 	 * be safely used in NMI interrupt context. It reflects the
363 	 * context time as it was when the event was last scheduled in.
364 	 *
365 	 * ctx_time already accounts for ctx->timestamp. Therefore to
366 	 * compute ctx_time for a sample, simply add perf_clock().
367 	 */
368 	u64				shadow_ctx_time;
369 
370 	struct perf_event_attr		attr;
371 	u16				header_size;
372 	u16				id_header_size;
373 	u16				read_size;
374 	struct hw_perf_event		hw;
375 
376 	struct perf_event_context	*ctx;
377 	atomic_long_t			refcount;
378 
379 	/*
380 	 * These accumulate total time (in nanoseconds) that children
381 	 * events have been enabled and running, respectively.
382 	 */
383 	atomic64_t			child_total_time_enabled;
384 	atomic64_t			child_total_time_running;
385 
386 	/*
387 	 * Protect attach/detach and child_list:
388 	 */
389 	struct mutex			child_mutex;
390 	struct list_head		child_list;
391 	struct perf_event		*parent;
392 
393 	int				oncpu;
394 	int				cpu;
395 
396 	struct list_head		owner_entry;
397 	struct task_struct		*owner;
398 
399 	/* mmap bits */
400 	struct mutex			mmap_mutex;
401 	atomic_t			mmap_count;
402 	int				mmap_locked;
403 	struct user_struct		*mmap_user;
404 	struct ring_buffer		*rb;
405 	struct list_head		rb_entry;
406 
407 	/* poll related */
408 	wait_queue_head_t		waitq;
409 	struct fasync_struct		*fasync;
410 
411 	/* delayed work for NMIs and such */
412 	int				pending_wakeup;
413 	int				pending_kill;
414 	int				pending_disable;
415 	struct irq_work			pending;
416 
417 	atomic_t			event_limit;
418 
419 	void (*destroy)(struct perf_event *);
420 	struct rcu_head			rcu_head;
421 
422 	struct pid_namespace		*ns;
423 	u64				id;
424 
425 	perf_overflow_handler_t		overflow_handler;
426 	void				*overflow_handler_context;
427 
428 #ifdef CONFIG_EVENT_TRACING
429 	struct ftrace_event_call	*tp_event;
430 	struct event_filter		*filter;
431 #ifdef CONFIG_FUNCTION_TRACER
432 	struct ftrace_ops               ftrace_ops;
433 #endif
434 #endif
435 
436 #ifdef CONFIG_CGROUP_PERF
437 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
438 	int				cgrp_defer_enabled;
439 #endif
440 
441 #endif /* CONFIG_PERF_EVENTS */
442 };
443 
444 enum perf_event_context_type {
445 	task_context,
446 	cpu_context,
447 };
448 
449 /**
450  * struct perf_event_context - event context structure
451  *
452  * Used as a container for task events and CPU events as well:
453  */
454 struct perf_event_context {
455 	struct pmu			*pmu;
456 	enum perf_event_context_type	type;
457 	/*
458 	 * Protect the states of the events in the list,
459 	 * nr_active, and the list:
460 	 */
461 	raw_spinlock_t			lock;
462 	/*
463 	 * Protect the list of events.  Locking either mutex or lock
464 	 * is sufficient to ensure the list doesn't change; to change
465 	 * the list you need to lock both the mutex and the spinlock.
466 	 */
467 	struct mutex			mutex;
468 
469 	struct list_head		pinned_groups;
470 	struct list_head		flexible_groups;
471 	struct list_head		event_list;
472 	int				nr_events;
473 	int				nr_active;
474 	int				is_active;
475 	int				nr_stat;
476 	int				nr_freq;
477 	int				rotate_disable;
478 	atomic_t			refcount;
479 	struct task_struct		*task;
480 
481 	/*
482 	 * Context clock, runs when context enabled.
483 	 */
484 	u64				time;
485 	u64				timestamp;
486 
487 	/*
488 	 * These fields let us detect when two contexts have both
489 	 * been cloned (inherited) from a common ancestor.
490 	 */
491 	struct perf_event_context	*parent_ctx;
492 	u64				parent_gen;
493 	u64				generation;
494 	int				pin_count;
495 	int				nr_cgroups;	 /* cgroup evts */
496 	int				nr_branch_stack; /* branch_stack evt */
497 	struct rcu_head			rcu_head;
498 };
499 
500 /*
501  * Number of contexts where an event can trigger:
502  *	task, softirq, hardirq, nmi.
503  */
504 #define PERF_NR_CONTEXTS	4
505 
506 /**
507  * struct perf_event_cpu_context - per cpu event context structure
508  */
509 struct perf_cpu_context {
510 	struct perf_event_context	ctx;
511 	struct perf_event_context	*task_ctx;
512 	int				active_oncpu;
513 	int				exclusive;
514 	struct list_head		rotation_list;
515 	int				jiffies_interval;
516 	struct pmu			*unique_pmu;
517 	struct perf_cgroup		*cgrp;
518 };
519 
520 struct perf_output_handle {
521 	struct perf_event		*event;
522 	struct ring_buffer		*rb;
523 	unsigned long			wakeup;
524 	unsigned long			size;
525 	void				*addr;
526 	int				page;
527 };
528 
529 #ifdef CONFIG_PERF_EVENTS
530 
531 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
532 extern void perf_pmu_unregister(struct pmu *pmu);
533 
534 extern int perf_num_counters(void);
535 extern const char *perf_pmu_name(void);
536 extern void __perf_event_task_sched_in(struct task_struct *prev,
537 				       struct task_struct *task);
538 extern void __perf_event_task_sched_out(struct task_struct *prev,
539 					struct task_struct *next);
540 extern int perf_event_init_task(struct task_struct *child);
541 extern void perf_event_exit_task(struct task_struct *child);
542 extern void perf_event_free_task(struct task_struct *task);
543 extern void perf_event_delayed_put(struct task_struct *task);
544 extern void perf_event_print_debug(void);
545 extern void perf_pmu_disable(struct pmu *pmu);
546 extern void perf_pmu_enable(struct pmu *pmu);
547 extern int perf_event_task_disable(void);
548 extern int perf_event_task_enable(void);
549 extern int perf_event_refresh(struct perf_event *event, int refresh);
550 extern void perf_event_update_userpage(struct perf_event *event);
551 extern int perf_event_release_kernel(struct perf_event *event);
552 extern struct perf_event *
553 perf_event_create_kernel_counter(struct perf_event_attr *attr,
554 				int cpu,
555 				struct task_struct *task,
556 				perf_overflow_handler_t callback,
557 				void *context);
558 extern void perf_pmu_migrate_context(struct pmu *pmu,
559 				int src_cpu, int dst_cpu);
560 extern u64 perf_event_read_value(struct perf_event *event,
561 				 u64 *enabled, u64 *running);
562 
563 
564 struct perf_sample_data {
565 	u64				type;
566 
567 	u64				ip;
568 	struct {
569 		u32	pid;
570 		u32	tid;
571 	}				tid_entry;
572 	u64				time;
573 	u64				addr;
574 	u64				id;
575 	u64				stream_id;
576 	struct {
577 		u32	cpu;
578 		u32	reserved;
579 	}				cpu_entry;
580 	u64				period;
581 	struct perf_callchain_entry	*callchain;
582 	struct perf_raw_record		*raw;
583 	struct perf_branch_stack	*br_stack;
584 	struct perf_regs_user		regs_user;
585 	u64				stack_user_size;
586 };
587 
588 static inline void perf_sample_data_init(struct perf_sample_data *data,
589 					 u64 addr, u64 period)
590 {
591 	/* remaining struct members initialized in perf_prepare_sample() */
592 	data->addr = addr;
593 	data->raw  = NULL;
594 	data->br_stack = NULL;
595 	data->period = period;
596 	data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
597 	data->regs_user.regs = NULL;
598 	data->stack_user_size = 0;
599 }
600 
601 extern void perf_output_sample(struct perf_output_handle *handle,
602 			       struct perf_event_header *header,
603 			       struct perf_sample_data *data,
604 			       struct perf_event *event);
605 extern void perf_prepare_sample(struct perf_event_header *header,
606 				struct perf_sample_data *data,
607 				struct perf_event *event,
608 				struct pt_regs *regs);
609 
610 extern int perf_event_overflow(struct perf_event *event,
611 				 struct perf_sample_data *data,
612 				 struct pt_regs *regs);
613 
614 static inline bool is_sampling_event(struct perf_event *event)
615 {
616 	return event->attr.sample_period != 0;
617 }
618 
619 /*
620  * Return 1 for a software event, 0 for a hardware event
621  */
622 static inline int is_software_event(struct perf_event *event)
623 {
624 	return event->pmu->task_ctx_nr == perf_sw_context;
625 }
626 
627 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
628 
629 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
630 
631 #ifndef perf_arch_fetch_caller_regs
632 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
633 #endif
634 
635 /*
636  * Take a snapshot of the regs. Skip ip and frame pointer to
637  * the nth caller. We only need a few of the regs:
638  * - ip for PERF_SAMPLE_IP
639  * - cs for user_mode() tests
640  * - bp for callchains
641  * - eflags, for future purposes, just in case
642  */
643 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
644 {
645 	memset(regs, 0, sizeof(*regs));
646 
647 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
648 }
649 
650 static __always_inline void
651 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
652 {
653 	struct pt_regs hot_regs;
654 
655 	if (static_key_false(&perf_swevent_enabled[event_id])) {
656 		if (!regs) {
657 			perf_fetch_caller_regs(&hot_regs);
658 			regs = &hot_regs;
659 		}
660 		__perf_sw_event(event_id, nr, regs, addr);
661 	}
662 }
663 
664 extern struct static_key_deferred perf_sched_events;
665 
666 static inline void perf_event_task_sched_in(struct task_struct *prev,
667 					    struct task_struct *task)
668 {
669 	if (static_key_false(&perf_sched_events.key))
670 		__perf_event_task_sched_in(prev, task);
671 }
672 
673 static inline void perf_event_task_sched_out(struct task_struct *prev,
674 					     struct task_struct *next)
675 {
676 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
677 
678 	if (static_key_false(&perf_sched_events.key))
679 		__perf_event_task_sched_out(prev, next);
680 }
681 
682 extern void perf_event_mmap(struct vm_area_struct *vma);
683 extern struct perf_guest_info_callbacks *perf_guest_cbs;
684 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
685 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
686 
687 extern void perf_event_comm(struct task_struct *tsk);
688 extern void perf_event_fork(struct task_struct *tsk);
689 
690 /* Callchains */
691 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
692 
693 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
694 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
695 
696 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
697 {
698 	if (entry->nr < PERF_MAX_STACK_DEPTH)
699 		entry->ip[entry->nr++] = ip;
700 }
701 
702 extern int sysctl_perf_event_paranoid;
703 extern int sysctl_perf_event_mlock;
704 extern int sysctl_perf_event_sample_rate;
705 
706 extern int perf_proc_update_handler(struct ctl_table *table, int write,
707 		void __user *buffer, size_t *lenp,
708 		loff_t *ppos);
709 
710 static inline bool perf_paranoid_tracepoint_raw(void)
711 {
712 	return sysctl_perf_event_paranoid > -1;
713 }
714 
715 static inline bool perf_paranoid_cpu(void)
716 {
717 	return sysctl_perf_event_paranoid > 0;
718 }
719 
720 static inline bool perf_paranoid_kernel(void)
721 {
722 	return sysctl_perf_event_paranoid > 1;
723 }
724 
725 extern void perf_event_init(void);
726 extern void perf_tp_event(u64 addr, u64 count, void *record,
727 			  int entry_size, struct pt_regs *regs,
728 			  struct hlist_head *head, int rctx,
729 			  struct task_struct *task);
730 extern void perf_bp_event(struct perf_event *event, void *data);
731 
732 #ifndef perf_misc_flags
733 # define perf_misc_flags(regs) \
734 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
735 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
736 #endif
737 
738 static inline bool has_branch_stack(struct perf_event *event)
739 {
740 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
741 }
742 
743 extern int perf_output_begin(struct perf_output_handle *handle,
744 			     struct perf_event *event, unsigned int size);
745 extern void perf_output_end(struct perf_output_handle *handle);
746 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
747 			     const void *buf, unsigned int len);
748 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
749 				     unsigned int len);
750 extern int perf_swevent_get_recursion_context(void);
751 extern void perf_swevent_put_recursion_context(int rctx);
752 extern void perf_event_enable(struct perf_event *event);
753 extern void perf_event_disable(struct perf_event *event);
754 extern int __perf_event_disable(void *info);
755 extern void perf_event_task_tick(void);
756 #else
757 static inline void
758 perf_event_task_sched_in(struct task_struct *prev,
759 			 struct task_struct *task)			{ }
760 static inline void
761 perf_event_task_sched_out(struct task_struct *prev,
762 			  struct task_struct *next)			{ }
763 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
764 static inline void perf_event_exit_task(struct task_struct *child)	{ }
765 static inline void perf_event_free_task(struct task_struct *task)	{ }
766 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
767 static inline void perf_event_print_debug(void)				{ }
768 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
769 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
770 static inline int perf_event_refresh(struct perf_event *event, int refresh)
771 {
772 	return -EINVAL;
773 }
774 
775 static inline void
776 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
777 static inline void
778 perf_bp_event(struct perf_event *event, void *data)			{ }
779 
780 static inline int perf_register_guest_info_callbacks
781 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
782 static inline int perf_unregister_guest_info_callbacks
783 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
784 
785 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
786 static inline void perf_event_comm(struct task_struct *tsk)		{ }
787 static inline void perf_event_fork(struct task_struct *tsk)		{ }
788 static inline void perf_event_init(void)				{ }
789 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
790 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
791 static inline void perf_event_enable(struct perf_event *event)		{ }
792 static inline void perf_event_disable(struct perf_event *event)		{ }
793 static inline int __perf_event_disable(void *info)			{ return -1; }
794 static inline void perf_event_task_tick(void)				{ }
795 #endif
796 
797 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
798 
799 /*
800  * This has to have a higher priority than migration_notifier in sched.c.
801  */
802 #define perf_cpu_notifier(fn)						\
803 do {									\
804 	static struct notifier_block fn##_nb __cpuinitdata =		\
805 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
806 	unsigned long cpu = smp_processor_id();				\
807 	unsigned long flags;						\
808 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
809 		(void *)(unsigned long)cpu);				\
810 	local_irq_save(flags);						\
811 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
812 		(void *)(unsigned long)cpu);				\
813 	local_irq_restore(flags);					\
814 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
815 		(void *)(unsigned long)cpu);				\
816 	register_cpu_notifier(&fn##_nb);				\
817 } while (0)
818 
819 
820 #define PMU_FORMAT_ATTR(_name, _format)					\
821 static ssize_t								\
822 _name##_show(struct device *dev,					\
823 			       struct device_attribute *attr,		\
824 			       char *page)				\
825 {									\
826 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
827 	return sprintf(page, _format "\n");				\
828 }									\
829 									\
830 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
831 
832 #endif /* _LINUX_PERF_EVENT_H */
833