1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <linux/cgroup.h> 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <asm/local.h> 56 57 struct perf_callchain_entry { 58 __u64 nr; 59 __u64 ip[PERF_MAX_STACK_DEPTH]; 60 }; 61 62 struct perf_raw_record { 63 u32 size; 64 void *data; 65 }; 66 67 /* 68 * single taken branch record layout: 69 * 70 * from: source instruction (may not always be a branch insn) 71 * to: branch target 72 * mispred: branch target was mispredicted 73 * predicted: branch target was predicted 74 * 75 * support for mispred, predicted is optional. In case it 76 * is not supported mispred = predicted = 0. 77 */ 78 struct perf_branch_entry { 79 __u64 from; 80 __u64 to; 81 __u64 mispred:1, /* target mispredicted */ 82 predicted:1,/* target predicted */ 83 reserved:62; 84 }; 85 86 /* 87 * branch stack layout: 88 * nr: number of taken branches stored in entries[] 89 * 90 * Note that nr can vary from sample to sample 91 * branches (to, from) are stored from most recent 92 * to least recent, i.e., entries[0] contains the most 93 * recent branch. 94 */ 95 struct perf_branch_stack { 96 __u64 nr; 97 struct perf_branch_entry entries[0]; 98 }; 99 100 struct perf_regs_user { 101 __u64 abi; 102 struct pt_regs *regs; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 #ifdef CONFIG_HAVE_HW_BREAKPOINT 139 struct { /* breakpoint */ 140 struct arch_hw_breakpoint info; 141 struct list_head bp_list; 142 /* 143 * Crufty hack to avoid the chicken and egg 144 * problem hw_breakpoint has with context 145 * creation and event initalization. 146 */ 147 struct task_struct *bp_target; 148 }; 149 #endif 150 }; 151 int state; 152 local64_t prev_count; 153 u64 sample_period; 154 u64 last_period; 155 local64_t period_left; 156 u64 interrupts_seq; 157 u64 interrupts; 158 159 u64 freq_time_stamp; 160 u64 freq_count_stamp; 161 #endif 162 }; 163 164 /* 165 * hw_perf_event::state flags 166 */ 167 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 168 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 169 #define PERF_HES_ARCH 0x04 170 171 struct perf_event; 172 173 /* 174 * Common implementation detail of pmu::{start,commit,cancel}_txn 175 */ 176 #define PERF_EVENT_TXN 0x1 177 178 /** 179 * struct pmu - generic performance monitoring unit 180 */ 181 struct pmu { 182 struct list_head entry; 183 184 struct device *dev; 185 const struct attribute_group **attr_groups; 186 char *name; 187 int type; 188 189 int * __percpu pmu_disable_count; 190 struct perf_cpu_context * __percpu pmu_cpu_context; 191 int task_ctx_nr; 192 193 /* 194 * Fully disable/enable this PMU, can be used to protect from the PMI 195 * as well as for lazy/batch writing of the MSRs. 196 */ 197 void (*pmu_enable) (struct pmu *pmu); /* optional */ 198 void (*pmu_disable) (struct pmu *pmu); /* optional */ 199 200 /* 201 * Try and initialize the event for this PMU. 202 * Should return -ENOENT when the @event doesn't match this PMU. 203 */ 204 int (*event_init) (struct perf_event *event); 205 206 #define PERF_EF_START 0x01 /* start the counter when adding */ 207 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 208 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 209 210 /* 211 * Adds/Removes a counter to/from the PMU, can be done inside 212 * a transaction, see the ->*_txn() methods. 213 */ 214 int (*add) (struct perf_event *event, int flags); 215 void (*del) (struct perf_event *event, int flags); 216 217 /* 218 * Starts/Stops a counter present on the PMU. The PMI handler 219 * should stop the counter when perf_event_overflow() returns 220 * !0. ->start() will be used to continue. 221 */ 222 void (*start) (struct perf_event *event, int flags); 223 void (*stop) (struct perf_event *event, int flags); 224 225 /* 226 * Updates the counter value of the event. 227 */ 228 void (*read) (struct perf_event *event); 229 230 /* 231 * Group events scheduling is treated as a transaction, add 232 * group events as a whole and perform one schedulability test. 233 * If the test fails, roll back the whole group 234 * 235 * Start the transaction, after this ->add() doesn't need to 236 * do schedulability tests. 237 */ 238 void (*start_txn) (struct pmu *pmu); /* optional */ 239 /* 240 * If ->start_txn() disabled the ->add() schedulability test 241 * then ->commit_txn() is required to perform one. On success 242 * the transaction is closed. On error the transaction is kept 243 * open until ->cancel_txn() is called. 244 */ 245 int (*commit_txn) (struct pmu *pmu); /* optional */ 246 /* 247 * Will cancel the transaction, assumes ->del() is called 248 * for each successful ->add() during the transaction. 249 */ 250 void (*cancel_txn) (struct pmu *pmu); /* optional */ 251 252 /* 253 * Will return the value for perf_event_mmap_page::index for this event, 254 * if no implementation is provided it will default to: event->hw.idx + 1. 255 */ 256 int (*event_idx) (struct perf_event *event); /*optional */ 257 258 /* 259 * flush branch stack on context-switches (needed in cpu-wide mode) 260 */ 261 void (*flush_branch_stack) (void); 262 }; 263 264 /** 265 * enum perf_event_active_state - the states of a event 266 */ 267 enum perf_event_active_state { 268 PERF_EVENT_STATE_ERROR = -2, 269 PERF_EVENT_STATE_OFF = -1, 270 PERF_EVENT_STATE_INACTIVE = 0, 271 PERF_EVENT_STATE_ACTIVE = 1, 272 }; 273 274 struct file; 275 struct perf_sample_data; 276 277 typedef void (*perf_overflow_handler_t)(struct perf_event *, 278 struct perf_sample_data *, 279 struct pt_regs *regs); 280 281 enum perf_group_flag { 282 PERF_GROUP_SOFTWARE = 0x1, 283 }; 284 285 #define SWEVENT_HLIST_BITS 8 286 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 287 288 struct swevent_hlist { 289 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 290 struct rcu_head rcu_head; 291 }; 292 293 #define PERF_ATTACH_CONTEXT 0x01 294 #define PERF_ATTACH_GROUP 0x02 295 #define PERF_ATTACH_TASK 0x04 296 297 #ifdef CONFIG_CGROUP_PERF 298 /* 299 * perf_cgroup_info keeps track of time_enabled for a cgroup. 300 * This is a per-cpu dynamically allocated data structure. 301 */ 302 struct perf_cgroup_info { 303 u64 time; 304 u64 timestamp; 305 }; 306 307 struct perf_cgroup { 308 struct cgroup_subsys_state css; 309 struct perf_cgroup_info *info; /* timing info, one per cpu */ 310 }; 311 #endif 312 313 struct ring_buffer; 314 315 /** 316 * struct perf_event - performance event kernel representation: 317 */ 318 struct perf_event { 319 #ifdef CONFIG_PERF_EVENTS 320 struct list_head group_entry; 321 struct list_head event_entry; 322 struct list_head sibling_list; 323 struct hlist_node hlist_entry; 324 int nr_siblings; 325 int group_flags; 326 struct perf_event *group_leader; 327 struct pmu *pmu; 328 329 enum perf_event_active_state state; 330 unsigned int attach_state; 331 local64_t count; 332 atomic64_t child_count; 333 334 /* 335 * These are the total time in nanoseconds that the event 336 * has been enabled (i.e. eligible to run, and the task has 337 * been scheduled in, if this is a per-task event) 338 * and running (scheduled onto the CPU), respectively. 339 * 340 * They are computed from tstamp_enabled, tstamp_running and 341 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 342 */ 343 u64 total_time_enabled; 344 u64 total_time_running; 345 346 /* 347 * These are timestamps used for computing total_time_enabled 348 * and total_time_running when the event is in INACTIVE or 349 * ACTIVE state, measured in nanoseconds from an arbitrary point 350 * in time. 351 * tstamp_enabled: the notional time when the event was enabled 352 * tstamp_running: the notional time when the event was scheduled on 353 * tstamp_stopped: in INACTIVE state, the notional time when the 354 * event was scheduled off. 355 */ 356 u64 tstamp_enabled; 357 u64 tstamp_running; 358 u64 tstamp_stopped; 359 360 /* 361 * timestamp shadows the actual context timing but it can 362 * be safely used in NMI interrupt context. It reflects the 363 * context time as it was when the event was last scheduled in. 364 * 365 * ctx_time already accounts for ctx->timestamp. Therefore to 366 * compute ctx_time for a sample, simply add perf_clock(). 367 */ 368 u64 shadow_ctx_time; 369 370 struct perf_event_attr attr; 371 u16 header_size; 372 u16 id_header_size; 373 u16 read_size; 374 struct hw_perf_event hw; 375 376 struct perf_event_context *ctx; 377 atomic_long_t refcount; 378 379 /* 380 * These accumulate total time (in nanoseconds) that children 381 * events have been enabled and running, respectively. 382 */ 383 atomic64_t child_total_time_enabled; 384 atomic64_t child_total_time_running; 385 386 /* 387 * Protect attach/detach and child_list: 388 */ 389 struct mutex child_mutex; 390 struct list_head child_list; 391 struct perf_event *parent; 392 393 int oncpu; 394 int cpu; 395 396 struct list_head owner_entry; 397 struct task_struct *owner; 398 399 /* mmap bits */ 400 struct mutex mmap_mutex; 401 atomic_t mmap_count; 402 int mmap_locked; 403 struct user_struct *mmap_user; 404 struct ring_buffer *rb; 405 struct list_head rb_entry; 406 407 /* poll related */ 408 wait_queue_head_t waitq; 409 struct fasync_struct *fasync; 410 411 /* delayed work for NMIs and such */ 412 int pending_wakeup; 413 int pending_kill; 414 int pending_disable; 415 struct irq_work pending; 416 417 atomic_t event_limit; 418 419 void (*destroy)(struct perf_event *); 420 struct rcu_head rcu_head; 421 422 struct pid_namespace *ns; 423 u64 id; 424 425 perf_overflow_handler_t overflow_handler; 426 void *overflow_handler_context; 427 428 #ifdef CONFIG_EVENT_TRACING 429 struct ftrace_event_call *tp_event; 430 struct event_filter *filter; 431 #ifdef CONFIG_FUNCTION_TRACER 432 struct ftrace_ops ftrace_ops; 433 #endif 434 #endif 435 436 #ifdef CONFIG_CGROUP_PERF 437 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 438 int cgrp_defer_enabled; 439 #endif 440 441 #endif /* CONFIG_PERF_EVENTS */ 442 }; 443 444 enum perf_event_context_type { 445 task_context, 446 cpu_context, 447 }; 448 449 /** 450 * struct perf_event_context - event context structure 451 * 452 * Used as a container for task events and CPU events as well: 453 */ 454 struct perf_event_context { 455 struct pmu *pmu; 456 enum perf_event_context_type type; 457 /* 458 * Protect the states of the events in the list, 459 * nr_active, and the list: 460 */ 461 raw_spinlock_t lock; 462 /* 463 * Protect the list of events. Locking either mutex or lock 464 * is sufficient to ensure the list doesn't change; to change 465 * the list you need to lock both the mutex and the spinlock. 466 */ 467 struct mutex mutex; 468 469 struct list_head pinned_groups; 470 struct list_head flexible_groups; 471 struct list_head event_list; 472 int nr_events; 473 int nr_active; 474 int is_active; 475 int nr_stat; 476 int nr_freq; 477 int rotate_disable; 478 atomic_t refcount; 479 struct task_struct *task; 480 481 /* 482 * Context clock, runs when context enabled. 483 */ 484 u64 time; 485 u64 timestamp; 486 487 /* 488 * These fields let us detect when two contexts have both 489 * been cloned (inherited) from a common ancestor. 490 */ 491 struct perf_event_context *parent_ctx; 492 u64 parent_gen; 493 u64 generation; 494 int pin_count; 495 int nr_cgroups; /* cgroup evts */ 496 int nr_branch_stack; /* branch_stack evt */ 497 struct rcu_head rcu_head; 498 }; 499 500 /* 501 * Number of contexts where an event can trigger: 502 * task, softirq, hardirq, nmi. 503 */ 504 #define PERF_NR_CONTEXTS 4 505 506 /** 507 * struct perf_event_cpu_context - per cpu event context structure 508 */ 509 struct perf_cpu_context { 510 struct perf_event_context ctx; 511 struct perf_event_context *task_ctx; 512 int active_oncpu; 513 int exclusive; 514 struct list_head rotation_list; 515 int jiffies_interval; 516 struct pmu *unique_pmu; 517 struct perf_cgroup *cgrp; 518 }; 519 520 struct perf_output_handle { 521 struct perf_event *event; 522 struct ring_buffer *rb; 523 unsigned long wakeup; 524 unsigned long size; 525 void *addr; 526 int page; 527 }; 528 529 #ifdef CONFIG_PERF_EVENTS 530 531 extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 532 extern void perf_pmu_unregister(struct pmu *pmu); 533 534 extern int perf_num_counters(void); 535 extern const char *perf_pmu_name(void); 536 extern void __perf_event_task_sched_in(struct task_struct *prev, 537 struct task_struct *task); 538 extern void __perf_event_task_sched_out(struct task_struct *prev, 539 struct task_struct *next); 540 extern int perf_event_init_task(struct task_struct *child); 541 extern void perf_event_exit_task(struct task_struct *child); 542 extern void perf_event_free_task(struct task_struct *task); 543 extern void perf_event_delayed_put(struct task_struct *task); 544 extern void perf_event_print_debug(void); 545 extern void perf_pmu_disable(struct pmu *pmu); 546 extern void perf_pmu_enable(struct pmu *pmu); 547 extern int perf_event_task_disable(void); 548 extern int perf_event_task_enable(void); 549 extern int perf_event_refresh(struct perf_event *event, int refresh); 550 extern void perf_event_update_userpage(struct perf_event *event); 551 extern int perf_event_release_kernel(struct perf_event *event); 552 extern struct perf_event * 553 perf_event_create_kernel_counter(struct perf_event_attr *attr, 554 int cpu, 555 struct task_struct *task, 556 perf_overflow_handler_t callback, 557 void *context); 558 extern void perf_pmu_migrate_context(struct pmu *pmu, 559 int src_cpu, int dst_cpu); 560 extern u64 perf_event_read_value(struct perf_event *event, 561 u64 *enabled, u64 *running); 562 563 564 struct perf_sample_data { 565 u64 type; 566 567 u64 ip; 568 struct { 569 u32 pid; 570 u32 tid; 571 } tid_entry; 572 u64 time; 573 u64 addr; 574 u64 id; 575 u64 stream_id; 576 struct { 577 u32 cpu; 578 u32 reserved; 579 } cpu_entry; 580 u64 period; 581 struct perf_callchain_entry *callchain; 582 struct perf_raw_record *raw; 583 struct perf_branch_stack *br_stack; 584 struct perf_regs_user regs_user; 585 u64 stack_user_size; 586 }; 587 588 static inline void perf_sample_data_init(struct perf_sample_data *data, 589 u64 addr, u64 period) 590 { 591 /* remaining struct members initialized in perf_prepare_sample() */ 592 data->addr = addr; 593 data->raw = NULL; 594 data->br_stack = NULL; 595 data->period = period; 596 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 597 data->regs_user.regs = NULL; 598 data->stack_user_size = 0; 599 } 600 601 extern void perf_output_sample(struct perf_output_handle *handle, 602 struct perf_event_header *header, 603 struct perf_sample_data *data, 604 struct perf_event *event); 605 extern void perf_prepare_sample(struct perf_event_header *header, 606 struct perf_sample_data *data, 607 struct perf_event *event, 608 struct pt_regs *regs); 609 610 extern int perf_event_overflow(struct perf_event *event, 611 struct perf_sample_data *data, 612 struct pt_regs *regs); 613 614 static inline bool is_sampling_event(struct perf_event *event) 615 { 616 return event->attr.sample_period != 0; 617 } 618 619 /* 620 * Return 1 for a software event, 0 for a hardware event 621 */ 622 static inline int is_software_event(struct perf_event *event) 623 { 624 return event->pmu->task_ctx_nr == perf_sw_context; 625 } 626 627 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 628 629 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 630 631 #ifndef perf_arch_fetch_caller_regs 632 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 633 #endif 634 635 /* 636 * Take a snapshot of the regs. Skip ip and frame pointer to 637 * the nth caller. We only need a few of the regs: 638 * - ip for PERF_SAMPLE_IP 639 * - cs for user_mode() tests 640 * - bp for callchains 641 * - eflags, for future purposes, just in case 642 */ 643 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 644 { 645 memset(regs, 0, sizeof(*regs)); 646 647 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 648 } 649 650 static __always_inline void 651 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 652 { 653 struct pt_regs hot_regs; 654 655 if (static_key_false(&perf_swevent_enabled[event_id])) { 656 if (!regs) { 657 perf_fetch_caller_regs(&hot_regs); 658 regs = &hot_regs; 659 } 660 __perf_sw_event(event_id, nr, regs, addr); 661 } 662 } 663 664 extern struct static_key_deferred perf_sched_events; 665 666 static inline void perf_event_task_sched_in(struct task_struct *prev, 667 struct task_struct *task) 668 { 669 if (static_key_false(&perf_sched_events.key)) 670 __perf_event_task_sched_in(prev, task); 671 } 672 673 static inline void perf_event_task_sched_out(struct task_struct *prev, 674 struct task_struct *next) 675 { 676 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 677 678 if (static_key_false(&perf_sched_events.key)) 679 __perf_event_task_sched_out(prev, next); 680 } 681 682 extern void perf_event_mmap(struct vm_area_struct *vma); 683 extern struct perf_guest_info_callbacks *perf_guest_cbs; 684 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 685 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 686 687 extern void perf_event_comm(struct task_struct *tsk); 688 extern void perf_event_fork(struct task_struct *tsk); 689 690 /* Callchains */ 691 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 692 693 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 694 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 695 696 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 697 { 698 if (entry->nr < PERF_MAX_STACK_DEPTH) 699 entry->ip[entry->nr++] = ip; 700 } 701 702 extern int sysctl_perf_event_paranoid; 703 extern int sysctl_perf_event_mlock; 704 extern int sysctl_perf_event_sample_rate; 705 706 extern int perf_proc_update_handler(struct ctl_table *table, int write, 707 void __user *buffer, size_t *lenp, 708 loff_t *ppos); 709 710 static inline bool perf_paranoid_tracepoint_raw(void) 711 { 712 return sysctl_perf_event_paranoid > -1; 713 } 714 715 static inline bool perf_paranoid_cpu(void) 716 { 717 return sysctl_perf_event_paranoid > 0; 718 } 719 720 static inline bool perf_paranoid_kernel(void) 721 { 722 return sysctl_perf_event_paranoid > 1; 723 } 724 725 extern void perf_event_init(void); 726 extern void perf_tp_event(u64 addr, u64 count, void *record, 727 int entry_size, struct pt_regs *regs, 728 struct hlist_head *head, int rctx, 729 struct task_struct *task); 730 extern void perf_bp_event(struct perf_event *event, void *data); 731 732 #ifndef perf_misc_flags 733 # define perf_misc_flags(regs) \ 734 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 735 # define perf_instruction_pointer(regs) instruction_pointer(regs) 736 #endif 737 738 static inline bool has_branch_stack(struct perf_event *event) 739 { 740 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 741 } 742 743 extern int perf_output_begin(struct perf_output_handle *handle, 744 struct perf_event *event, unsigned int size); 745 extern void perf_output_end(struct perf_output_handle *handle); 746 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 747 const void *buf, unsigned int len); 748 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 749 unsigned int len); 750 extern int perf_swevent_get_recursion_context(void); 751 extern void perf_swevent_put_recursion_context(int rctx); 752 extern void perf_event_enable(struct perf_event *event); 753 extern void perf_event_disable(struct perf_event *event); 754 extern int __perf_event_disable(void *info); 755 extern void perf_event_task_tick(void); 756 #else 757 static inline void 758 perf_event_task_sched_in(struct task_struct *prev, 759 struct task_struct *task) { } 760 static inline void 761 perf_event_task_sched_out(struct task_struct *prev, 762 struct task_struct *next) { } 763 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 764 static inline void perf_event_exit_task(struct task_struct *child) { } 765 static inline void perf_event_free_task(struct task_struct *task) { } 766 static inline void perf_event_delayed_put(struct task_struct *task) { } 767 static inline void perf_event_print_debug(void) { } 768 static inline int perf_event_task_disable(void) { return -EINVAL; } 769 static inline int perf_event_task_enable(void) { return -EINVAL; } 770 static inline int perf_event_refresh(struct perf_event *event, int refresh) 771 { 772 return -EINVAL; 773 } 774 775 static inline void 776 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 777 static inline void 778 perf_bp_event(struct perf_event *event, void *data) { } 779 780 static inline int perf_register_guest_info_callbacks 781 (struct perf_guest_info_callbacks *callbacks) { return 0; } 782 static inline int perf_unregister_guest_info_callbacks 783 (struct perf_guest_info_callbacks *callbacks) { return 0; } 784 785 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 786 static inline void perf_event_comm(struct task_struct *tsk) { } 787 static inline void perf_event_fork(struct task_struct *tsk) { } 788 static inline void perf_event_init(void) { } 789 static inline int perf_swevent_get_recursion_context(void) { return -1; } 790 static inline void perf_swevent_put_recursion_context(int rctx) { } 791 static inline void perf_event_enable(struct perf_event *event) { } 792 static inline void perf_event_disable(struct perf_event *event) { } 793 static inline int __perf_event_disable(void *info) { return -1; } 794 static inline void perf_event_task_tick(void) { } 795 #endif 796 797 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 798 799 /* 800 * This has to have a higher priority than migration_notifier in sched.c. 801 */ 802 #define perf_cpu_notifier(fn) \ 803 do { \ 804 static struct notifier_block fn##_nb __cpuinitdata = \ 805 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 806 unsigned long cpu = smp_processor_id(); \ 807 unsigned long flags; \ 808 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 809 (void *)(unsigned long)cpu); \ 810 local_irq_save(flags); \ 811 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 812 (void *)(unsigned long)cpu); \ 813 local_irq_restore(flags); \ 814 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 815 (void *)(unsigned long)cpu); \ 816 register_cpu_notifier(&fn##_nb); \ 817 } while (0) 818 819 820 #define PMU_FORMAT_ATTR(_name, _format) \ 821 static ssize_t \ 822 _name##_show(struct device *dev, \ 823 struct device_attribute *attr, \ 824 char *page) \ 825 { \ 826 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 827 return sprintf(page, _format "\n"); \ 828 } \ 829 \ 830 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 831 832 #endif /* _LINUX_PERF_EVENT_H */ 833