1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62 }; 63 64 struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70 }; 71 72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75 struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83 } __packed; 84 85 struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88 }; 89 90 /* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99 struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102 }; 103 104 struct task_struct; 105 106 /* 107 * extra PMU register associated with an event 108 */ 109 struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114 }; 115 116 /** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119 struct hw_perf_event { 120 #ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* intel_cqm */ 143 int cqm_state; 144 u32 cqm_rmid; 145 int is_group_event; 146 struct list_head cqm_events_entry; 147 struct list_head cqm_groups_entry; 148 struct list_head cqm_group_entry; 149 }; 150 struct { /* itrace */ 151 int itrace_started; 152 }; 153 struct { /* amd_power */ 154 u64 pwr_acc; 155 u64 ptsc; 156 }; 157 #ifdef CONFIG_HAVE_HW_BREAKPOINT 158 struct { /* breakpoint */ 159 /* 160 * Crufty hack to avoid the chicken and egg 161 * problem hw_breakpoint has with context 162 * creation and event initalization. 163 */ 164 struct arch_hw_breakpoint info; 165 struct list_head bp_list; 166 }; 167 #endif 168 }; 169 /* 170 * If the event is a per task event, this will point to the task in 171 * question. See the comment in perf_event_alloc(). 172 */ 173 struct task_struct *target; 174 175 /* 176 * PMU would store hardware filter configuration 177 * here. 178 */ 179 void *addr_filters; 180 181 /* Last sync'ed generation of filters */ 182 unsigned long addr_filters_gen; 183 184 /* 185 * hw_perf_event::state flags; used to track the PERF_EF_* state. 186 */ 187 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 188 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 189 #define PERF_HES_ARCH 0x04 190 191 int state; 192 193 /* 194 * The last observed hardware counter value, updated with a 195 * local64_cmpxchg() such that pmu::read() can be called nested. 196 */ 197 local64_t prev_count; 198 199 /* 200 * The period to start the next sample with. 201 */ 202 u64 sample_period; 203 204 /* 205 * The period we started this sample with. 206 */ 207 u64 last_period; 208 209 /* 210 * However much is left of the current period; note that this is 211 * a full 64bit value and allows for generation of periods longer 212 * than hardware might allow. 213 */ 214 local64_t period_left; 215 216 /* 217 * State for throttling the event, see __perf_event_overflow() and 218 * perf_adjust_freq_unthr_context(). 219 */ 220 u64 interrupts_seq; 221 u64 interrupts; 222 223 /* 224 * State for freq target events, see __perf_event_overflow() and 225 * perf_adjust_freq_unthr_context(). 226 */ 227 u64 freq_time_stamp; 228 u64 freq_count_stamp; 229 #endif 230 }; 231 232 struct perf_event; 233 234 /* 235 * Common implementation detail of pmu::{start,commit,cancel}_txn 236 */ 237 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 238 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 239 240 /** 241 * pmu::capabilities flags 242 */ 243 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 244 #define PERF_PMU_CAP_NO_NMI 0x02 245 #define PERF_PMU_CAP_AUX_NO_SG 0x04 246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 247 #define PERF_PMU_CAP_EXCLUSIVE 0x10 248 #define PERF_PMU_CAP_ITRACE 0x20 249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 250 251 /** 252 * struct pmu - generic performance monitoring unit 253 */ 254 struct pmu { 255 struct list_head entry; 256 257 struct module *module; 258 struct device *dev; 259 const struct attribute_group **attr_groups; 260 const char *name; 261 int type; 262 263 /* 264 * various common per-pmu feature flags 265 */ 266 int capabilities; 267 268 int * __percpu pmu_disable_count; 269 struct perf_cpu_context * __percpu pmu_cpu_context; 270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 271 int task_ctx_nr; 272 int hrtimer_interval_ms; 273 274 /* number of address filters this PMU can do */ 275 unsigned int nr_addr_filters; 276 277 /* 278 * Fully disable/enable this PMU, can be used to protect from the PMI 279 * as well as for lazy/batch writing of the MSRs. 280 */ 281 void (*pmu_enable) (struct pmu *pmu); /* optional */ 282 void (*pmu_disable) (struct pmu *pmu); /* optional */ 283 284 /* 285 * Try and initialize the event for this PMU. 286 * 287 * Returns: 288 * -ENOENT -- @event is not for this PMU 289 * 290 * -ENODEV -- @event is for this PMU but PMU not present 291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 292 * -EINVAL -- @event is for this PMU but @event is not valid 293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 295 * 296 * 0 -- @event is for this PMU and valid 297 * 298 * Other error return values are allowed. 299 */ 300 int (*event_init) (struct perf_event *event); 301 302 /* 303 * Notification that the event was mapped or unmapped. Called 304 * in the context of the mapping task. 305 */ 306 void (*event_mapped) (struct perf_event *event); /*optional*/ 307 void (*event_unmapped) (struct perf_event *event); /*optional*/ 308 309 /* 310 * Flags for ->add()/->del()/ ->start()/->stop(). There are 311 * matching hw_perf_event::state flags. 312 */ 313 #define PERF_EF_START 0x01 /* start the counter when adding */ 314 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 315 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 316 317 /* 318 * Adds/Removes a counter to/from the PMU, can be done inside a 319 * transaction, see the ->*_txn() methods. 320 * 321 * The add/del callbacks will reserve all hardware resources required 322 * to service the event, this includes any counter constraint 323 * scheduling etc. 324 * 325 * Called with IRQs disabled and the PMU disabled on the CPU the event 326 * is on. 327 * 328 * ->add() called without PERF_EF_START should result in the same state 329 * as ->add() followed by ->stop(). 330 * 331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 332 * ->stop() that must deal with already being stopped without 333 * PERF_EF_UPDATE. 334 */ 335 int (*add) (struct perf_event *event, int flags); 336 void (*del) (struct perf_event *event, int flags); 337 338 /* 339 * Starts/Stops a counter present on the PMU. 340 * 341 * The PMI handler should stop the counter when perf_event_overflow() 342 * returns !0. ->start() will be used to continue. 343 * 344 * Also used to change the sample period. 345 * 346 * Called with IRQs disabled and the PMU disabled on the CPU the event 347 * is on -- will be called from NMI context with the PMU generates 348 * NMIs. 349 * 350 * ->stop() with PERF_EF_UPDATE will read the counter and update 351 * period/count values like ->read() would. 352 * 353 * ->start() with PERF_EF_RELOAD will reprogram the the counter 354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 355 */ 356 void (*start) (struct perf_event *event, int flags); 357 void (*stop) (struct perf_event *event, int flags); 358 359 /* 360 * Updates the counter value of the event. 361 * 362 * For sampling capable PMUs this will also update the software period 363 * hw_perf_event::period_left field. 364 */ 365 void (*read) (struct perf_event *event); 366 367 /* 368 * Group events scheduling is treated as a transaction, add 369 * group events as a whole and perform one schedulability test. 370 * If the test fails, roll back the whole group 371 * 372 * Start the transaction, after this ->add() doesn't need to 373 * do schedulability tests. 374 * 375 * Optional. 376 */ 377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 378 /* 379 * If ->start_txn() disabled the ->add() schedulability test 380 * then ->commit_txn() is required to perform one. On success 381 * the transaction is closed. On error the transaction is kept 382 * open until ->cancel_txn() is called. 383 * 384 * Optional. 385 */ 386 int (*commit_txn) (struct pmu *pmu); 387 /* 388 * Will cancel the transaction, assumes ->del() is called 389 * for each successful ->add() during the transaction. 390 * 391 * Optional. 392 */ 393 void (*cancel_txn) (struct pmu *pmu); 394 395 /* 396 * Will return the value for perf_event_mmap_page::index for this event, 397 * if no implementation is provided it will default to: event->hw.idx + 1. 398 */ 399 int (*event_idx) (struct perf_event *event); /*optional */ 400 401 /* 402 * context-switches callback 403 */ 404 void (*sched_task) (struct perf_event_context *ctx, 405 bool sched_in); 406 /* 407 * PMU specific data size 408 */ 409 size_t task_ctx_size; 410 411 412 /* 413 * Return the count value for a counter. 414 */ 415 u64 (*count) (struct perf_event *event); /*optional*/ 416 417 /* 418 * Set up pmu-private data structures for an AUX area 419 */ 420 void *(*setup_aux) (int cpu, void **pages, 421 int nr_pages, bool overwrite); 422 /* optional */ 423 424 /* 425 * Free pmu-private AUX data structures 426 */ 427 void (*free_aux) (void *aux); /* optional */ 428 429 /* 430 * Validate address range filters: make sure the HW supports the 431 * requested configuration and number of filters; return 0 if the 432 * supplied filters are valid, -errno otherwise. 433 * 434 * Runs in the context of the ioctl()ing process and is not serialized 435 * with the rest of the PMU callbacks. 436 */ 437 int (*addr_filters_validate) (struct list_head *filters); 438 /* optional */ 439 440 /* 441 * Synchronize address range filter configuration: 442 * translate hw-agnostic filters into hardware configuration in 443 * event::hw::addr_filters. 444 * 445 * Runs as a part of filter sync sequence that is done in ->start() 446 * callback by calling perf_event_addr_filters_sync(). 447 * 448 * May (and should) traverse event::addr_filters::list, for which its 449 * caller provides necessary serialization. 450 */ 451 void (*addr_filters_sync) (struct perf_event *event); 452 /* optional */ 453 454 /* 455 * Filter events for PMU-specific reasons. 456 */ 457 int (*filter_match) (struct perf_event *event); /* optional */ 458 }; 459 460 /** 461 * struct perf_addr_filter - address range filter definition 462 * @entry: event's filter list linkage 463 * @inode: object file's inode for file-based filters 464 * @offset: filter range offset 465 * @size: filter range size 466 * @range: 1: range, 0: address 467 * @filter: 1: filter/start, 0: stop 468 * 469 * This is a hardware-agnostic filter configuration as specified by the user. 470 */ 471 struct perf_addr_filter { 472 struct list_head entry; 473 struct inode *inode; 474 unsigned long offset; 475 unsigned long size; 476 unsigned int range : 1, 477 filter : 1; 478 }; 479 480 /** 481 * struct perf_addr_filters_head - container for address range filters 482 * @list: list of filters for this event 483 * @lock: spinlock that serializes accesses to the @list and event's 484 * (and its children's) filter generations. 485 * 486 * A child event will use parent's @list (and therefore @lock), so they are 487 * bundled together; see perf_event_addr_filters(). 488 */ 489 struct perf_addr_filters_head { 490 struct list_head list; 491 raw_spinlock_t lock; 492 }; 493 494 /** 495 * enum perf_event_active_state - the states of a event 496 */ 497 enum perf_event_active_state { 498 PERF_EVENT_STATE_DEAD = -4, 499 PERF_EVENT_STATE_EXIT = -3, 500 PERF_EVENT_STATE_ERROR = -2, 501 PERF_EVENT_STATE_OFF = -1, 502 PERF_EVENT_STATE_INACTIVE = 0, 503 PERF_EVENT_STATE_ACTIVE = 1, 504 }; 505 506 struct file; 507 struct perf_sample_data; 508 509 typedef void (*perf_overflow_handler_t)(struct perf_event *, 510 struct perf_sample_data *, 511 struct pt_regs *regs); 512 513 enum perf_group_flag { 514 PERF_GROUP_SOFTWARE = 0x1, 515 }; 516 517 #define SWEVENT_HLIST_BITS 8 518 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 519 520 struct swevent_hlist { 521 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 522 struct rcu_head rcu_head; 523 }; 524 525 #define PERF_ATTACH_CONTEXT 0x01 526 #define PERF_ATTACH_GROUP 0x02 527 #define PERF_ATTACH_TASK 0x04 528 #define PERF_ATTACH_TASK_DATA 0x08 529 530 struct perf_cgroup; 531 struct ring_buffer; 532 533 struct pmu_event_list { 534 raw_spinlock_t lock; 535 struct list_head list; 536 }; 537 538 /** 539 * struct perf_event - performance event kernel representation: 540 */ 541 struct perf_event { 542 #ifdef CONFIG_PERF_EVENTS 543 /* 544 * entry onto perf_event_context::event_list; 545 * modifications require ctx->lock 546 * RCU safe iterations. 547 */ 548 struct list_head event_entry; 549 550 /* 551 * XXX: group_entry and sibling_list should be mutually exclusive; 552 * either you're a sibling on a group, or you're the group leader. 553 * Rework the code to always use the same list element. 554 * 555 * Locked for modification by both ctx->mutex and ctx->lock; holding 556 * either sufficies for read. 557 */ 558 struct list_head group_entry; 559 struct list_head sibling_list; 560 561 /* 562 * We need storage to track the entries in perf_pmu_migrate_context; we 563 * cannot use the event_entry because of RCU and we want to keep the 564 * group in tact which avoids us using the other two entries. 565 */ 566 struct list_head migrate_entry; 567 568 struct hlist_node hlist_entry; 569 struct list_head active_entry; 570 int nr_siblings; 571 int group_flags; 572 struct perf_event *group_leader; 573 struct pmu *pmu; 574 void *pmu_private; 575 576 enum perf_event_active_state state; 577 unsigned int attach_state; 578 local64_t count; 579 atomic64_t child_count; 580 581 /* 582 * These are the total time in nanoseconds that the event 583 * has been enabled (i.e. eligible to run, and the task has 584 * been scheduled in, if this is a per-task event) 585 * and running (scheduled onto the CPU), respectively. 586 * 587 * They are computed from tstamp_enabled, tstamp_running and 588 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 589 */ 590 u64 total_time_enabled; 591 u64 total_time_running; 592 593 /* 594 * These are timestamps used for computing total_time_enabled 595 * and total_time_running when the event is in INACTIVE or 596 * ACTIVE state, measured in nanoseconds from an arbitrary point 597 * in time. 598 * tstamp_enabled: the notional time when the event was enabled 599 * tstamp_running: the notional time when the event was scheduled on 600 * tstamp_stopped: in INACTIVE state, the notional time when the 601 * event was scheduled off. 602 */ 603 u64 tstamp_enabled; 604 u64 tstamp_running; 605 u64 tstamp_stopped; 606 607 /* 608 * timestamp shadows the actual context timing but it can 609 * be safely used in NMI interrupt context. It reflects the 610 * context time as it was when the event was last scheduled in. 611 * 612 * ctx_time already accounts for ctx->timestamp. Therefore to 613 * compute ctx_time for a sample, simply add perf_clock(). 614 */ 615 u64 shadow_ctx_time; 616 617 struct perf_event_attr attr; 618 u16 header_size; 619 u16 id_header_size; 620 u16 read_size; 621 struct hw_perf_event hw; 622 623 struct perf_event_context *ctx; 624 atomic_long_t refcount; 625 626 /* 627 * These accumulate total time (in nanoseconds) that children 628 * events have been enabled and running, respectively. 629 */ 630 atomic64_t child_total_time_enabled; 631 atomic64_t child_total_time_running; 632 633 /* 634 * Protect attach/detach and child_list: 635 */ 636 struct mutex child_mutex; 637 struct list_head child_list; 638 struct perf_event *parent; 639 640 int oncpu; 641 int cpu; 642 643 struct list_head owner_entry; 644 struct task_struct *owner; 645 646 /* mmap bits */ 647 struct mutex mmap_mutex; 648 atomic_t mmap_count; 649 650 struct ring_buffer *rb; 651 struct list_head rb_entry; 652 unsigned long rcu_batches; 653 int rcu_pending; 654 655 /* poll related */ 656 wait_queue_head_t waitq; 657 struct fasync_struct *fasync; 658 659 /* delayed work for NMIs and such */ 660 int pending_wakeup; 661 int pending_kill; 662 int pending_disable; 663 struct irq_work pending; 664 665 atomic_t event_limit; 666 667 /* address range filters */ 668 struct perf_addr_filters_head addr_filters; 669 /* vma address array for file-based filders */ 670 unsigned long *addr_filters_offs; 671 unsigned long addr_filters_gen; 672 673 void (*destroy)(struct perf_event *); 674 struct rcu_head rcu_head; 675 676 struct pid_namespace *ns; 677 u64 id; 678 679 u64 (*clock)(void); 680 perf_overflow_handler_t overflow_handler; 681 void *overflow_handler_context; 682 683 #ifdef CONFIG_EVENT_TRACING 684 struct trace_event_call *tp_event; 685 struct event_filter *filter; 686 #ifdef CONFIG_FUNCTION_TRACER 687 struct ftrace_ops ftrace_ops; 688 #endif 689 #endif 690 691 #ifdef CONFIG_CGROUP_PERF 692 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 693 int cgrp_defer_enabled; 694 #endif 695 696 struct list_head sb_list; 697 #endif /* CONFIG_PERF_EVENTS */ 698 }; 699 700 /** 701 * struct perf_event_context - event context structure 702 * 703 * Used as a container for task events and CPU events as well: 704 */ 705 struct perf_event_context { 706 struct pmu *pmu; 707 /* 708 * Protect the states of the events in the list, 709 * nr_active, and the list: 710 */ 711 raw_spinlock_t lock; 712 /* 713 * Protect the list of events. Locking either mutex or lock 714 * is sufficient to ensure the list doesn't change; to change 715 * the list you need to lock both the mutex and the spinlock. 716 */ 717 struct mutex mutex; 718 719 struct list_head active_ctx_list; 720 struct list_head pinned_groups; 721 struct list_head flexible_groups; 722 struct list_head event_list; 723 int nr_events; 724 int nr_active; 725 int is_active; 726 int nr_stat; 727 int nr_freq; 728 int rotate_disable; 729 atomic_t refcount; 730 struct task_struct *task; 731 732 /* 733 * Context clock, runs when context enabled. 734 */ 735 u64 time; 736 u64 timestamp; 737 738 /* 739 * These fields let us detect when two contexts have both 740 * been cloned (inherited) from a common ancestor. 741 */ 742 struct perf_event_context *parent_ctx; 743 u64 parent_gen; 744 u64 generation; 745 int pin_count; 746 int nr_cgroups; /* cgroup evts */ 747 void *task_ctx_data; /* pmu specific data */ 748 struct rcu_head rcu_head; 749 }; 750 751 /* 752 * Number of contexts where an event can trigger: 753 * task, softirq, hardirq, nmi. 754 */ 755 #define PERF_NR_CONTEXTS 4 756 757 /** 758 * struct perf_event_cpu_context - per cpu event context structure 759 */ 760 struct perf_cpu_context { 761 struct perf_event_context ctx; 762 struct perf_event_context *task_ctx; 763 int active_oncpu; 764 int exclusive; 765 766 raw_spinlock_t hrtimer_lock; 767 struct hrtimer hrtimer; 768 ktime_t hrtimer_interval; 769 unsigned int hrtimer_active; 770 771 struct pmu *unique_pmu; 772 struct perf_cgroup *cgrp; 773 }; 774 775 struct perf_output_handle { 776 struct perf_event *event; 777 struct ring_buffer *rb; 778 unsigned long wakeup; 779 unsigned long size; 780 union { 781 void *addr; 782 unsigned long head; 783 }; 784 int page; 785 }; 786 787 #ifdef CONFIG_CGROUP_PERF 788 789 /* 790 * perf_cgroup_info keeps track of time_enabled for a cgroup. 791 * This is a per-cpu dynamically allocated data structure. 792 */ 793 struct perf_cgroup_info { 794 u64 time; 795 u64 timestamp; 796 }; 797 798 struct perf_cgroup { 799 struct cgroup_subsys_state css; 800 struct perf_cgroup_info __percpu *info; 801 }; 802 803 /* 804 * Must ensure cgroup is pinned (css_get) before calling 805 * this function. In other words, we cannot call this function 806 * if there is no cgroup event for the current CPU context. 807 */ 808 static inline struct perf_cgroup * 809 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 810 { 811 return container_of(task_css_check(task, perf_event_cgrp_id, 812 ctx ? lockdep_is_held(&ctx->lock) 813 : true), 814 struct perf_cgroup, css); 815 } 816 #endif /* CONFIG_CGROUP_PERF */ 817 818 #ifdef CONFIG_PERF_EVENTS 819 820 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 821 struct perf_event *event); 822 extern void perf_aux_output_end(struct perf_output_handle *handle, 823 unsigned long size, bool truncated); 824 extern int perf_aux_output_skip(struct perf_output_handle *handle, 825 unsigned long size); 826 extern void *perf_get_aux(struct perf_output_handle *handle); 827 828 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 829 extern void perf_pmu_unregister(struct pmu *pmu); 830 831 extern int perf_num_counters(void); 832 extern const char *perf_pmu_name(void); 833 extern void __perf_event_task_sched_in(struct task_struct *prev, 834 struct task_struct *task); 835 extern void __perf_event_task_sched_out(struct task_struct *prev, 836 struct task_struct *next); 837 extern int perf_event_init_task(struct task_struct *child); 838 extern void perf_event_exit_task(struct task_struct *child); 839 extern void perf_event_free_task(struct task_struct *task); 840 extern void perf_event_delayed_put(struct task_struct *task); 841 extern struct file *perf_event_get(unsigned int fd); 842 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 843 extern void perf_event_print_debug(void); 844 extern void perf_pmu_disable(struct pmu *pmu); 845 extern void perf_pmu_enable(struct pmu *pmu); 846 extern void perf_sched_cb_dec(struct pmu *pmu); 847 extern void perf_sched_cb_inc(struct pmu *pmu); 848 extern int perf_event_task_disable(void); 849 extern int perf_event_task_enable(void); 850 extern int perf_event_refresh(struct perf_event *event, int refresh); 851 extern void perf_event_update_userpage(struct perf_event *event); 852 extern int perf_event_release_kernel(struct perf_event *event); 853 extern struct perf_event * 854 perf_event_create_kernel_counter(struct perf_event_attr *attr, 855 int cpu, 856 struct task_struct *task, 857 perf_overflow_handler_t callback, 858 void *context); 859 extern void perf_pmu_migrate_context(struct pmu *pmu, 860 int src_cpu, int dst_cpu); 861 extern u64 perf_event_read_local(struct perf_event *event); 862 extern u64 perf_event_read_value(struct perf_event *event, 863 u64 *enabled, u64 *running); 864 865 866 struct perf_sample_data { 867 /* 868 * Fields set by perf_sample_data_init(), group so as to 869 * minimize the cachelines touched. 870 */ 871 u64 addr; 872 struct perf_raw_record *raw; 873 struct perf_branch_stack *br_stack; 874 u64 period; 875 u64 weight; 876 u64 txn; 877 union perf_mem_data_src data_src; 878 879 /* 880 * The other fields, optionally {set,used} by 881 * perf_{prepare,output}_sample(). 882 */ 883 u64 type; 884 u64 ip; 885 struct { 886 u32 pid; 887 u32 tid; 888 } tid_entry; 889 u64 time; 890 u64 id; 891 u64 stream_id; 892 struct { 893 u32 cpu; 894 u32 reserved; 895 } cpu_entry; 896 struct perf_callchain_entry *callchain; 897 898 /* 899 * regs_user may point to task_pt_regs or to regs_user_copy, depending 900 * on arch details. 901 */ 902 struct perf_regs regs_user; 903 struct pt_regs regs_user_copy; 904 905 struct perf_regs regs_intr; 906 u64 stack_user_size; 907 } ____cacheline_aligned; 908 909 /* default value for data source */ 910 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 911 PERF_MEM_S(LVL, NA) |\ 912 PERF_MEM_S(SNOOP, NA) |\ 913 PERF_MEM_S(LOCK, NA) |\ 914 PERF_MEM_S(TLB, NA)) 915 916 static inline void perf_sample_data_init(struct perf_sample_data *data, 917 u64 addr, u64 period) 918 { 919 /* remaining struct members initialized in perf_prepare_sample() */ 920 data->addr = addr; 921 data->raw = NULL; 922 data->br_stack = NULL; 923 data->period = period; 924 data->weight = 0; 925 data->data_src.val = PERF_MEM_NA; 926 data->txn = 0; 927 } 928 929 extern void perf_output_sample(struct perf_output_handle *handle, 930 struct perf_event_header *header, 931 struct perf_sample_data *data, 932 struct perf_event *event); 933 extern void perf_prepare_sample(struct perf_event_header *header, 934 struct perf_sample_data *data, 935 struct perf_event *event, 936 struct pt_regs *regs); 937 938 extern int perf_event_overflow(struct perf_event *event, 939 struct perf_sample_data *data, 940 struct pt_regs *regs); 941 942 extern void perf_event_output_forward(struct perf_event *event, 943 struct perf_sample_data *data, 944 struct pt_regs *regs); 945 extern void perf_event_output_backward(struct perf_event *event, 946 struct perf_sample_data *data, 947 struct pt_regs *regs); 948 extern void perf_event_output(struct perf_event *event, 949 struct perf_sample_data *data, 950 struct pt_regs *regs); 951 952 static inline bool 953 is_default_overflow_handler(struct perf_event *event) 954 { 955 if (likely(event->overflow_handler == perf_event_output_forward)) 956 return true; 957 if (unlikely(event->overflow_handler == perf_event_output_backward)) 958 return true; 959 return false; 960 } 961 962 extern void 963 perf_event_header__init_id(struct perf_event_header *header, 964 struct perf_sample_data *data, 965 struct perf_event *event); 966 extern void 967 perf_event__output_id_sample(struct perf_event *event, 968 struct perf_output_handle *handle, 969 struct perf_sample_data *sample); 970 971 extern void 972 perf_log_lost_samples(struct perf_event *event, u64 lost); 973 974 static inline bool is_sampling_event(struct perf_event *event) 975 { 976 return event->attr.sample_period != 0; 977 } 978 979 /* 980 * Return 1 for a software event, 0 for a hardware event 981 */ 982 static inline int is_software_event(struct perf_event *event) 983 { 984 return event->pmu->task_ctx_nr == perf_sw_context; 985 } 986 987 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 988 989 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 990 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 991 992 #ifndef perf_arch_fetch_caller_regs 993 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 994 #endif 995 996 /* 997 * Take a snapshot of the regs. Skip ip and frame pointer to 998 * the nth caller. We only need a few of the regs: 999 * - ip for PERF_SAMPLE_IP 1000 * - cs for user_mode() tests 1001 * - bp for callchains 1002 * - eflags, for future purposes, just in case 1003 */ 1004 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1005 { 1006 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1007 } 1008 1009 static __always_inline void 1010 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1011 { 1012 if (static_key_false(&perf_swevent_enabled[event_id])) 1013 __perf_sw_event(event_id, nr, regs, addr); 1014 } 1015 1016 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1017 1018 /* 1019 * 'Special' version for the scheduler, it hard assumes no recursion, 1020 * which is guaranteed by us not actually scheduling inside other swevents 1021 * because those disable preemption. 1022 */ 1023 static __always_inline void 1024 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1025 { 1026 if (static_key_false(&perf_swevent_enabled[event_id])) { 1027 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1028 1029 perf_fetch_caller_regs(regs); 1030 ___perf_sw_event(event_id, nr, regs, addr); 1031 } 1032 } 1033 1034 extern struct static_key_false perf_sched_events; 1035 1036 static __always_inline bool 1037 perf_sw_migrate_enabled(void) 1038 { 1039 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1040 return true; 1041 return false; 1042 } 1043 1044 static inline void perf_event_task_migrate(struct task_struct *task) 1045 { 1046 if (perf_sw_migrate_enabled()) 1047 task->sched_migrated = 1; 1048 } 1049 1050 static inline void perf_event_task_sched_in(struct task_struct *prev, 1051 struct task_struct *task) 1052 { 1053 if (static_branch_unlikely(&perf_sched_events)) 1054 __perf_event_task_sched_in(prev, task); 1055 1056 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1057 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1058 1059 perf_fetch_caller_regs(regs); 1060 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1061 task->sched_migrated = 0; 1062 } 1063 } 1064 1065 static inline void perf_event_task_sched_out(struct task_struct *prev, 1066 struct task_struct *next) 1067 { 1068 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1069 1070 if (static_branch_unlikely(&perf_sched_events)) 1071 __perf_event_task_sched_out(prev, next); 1072 } 1073 1074 static inline u64 __perf_event_count(struct perf_event *event) 1075 { 1076 return local64_read(&event->count) + atomic64_read(&event->child_count); 1077 } 1078 1079 extern void perf_event_mmap(struct vm_area_struct *vma); 1080 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1081 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1082 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1083 1084 extern void perf_event_exec(void); 1085 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1086 extern void perf_event_fork(struct task_struct *tsk); 1087 1088 /* Callchains */ 1089 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1090 1091 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1092 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1093 extern struct perf_callchain_entry * 1094 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1095 u32 max_stack, bool crosstask, bool add_mark); 1096 extern int get_callchain_buffers(int max_stack); 1097 extern void put_callchain_buffers(void); 1098 1099 extern int sysctl_perf_event_max_stack; 1100 extern int sysctl_perf_event_max_contexts_per_stack; 1101 1102 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1103 { 1104 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1105 struct perf_callchain_entry *entry = ctx->entry; 1106 entry->ip[entry->nr++] = ip; 1107 ++ctx->contexts; 1108 return 0; 1109 } else { 1110 ctx->contexts_maxed = true; 1111 return -1; /* no more room, stop walking the stack */ 1112 } 1113 } 1114 1115 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1116 { 1117 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1118 struct perf_callchain_entry *entry = ctx->entry; 1119 entry->ip[entry->nr++] = ip; 1120 ++ctx->nr; 1121 return 0; 1122 } else { 1123 return -1; /* no more room, stop walking the stack */ 1124 } 1125 } 1126 1127 extern int sysctl_perf_event_paranoid; 1128 extern int sysctl_perf_event_mlock; 1129 extern int sysctl_perf_event_sample_rate; 1130 extern int sysctl_perf_cpu_time_max_percent; 1131 1132 extern void perf_sample_event_took(u64 sample_len_ns); 1133 1134 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1135 void __user *buffer, size_t *lenp, 1136 loff_t *ppos); 1137 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1138 void __user *buffer, size_t *lenp, 1139 loff_t *ppos); 1140 1141 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1142 void __user *buffer, size_t *lenp, loff_t *ppos); 1143 1144 static inline bool perf_paranoid_tracepoint_raw(void) 1145 { 1146 return sysctl_perf_event_paranoid > -1; 1147 } 1148 1149 static inline bool perf_paranoid_cpu(void) 1150 { 1151 return sysctl_perf_event_paranoid > 0; 1152 } 1153 1154 static inline bool perf_paranoid_kernel(void) 1155 { 1156 return sysctl_perf_event_paranoid > 1; 1157 } 1158 1159 extern void perf_event_init(void); 1160 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1161 int entry_size, struct pt_regs *regs, 1162 struct hlist_head *head, int rctx, 1163 struct task_struct *task); 1164 extern void perf_bp_event(struct perf_event *event, void *data); 1165 1166 #ifndef perf_misc_flags 1167 # define perf_misc_flags(regs) \ 1168 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1169 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1170 #endif 1171 1172 static inline bool has_branch_stack(struct perf_event *event) 1173 { 1174 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1175 } 1176 1177 static inline bool needs_branch_stack(struct perf_event *event) 1178 { 1179 return event->attr.branch_sample_type != 0; 1180 } 1181 1182 static inline bool has_aux(struct perf_event *event) 1183 { 1184 return event->pmu->setup_aux; 1185 } 1186 1187 static inline bool is_write_backward(struct perf_event *event) 1188 { 1189 return !!event->attr.write_backward; 1190 } 1191 1192 static inline bool has_addr_filter(struct perf_event *event) 1193 { 1194 return event->pmu->nr_addr_filters; 1195 } 1196 1197 /* 1198 * An inherited event uses parent's filters 1199 */ 1200 static inline struct perf_addr_filters_head * 1201 perf_event_addr_filters(struct perf_event *event) 1202 { 1203 struct perf_addr_filters_head *ifh = &event->addr_filters; 1204 1205 if (event->parent) 1206 ifh = &event->parent->addr_filters; 1207 1208 return ifh; 1209 } 1210 1211 extern void perf_event_addr_filters_sync(struct perf_event *event); 1212 1213 extern int perf_output_begin(struct perf_output_handle *handle, 1214 struct perf_event *event, unsigned int size); 1215 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1216 struct perf_event *event, 1217 unsigned int size); 1218 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1219 struct perf_event *event, 1220 unsigned int size); 1221 1222 extern void perf_output_end(struct perf_output_handle *handle); 1223 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1224 const void *buf, unsigned int len); 1225 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1226 unsigned int len); 1227 extern int perf_swevent_get_recursion_context(void); 1228 extern void perf_swevent_put_recursion_context(int rctx); 1229 extern u64 perf_swevent_set_period(struct perf_event *event); 1230 extern void perf_event_enable(struct perf_event *event); 1231 extern void perf_event_disable(struct perf_event *event); 1232 extern void perf_event_disable_local(struct perf_event *event); 1233 extern void perf_event_task_tick(void); 1234 #else /* !CONFIG_PERF_EVENTS: */ 1235 static inline void * 1236 perf_aux_output_begin(struct perf_output_handle *handle, 1237 struct perf_event *event) { return NULL; } 1238 static inline void 1239 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1240 bool truncated) { } 1241 static inline int 1242 perf_aux_output_skip(struct perf_output_handle *handle, 1243 unsigned long size) { return -EINVAL; } 1244 static inline void * 1245 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1246 static inline void 1247 perf_event_task_migrate(struct task_struct *task) { } 1248 static inline void 1249 perf_event_task_sched_in(struct task_struct *prev, 1250 struct task_struct *task) { } 1251 static inline void 1252 perf_event_task_sched_out(struct task_struct *prev, 1253 struct task_struct *next) { } 1254 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1255 static inline void perf_event_exit_task(struct task_struct *child) { } 1256 static inline void perf_event_free_task(struct task_struct *task) { } 1257 static inline void perf_event_delayed_put(struct task_struct *task) { } 1258 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1259 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1260 { 1261 return ERR_PTR(-EINVAL); 1262 } 1263 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1264 static inline void perf_event_print_debug(void) { } 1265 static inline int perf_event_task_disable(void) { return -EINVAL; } 1266 static inline int perf_event_task_enable(void) { return -EINVAL; } 1267 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1268 { 1269 return -EINVAL; 1270 } 1271 1272 static inline void 1273 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1274 static inline void 1275 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1276 static inline void 1277 perf_bp_event(struct perf_event *event, void *data) { } 1278 1279 static inline int perf_register_guest_info_callbacks 1280 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1281 static inline int perf_unregister_guest_info_callbacks 1282 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1283 1284 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1285 static inline void perf_event_exec(void) { } 1286 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1287 static inline void perf_event_fork(struct task_struct *tsk) { } 1288 static inline void perf_event_init(void) { } 1289 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1290 static inline void perf_swevent_put_recursion_context(int rctx) { } 1291 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1292 static inline void perf_event_enable(struct perf_event *event) { } 1293 static inline void perf_event_disable(struct perf_event *event) { } 1294 static inline int __perf_event_disable(void *info) { return -1; } 1295 static inline void perf_event_task_tick(void) { } 1296 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1297 #endif 1298 1299 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1300 extern void perf_restore_debug_store(void); 1301 #else 1302 static inline void perf_restore_debug_store(void) { } 1303 #endif 1304 1305 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1306 { 1307 return frag->pad < sizeof(u64); 1308 } 1309 1310 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1311 1312 struct perf_pmu_events_attr { 1313 struct device_attribute attr; 1314 u64 id; 1315 const char *event_str; 1316 }; 1317 1318 struct perf_pmu_events_ht_attr { 1319 struct device_attribute attr; 1320 u64 id; 1321 const char *event_str_ht; 1322 const char *event_str_noht; 1323 }; 1324 1325 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1326 char *page); 1327 1328 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1329 static struct perf_pmu_events_attr _var = { \ 1330 .attr = __ATTR(_name, 0444, _show, NULL), \ 1331 .id = _id, \ 1332 }; 1333 1334 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1335 static struct perf_pmu_events_attr _var = { \ 1336 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1337 .id = 0, \ 1338 .event_str = _str, \ 1339 }; 1340 1341 #define PMU_FORMAT_ATTR(_name, _format) \ 1342 static ssize_t \ 1343 _name##_show(struct device *dev, \ 1344 struct device_attribute *attr, \ 1345 char *page) \ 1346 { \ 1347 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1348 return sprintf(page, _format "\n"); \ 1349 } \ 1350 \ 1351 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1352 1353 /* Performance counter hotplug functions */ 1354 #ifdef CONFIG_PERF_EVENTS 1355 int perf_event_init_cpu(unsigned int cpu); 1356 int perf_event_exit_cpu(unsigned int cpu); 1357 #else 1358 #define perf_event_init_cpu NULL 1359 #define perf_event_exit_cpu NULL 1360 #endif 1361 1362 #endif /* _LINUX_PERF_EVENT_H */ 1363