1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <asm/local.h> 56 57 struct perf_callchain_entry { 58 __u64 nr; 59 __u64 ip[PERF_MAX_STACK_DEPTH]; 60 }; 61 62 struct perf_raw_record { 63 u32 size; 64 void *data; 65 }; 66 67 /* 68 * branch stack layout: 69 * nr: number of taken branches stored in entries[] 70 * 71 * Note that nr can vary from sample to sample 72 * branches (to, from) are stored from most recent 73 * to least recent, i.e., entries[0] contains the most 74 * recent branch. 75 */ 76 struct perf_branch_stack { 77 __u64 nr; 78 struct perf_branch_entry entries[0]; 79 }; 80 81 struct perf_regs_user { 82 __u64 abi; 83 struct pt_regs *regs; 84 }; 85 86 struct task_struct; 87 88 /* 89 * extra PMU register associated with an event 90 */ 91 struct hw_perf_event_extra { 92 u64 config; /* register value */ 93 unsigned int reg; /* register address or index */ 94 int alloc; /* extra register already allocated */ 95 int idx; /* index in shared_regs->regs[] */ 96 }; 97 98 struct event_constraint; 99 100 /** 101 * struct hw_perf_event - performance event hardware details: 102 */ 103 struct hw_perf_event { 104 #ifdef CONFIG_PERF_EVENTS 105 union { 106 struct { /* hardware */ 107 u64 config; 108 u64 last_tag; 109 unsigned long config_base; 110 unsigned long event_base; 111 int event_base_rdpmc; 112 int idx; 113 int last_cpu; 114 int flags; 115 116 struct hw_perf_event_extra extra_reg; 117 struct hw_perf_event_extra branch_reg; 118 119 struct event_constraint *constraint; 120 }; 121 struct { /* software */ 122 struct hrtimer hrtimer; 123 }; 124 struct { /* tracepoint */ 125 struct task_struct *tp_target; 126 /* for tp_event->class */ 127 struct list_head tp_list; 128 }; 129 #ifdef CONFIG_HAVE_HW_BREAKPOINT 130 struct { /* breakpoint */ 131 /* 132 * Crufty hack to avoid the chicken and egg 133 * problem hw_breakpoint has with context 134 * creation and event initalization. 135 */ 136 struct task_struct *bp_target; 137 struct arch_hw_breakpoint info; 138 struct list_head bp_list; 139 }; 140 #endif 141 }; 142 int state; 143 local64_t prev_count; 144 u64 sample_period; 145 u64 last_period; 146 local64_t period_left; 147 u64 interrupts_seq; 148 u64 interrupts; 149 150 u64 freq_time_stamp; 151 u64 freq_count_stamp; 152 #endif 153 }; 154 155 /* 156 * hw_perf_event::state flags 157 */ 158 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 159 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 160 #define PERF_HES_ARCH 0x04 161 162 struct perf_event; 163 164 /* 165 * Common implementation detail of pmu::{start,commit,cancel}_txn 166 */ 167 #define PERF_EVENT_TXN 0x1 168 169 /** 170 * struct pmu - generic performance monitoring unit 171 */ 172 struct pmu { 173 struct list_head entry; 174 175 struct module *module; 176 struct device *dev; 177 const struct attribute_group **attr_groups; 178 const char *name; 179 int type; 180 181 int * __percpu pmu_disable_count; 182 struct perf_cpu_context * __percpu pmu_cpu_context; 183 int task_ctx_nr; 184 int hrtimer_interval_ms; 185 186 /* 187 * Fully disable/enable this PMU, can be used to protect from the PMI 188 * as well as for lazy/batch writing of the MSRs. 189 */ 190 void (*pmu_enable) (struct pmu *pmu); /* optional */ 191 void (*pmu_disable) (struct pmu *pmu); /* optional */ 192 193 /* 194 * Try and initialize the event for this PMU. 195 * Should return -ENOENT when the @event doesn't match this PMU. 196 */ 197 int (*event_init) (struct perf_event *event); 198 199 #define PERF_EF_START 0x01 /* start the counter when adding */ 200 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 201 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 202 203 /* 204 * Adds/Removes a counter to/from the PMU, can be done inside 205 * a transaction, see the ->*_txn() methods. 206 */ 207 int (*add) (struct perf_event *event, int flags); 208 void (*del) (struct perf_event *event, int flags); 209 210 /* 211 * Starts/Stops a counter present on the PMU. The PMI handler 212 * should stop the counter when perf_event_overflow() returns 213 * !0. ->start() will be used to continue. 214 */ 215 void (*start) (struct perf_event *event, int flags); 216 void (*stop) (struct perf_event *event, int flags); 217 218 /* 219 * Updates the counter value of the event. 220 */ 221 void (*read) (struct perf_event *event); 222 223 /* 224 * Group events scheduling is treated as a transaction, add 225 * group events as a whole and perform one schedulability test. 226 * If the test fails, roll back the whole group 227 * 228 * Start the transaction, after this ->add() doesn't need to 229 * do schedulability tests. 230 */ 231 void (*start_txn) (struct pmu *pmu); /* optional */ 232 /* 233 * If ->start_txn() disabled the ->add() schedulability test 234 * then ->commit_txn() is required to perform one. On success 235 * the transaction is closed. On error the transaction is kept 236 * open until ->cancel_txn() is called. 237 */ 238 int (*commit_txn) (struct pmu *pmu); /* optional */ 239 /* 240 * Will cancel the transaction, assumes ->del() is called 241 * for each successful ->add() during the transaction. 242 */ 243 void (*cancel_txn) (struct pmu *pmu); /* optional */ 244 245 /* 246 * Will return the value for perf_event_mmap_page::index for this event, 247 * if no implementation is provided it will default to: event->hw.idx + 1. 248 */ 249 int (*event_idx) (struct perf_event *event); /*optional */ 250 251 /* 252 * flush branch stack on context-switches (needed in cpu-wide mode) 253 */ 254 void (*flush_branch_stack) (void); 255 }; 256 257 /** 258 * enum perf_event_active_state - the states of a event 259 */ 260 enum perf_event_active_state { 261 PERF_EVENT_STATE_ERROR = -2, 262 PERF_EVENT_STATE_OFF = -1, 263 PERF_EVENT_STATE_INACTIVE = 0, 264 PERF_EVENT_STATE_ACTIVE = 1, 265 }; 266 267 struct file; 268 struct perf_sample_data; 269 270 typedef void (*perf_overflow_handler_t)(struct perf_event *, 271 struct perf_sample_data *, 272 struct pt_regs *regs); 273 274 enum perf_group_flag { 275 PERF_GROUP_SOFTWARE = 0x1, 276 }; 277 278 #define SWEVENT_HLIST_BITS 8 279 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 280 281 struct swevent_hlist { 282 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 283 struct rcu_head rcu_head; 284 }; 285 286 #define PERF_ATTACH_CONTEXT 0x01 287 #define PERF_ATTACH_GROUP 0x02 288 #define PERF_ATTACH_TASK 0x04 289 290 struct perf_cgroup; 291 struct ring_buffer; 292 293 /** 294 * struct perf_event - performance event kernel representation: 295 */ 296 struct perf_event { 297 #ifdef CONFIG_PERF_EVENTS 298 /* 299 * entry onto perf_event_context::event_list; 300 * modifications require ctx->lock 301 * RCU safe iterations. 302 */ 303 struct list_head event_entry; 304 305 /* 306 * XXX: group_entry and sibling_list should be mutually exclusive; 307 * either you're a sibling on a group, or you're the group leader. 308 * Rework the code to always use the same list element. 309 * 310 * Locked for modification by both ctx->mutex and ctx->lock; holding 311 * either sufficies for read. 312 */ 313 struct list_head group_entry; 314 struct list_head sibling_list; 315 316 /* 317 * We need storage to track the entries in perf_pmu_migrate_context; we 318 * cannot use the event_entry because of RCU and we want to keep the 319 * group in tact which avoids us using the other two entries. 320 */ 321 struct list_head migrate_entry; 322 323 struct hlist_node hlist_entry; 324 struct list_head active_entry; 325 int nr_siblings; 326 int group_flags; 327 struct perf_event *group_leader; 328 struct pmu *pmu; 329 330 enum perf_event_active_state state; 331 unsigned int attach_state; 332 local64_t count; 333 atomic64_t child_count; 334 335 /* 336 * These are the total time in nanoseconds that the event 337 * has been enabled (i.e. eligible to run, and the task has 338 * been scheduled in, if this is a per-task event) 339 * and running (scheduled onto the CPU), respectively. 340 * 341 * They are computed from tstamp_enabled, tstamp_running and 342 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 343 */ 344 u64 total_time_enabled; 345 u64 total_time_running; 346 347 /* 348 * These are timestamps used for computing total_time_enabled 349 * and total_time_running when the event is in INACTIVE or 350 * ACTIVE state, measured in nanoseconds from an arbitrary point 351 * in time. 352 * tstamp_enabled: the notional time when the event was enabled 353 * tstamp_running: the notional time when the event was scheduled on 354 * tstamp_stopped: in INACTIVE state, the notional time when the 355 * event was scheduled off. 356 */ 357 u64 tstamp_enabled; 358 u64 tstamp_running; 359 u64 tstamp_stopped; 360 361 /* 362 * timestamp shadows the actual context timing but it can 363 * be safely used in NMI interrupt context. It reflects the 364 * context time as it was when the event was last scheduled in. 365 * 366 * ctx_time already accounts for ctx->timestamp. Therefore to 367 * compute ctx_time for a sample, simply add perf_clock(). 368 */ 369 u64 shadow_ctx_time; 370 371 struct perf_event_attr attr; 372 u16 header_size; 373 u16 id_header_size; 374 u16 read_size; 375 struct hw_perf_event hw; 376 377 struct perf_event_context *ctx; 378 atomic_long_t refcount; 379 380 /* 381 * These accumulate total time (in nanoseconds) that children 382 * events have been enabled and running, respectively. 383 */ 384 atomic64_t child_total_time_enabled; 385 atomic64_t child_total_time_running; 386 387 /* 388 * Protect attach/detach and child_list: 389 */ 390 struct mutex child_mutex; 391 struct list_head child_list; 392 struct perf_event *parent; 393 394 int oncpu; 395 int cpu; 396 397 struct list_head owner_entry; 398 struct task_struct *owner; 399 400 /* mmap bits */ 401 struct mutex mmap_mutex; 402 atomic_t mmap_count; 403 404 struct ring_buffer *rb; 405 struct list_head rb_entry; 406 407 /* poll related */ 408 wait_queue_head_t waitq; 409 struct fasync_struct *fasync; 410 411 /* delayed work for NMIs and such */ 412 int pending_wakeup; 413 int pending_kill; 414 int pending_disable; 415 struct irq_work pending; 416 417 atomic_t event_limit; 418 419 void (*destroy)(struct perf_event *); 420 struct rcu_head rcu_head; 421 422 struct pid_namespace *ns; 423 u64 id; 424 425 perf_overflow_handler_t overflow_handler; 426 void *overflow_handler_context; 427 428 #ifdef CONFIG_EVENT_TRACING 429 struct ftrace_event_call *tp_event; 430 struct event_filter *filter; 431 #ifdef CONFIG_FUNCTION_TRACER 432 struct ftrace_ops ftrace_ops; 433 #endif 434 #endif 435 436 #ifdef CONFIG_CGROUP_PERF 437 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 438 int cgrp_defer_enabled; 439 #endif 440 441 #endif /* CONFIG_PERF_EVENTS */ 442 }; 443 444 enum perf_event_context_type { 445 task_context, 446 cpu_context, 447 }; 448 449 /** 450 * struct perf_event_context - event context structure 451 * 452 * Used as a container for task events and CPU events as well: 453 */ 454 struct perf_event_context { 455 struct pmu *pmu; 456 enum perf_event_context_type type; 457 /* 458 * Protect the states of the events in the list, 459 * nr_active, and the list: 460 */ 461 raw_spinlock_t lock; 462 /* 463 * Protect the list of events. Locking either mutex or lock 464 * is sufficient to ensure the list doesn't change; to change 465 * the list you need to lock both the mutex and the spinlock. 466 */ 467 struct mutex mutex; 468 469 struct list_head pinned_groups; 470 struct list_head flexible_groups; 471 struct list_head event_list; 472 int nr_events; 473 int nr_active; 474 int is_active; 475 int nr_stat; 476 int nr_freq; 477 int rotate_disable; 478 atomic_t refcount; 479 struct task_struct *task; 480 481 /* 482 * Context clock, runs when context enabled. 483 */ 484 u64 time; 485 u64 timestamp; 486 487 /* 488 * These fields let us detect when two contexts have both 489 * been cloned (inherited) from a common ancestor. 490 */ 491 struct perf_event_context *parent_ctx; 492 u64 parent_gen; 493 u64 generation; 494 int pin_count; 495 int nr_cgroups; /* cgroup evts */ 496 int nr_branch_stack; /* branch_stack evt */ 497 struct rcu_head rcu_head; 498 }; 499 500 /* 501 * Number of contexts where an event can trigger: 502 * task, softirq, hardirq, nmi. 503 */ 504 #define PERF_NR_CONTEXTS 4 505 506 /** 507 * struct perf_event_cpu_context - per cpu event context structure 508 */ 509 struct perf_cpu_context { 510 struct perf_event_context ctx; 511 struct perf_event_context *task_ctx; 512 int active_oncpu; 513 int exclusive; 514 struct hrtimer hrtimer; 515 ktime_t hrtimer_interval; 516 struct list_head rotation_list; 517 struct pmu *unique_pmu; 518 struct perf_cgroup *cgrp; 519 }; 520 521 struct perf_output_handle { 522 struct perf_event *event; 523 struct ring_buffer *rb; 524 unsigned long wakeup; 525 unsigned long size; 526 void *addr; 527 int page; 528 }; 529 530 #ifdef CONFIG_PERF_EVENTS 531 532 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 533 extern void perf_pmu_unregister(struct pmu *pmu); 534 535 extern int perf_num_counters(void); 536 extern const char *perf_pmu_name(void); 537 extern void __perf_event_task_sched_in(struct task_struct *prev, 538 struct task_struct *task); 539 extern void __perf_event_task_sched_out(struct task_struct *prev, 540 struct task_struct *next); 541 extern int perf_event_init_task(struct task_struct *child); 542 extern void perf_event_exit_task(struct task_struct *child); 543 extern void perf_event_free_task(struct task_struct *task); 544 extern void perf_event_delayed_put(struct task_struct *task); 545 extern void perf_event_print_debug(void); 546 extern void perf_pmu_disable(struct pmu *pmu); 547 extern void perf_pmu_enable(struct pmu *pmu); 548 extern int perf_event_task_disable(void); 549 extern int perf_event_task_enable(void); 550 extern int perf_event_refresh(struct perf_event *event, int refresh); 551 extern void perf_event_update_userpage(struct perf_event *event); 552 extern int perf_event_release_kernel(struct perf_event *event); 553 extern struct perf_event * 554 perf_event_create_kernel_counter(struct perf_event_attr *attr, 555 int cpu, 556 struct task_struct *task, 557 perf_overflow_handler_t callback, 558 void *context); 559 extern void perf_pmu_migrate_context(struct pmu *pmu, 560 int src_cpu, int dst_cpu); 561 extern u64 perf_event_read_value(struct perf_event *event, 562 u64 *enabled, u64 *running); 563 564 565 struct perf_sample_data { 566 u64 type; 567 568 u64 ip; 569 struct { 570 u32 pid; 571 u32 tid; 572 } tid_entry; 573 u64 time; 574 u64 addr; 575 u64 id; 576 u64 stream_id; 577 struct { 578 u32 cpu; 579 u32 reserved; 580 } cpu_entry; 581 u64 period; 582 union perf_mem_data_src data_src; 583 struct perf_callchain_entry *callchain; 584 struct perf_raw_record *raw; 585 struct perf_branch_stack *br_stack; 586 struct perf_regs_user regs_user; 587 u64 stack_user_size; 588 u64 weight; 589 /* 590 * Transaction flags for abort events: 591 */ 592 u64 txn; 593 }; 594 595 static inline void perf_sample_data_init(struct perf_sample_data *data, 596 u64 addr, u64 period) 597 { 598 /* remaining struct members initialized in perf_prepare_sample() */ 599 data->addr = addr; 600 data->raw = NULL; 601 data->br_stack = NULL; 602 data->period = period; 603 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 604 data->regs_user.regs = NULL; 605 data->stack_user_size = 0; 606 data->weight = 0; 607 data->data_src.val = 0; 608 data->txn = 0; 609 } 610 611 extern void perf_output_sample(struct perf_output_handle *handle, 612 struct perf_event_header *header, 613 struct perf_sample_data *data, 614 struct perf_event *event); 615 extern void perf_prepare_sample(struct perf_event_header *header, 616 struct perf_sample_data *data, 617 struct perf_event *event, 618 struct pt_regs *regs); 619 620 extern int perf_event_overflow(struct perf_event *event, 621 struct perf_sample_data *data, 622 struct pt_regs *regs); 623 624 static inline bool is_sampling_event(struct perf_event *event) 625 { 626 return event->attr.sample_period != 0; 627 } 628 629 /* 630 * Return 1 for a software event, 0 for a hardware event 631 */ 632 static inline int is_software_event(struct perf_event *event) 633 { 634 return event->pmu->task_ctx_nr == perf_sw_context; 635 } 636 637 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 638 639 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 640 641 #ifndef perf_arch_fetch_caller_regs 642 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 643 #endif 644 645 /* 646 * Take a snapshot of the regs. Skip ip and frame pointer to 647 * the nth caller. We only need a few of the regs: 648 * - ip for PERF_SAMPLE_IP 649 * - cs for user_mode() tests 650 * - bp for callchains 651 * - eflags, for future purposes, just in case 652 */ 653 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 654 { 655 memset(regs, 0, sizeof(*regs)); 656 657 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 658 } 659 660 static __always_inline void 661 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 662 { 663 struct pt_regs hot_regs; 664 665 if (static_key_false(&perf_swevent_enabled[event_id])) { 666 if (!regs) { 667 perf_fetch_caller_regs(&hot_regs); 668 regs = &hot_regs; 669 } 670 __perf_sw_event(event_id, nr, regs, addr); 671 } 672 } 673 674 extern struct static_key_deferred perf_sched_events; 675 676 static inline void perf_event_task_sched_in(struct task_struct *prev, 677 struct task_struct *task) 678 { 679 if (static_key_false(&perf_sched_events.key)) 680 __perf_event_task_sched_in(prev, task); 681 } 682 683 static inline void perf_event_task_sched_out(struct task_struct *prev, 684 struct task_struct *next) 685 { 686 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 687 688 if (static_key_false(&perf_sched_events.key)) 689 __perf_event_task_sched_out(prev, next); 690 } 691 692 extern void perf_event_mmap(struct vm_area_struct *vma); 693 extern struct perf_guest_info_callbacks *perf_guest_cbs; 694 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 695 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 696 697 extern void perf_event_comm(struct task_struct *tsk); 698 extern void perf_event_fork(struct task_struct *tsk); 699 700 /* Callchains */ 701 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 702 703 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 704 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 705 706 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 707 { 708 if (entry->nr < PERF_MAX_STACK_DEPTH) 709 entry->ip[entry->nr++] = ip; 710 } 711 712 extern int sysctl_perf_event_paranoid; 713 extern int sysctl_perf_event_mlock; 714 extern int sysctl_perf_event_sample_rate; 715 extern int sysctl_perf_cpu_time_max_percent; 716 717 extern void perf_sample_event_took(u64 sample_len_ns); 718 719 extern int perf_proc_update_handler(struct ctl_table *table, int write, 720 void __user *buffer, size_t *lenp, 721 loff_t *ppos); 722 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 723 void __user *buffer, size_t *lenp, 724 loff_t *ppos); 725 726 727 static inline bool perf_paranoid_tracepoint_raw(void) 728 { 729 return sysctl_perf_event_paranoid > -1; 730 } 731 732 static inline bool perf_paranoid_cpu(void) 733 { 734 return sysctl_perf_event_paranoid > 0; 735 } 736 737 static inline bool perf_paranoid_kernel(void) 738 { 739 return sysctl_perf_event_paranoid > 1; 740 } 741 742 extern void perf_event_init(void); 743 extern void perf_tp_event(u64 addr, u64 count, void *record, 744 int entry_size, struct pt_regs *regs, 745 struct hlist_head *head, int rctx, 746 struct task_struct *task); 747 extern void perf_bp_event(struct perf_event *event, void *data); 748 749 #ifndef perf_misc_flags 750 # define perf_misc_flags(regs) \ 751 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 752 # define perf_instruction_pointer(regs) instruction_pointer(regs) 753 #endif 754 755 static inline bool has_branch_stack(struct perf_event *event) 756 { 757 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 758 } 759 760 extern int perf_output_begin(struct perf_output_handle *handle, 761 struct perf_event *event, unsigned int size); 762 extern void perf_output_end(struct perf_output_handle *handle); 763 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 764 const void *buf, unsigned int len); 765 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 766 unsigned int len); 767 extern int perf_swevent_get_recursion_context(void); 768 extern void perf_swevent_put_recursion_context(int rctx); 769 extern u64 perf_swevent_set_period(struct perf_event *event); 770 extern void perf_event_enable(struct perf_event *event); 771 extern void perf_event_disable(struct perf_event *event); 772 extern int __perf_event_disable(void *info); 773 extern void perf_event_task_tick(void); 774 #else 775 static inline void 776 perf_event_task_sched_in(struct task_struct *prev, 777 struct task_struct *task) { } 778 static inline void 779 perf_event_task_sched_out(struct task_struct *prev, 780 struct task_struct *next) { } 781 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 782 static inline void perf_event_exit_task(struct task_struct *child) { } 783 static inline void perf_event_free_task(struct task_struct *task) { } 784 static inline void perf_event_delayed_put(struct task_struct *task) { } 785 static inline void perf_event_print_debug(void) { } 786 static inline int perf_event_task_disable(void) { return -EINVAL; } 787 static inline int perf_event_task_enable(void) { return -EINVAL; } 788 static inline int perf_event_refresh(struct perf_event *event, int refresh) 789 { 790 return -EINVAL; 791 } 792 793 static inline void 794 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 795 static inline void 796 perf_bp_event(struct perf_event *event, void *data) { } 797 798 static inline int perf_register_guest_info_callbacks 799 (struct perf_guest_info_callbacks *callbacks) { return 0; } 800 static inline int perf_unregister_guest_info_callbacks 801 (struct perf_guest_info_callbacks *callbacks) { return 0; } 802 803 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 804 static inline void perf_event_comm(struct task_struct *tsk) { } 805 static inline void perf_event_fork(struct task_struct *tsk) { } 806 static inline void perf_event_init(void) { } 807 static inline int perf_swevent_get_recursion_context(void) { return -1; } 808 static inline void perf_swevent_put_recursion_context(int rctx) { } 809 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 810 static inline void perf_event_enable(struct perf_event *event) { } 811 static inline void perf_event_disable(struct perf_event *event) { } 812 static inline int __perf_event_disable(void *info) { return -1; } 813 static inline void perf_event_task_tick(void) { } 814 #endif 815 816 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 817 extern bool perf_event_can_stop_tick(void); 818 #else 819 static inline bool perf_event_can_stop_tick(void) { return true; } 820 #endif 821 822 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 823 extern void perf_restore_debug_store(void); 824 #else 825 static inline void perf_restore_debug_store(void) { } 826 #endif 827 828 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 829 830 /* 831 * This has to have a higher priority than migration_notifier in sched/core.c. 832 */ 833 #define perf_cpu_notifier(fn) \ 834 do { \ 835 static struct notifier_block fn##_nb = \ 836 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 837 unsigned long cpu = smp_processor_id(); \ 838 unsigned long flags; \ 839 \ 840 cpu_notifier_register_begin(); \ 841 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 842 (void *)(unsigned long)cpu); \ 843 local_irq_save(flags); \ 844 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 845 (void *)(unsigned long)cpu); \ 846 local_irq_restore(flags); \ 847 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 848 (void *)(unsigned long)cpu); \ 849 __register_cpu_notifier(&fn##_nb); \ 850 cpu_notifier_register_done(); \ 851 } while (0) 852 853 /* 854 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 855 * callback for already online CPUs. 856 */ 857 #define __perf_cpu_notifier(fn) \ 858 do { \ 859 static struct notifier_block fn##_nb = \ 860 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 861 \ 862 __register_cpu_notifier(&fn##_nb); \ 863 } while (0) 864 865 struct perf_pmu_events_attr { 866 struct device_attribute attr; 867 u64 id; 868 const char *event_str; 869 }; 870 871 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 872 static struct perf_pmu_events_attr _var = { \ 873 .attr = __ATTR(_name, 0444, _show, NULL), \ 874 .id = _id, \ 875 }; 876 877 #define PMU_FORMAT_ATTR(_name, _format) \ 878 static ssize_t \ 879 _name##_show(struct device *dev, \ 880 struct device_attribute *attr, \ 881 char *page) \ 882 { \ 883 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 884 return sprintf(page, _format "\n"); \ 885 } \ 886 \ 887 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 888 889 #endif /* _LINUX_PERF_EVENT_H */ 890