xref: /linux-6.15/include/linux/perf_event.h (revision 87eee9c5)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <linux/static_call.h>
61 #include <asm/local.h>
62 
63 struct perf_callchain_entry {
64 	__u64				nr;
65 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
66 };
67 
68 struct perf_callchain_entry_ctx {
69 	struct perf_callchain_entry *entry;
70 	u32			    max_stack;
71 	u32			    nr;
72 	short			    contexts;
73 	bool			    contexts_maxed;
74 };
75 
76 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
77 				     unsigned long off, unsigned long len);
78 
79 struct perf_raw_frag {
80 	union {
81 		struct perf_raw_frag	*next;
82 		unsigned long		pad;
83 	};
84 	perf_copy_f			copy;
85 	void				*data;
86 	u32				size;
87 } __packed;
88 
89 struct perf_raw_record {
90 	struct perf_raw_frag		frag;
91 	u32				size;
92 };
93 
94 /*
95  * branch stack layout:
96  *  nr: number of taken branches stored in entries[]
97  *  hw_idx: The low level index of raw branch records
98  *          for the most recent branch.
99  *          -1ULL means invalid/unknown.
100  *
101  * Note that nr can vary from sample to sample
102  * branches (to, from) are stored from most recent
103  * to least recent, i.e., entries[0] contains the most
104  * recent branch.
105  * The entries[] is an abstraction of raw branch records,
106  * which may not be stored in age order in HW, e.g. Intel LBR.
107  * The hw_idx is to expose the low level index of raw
108  * branch record for the most recent branch aka entries[0].
109  * The hw_idx index is between -1 (unknown) and max depth,
110  * which can be retrieved in /sys/devices/cpu/caps/branches.
111  * For the architectures whose raw branch records are
112  * already stored in age order, the hw_idx should be 0.
113  */
114 struct perf_branch_stack {
115 	__u64				nr;
116 	__u64				hw_idx;
117 	struct perf_branch_entry	entries[];
118 };
119 
120 struct task_struct;
121 
122 /*
123  * extra PMU register associated with an event
124  */
125 struct hw_perf_event_extra {
126 	u64		config;	/* register value */
127 	unsigned int	reg;	/* register address or index */
128 	int		alloc;	/* extra register already allocated */
129 	int		idx;	/* index in shared_regs->regs[] */
130 };
131 
132 /**
133  * struct hw_perf_event - performance event hardware details:
134  */
135 struct hw_perf_event {
136 #ifdef CONFIG_PERF_EVENTS
137 	union {
138 		struct { /* hardware */
139 			u64		config;
140 			u64		last_tag;
141 			unsigned long	config_base;
142 			unsigned long	event_base;
143 			int		event_base_rdpmc;
144 			int		idx;
145 			int		last_cpu;
146 			int		flags;
147 
148 			struct hw_perf_event_extra extra_reg;
149 			struct hw_perf_event_extra branch_reg;
150 		};
151 		struct { /* software */
152 			struct hrtimer	hrtimer;
153 		};
154 		struct { /* tracepoint */
155 			/* for tp_event->class */
156 			struct list_head	tp_list;
157 		};
158 		struct { /* amd_power */
159 			u64	pwr_acc;
160 			u64	ptsc;
161 		};
162 #ifdef CONFIG_HAVE_HW_BREAKPOINT
163 		struct { /* breakpoint */
164 			/*
165 			 * Crufty hack to avoid the chicken and egg
166 			 * problem hw_breakpoint has with context
167 			 * creation and event initalization.
168 			 */
169 			struct arch_hw_breakpoint	info;
170 			struct list_head		bp_list;
171 		};
172 #endif
173 		struct { /* amd_iommu */
174 			u8	iommu_bank;
175 			u8	iommu_cntr;
176 			u16	padding;
177 			u64	conf;
178 			u64	conf1;
179 		};
180 	};
181 	/*
182 	 * If the event is a per task event, this will point to the task in
183 	 * question. See the comment in perf_event_alloc().
184 	 */
185 	struct task_struct		*target;
186 
187 	/*
188 	 * PMU would store hardware filter configuration
189 	 * here.
190 	 */
191 	void				*addr_filters;
192 
193 	/* Last sync'ed generation of filters */
194 	unsigned long			addr_filters_gen;
195 
196 /*
197  * hw_perf_event::state flags; used to track the PERF_EF_* state.
198  */
199 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
200 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
201 #define PERF_HES_ARCH		0x04
202 
203 	int				state;
204 
205 	/*
206 	 * The last observed hardware counter value, updated with a
207 	 * local64_cmpxchg() such that pmu::read() can be called nested.
208 	 */
209 	local64_t			prev_count;
210 
211 	/*
212 	 * The period to start the next sample with.
213 	 */
214 	u64				sample_period;
215 
216 	union {
217 		struct { /* Sampling */
218 			/*
219 			 * The period we started this sample with.
220 			 */
221 			u64				last_period;
222 
223 			/*
224 			 * However much is left of the current period;
225 			 * note that this is a full 64bit value and
226 			 * allows for generation of periods longer
227 			 * than hardware might allow.
228 			 */
229 			local64_t			period_left;
230 		};
231 		struct { /* Topdown events counting for context switch */
232 			u64				saved_metric;
233 			u64				saved_slots;
234 		};
235 	};
236 
237 	/*
238 	 * State for throttling the event, see __perf_event_overflow() and
239 	 * perf_adjust_freq_unthr_context().
240 	 */
241 	u64                             interrupts_seq;
242 	u64				interrupts;
243 
244 	/*
245 	 * State for freq target events, see __perf_event_overflow() and
246 	 * perf_adjust_freq_unthr_context().
247 	 */
248 	u64				freq_time_stamp;
249 	u64				freq_count_stamp;
250 #endif
251 };
252 
253 struct perf_event;
254 
255 /*
256  * Common implementation detail of pmu::{start,commit,cancel}_txn
257  */
258 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
259 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
260 
261 /**
262  * pmu::capabilities flags
263  */
264 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
265 #define PERF_PMU_CAP_NO_NMI			0x0002
266 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
267 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
268 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
269 #define PERF_PMU_CAP_ITRACE			0x0020
270 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x0040
271 #define PERF_PMU_CAP_NO_EXCLUDE			0x0080
272 #define PERF_PMU_CAP_AUX_OUTPUT			0x0100
273 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0200
274 
275 struct perf_output_handle;
276 
277 /**
278  * struct pmu - generic performance monitoring unit
279  */
280 struct pmu {
281 	struct list_head		entry;
282 
283 	struct module			*module;
284 	struct device			*dev;
285 	const struct attribute_group	**attr_groups;
286 	const struct attribute_group	**attr_update;
287 	const char			*name;
288 	int				type;
289 
290 	/*
291 	 * various common per-pmu feature flags
292 	 */
293 	int				capabilities;
294 
295 	int __percpu			*pmu_disable_count;
296 	struct perf_cpu_context __percpu *pmu_cpu_context;
297 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
298 	int				task_ctx_nr;
299 	int				hrtimer_interval_ms;
300 
301 	/* number of address filters this PMU can do */
302 	unsigned int			nr_addr_filters;
303 
304 	/*
305 	 * Fully disable/enable this PMU, can be used to protect from the PMI
306 	 * as well as for lazy/batch writing of the MSRs.
307 	 */
308 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
309 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
310 
311 	/*
312 	 * Try and initialize the event for this PMU.
313 	 *
314 	 * Returns:
315 	 *  -ENOENT	-- @event is not for this PMU
316 	 *
317 	 *  -ENODEV	-- @event is for this PMU but PMU not present
318 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
319 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
320 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
321 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
322 	 *
323 	 *  0		-- @event is for this PMU and valid
324 	 *
325 	 * Other error return values are allowed.
326 	 */
327 	int (*event_init)		(struct perf_event *event);
328 
329 	/*
330 	 * Notification that the event was mapped or unmapped.  Called
331 	 * in the context of the mapping task.
332 	 */
333 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
334 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
335 
336 	/*
337 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
338 	 * matching hw_perf_event::state flags.
339 	 */
340 #define PERF_EF_START	0x01		/* start the counter when adding    */
341 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
342 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
343 
344 	/*
345 	 * Adds/Removes a counter to/from the PMU, can be done inside a
346 	 * transaction, see the ->*_txn() methods.
347 	 *
348 	 * The add/del callbacks will reserve all hardware resources required
349 	 * to service the event, this includes any counter constraint
350 	 * scheduling etc.
351 	 *
352 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
353 	 * is on.
354 	 *
355 	 * ->add() called without PERF_EF_START should result in the same state
356 	 *  as ->add() followed by ->stop().
357 	 *
358 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
359 	 *  ->stop() that must deal with already being stopped without
360 	 *  PERF_EF_UPDATE.
361 	 */
362 	int  (*add)			(struct perf_event *event, int flags);
363 	void (*del)			(struct perf_event *event, int flags);
364 
365 	/*
366 	 * Starts/Stops a counter present on the PMU.
367 	 *
368 	 * The PMI handler should stop the counter when perf_event_overflow()
369 	 * returns !0. ->start() will be used to continue.
370 	 *
371 	 * Also used to change the sample period.
372 	 *
373 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
374 	 * is on -- will be called from NMI context with the PMU generates
375 	 * NMIs.
376 	 *
377 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
378 	 *  period/count values like ->read() would.
379 	 *
380 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
381 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
382 	 */
383 	void (*start)			(struct perf_event *event, int flags);
384 	void (*stop)			(struct perf_event *event, int flags);
385 
386 	/*
387 	 * Updates the counter value of the event.
388 	 *
389 	 * For sampling capable PMUs this will also update the software period
390 	 * hw_perf_event::period_left field.
391 	 */
392 	void (*read)			(struct perf_event *event);
393 
394 	/*
395 	 * Group events scheduling is treated as a transaction, add
396 	 * group events as a whole and perform one schedulability test.
397 	 * If the test fails, roll back the whole group
398 	 *
399 	 * Start the transaction, after this ->add() doesn't need to
400 	 * do schedulability tests.
401 	 *
402 	 * Optional.
403 	 */
404 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
405 	/*
406 	 * If ->start_txn() disabled the ->add() schedulability test
407 	 * then ->commit_txn() is required to perform one. On success
408 	 * the transaction is closed. On error the transaction is kept
409 	 * open until ->cancel_txn() is called.
410 	 *
411 	 * Optional.
412 	 */
413 	int  (*commit_txn)		(struct pmu *pmu);
414 	/*
415 	 * Will cancel the transaction, assumes ->del() is called
416 	 * for each successful ->add() during the transaction.
417 	 *
418 	 * Optional.
419 	 */
420 	void (*cancel_txn)		(struct pmu *pmu);
421 
422 	/*
423 	 * Will return the value for perf_event_mmap_page::index for this event,
424 	 * if no implementation is provided it will default to: event->hw.idx + 1.
425 	 */
426 	int (*event_idx)		(struct perf_event *event); /*optional */
427 
428 	/*
429 	 * context-switches callback
430 	 */
431 	void (*sched_task)		(struct perf_event_context *ctx,
432 					bool sched_in);
433 
434 	/*
435 	 * Kmem cache of PMU specific data
436 	 */
437 	struct kmem_cache		*task_ctx_cache;
438 
439 	/*
440 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
441 	 * can be synchronized using this function. See Intel LBR callstack support
442 	 * implementation and Perf core context switch handling callbacks for usage
443 	 * examples.
444 	 */
445 	void (*swap_task_ctx)		(struct perf_event_context *prev,
446 					 struct perf_event_context *next);
447 					/* optional */
448 
449 	/*
450 	 * Set up pmu-private data structures for an AUX area
451 	 */
452 	void *(*setup_aux)		(struct perf_event *event, void **pages,
453 					 int nr_pages, bool overwrite);
454 					/* optional */
455 
456 	/*
457 	 * Free pmu-private AUX data structures
458 	 */
459 	void (*free_aux)		(void *aux); /* optional */
460 
461 	/*
462 	 * Take a snapshot of the AUX buffer without touching the event
463 	 * state, so that preempting ->start()/->stop() callbacks does
464 	 * not interfere with their logic. Called in PMI context.
465 	 *
466 	 * Returns the size of AUX data copied to the output handle.
467 	 *
468 	 * Optional.
469 	 */
470 	long (*snapshot_aux)		(struct perf_event *event,
471 					 struct perf_output_handle *handle,
472 					 unsigned long size);
473 
474 	/*
475 	 * Validate address range filters: make sure the HW supports the
476 	 * requested configuration and number of filters; return 0 if the
477 	 * supplied filters are valid, -errno otherwise.
478 	 *
479 	 * Runs in the context of the ioctl()ing process and is not serialized
480 	 * with the rest of the PMU callbacks.
481 	 */
482 	int (*addr_filters_validate)	(struct list_head *filters);
483 					/* optional */
484 
485 	/*
486 	 * Synchronize address range filter configuration:
487 	 * translate hw-agnostic filters into hardware configuration in
488 	 * event::hw::addr_filters.
489 	 *
490 	 * Runs as a part of filter sync sequence that is done in ->start()
491 	 * callback by calling perf_event_addr_filters_sync().
492 	 *
493 	 * May (and should) traverse event::addr_filters::list, for which its
494 	 * caller provides necessary serialization.
495 	 */
496 	void (*addr_filters_sync)	(struct perf_event *event);
497 					/* optional */
498 
499 	/*
500 	 * Check if event can be used for aux_output purposes for
501 	 * events of this PMU.
502 	 *
503 	 * Runs from perf_event_open(). Should return 0 for "no match"
504 	 * or non-zero for "match".
505 	 */
506 	int (*aux_output_match)		(struct perf_event *event);
507 					/* optional */
508 
509 	/*
510 	 * Filter events for PMU-specific reasons.
511 	 */
512 	int (*filter_match)		(struct perf_event *event); /* optional */
513 
514 	/*
515 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
516 	 */
517 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
518 };
519 
520 enum perf_addr_filter_action_t {
521 	PERF_ADDR_FILTER_ACTION_STOP = 0,
522 	PERF_ADDR_FILTER_ACTION_START,
523 	PERF_ADDR_FILTER_ACTION_FILTER,
524 };
525 
526 /**
527  * struct perf_addr_filter - address range filter definition
528  * @entry:	event's filter list linkage
529  * @path:	object file's path for file-based filters
530  * @offset:	filter range offset
531  * @size:	filter range size (size==0 means single address trigger)
532  * @action:	filter/start/stop
533  *
534  * This is a hardware-agnostic filter configuration as specified by the user.
535  */
536 struct perf_addr_filter {
537 	struct list_head	entry;
538 	struct path		path;
539 	unsigned long		offset;
540 	unsigned long		size;
541 	enum perf_addr_filter_action_t	action;
542 };
543 
544 /**
545  * struct perf_addr_filters_head - container for address range filters
546  * @list:	list of filters for this event
547  * @lock:	spinlock that serializes accesses to the @list and event's
548  *		(and its children's) filter generations.
549  * @nr_file_filters:	number of file-based filters
550  *
551  * A child event will use parent's @list (and therefore @lock), so they are
552  * bundled together; see perf_event_addr_filters().
553  */
554 struct perf_addr_filters_head {
555 	struct list_head	list;
556 	raw_spinlock_t		lock;
557 	unsigned int		nr_file_filters;
558 };
559 
560 struct perf_addr_filter_range {
561 	unsigned long		start;
562 	unsigned long		size;
563 };
564 
565 /**
566  * enum perf_event_state - the states of an event:
567  */
568 enum perf_event_state {
569 	PERF_EVENT_STATE_DEAD		= -4,
570 	PERF_EVENT_STATE_EXIT		= -3,
571 	PERF_EVENT_STATE_ERROR		= -2,
572 	PERF_EVENT_STATE_OFF		= -1,
573 	PERF_EVENT_STATE_INACTIVE	=  0,
574 	PERF_EVENT_STATE_ACTIVE		=  1,
575 };
576 
577 struct file;
578 struct perf_sample_data;
579 
580 typedef void (*perf_overflow_handler_t)(struct perf_event *,
581 					struct perf_sample_data *,
582 					struct pt_regs *regs);
583 
584 /*
585  * Event capabilities. For event_caps and groups caps.
586  *
587  * PERF_EV_CAP_SOFTWARE: Is a software event.
588  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
589  * from any CPU in the package where it is active.
590  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
591  * cannot be a group leader. If an event with this flag is detached from the
592  * group it is scheduled out and moved into an unrecoverable ERROR state.
593  */
594 #define PERF_EV_CAP_SOFTWARE		BIT(0)
595 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
596 #define PERF_EV_CAP_SIBLING		BIT(2)
597 
598 #define SWEVENT_HLIST_BITS		8
599 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
600 
601 struct swevent_hlist {
602 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
603 	struct rcu_head			rcu_head;
604 };
605 
606 #define PERF_ATTACH_CONTEXT	0x01
607 #define PERF_ATTACH_GROUP	0x02
608 #define PERF_ATTACH_TASK	0x04
609 #define PERF_ATTACH_TASK_DATA	0x08
610 #define PERF_ATTACH_ITRACE	0x10
611 #define PERF_ATTACH_SCHED_CB	0x20
612 #define PERF_ATTACH_CHILD	0x40
613 
614 struct bpf_prog;
615 struct perf_cgroup;
616 struct perf_buffer;
617 
618 struct pmu_event_list {
619 	raw_spinlock_t		lock;
620 	struct list_head	list;
621 };
622 
623 #define for_each_sibling_event(sibling, event)			\
624 	if ((event)->group_leader == (event))			\
625 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
626 
627 /**
628  * struct perf_event - performance event kernel representation:
629  */
630 struct perf_event {
631 #ifdef CONFIG_PERF_EVENTS
632 	/*
633 	 * entry onto perf_event_context::event_list;
634 	 *   modifications require ctx->lock
635 	 *   RCU safe iterations.
636 	 */
637 	struct list_head		event_entry;
638 
639 	/*
640 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
641 	 * either sufficies for read.
642 	 */
643 	struct list_head		sibling_list;
644 	struct list_head		active_list;
645 	/*
646 	 * Node on the pinned or flexible tree located at the event context;
647 	 */
648 	struct rb_node			group_node;
649 	u64				group_index;
650 	/*
651 	 * We need storage to track the entries in perf_pmu_migrate_context; we
652 	 * cannot use the event_entry because of RCU and we want to keep the
653 	 * group in tact which avoids us using the other two entries.
654 	 */
655 	struct list_head		migrate_entry;
656 
657 	struct hlist_node		hlist_entry;
658 	struct list_head		active_entry;
659 	int				nr_siblings;
660 
661 	/* Not serialized. Only written during event initialization. */
662 	int				event_caps;
663 	/* The cumulative AND of all event_caps for events in this group. */
664 	int				group_caps;
665 
666 	struct perf_event		*group_leader;
667 	struct pmu			*pmu;
668 	void				*pmu_private;
669 
670 	enum perf_event_state		state;
671 	unsigned int			attach_state;
672 	local64_t			count;
673 	atomic64_t			child_count;
674 
675 	/*
676 	 * These are the total time in nanoseconds that the event
677 	 * has been enabled (i.e. eligible to run, and the task has
678 	 * been scheduled in, if this is a per-task event)
679 	 * and running (scheduled onto the CPU), respectively.
680 	 */
681 	u64				total_time_enabled;
682 	u64				total_time_running;
683 	u64				tstamp;
684 
685 	/*
686 	 * timestamp shadows the actual context timing but it can
687 	 * be safely used in NMI interrupt context. It reflects the
688 	 * context time as it was when the event was last scheduled in,
689 	 * or when ctx_sched_in failed to schedule the event because we
690 	 * run out of PMC.
691 	 *
692 	 * ctx_time already accounts for ctx->timestamp. Therefore to
693 	 * compute ctx_time for a sample, simply add perf_clock().
694 	 */
695 	u64				shadow_ctx_time;
696 
697 	struct perf_event_attr		attr;
698 	u16				header_size;
699 	u16				id_header_size;
700 	u16				read_size;
701 	struct hw_perf_event		hw;
702 
703 	struct perf_event_context	*ctx;
704 	atomic_long_t			refcount;
705 
706 	/*
707 	 * These accumulate total time (in nanoseconds) that children
708 	 * events have been enabled and running, respectively.
709 	 */
710 	atomic64_t			child_total_time_enabled;
711 	atomic64_t			child_total_time_running;
712 
713 	/*
714 	 * Protect attach/detach and child_list:
715 	 */
716 	struct mutex			child_mutex;
717 	struct list_head		child_list;
718 	struct perf_event		*parent;
719 
720 	int				oncpu;
721 	int				cpu;
722 
723 	struct list_head		owner_entry;
724 	struct task_struct		*owner;
725 
726 	/* mmap bits */
727 	struct mutex			mmap_mutex;
728 	atomic_t			mmap_count;
729 
730 	struct perf_buffer		*rb;
731 	struct list_head		rb_entry;
732 	unsigned long			rcu_batches;
733 	int				rcu_pending;
734 
735 	/* poll related */
736 	wait_queue_head_t		waitq;
737 	struct fasync_struct		*fasync;
738 
739 	/* delayed work for NMIs and such */
740 	int				pending_wakeup;
741 	int				pending_kill;
742 	int				pending_disable;
743 	unsigned long			pending_addr;	/* SIGTRAP */
744 	struct irq_work			pending;
745 
746 	atomic_t			event_limit;
747 
748 	/* address range filters */
749 	struct perf_addr_filters_head	addr_filters;
750 	/* vma address array for file-based filders */
751 	struct perf_addr_filter_range	*addr_filter_ranges;
752 	unsigned long			addr_filters_gen;
753 
754 	/* for aux_output events */
755 	struct perf_event		*aux_event;
756 
757 	void (*destroy)(struct perf_event *);
758 	struct rcu_head			rcu_head;
759 
760 	struct pid_namespace		*ns;
761 	u64				id;
762 
763 	u64				(*clock)(void);
764 	perf_overflow_handler_t		overflow_handler;
765 	void				*overflow_handler_context;
766 #ifdef CONFIG_BPF_SYSCALL
767 	perf_overflow_handler_t		orig_overflow_handler;
768 	struct bpf_prog			*prog;
769 	u64				bpf_cookie;
770 #endif
771 
772 #ifdef CONFIG_EVENT_TRACING
773 	struct trace_event_call		*tp_event;
774 	struct event_filter		*filter;
775 #ifdef CONFIG_FUNCTION_TRACER
776 	struct ftrace_ops               ftrace_ops;
777 #endif
778 #endif
779 
780 #ifdef CONFIG_CGROUP_PERF
781 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
782 #endif
783 
784 #ifdef CONFIG_SECURITY
785 	void *security;
786 #endif
787 	struct list_head		sb_list;
788 #endif /* CONFIG_PERF_EVENTS */
789 };
790 
791 
792 struct perf_event_groups {
793 	struct rb_root	tree;
794 	u64		index;
795 };
796 
797 /**
798  * struct perf_event_context - event context structure
799  *
800  * Used as a container for task events and CPU events as well:
801  */
802 struct perf_event_context {
803 	struct pmu			*pmu;
804 	/*
805 	 * Protect the states of the events in the list,
806 	 * nr_active, and the list:
807 	 */
808 	raw_spinlock_t			lock;
809 	/*
810 	 * Protect the list of events.  Locking either mutex or lock
811 	 * is sufficient to ensure the list doesn't change; to change
812 	 * the list you need to lock both the mutex and the spinlock.
813 	 */
814 	struct mutex			mutex;
815 
816 	struct list_head		active_ctx_list;
817 	struct perf_event_groups	pinned_groups;
818 	struct perf_event_groups	flexible_groups;
819 	struct list_head		event_list;
820 
821 	struct list_head		pinned_active;
822 	struct list_head		flexible_active;
823 
824 	int				nr_events;
825 	int				nr_active;
826 	int				is_active;
827 	int				nr_stat;
828 	int				nr_freq;
829 	int				rotate_disable;
830 	/*
831 	 * Set when nr_events != nr_active, except tolerant to events not
832 	 * necessary to be active due to scheduling constraints, such as cgroups.
833 	 */
834 	int				rotate_necessary;
835 	refcount_t			refcount;
836 	struct task_struct		*task;
837 
838 	/*
839 	 * Context clock, runs when context enabled.
840 	 */
841 	u64				time;
842 	u64				timestamp;
843 
844 	/*
845 	 * These fields let us detect when two contexts have both
846 	 * been cloned (inherited) from a common ancestor.
847 	 */
848 	struct perf_event_context	*parent_ctx;
849 	u64				parent_gen;
850 	u64				generation;
851 	int				pin_count;
852 #ifdef CONFIG_CGROUP_PERF
853 	int				nr_cgroups;	 /* cgroup evts */
854 #endif
855 	void				*task_ctx_data; /* pmu specific data */
856 	struct rcu_head			rcu_head;
857 };
858 
859 /*
860  * Number of contexts where an event can trigger:
861  *	task, softirq, hardirq, nmi.
862  */
863 #define PERF_NR_CONTEXTS	4
864 
865 /**
866  * struct perf_event_cpu_context - per cpu event context structure
867  */
868 struct perf_cpu_context {
869 	struct perf_event_context	ctx;
870 	struct perf_event_context	*task_ctx;
871 	int				active_oncpu;
872 	int				exclusive;
873 
874 	raw_spinlock_t			hrtimer_lock;
875 	struct hrtimer			hrtimer;
876 	ktime_t				hrtimer_interval;
877 	unsigned int			hrtimer_active;
878 
879 #ifdef CONFIG_CGROUP_PERF
880 	struct perf_cgroup		*cgrp;
881 	struct list_head		cgrp_cpuctx_entry;
882 #endif
883 
884 	struct list_head		sched_cb_entry;
885 	int				sched_cb_usage;
886 
887 	int				online;
888 	/*
889 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
890 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
891 	 */
892 	int				heap_size;
893 	struct perf_event		**heap;
894 	struct perf_event		*heap_default[2];
895 };
896 
897 struct perf_output_handle {
898 	struct perf_event		*event;
899 	struct perf_buffer		*rb;
900 	unsigned long			wakeup;
901 	unsigned long			size;
902 	u64				aux_flags;
903 	union {
904 		void			*addr;
905 		unsigned long		head;
906 	};
907 	int				page;
908 };
909 
910 struct bpf_perf_event_data_kern {
911 	bpf_user_pt_regs_t *regs;
912 	struct perf_sample_data *data;
913 	struct perf_event *event;
914 };
915 
916 #ifdef CONFIG_CGROUP_PERF
917 
918 /*
919  * perf_cgroup_info keeps track of time_enabled for a cgroup.
920  * This is a per-cpu dynamically allocated data structure.
921  */
922 struct perf_cgroup_info {
923 	u64				time;
924 	u64				timestamp;
925 };
926 
927 struct perf_cgroup {
928 	struct cgroup_subsys_state	css;
929 	struct perf_cgroup_info	__percpu *info;
930 };
931 
932 /*
933  * Must ensure cgroup is pinned (css_get) before calling
934  * this function. In other words, we cannot call this function
935  * if there is no cgroup event for the current CPU context.
936  */
937 static inline struct perf_cgroup *
938 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
939 {
940 	return container_of(task_css_check(task, perf_event_cgrp_id,
941 					   ctx ? lockdep_is_held(&ctx->lock)
942 					       : true),
943 			    struct perf_cgroup, css);
944 }
945 #endif /* CONFIG_CGROUP_PERF */
946 
947 #ifdef CONFIG_PERF_EVENTS
948 
949 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
950 				   struct perf_event *event);
951 extern void perf_aux_output_end(struct perf_output_handle *handle,
952 				unsigned long size);
953 extern int perf_aux_output_skip(struct perf_output_handle *handle,
954 				unsigned long size);
955 extern void *perf_get_aux(struct perf_output_handle *handle);
956 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
957 extern void perf_event_itrace_started(struct perf_event *event);
958 
959 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
960 extern void perf_pmu_unregister(struct pmu *pmu);
961 
962 extern void __perf_event_task_sched_in(struct task_struct *prev,
963 				       struct task_struct *task);
964 extern void __perf_event_task_sched_out(struct task_struct *prev,
965 					struct task_struct *next);
966 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
967 extern void perf_event_exit_task(struct task_struct *child);
968 extern void perf_event_free_task(struct task_struct *task);
969 extern void perf_event_delayed_put(struct task_struct *task);
970 extern struct file *perf_event_get(unsigned int fd);
971 extern const struct perf_event *perf_get_event(struct file *file);
972 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
973 extern void perf_event_print_debug(void);
974 extern void perf_pmu_disable(struct pmu *pmu);
975 extern void perf_pmu_enable(struct pmu *pmu);
976 extern void perf_sched_cb_dec(struct pmu *pmu);
977 extern void perf_sched_cb_inc(struct pmu *pmu);
978 extern int perf_event_task_disable(void);
979 extern int perf_event_task_enable(void);
980 
981 extern void perf_pmu_resched(struct pmu *pmu);
982 
983 extern int perf_event_refresh(struct perf_event *event, int refresh);
984 extern void perf_event_update_userpage(struct perf_event *event);
985 extern int perf_event_release_kernel(struct perf_event *event);
986 extern struct perf_event *
987 perf_event_create_kernel_counter(struct perf_event_attr *attr,
988 				int cpu,
989 				struct task_struct *task,
990 				perf_overflow_handler_t callback,
991 				void *context);
992 extern void perf_pmu_migrate_context(struct pmu *pmu,
993 				int src_cpu, int dst_cpu);
994 int perf_event_read_local(struct perf_event *event, u64 *value,
995 			  u64 *enabled, u64 *running);
996 extern u64 perf_event_read_value(struct perf_event *event,
997 				 u64 *enabled, u64 *running);
998 
999 
1000 struct perf_sample_data {
1001 	/*
1002 	 * Fields set by perf_sample_data_init(), group so as to
1003 	 * minimize the cachelines touched.
1004 	 */
1005 	u64				addr;
1006 	struct perf_raw_record		*raw;
1007 	struct perf_branch_stack	*br_stack;
1008 	u64				period;
1009 	union perf_sample_weight	weight;
1010 	u64				txn;
1011 	union  perf_mem_data_src	data_src;
1012 
1013 	/*
1014 	 * The other fields, optionally {set,used} by
1015 	 * perf_{prepare,output}_sample().
1016 	 */
1017 	u64				type;
1018 	u64				ip;
1019 	struct {
1020 		u32	pid;
1021 		u32	tid;
1022 	}				tid_entry;
1023 	u64				time;
1024 	u64				id;
1025 	u64				stream_id;
1026 	struct {
1027 		u32	cpu;
1028 		u32	reserved;
1029 	}				cpu_entry;
1030 	struct perf_callchain_entry	*callchain;
1031 	u64				aux_size;
1032 
1033 	struct perf_regs		regs_user;
1034 	struct perf_regs		regs_intr;
1035 	u64				stack_user_size;
1036 
1037 	u64				phys_addr;
1038 	u64				cgroup;
1039 	u64				data_page_size;
1040 	u64				code_page_size;
1041 } ____cacheline_aligned;
1042 
1043 /* default value for data source */
1044 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1045 		    PERF_MEM_S(LVL, NA)   |\
1046 		    PERF_MEM_S(SNOOP, NA) |\
1047 		    PERF_MEM_S(LOCK, NA)  |\
1048 		    PERF_MEM_S(TLB, NA))
1049 
1050 static inline void perf_sample_data_init(struct perf_sample_data *data,
1051 					 u64 addr, u64 period)
1052 {
1053 	/* remaining struct members initialized in perf_prepare_sample() */
1054 	data->addr = addr;
1055 	data->raw  = NULL;
1056 	data->br_stack = NULL;
1057 	data->period = period;
1058 	data->weight.full = 0;
1059 	data->data_src.val = PERF_MEM_NA;
1060 	data->txn = 0;
1061 }
1062 
1063 extern void perf_output_sample(struct perf_output_handle *handle,
1064 			       struct perf_event_header *header,
1065 			       struct perf_sample_data *data,
1066 			       struct perf_event *event);
1067 extern void perf_prepare_sample(struct perf_event_header *header,
1068 				struct perf_sample_data *data,
1069 				struct perf_event *event,
1070 				struct pt_regs *regs);
1071 
1072 extern int perf_event_overflow(struct perf_event *event,
1073 				 struct perf_sample_data *data,
1074 				 struct pt_regs *regs);
1075 
1076 extern void perf_event_output_forward(struct perf_event *event,
1077 				     struct perf_sample_data *data,
1078 				     struct pt_regs *regs);
1079 extern void perf_event_output_backward(struct perf_event *event,
1080 				       struct perf_sample_data *data,
1081 				       struct pt_regs *regs);
1082 extern int perf_event_output(struct perf_event *event,
1083 			     struct perf_sample_data *data,
1084 			     struct pt_regs *regs);
1085 
1086 static inline bool
1087 is_default_overflow_handler(struct perf_event *event)
1088 {
1089 	if (likely(event->overflow_handler == perf_event_output_forward))
1090 		return true;
1091 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1092 		return true;
1093 	return false;
1094 }
1095 
1096 extern void
1097 perf_event_header__init_id(struct perf_event_header *header,
1098 			   struct perf_sample_data *data,
1099 			   struct perf_event *event);
1100 extern void
1101 perf_event__output_id_sample(struct perf_event *event,
1102 			     struct perf_output_handle *handle,
1103 			     struct perf_sample_data *sample);
1104 
1105 extern void
1106 perf_log_lost_samples(struct perf_event *event, u64 lost);
1107 
1108 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1109 {
1110 	struct perf_event_attr *attr = &event->attr;
1111 
1112 	return attr->exclude_idle || attr->exclude_user ||
1113 	       attr->exclude_kernel || attr->exclude_hv ||
1114 	       attr->exclude_guest || attr->exclude_host;
1115 }
1116 
1117 static inline bool is_sampling_event(struct perf_event *event)
1118 {
1119 	return event->attr.sample_period != 0;
1120 }
1121 
1122 /*
1123  * Return 1 for a software event, 0 for a hardware event
1124  */
1125 static inline int is_software_event(struct perf_event *event)
1126 {
1127 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1128 }
1129 
1130 /*
1131  * Return 1 for event in sw context, 0 for event in hw context
1132  */
1133 static inline int in_software_context(struct perf_event *event)
1134 {
1135 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1136 }
1137 
1138 static inline int is_exclusive_pmu(struct pmu *pmu)
1139 {
1140 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1141 }
1142 
1143 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1144 
1145 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1146 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1147 
1148 #ifndef perf_arch_fetch_caller_regs
1149 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1150 #endif
1151 
1152 /*
1153  * When generating a perf sample in-line, instead of from an interrupt /
1154  * exception, we lack a pt_regs. This is typically used from software events
1155  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1156  *
1157  * We typically don't need a full set, but (for x86) do require:
1158  * - ip for PERF_SAMPLE_IP
1159  * - cs for user_mode() tests
1160  * - sp for PERF_SAMPLE_CALLCHAIN
1161  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1162  *
1163  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1164  * things like PERF_SAMPLE_REGS_INTR.
1165  */
1166 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1167 {
1168 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1169 }
1170 
1171 static __always_inline void
1172 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1173 {
1174 	if (static_key_false(&perf_swevent_enabled[event_id]))
1175 		__perf_sw_event(event_id, nr, regs, addr);
1176 }
1177 
1178 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1179 
1180 /*
1181  * 'Special' version for the scheduler, it hard assumes no recursion,
1182  * which is guaranteed by us not actually scheduling inside other swevents
1183  * because those disable preemption.
1184  */
1185 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1186 {
1187 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1188 
1189 	perf_fetch_caller_regs(regs);
1190 	___perf_sw_event(event_id, nr, regs, addr);
1191 }
1192 
1193 extern struct static_key_false perf_sched_events;
1194 
1195 static __always_inline bool __perf_sw_enabled(int swevt)
1196 {
1197 	return static_key_false(&perf_swevent_enabled[swevt]);
1198 }
1199 
1200 static inline void perf_event_task_migrate(struct task_struct *task)
1201 {
1202 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1203 		task->sched_migrated = 1;
1204 }
1205 
1206 static inline void perf_event_task_sched_in(struct task_struct *prev,
1207 					    struct task_struct *task)
1208 {
1209 	if (static_branch_unlikely(&perf_sched_events))
1210 		__perf_event_task_sched_in(prev, task);
1211 
1212 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1213 	    task->sched_migrated) {
1214 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1215 		task->sched_migrated = 0;
1216 	}
1217 }
1218 
1219 static inline void perf_event_task_sched_out(struct task_struct *prev,
1220 					     struct task_struct *next)
1221 {
1222 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1223 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1224 
1225 #ifdef CONFIG_CGROUP_PERF
1226 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1227 	    perf_cgroup_from_task(prev, NULL) !=
1228 	    perf_cgroup_from_task(next, NULL))
1229 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1230 #endif
1231 
1232 	if (static_branch_unlikely(&perf_sched_events))
1233 		__perf_event_task_sched_out(prev, next);
1234 }
1235 
1236 extern void perf_event_mmap(struct vm_area_struct *vma);
1237 
1238 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1239 			       bool unregister, const char *sym);
1240 extern void perf_event_bpf_event(struct bpf_prog *prog,
1241 				 enum perf_bpf_event_type type,
1242 				 u16 flags);
1243 
1244 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1245 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1246 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1247 
1248 extern void perf_event_exec(void);
1249 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1250 extern void perf_event_namespaces(struct task_struct *tsk);
1251 extern void perf_event_fork(struct task_struct *tsk);
1252 extern void perf_event_text_poke(const void *addr,
1253 				 const void *old_bytes, size_t old_len,
1254 				 const void *new_bytes, size_t new_len);
1255 
1256 /* Callchains */
1257 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1258 
1259 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1260 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1261 extern struct perf_callchain_entry *
1262 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1263 		   u32 max_stack, bool crosstask, bool add_mark);
1264 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1265 extern int get_callchain_buffers(int max_stack);
1266 extern void put_callchain_buffers(void);
1267 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1268 extern void put_callchain_entry(int rctx);
1269 
1270 extern int sysctl_perf_event_max_stack;
1271 extern int sysctl_perf_event_max_contexts_per_stack;
1272 
1273 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1274 {
1275 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1276 		struct perf_callchain_entry *entry = ctx->entry;
1277 		entry->ip[entry->nr++] = ip;
1278 		++ctx->contexts;
1279 		return 0;
1280 	} else {
1281 		ctx->contexts_maxed = true;
1282 		return -1; /* no more room, stop walking the stack */
1283 	}
1284 }
1285 
1286 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1287 {
1288 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1289 		struct perf_callchain_entry *entry = ctx->entry;
1290 		entry->ip[entry->nr++] = ip;
1291 		++ctx->nr;
1292 		return 0;
1293 	} else {
1294 		return -1; /* no more room, stop walking the stack */
1295 	}
1296 }
1297 
1298 extern int sysctl_perf_event_paranoid;
1299 extern int sysctl_perf_event_mlock;
1300 extern int sysctl_perf_event_sample_rate;
1301 extern int sysctl_perf_cpu_time_max_percent;
1302 
1303 extern void perf_sample_event_took(u64 sample_len_ns);
1304 
1305 int perf_proc_update_handler(struct ctl_table *table, int write,
1306 		void *buffer, size_t *lenp, loff_t *ppos);
1307 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1308 		void *buffer, size_t *lenp, loff_t *ppos);
1309 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1310 		void *buffer, size_t *lenp, loff_t *ppos);
1311 
1312 /* Access to perf_event_open(2) syscall. */
1313 #define PERF_SECURITY_OPEN		0
1314 
1315 /* Finer grained perf_event_open(2) access control. */
1316 #define PERF_SECURITY_CPU		1
1317 #define PERF_SECURITY_KERNEL		2
1318 #define PERF_SECURITY_TRACEPOINT	3
1319 
1320 static inline int perf_is_paranoid(void)
1321 {
1322 	return sysctl_perf_event_paranoid > -1;
1323 }
1324 
1325 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1326 {
1327 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1328 		return -EACCES;
1329 
1330 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1331 }
1332 
1333 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1334 {
1335 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1336 		return -EACCES;
1337 
1338 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1339 }
1340 
1341 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1342 {
1343 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1344 		return -EPERM;
1345 
1346 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1347 }
1348 
1349 extern void perf_event_init(void);
1350 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1351 			  int entry_size, struct pt_regs *regs,
1352 			  struct hlist_head *head, int rctx,
1353 			  struct task_struct *task);
1354 extern void perf_bp_event(struct perf_event *event, void *data);
1355 
1356 #ifndef perf_misc_flags
1357 # define perf_misc_flags(regs) \
1358 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1359 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1360 #endif
1361 #ifndef perf_arch_bpf_user_pt_regs
1362 # define perf_arch_bpf_user_pt_regs(regs) regs
1363 #endif
1364 
1365 static inline bool has_branch_stack(struct perf_event *event)
1366 {
1367 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1368 }
1369 
1370 static inline bool needs_branch_stack(struct perf_event *event)
1371 {
1372 	return event->attr.branch_sample_type != 0;
1373 }
1374 
1375 static inline bool has_aux(struct perf_event *event)
1376 {
1377 	return event->pmu->setup_aux;
1378 }
1379 
1380 static inline bool is_write_backward(struct perf_event *event)
1381 {
1382 	return !!event->attr.write_backward;
1383 }
1384 
1385 static inline bool has_addr_filter(struct perf_event *event)
1386 {
1387 	return event->pmu->nr_addr_filters;
1388 }
1389 
1390 /*
1391  * An inherited event uses parent's filters
1392  */
1393 static inline struct perf_addr_filters_head *
1394 perf_event_addr_filters(struct perf_event *event)
1395 {
1396 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1397 
1398 	if (event->parent)
1399 		ifh = &event->parent->addr_filters;
1400 
1401 	return ifh;
1402 }
1403 
1404 extern void perf_event_addr_filters_sync(struct perf_event *event);
1405 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1406 
1407 extern int perf_output_begin(struct perf_output_handle *handle,
1408 			     struct perf_sample_data *data,
1409 			     struct perf_event *event, unsigned int size);
1410 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1411 				     struct perf_sample_data *data,
1412 				     struct perf_event *event,
1413 				     unsigned int size);
1414 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1415 				      struct perf_sample_data *data,
1416 				      struct perf_event *event,
1417 				      unsigned int size);
1418 
1419 extern void perf_output_end(struct perf_output_handle *handle);
1420 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1421 			     const void *buf, unsigned int len);
1422 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1423 				     unsigned int len);
1424 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1425 				 struct perf_output_handle *handle,
1426 				 unsigned long from, unsigned long to);
1427 extern int perf_swevent_get_recursion_context(void);
1428 extern void perf_swevent_put_recursion_context(int rctx);
1429 extern u64 perf_swevent_set_period(struct perf_event *event);
1430 extern void perf_event_enable(struct perf_event *event);
1431 extern void perf_event_disable(struct perf_event *event);
1432 extern void perf_event_disable_local(struct perf_event *event);
1433 extern void perf_event_disable_inatomic(struct perf_event *event);
1434 extern void perf_event_task_tick(void);
1435 extern int perf_event_account_interrupt(struct perf_event *event);
1436 extern int perf_event_period(struct perf_event *event, u64 value);
1437 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1438 #else /* !CONFIG_PERF_EVENTS: */
1439 static inline void *
1440 perf_aux_output_begin(struct perf_output_handle *handle,
1441 		      struct perf_event *event)				{ return NULL; }
1442 static inline void
1443 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1444 									{ }
1445 static inline int
1446 perf_aux_output_skip(struct perf_output_handle *handle,
1447 		     unsigned long size)				{ return -EINVAL; }
1448 static inline void *
1449 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1450 static inline void
1451 perf_event_task_migrate(struct task_struct *task)			{ }
1452 static inline void
1453 perf_event_task_sched_in(struct task_struct *prev,
1454 			 struct task_struct *task)			{ }
1455 static inline void
1456 perf_event_task_sched_out(struct task_struct *prev,
1457 			  struct task_struct *next)			{ }
1458 static inline int perf_event_init_task(struct task_struct *child,
1459 				       u64 clone_flags)			{ return 0; }
1460 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1461 static inline void perf_event_free_task(struct task_struct *task)	{ }
1462 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1463 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1464 static inline const struct perf_event *perf_get_event(struct file *file)
1465 {
1466 	return ERR_PTR(-EINVAL);
1467 }
1468 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1469 {
1470 	return ERR_PTR(-EINVAL);
1471 }
1472 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1473 					u64 *enabled, u64 *running)
1474 {
1475 	return -EINVAL;
1476 }
1477 static inline void perf_event_print_debug(void)				{ }
1478 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1479 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1480 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1481 {
1482 	return -EINVAL;
1483 }
1484 
1485 static inline void
1486 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1487 static inline void
1488 perf_bp_event(struct perf_event *event, void *data)			{ }
1489 
1490 static inline int perf_register_guest_info_callbacks
1491 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1492 static inline int perf_unregister_guest_info_callbacks
1493 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1494 
1495 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1496 
1497 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1498 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1499 				      bool unregister, const char *sym)	{ }
1500 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1501 					enum perf_bpf_event_type type,
1502 					u16 flags)			{ }
1503 static inline void perf_event_exec(void)				{ }
1504 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1505 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1506 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1507 static inline void perf_event_text_poke(const void *addr,
1508 					const void *old_bytes,
1509 					size_t old_len,
1510 					const void *new_bytes,
1511 					size_t new_len)			{ }
1512 static inline void perf_event_init(void)				{ }
1513 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1514 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1515 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1516 static inline void perf_event_enable(struct perf_event *event)		{ }
1517 static inline void perf_event_disable(struct perf_event *event)		{ }
1518 static inline int __perf_event_disable(void *info)			{ return -1; }
1519 static inline void perf_event_task_tick(void)				{ }
1520 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1521 static inline int perf_event_period(struct perf_event *event, u64 value)
1522 {
1523 	return -EINVAL;
1524 }
1525 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1526 {
1527 	return 0;
1528 }
1529 #endif
1530 
1531 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1532 extern void perf_restore_debug_store(void);
1533 #else
1534 static inline void perf_restore_debug_store(void)			{ }
1535 #endif
1536 
1537 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1538 {
1539 	return frag->pad < sizeof(u64);
1540 }
1541 
1542 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1543 
1544 struct perf_pmu_events_attr {
1545 	struct device_attribute attr;
1546 	u64 id;
1547 	const char *event_str;
1548 };
1549 
1550 struct perf_pmu_events_ht_attr {
1551 	struct device_attribute			attr;
1552 	u64					id;
1553 	const char				*event_str_ht;
1554 	const char				*event_str_noht;
1555 };
1556 
1557 struct perf_pmu_events_hybrid_attr {
1558 	struct device_attribute			attr;
1559 	u64					id;
1560 	const char				*event_str;
1561 	u64					pmu_type;
1562 };
1563 
1564 struct perf_pmu_format_hybrid_attr {
1565 	struct device_attribute			attr;
1566 	u64					pmu_type;
1567 };
1568 
1569 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1570 			      char *page);
1571 
1572 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1573 static struct perf_pmu_events_attr _var = {				\
1574 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1575 	.id   =  _id,							\
1576 };
1577 
1578 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1579 static struct perf_pmu_events_attr _var = {				    \
1580 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1581 	.id		= 0,						    \
1582 	.event_str	= _str,						    \
1583 };
1584 
1585 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1586 	(&((struct perf_pmu_events_attr[]) {				\
1587 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1588 		  .id = _id, }						\
1589 	})[0].attr.attr)
1590 
1591 #define PMU_FORMAT_ATTR(_name, _format)					\
1592 static ssize_t								\
1593 _name##_show(struct device *dev,					\
1594 			       struct device_attribute *attr,		\
1595 			       char *page)				\
1596 {									\
1597 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1598 	return sprintf(page, _format "\n");				\
1599 }									\
1600 									\
1601 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1602 
1603 /* Performance counter hotplug functions */
1604 #ifdef CONFIG_PERF_EVENTS
1605 int perf_event_init_cpu(unsigned int cpu);
1606 int perf_event_exit_cpu(unsigned int cpu);
1607 #else
1608 #define perf_event_init_cpu	NULL
1609 #define perf_event_exit_cpu	NULL
1610 #endif
1611 
1612 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1613 					     struct perf_event_mmap_page *userpg,
1614 					     u64 now);
1615 
1616 #ifdef CONFIG_MMU
1617 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1618 #endif
1619 
1620 /*
1621  * Snapshot branch stack on software events.
1622  *
1623  * Branch stack can be very useful in understanding software events. For
1624  * example, when a long function, e.g. sys_perf_event_open, returns an
1625  * errno, it is not obvious why the function failed. Branch stack could
1626  * provide very helpful information in this type of scenarios.
1627  *
1628  * On software event, it is necessary to stop the hardware branch recorder
1629  * fast. Otherwise, the hardware register/buffer will be flushed with
1630  * entries of the triggering event. Therefore, static call is used to
1631  * stop the hardware recorder.
1632  */
1633 
1634 /*
1635  * cnt is the number of entries allocated for entries.
1636  * Return number of entries copied to .
1637  */
1638 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1639 					   unsigned int cnt);
1640 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1641 
1642 #endif /* _LINUX_PERF_EVENT_H */
1643