1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34 }; 35 36 #ifdef CONFIG_HAVE_HW_BREAKPOINT 37 #include <asm/hw_breakpoint.h> 38 #endif 39 40 #include <linux/list.h> 41 #include <linux/mutex.h> 42 #include <linux/rculist.h> 43 #include <linux/rcupdate.h> 44 #include <linux/spinlock.h> 45 #include <linux/hrtimer.h> 46 #include <linux/fs.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/workqueue.h> 49 #include <linux/ftrace.h> 50 #include <linux/cpu.h> 51 #include <linux/irq_work.h> 52 #include <linux/static_key.h> 53 #include <linux/jump_label_ratelimit.h> 54 #include <linux/atomic.h> 55 #include <linux/sysfs.h> 56 #include <linux/perf_regs.h> 57 #include <linux/cgroup.h> 58 #include <linux/refcount.h> 59 #include <linux/security.h> 60 #include <linux/static_call.h> 61 #include <asm/local.h> 62 63 struct perf_callchain_entry { 64 __u64 nr; 65 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 66 }; 67 68 struct perf_callchain_entry_ctx { 69 struct perf_callchain_entry *entry; 70 u32 max_stack; 71 u32 nr; 72 short contexts; 73 bool contexts_maxed; 74 }; 75 76 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 77 unsigned long off, unsigned long len); 78 79 struct perf_raw_frag { 80 union { 81 struct perf_raw_frag *next; 82 unsigned long pad; 83 }; 84 perf_copy_f copy; 85 void *data; 86 u32 size; 87 } __packed; 88 89 struct perf_raw_record { 90 struct perf_raw_frag frag; 91 u32 size; 92 }; 93 94 /* 95 * branch stack layout: 96 * nr: number of taken branches stored in entries[] 97 * hw_idx: The low level index of raw branch records 98 * for the most recent branch. 99 * -1ULL means invalid/unknown. 100 * 101 * Note that nr can vary from sample to sample 102 * branches (to, from) are stored from most recent 103 * to least recent, i.e., entries[0] contains the most 104 * recent branch. 105 * The entries[] is an abstraction of raw branch records, 106 * which may not be stored in age order in HW, e.g. Intel LBR. 107 * The hw_idx is to expose the low level index of raw 108 * branch record for the most recent branch aka entries[0]. 109 * The hw_idx index is between -1 (unknown) and max depth, 110 * which can be retrieved in /sys/devices/cpu/caps/branches. 111 * For the architectures whose raw branch records are 112 * already stored in age order, the hw_idx should be 0. 113 */ 114 struct perf_branch_stack { 115 __u64 nr; 116 __u64 hw_idx; 117 struct perf_branch_entry entries[]; 118 }; 119 120 struct task_struct; 121 122 /* 123 * extra PMU register associated with an event 124 */ 125 struct hw_perf_event_extra { 126 u64 config; /* register value */ 127 unsigned int reg; /* register address or index */ 128 int alloc; /* extra register already allocated */ 129 int idx; /* index in shared_regs->regs[] */ 130 }; 131 132 /** 133 * struct hw_perf_event - performance event hardware details: 134 */ 135 struct hw_perf_event { 136 #ifdef CONFIG_PERF_EVENTS 137 union { 138 struct { /* hardware */ 139 u64 config; 140 u64 last_tag; 141 unsigned long config_base; 142 unsigned long event_base; 143 int event_base_rdpmc; 144 int idx; 145 int last_cpu; 146 int flags; 147 148 struct hw_perf_event_extra extra_reg; 149 struct hw_perf_event_extra branch_reg; 150 }; 151 struct { /* software */ 152 struct hrtimer hrtimer; 153 }; 154 struct { /* tracepoint */ 155 /* for tp_event->class */ 156 struct list_head tp_list; 157 }; 158 struct { /* amd_power */ 159 u64 pwr_acc; 160 u64 ptsc; 161 }; 162 #ifdef CONFIG_HAVE_HW_BREAKPOINT 163 struct { /* breakpoint */ 164 /* 165 * Crufty hack to avoid the chicken and egg 166 * problem hw_breakpoint has with context 167 * creation and event initalization. 168 */ 169 struct arch_hw_breakpoint info; 170 struct list_head bp_list; 171 }; 172 #endif 173 struct { /* amd_iommu */ 174 u8 iommu_bank; 175 u8 iommu_cntr; 176 u16 padding; 177 u64 conf; 178 u64 conf1; 179 }; 180 }; 181 /* 182 * If the event is a per task event, this will point to the task in 183 * question. See the comment in perf_event_alloc(). 184 */ 185 struct task_struct *target; 186 187 /* 188 * PMU would store hardware filter configuration 189 * here. 190 */ 191 void *addr_filters; 192 193 /* Last sync'ed generation of filters */ 194 unsigned long addr_filters_gen; 195 196 /* 197 * hw_perf_event::state flags; used to track the PERF_EF_* state. 198 */ 199 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 200 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 201 #define PERF_HES_ARCH 0x04 202 203 int state; 204 205 /* 206 * The last observed hardware counter value, updated with a 207 * local64_cmpxchg() such that pmu::read() can be called nested. 208 */ 209 local64_t prev_count; 210 211 /* 212 * The period to start the next sample with. 213 */ 214 u64 sample_period; 215 216 union { 217 struct { /* Sampling */ 218 /* 219 * The period we started this sample with. 220 */ 221 u64 last_period; 222 223 /* 224 * However much is left of the current period; 225 * note that this is a full 64bit value and 226 * allows for generation of periods longer 227 * than hardware might allow. 228 */ 229 local64_t period_left; 230 }; 231 struct { /* Topdown events counting for context switch */ 232 u64 saved_metric; 233 u64 saved_slots; 234 }; 235 }; 236 237 /* 238 * State for throttling the event, see __perf_event_overflow() and 239 * perf_adjust_freq_unthr_context(). 240 */ 241 u64 interrupts_seq; 242 u64 interrupts; 243 244 /* 245 * State for freq target events, see __perf_event_overflow() and 246 * perf_adjust_freq_unthr_context(). 247 */ 248 u64 freq_time_stamp; 249 u64 freq_count_stamp; 250 #endif 251 }; 252 253 struct perf_event; 254 255 /* 256 * Common implementation detail of pmu::{start,commit,cancel}_txn 257 */ 258 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 259 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 260 261 /** 262 * pmu::capabilities flags 263 */ 264 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 265 #define PERF_PMU_CAP_NO_NMI 0x0002 266 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 267 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 268 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 269 #define PERF_PMU_CAP_ITRACE 0x0020 270 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 271 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 272 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 273 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 274 275 struct perf_output_handle; 276 277 /** 278 * struct pmu - generic performance monitoring unit 279 */ 280 struct pmu { 281 struct list_head entry; 282 283 struct module *module; 284 struct device *dev; 285 const struct attribute_group **attr_groups; 286 const struct attribute_group **attr_update; 287 const char *name; 288 int type; 289 290 /* 291 * various common per-pmu feature flags 292 */ 293 int capabilities; 294 295 int __percpu *pmu_disable_count; 296 struct perf_cpu_context __percpu *pmu_cpu_context; 297 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 298 int task_ctx_nr; 299 int hrtimer_interval_ms; 300 301 /* number of address filters this PMU can do */ 302 unsigned int nr_addr_filters; 303 304 /* 305 * Fully disable/enable this PMU, can be used to protect from the PMI 306 * as well as for lazy/batch writing of the MSRs. 307 */ 308 void (*pmu_enable) (struct pmu *pmu); /* optional */ 309 void (*pmu_disable) (struct pmu *pmu); /* optional */ 310 311 /* 312 * Try and initialize the event for this PMU. 313 * 314 * Returns: 315 * -ENOENT -- @event is not for this PMU 316 * 317 * -ENODEV -- @event is for this PMU but PMU not present 318 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 319 * -EINVAL -- @event is for this PMU but @event is not valid 320 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 321 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 322 * 323 * 0 -- @event is for this PMU and valid 324 * 325 * Other error return values are allowed. 326 */ 327 int (*event_init) (struct perf_event *event); 328 329 /* 330 * Notification that the event was mapped or unmapped. Called 331 * in the context of the mapping task. 332 */ 333 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 334 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 335 336 /* 337 * Flags for ->add()/->del()/ ->start()/->stop(). There are 338 * matching hw_perf_event::state flags. 339 */ 340 #define PERF_EF_START 0x01 /* start the counter when adding */ 341 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 342 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 343 344 /* 345 * Adds/Removes a counter to/from the PMU, can be done inside a 346 * transaction, see the ->*_txn() methods. 347 * 348 * The add/del callbacks will reserve all hardware resources required 349 * to service the event, this includes any counter constraint 350 * scheduling etc. 351 * 352 * Called with IRQs disabled and the PMU disabled on the CPU the event 353 * is on. 354 * 355 * ->add() called without PERF_EF_START should result in the same state 356 * as ->add() followed by ->stop(). 357 * 358 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 359 * ->stop() that must deal with already being stopped without 360 * PERF_EF_UPDATE. 361 */ 362 int (*add) (struct perf_event *event, int flags); 363 void (*del) (struct perf_event *event, int flags); 364 365 /* 366 * Starts/Stops a counter present on the PMU. 367 * 368 * The PMI handler should stop the counter when perf_event_overflow() 369 * returns !0. ->start() will be used to continue. 370 * 371 * Also used to change the sample period. 372 * 373 * Called with IRQs disabled and the PMU disabled on the CPU the event 374 * is on -- will be called from NMI context with the PMU generates 375 * NMIs. 376 * 377 * ->stop() with PERF_EF_UPDATE will read the counter and update 378 * period/count values like ->read() would. 379 * 380 * ->start() with PERF_EF_RELOAD will reprogram the counter 381 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 382 */ 383 void (*start) (struct perf_event *event, int flags); 384 void (*stop) (struct perf_event *event, int flags); 385 386 /* 387 * Updates the counter value of the event. 388 * 389 * For sampling capable PMUs this will also update the software period 390 * hw_perf_event::period_left field. 391 */ 392 void (*read) (struct perf_event *event); 393 394 /* 395 * Group events scheduling is treated as a transaction, add 396 * group events as a whole and perform one schedulability test. 397 * If the test fails, roll back the whole group 398 * 399 * Start the transaction, after this ->add() doesn't need to 400 * do schedulability tests. 401 * 402 * Optional. 403 */ 404 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 405 /* 406 * If ->start_txn() disabled the ->add() schedulability test 407 * then ->commit_txn() is required to perform one. On success 408 * the transaction is closed. On error the transaction is kept 409 * open until ->cancel_txn() is called. 410 * 411 * Optional. 412 */ 413 int (*commit_txn) (struct pmu *pmu); 414 /* 415 * Will cancel the transaction, assumes ->del() is called 416 * for each successful ->add() during the transaction. 417 * 418 * Optional. 419 */ 420 void (*cancel_txn) (struct pmu *pmu); 421 422 /* 423 * Will return the value for perf_event_mmap_page::index for this event, 424 * if no implementation is provided it will default to: event->hw.idx + 1. 425 */ 426 int (*event_idx) (struct perf_event *event); /*optional */ 427 428 /* 429 * context-switches callback 430 */ 431 void (*sched_task) (struct perf_event_context *ctx, 432 bool sched_in); 433 434 /* 435 * Kmem cache of PMU specific data 436 */ 437 struct kmem_cache *task_ctx_cache; 438 439 /* 440 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 441 * can be synchronized using this function. See Intel LBR callstack support 442 * implementation and Perf core context switch handling callbacks for usage 443 * examples. 444 */ 445 void (*swap_task_ctx) (struct perf_event_context *prev, 446 struct perf_event_context *next); 447 /* optional */ 448 449 /* 450 * Set up pmu-private data structures for an AUX area 451 */ 452 void *(*setup_aux) (struct perf_event *event, void **pages, 453 int nr_pages, bool overwrite); 454 /* optional */ 455 456 /* 457 * Free pmu-private AUX data structures 458 */ 459 void (*free_aux) (void *aux); /* optional */ 460 461 /* 462 * Take a snapshot of the AUX buffer without touching the event 463 * state, so that preempting ->start()/->stop() callbacks does 464 * not interfere with their logic. Called in PMI context. 465 * 466 * Returns the size of AUX data copied to the output handle. 467 * 468 * Optional. 469 */ 470 long (*snapshot_aux) (struct perf_event *event, 471 struct perf_output_handle *handle, 472 unsigned long size); 473 474 /* 475 * Validate address range filters: make sure the HW supports the 476 * requested configuration and number of filters; return 0 if the 477 * supplied filters are valid, -errno otherwise. 478 * 479 * Runs in the context of the ioctl()ing process and is not serialized 480 * with the rest of the PMU callbacks. 481 */ 482 int (*addr_filters_validate) (struct list_head *filters); 483 /* optional */ 484 485 /* 486 * Synchronize address range filter configuration: 487 * translate hw-agnostic filters into hardware configuration in 488 * event::hw::addr_filters. 489 * 490 * Runs as a part of filter sync sequence that is done in ->start() 491 * callback by calling perf_event_addr_filters_sync(). 492 * 493 * May (and should) traverse event::addr_filters::list, for which its 494 * caller provides necessary serialization. 495 */ 496 void (*addr_filters_sync) (struct perf_event *event); 497 /* optional */ 498 499 /* 500 * Check if event can be used for aux_output purposes for 501 * events of this PMU. 502 * 503 * Runs from perf_event_open(). Should return 0 for "no match" 504 * or non-zero for "match". 505 */ 506 int (*aux_output_match) (struct perf_event *event); 507 /* optional */ 508 509 /* 510 * Filter events for PMU-specific reasons. 511 */ 512 int (*filter_match) (struct perf_event *event); /* optional */ 513 514 /* 515 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 516 */ 517 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 518 }; 519 520 enum perf_addr_filter_action_t { 521 PERF_ADDR_FILTER_ACTION_STOP = 0, 522 PERF_ADDR_FILTER_ACTION_START, 523 PERF_ADDR_FILTER_ACTION_FILTER, 524 }; 525 526 /** 527 * struct perf_addr_filter - address range filter definition 528 * @entry: event's filter list linkage 529 * @path: object file's path for file-based filters 530 * @offset: filter range offset 531 * @size: filter range size (size==0 means single address trigger) 532 * @action: filter/start/stop 533 * 534 * This is a hardware-agnostic filter configuration as specified by the user. 535 */ 536 struct perf_addr_filter { 537 struct list_head entry; 538 struct path path; 539 unsigned long offset; 540 unsigned long size; 541 enum perf_addr_filter_action_t action; 542 }; 543 544 /** 545 * struct perf_addr_filters_head - container for address range filters 546 * @list: list of filters for this event 547 * @lock: spinlock that serializes accesses to the @list and event's 548 * (and its children's) filter generations. 549 * @nr_file_filters: number of file-based filters 550 * 551 * A child event will use parent's @list (and therefore @lock), so they are 552 * bundled together; see perf_event_addr_filters(). 553 */ 554 struct perf_addr_filters_head { 555 struct list_head list; 556 raw_spinlock_t lock; 557 unsigned int nr_file_filters; 558 }; 559 560 struct perf_addr_filter_range { 561 unsigned long start; 562 unsigned long size; 563 }; 564 565 /** 566 * enum perf_event_state - the states of an event: 567 */ 568 enum perf_event_state { 569 PERF_EVENT_STATE_DEAD = -4, 570 PERF_EVENT_STATE_EXIT = -3, 571 PERF_EVENT_STATE_ERROR = -2, 572 PERF_EVENT_STATE_OFF = -1, 573 PERF_EVENT_STATE_INACTIVE = 0, 574 PERF_EVENT_STATE_ACTIVE = 1, 575 }; 576 577 struct file; 578 struct perf_sample_data; 579 580 typedef void (*perf_overflow_handler_t)(struct perf_event *, 581 struct perf_sample_data *, 582 struct pt_regs *regs); 583 584 /* 585 * Event capabilities. For event_caps and groups caps. 586 * 587 * PERF_EV_CAP_SOFTWARE: Is a software event. 588 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 589 * from any CPU in the package where it is active. 590 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 591 * cannot be a group leader. If an event with this flag is detached from the 592 * group it is scheduled out and moved into an unrecoverable ERROR state. 593 */ 594 #define PERF_EV_CAP_SOFTWARE BIT(0) 595 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 596 #define PERF_EV_CAP_SIBLING BIT(2) 597 598 #define SWEVENT_HLIST_BITS 8 599 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 600 601 struct swevent_hlist { 602 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 603 struct rcu_head rcu_head; 604 }; 605 606 #define PERF_ATTACH_CONTEXT 0x01 607 #define PERF_ATTACH_GROUP 0x02 608 #define PERF_ATTACH_TASK 0x04 609 #define PERF_ATTACH_TASK_DATA 0x08 610 #define PERF_ATTACH_ITRACE 0x10 611 #define PERF_ATTACH_SCHED_CB 0x20 612 #define PERF_ATTACH_CHILD 0x40 613 614 struct bpf_prog; 615 struct perf_cgroup; 616 struct perf_buffer; 617 618 struct pmu_event_list { 619 raw_spinlock_t lock; 620 struct list_head list; 621 }; 622 623 #define for_each_sibling_event(sibling, event) \ 624 if ((event)->group_leader == (event)) \ 625 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 626 627 /** 628 * struct perf_event - performance event kernel representation: 629 */ 630 struct perf_event { 631 #ifdef CONFIG_PERF_EVENTS 632 /* 633 * entry onto perf_event_context::event_list; 634 * modifications require ctx->lock 635 * RCU safe iterations. 636 */ 637 struct list_head event_entry; 638 639 /* 640 * Locked for modification by both ctx->mutex and ctx->lock; holding 641 * either sufficies for read. 642 */ 643 struct list_head sibling_list; 644 struct list_head active_list; 645 /* 646 * Node on the pinned or flexible tree located at the event context; 647 */ 648 struct rb_node group_node; 649 u64 group_index; 650 /* 651 * We need storage to track the entries in perf_pmu_migrate_context; we 652 * cannot use the event_entry because of RCU and we want to keep the 653 * group in tact which avoids us using the other two entries. 654 */ 655 struct list_head migrate_entry; 656 657 struct hlist_node hlist_entry; 658 struct list_head active_entry; 659 int nr_siblings; 660 661 /* Not serialized. Only written during event initialization. */ 662 int event_caps; 663 /* The cumulative AND of all event_caps for events in this group. */ 664 int group_caps; 665 666 struct perf_event *group_leader; 667 struct pmu *pmu; 668 void *pmu_private; 669 670 enum perf_event_state state; 671 unsigned int attach_state; 672 local64_t count; 673 atomic64_t child_count; 674 675 /* 676 * These are the total time in nanoseconds that the event 677 * has been enabled (i.e. eligible to run, and the task has 678 * been scheduled in, if this is a per-task event) 679 * and running (scheduled onto the CPU), respectively. 680 */ 681 u64 total_time_enabled; 682 u64 total_time_running; 683 u64 tstamp; 684 685 /* 686 * timestamp shadows the actual context timing but it can 687 * be safely used in NMI interrupt context. It reflects the 688 * context time as it was when the event was last scheduled in, 689 * or when ctx_sched_in failed to schedule the event because we 690 * run out of PMC. 691 * 692 * ctx_time already accounts for ctx->timestamp. Therefore to 693 * compute ctx_time for a sample, simply add perf_clock(). 694 */ 695 u64 shadow_ctx_time; 696 697 struct perf_event_attr attr; 698 u16 header_size; 699 u16 id_header_size; 700 u16 read_size; 701 struct hw_perf_event hw; 702 703 struct perf_event_context *ctx; 704 atomic_long_t refcount; 705 706 /* 707 * These accumulate total time (in nanoseconds) that children 708 * events have been enabled and running, respectively. 709 */ 710 atomic64_t child_total_time_enabled; 711 atomic64_t child_total_time_running; 712 713 /* 714 * Protect attach/detach and child_list: 715 */ 716 struct mutex child_mutex; 717 struct list_head child_list; 718 struct perf_event *parent; 719 720 int oncpu; 721 int cpu; 722 723 struct list_head owner_entry; 724 struct task_struct *owner; 725 726 /* mmap bits */ 727 struct mutex mmap_mutex; 728 atomic_t mmap_count; 729 730 struct perf_buffer *rb; 731 struct list_head rb_entry; 732 unsigned long rcu_batches; 733 int rcu_pending; 734 735 /* poll related */ 736 wait_queue_head_t waitq; 737 struct fasync_struct *fasync; 738 739 /* delayed work for NMIs and such */ 740 int pending_wakeup; 741 int pending_kill; 742 int pending_disable; 743 unsigned long pending_addr; /* SIGTRAP */ 744 struct irq_work pending; 745 746 atomic_t event_limit; 747 748 /* address range filters */ 749 struct perf_addr_filters_head addr_filters; 750 /* vma address array for file-based filders */ 751 struct perf_addr_filter_range *addr_filter_ranges; 752 unsigned long addr_filters_gen; 753 754 /* for aux_output events */ 755 struct perf_event *aux_event; 756 757 void (*destroy)(struct perf_event *); 758 struct rcu_head rcu_head; 759 760 struct pid_namespace *ns; 761 u64 id; 762 763 u64 (*clock)(void); 764 perf_overflow_handler_t overflow_handler; 765 void *overflow_handler_context; 766 #ifdef CONFIG_BPF_SYSCALL 767 perf_overflow_handler_t orig_overflow_handler; 768 struct bpf_prog *prog; 769 u64 bpf_cookie; 770 #endif 771 772 #ifdef CONFIG_EVENT_TRACING 773 struct trace_event_call *tp_event; 774 struct event_filter *filter; 775 #ifdef CONFIG_FUNCTION_TRACER 776 struct ftrace_ops ftrace_ops; 777 #endif 778 #endif 779 780 #ifdef CONFIG_CGROUP_PERF 781 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 782 #endif 783 784 #ifdef CONFIG_SECURITY 785 void *security; 786 #endif 787 struct list_head sb_list; 788 #endif /* CONFIG_PERF_EVENTS */ 789 }; 790 791 792 struct perf_event_groups { 793 struct rb_root tree; 794 u64 index; 795 }; 796 797 /** 798 * struct perf_event_context - event context structure 799 * 800 * Used as a container for task events and CPU events as well: 801 */ 802 struct perf_event_context { 803 struct pmu *pmu; 804 /* 805 * Protect the states of the events in the list, 806 * nr_active, and the list: 807 */ 808 raw_spinlock_t lock; 809 /* 810 * Protect the list of events. Locking either mutex or lock 811 * is sufficient to ensure the list doesn't change; to change 812 * the list you need to lock both the mutex and the spinlock. 813 */ 814 struct mutex mutex; 815 816 struct list_head active_ctx_list; 817 struct perf_event_groups pinned_groups; 818 struct perf_event_groups flexible_groups; 819 struct list_head event_list; 820 821 struct list_head pinned_active; 822 struct list_head flexible_active; 823 824 int nr_events; 825 int nr_active; 826 int is_active; 827 int nr_stat; 828 int nr_freq; 829 int rotate_disable; 830 /* 831 * Set when nr_events != nr_active, except tolerant to events not 832 * necessary to be active due to scheduling constraints, such as cgroups. 833 */ 834 int rotate_necessary; 835 refcount_t refcount; 836 struct task_struct *task; 837 838 /* 839 * Context clock, runs when context enabled. 840 */ 841 u64 time; 842 u64 timestamp; 843 844 /* 845 * These fields let us detect when two contexts have both 846 * been cloned (inherited) from a common ancestor. 847 */ 848 struct perf_event_context *parent_ctx; 849 u64 parent_gen; 850 u64 generation; 851 int pin_count; 852 #ifdef CONFIG_CGROUP_PERF 853 int nr_cgroups; /* cgroup evts */ 854 #endif 855 void *task_ctx_data; /* pmu specific data */ 856 struct rcu_head rcu_head; 857 }; 858 859 /* 860 * Number of contexts where an event can trigger: 861 * task, softirq, hardirq, nmi. 862 */ 863 #define PERF_NR_CONTEXTS 4 864 865 /** 866 * struct perf_event_cpu_context - per cpu event context structure 867 */ 868 struct perf_cpu_context { 869 struct perf_event_context ctx; 870 struct perf_event_context *task_ctx; 871 int active_oncpu; 872 int exclusive; 873 874 raw_spinlock_t hrtimer_lock; 875 struct hrtimer hrtimer; 876 ktime_t hrtimer_interval; 877 unsigned int hrtimer_active; 878 879 #ifdef CONFIG_CGROUP_PERF 880 struct perf_cgroup *cgrp; 881 struct list_head cgrp_cpuctx_entry; 882 #endif 883 884 struct list_head sched_cb_entry; 885 int sched_cb_usage; 886 887 int online; 888 /* 889 * Per-CPU storage for iterators used in visit_groups_merge. The default 890 * storage is of size 2 to hold the CPU and any CPU event iterators. 891 */ 892 int heap_size; 893 struct perf_event **heap; 894 struct perf_event *heap_default[2]; 895 }; 896 897 struct perf_output_handle { 898 struct perf_event *event; 899 struct perf_buffer *rb; 900 unsigned long wakeup; 901 unsigned long size; 902 u64 aux_flags; 903 union { 904 void *addr; 905 unsigned long head; 906 }; 907 int page; 908 }; 909 910 struct bpf_perf_event_data_kern { 911 bpf_user_pt_regs_t *regs; 912 struct perf_sample_data *data; 913 struct perf_event *event; 914 }; 915 916 #ifdef CONFIG_CGROUP_PERF 917 918 /* 919 * perf_cgroup_info keeps track of time_enabled for a cgroup. 920 * This is a per-cpu dynamically allocated data structure. 921 */ 922 struct perf_cgroup_info { 923 u64 time; 924 u64 timestamp; 925 }; 926 927 struct perf_cgroup { 928 struct cgroup_subsys_state css; 929 struct perf_cgroup_info __percpu *info; 930 }; 931 932 /* 933 * Must ensure cgroup is pinned (css_get) before calling 934 * this function. In other words, we cannot call this function 935 * if there is no cgroup event for the current CPU context. 936 */ 937 static inline struct perf_cgroup * 938 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 939 { 940 return container_of(task_css_check(task, perf_event_cgrp_id, 941 ctx ? lockdep_is_held(&ctx->lock) 942 : true), 943 struct perf_cgroup, css); 944 } 945 #endif /* CONFIG_CGROUP_PERF */ 946 947 #ifdef CONFIG_PERF_EVENTS 948 949 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 950 struct perf_event *event); 951 extern void perf_aux_output_end(struct perf_output_handle *handle, 952 unsigned long size); 953 extern int perf_aux_output_skip(struct perf_output_handle *handle, 954 unsigned long size); 955 extern void *perf_get_aux(struct perf_output_handle *handle); 956 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 957 extern void perf_event_itrace_started(struct perf_event *event); 958 959 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 960 extern void perf_pmu_unregister(struct pmu *pmu); 961 962 extern void __perf_event_task_sched_in(struct task_struct *prev, 963 struct task_struct *task); 964 extern void __perf_event_task_sched_out(struct task_struct *prev, 965 struct task_struct *next); 966 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 967 extern void perf_event_exit_task(struct task_struct *child); 968 extern void perf_event_free_task(struct task_struct *task); 969 extern void perf_event_delayed_put(struct task_struct *task); 970 extern struct file *perf_event_get(unsigned int fd); 971 extern const struct perf_event *perf_get_event(struct file *file); 972 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 973 extern void perf_event_print_debug(void); 974 extern void perf_pmu_disable(struct pmu *pmu); 975 extern void perf_pmu_enable(struct pmu *pmu); 976 extern void perf_sched_cb_dec(struct pmu *pmu); 977 extern void perf_sched_cb_inc(struct pmu *pmu); 978 extern int perf_event_task_disable(void); 979 extern int perf_event_task_enable(void); 980 981 extern void perf_pmu_resched(struct pmu *pmu); 982 983 extern int perf_event_refresh(struct perf_event *event, int refresh); 984 extern void perf_event_update_userpage(struct perf_event *event); 985 extern int perf_event_release_kernel(struct perf_event *event); 986 extern struct perf_event * 987 perf_event_create_kernel_counter(struct perf_event_attr *attr, 988 int cpu, 989 struct task_struct *task, 990 perf_overflow_handler_t callback, 991 void *context); 992 extern void perf_pmu_migrate_context(struct pmu *pmu, 993 int src_cpu, int dst_cpu); 994 int perf_event_read_local(struct perf_event *event, u64 *value, 995 u64 *enabled, u64 *running); 996 extern u64 perf_event_read_value(struct perf_event *event, 997 u64 *enabled, u64 *running); 998 999 1000 struct perf_sample_data { 1001 /* 1002 * Fields set by perf_sample_data_init(), group so as to 1003 * minimize the cachelines touched. 1004 */ 1005 u64 addr; 1006 struct perf_raw_record *raw; 1007 struct perf_branch_stack *br_stack; 1008 u64 period; 1009 union perf_sample_weight weight; 1010 u64 txn; 1011 union perf_mem_data_src data_src; 1012 1013 /* 1014 * The other fields, optionally {set,used} by 1015 * perf_{prepare,output}_sample(). 1016 */ 1017 u64 type; 1018 u64 ip; 1019 struct { 1020 u32 pid; 1021 u32 tid; 1022 } tid_entry; 1023 u64 time; 1024 u64 id; 1025 u64 stream_id; 1026 struct { 1027 u32 cpu; 1028 u32 reserved; 1029 } cpu_entry; 1030 struct perf_callchain_entry *callchain; 1031 u64 aux_size; 1032 1033 struct perf_regs regs_user; 1034 struct perf_regs regs_intr; 1035 u64 stack_user_size; 1036 1037 u64 phys_addr; 1038 u64 cgroup; 1039 u64 data_page_size; 1040 u64 code_page_size; 1041 } ____cacheline_aligned; 1042 1043 /* default value for data source */ 1044 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1045 PERF_MEM_S(LVL, NA) |\ 1046 PERF_MEM_S(SNOOP, NA) |\ 1047 PERF_MEM_S(LOCK, NA) |\ 1048 PERF_MEM_S(TLB, NA)) 1049 1050 static inline void perf_sample_data_init(struct perf_sample_data *data, 1051 u64 addr, u64 period) 1052 { 1053 /* remaining struct members initialized in perf_prepare_sample() */ 1054 data->addr = addr; 1055 data->raw = NULL; 1056 data->br_stack = NULL; 1057 data->period = period; 1058 data->weight.full = 0; 1059 data->data_src.val = PERF_MEM_NA; 1060 data->txn = 0; 1061 } 1062 1063 extern void perf_output_sample(struct perf_output_handle *handle, 1064 struct perf_event_header *header, 1065 struct perf_sample_data *data, 1066 struct perf_event *event); 1067 extern void perf_prepare_sample(struct perf_event_header *header, 1068 struct perf_sample_data *data, 1069 struct perf_event *event, 1070 struct pt_regs *regs); 1071 1072 extern int perf_event_overflow(struct perf_event *event, 1073 struct perf_sample_data *data, 1074 struct pt_regs *regs); 1075 1076 extern void perf_event_output_forward(struct perf_event *event, 1077 struct perf_sample_data *data, 1078 struct pt_regs *regs); 1079 extern void perf_event_output_backward(struct perf_event *event, 1080 struct perf_sample_data *data, 1081 struct pt_regs *regs); 1082 extern int perf_event_output(struct perf_event *event, 1083 struct perf_sample_data *data, 1084 struct pt_regs *regs); 1085 1086 static inline bool 1087 is_default_overflow_handler(struct perf_event *event) 1088 { 1089 if (likely(event->overflow_handler == perf_event_output_forward)) 1090 return true; 1091 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1092 return true; 1093 return false; 1094 } 1095 1096 extern void 1097 perf_event_header__init_id(struct perf_event_header *header, 1098 struct perf_sample_data *data, 1099 struct perf_event *event); 1100 extern void 1101 perf_event__output_id_sample(struct perf_event *event, 1102 struct perf_output_handle *handle, 1103 struct perf_sample_data *sample); 1104 1105 extern void 1106 perf_log_lost_samples(struct perf_event *event, u64 lost); 1107 1108 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1109 { 1110 struct perf_event_attr *attr = &event->attr; 1111 1112 return attr->exclude_idle || attr->exclude_user || 1113 attr->exclude_kernel || attr->exclude_hv || 1114 attr->exclude_guest || attr->exclude_host; 1115 } 1116 1117 static inline bool is_sampling_event(struct perf_event *event) 1118 { 1119 return event->attr.sample_period != 0; 1120 } 1121 1122 /* 1123 * Return 1 for a software event, 0 for a hardware event 1124 */ 1125 static inline int is_software_event(struct perf_event *event) 1126 { 1127 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1128 } 1129 1130 /* 1131 * Return 1 for event in sw context, 0 for event in hw context 1132 */ 1133 static inline int in_software_context(struct perf_event *event) 1134 { 1135 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1136 } 1137 1138 static inline int is_exclusive_pmu(struct pmu *pmu) 1139 { 1140 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1141 } 1142 1143 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1144 1145 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1146 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1147 1148 #ifndef perf_arch_fetch_caller_regs 1149 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1150 #endif 1151 1152 /* 1153 * When generating a perf sample in-line, instead of from an interrupt / 1154 * exception, we lack a pt_regs. This is typically used from software events 1155 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1156 * 1157 * We typically don't need a full set, but (for x86) do require: 1158 * - ip for PERF_SAMPLE_IP 1159 * - cs for user_mode() tests 1160 * - sp for PERF_SAMPLE_CALLCHAIN 1161 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1162 * 1163 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1164 * things like PERF_SAMPLE_REGS_INTR. 1165 */ 1166 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1167 { 1168 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1169 } 1170 1171 static __always_inline void 1172 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1173 { 1174 if (static_key_false(&perf_swevent_enabled[event_id])) 1175 __perf_sw_event(event_id, nr, regs, addr); 1176 } 1177 1178 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1179 1180 /* 1181 * 'Special' version for the scheduler, it hard assumes no recursion, 1182 * which is guaranteed by us not actually scheduling inside other swevents 1183 * because those disable preemption. 1184 */ 1185 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1186 { 1187 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1188 1189 perf_fetch_caller_regs(regs); 1190 ___perf_sw_event(event_id, nr, regs, addr); 1191 } 1192 1193 extern struct static_key_false perf_sched_events; 1194 1195 static __always_inline bool __perf_sw_enabled(int swevt) 1196 { 1197 return static_key_false(&perf_swevent_enabled[swevt]); 1198 } 1199 1200 static inline void perf_event_task_migrate(struct task_struct *task) 1201 { 1202 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1203 task->sched_migrated = 1; 1204 } 1205 1206 static inline void perf_event_task_sched_in(struct task_struct *prev, 1207 struct task_struct *task) 1208 { 1209 if (static_branch_unlikely(&perf_sched_events)) 1210 __perf_event_task_sched_in(prev, task); 1211 1212 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1213 task->sched_migrated) { 1214 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1215 task->sched_migrated = 0; 1216 } 1217 } 1218 1219 static inline void perf_event_task_sched_out(struct task_struct *prev, 1220 struct task_struct *next) 1221 { 1222 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1223 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1224 1225 #ifdef CONFIG_CGROUP_PERF 1226 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1227 perf_cgroup_from_task(prev, NULL) != 1228 perf_cgroup_from_task(next, NULL)) 1229 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1230 #endif 1231 1232 if (static_branch_unlikely(&perf_sched_events)) 1233 __perf_event_task_sched_out(prev, next); 1234 } 1235 1236 extern void perf_event_mmap(struct vm_area_struct *vma); 1237 1238 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1239 bool unregister, const char *sym); 1240 extern void perf_event_bpf_event(struct bpf_prog *prog, 1241 enum perf_bpf_event_type type, 1242 u16 flags); 1243 1244 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1245 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1246 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1247 1248 extern void perf_event_exec(void); 1249 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1250 extern void perf_event_namespaces(struct task_struct *tsk); 1251 extern void perf_event_fork(struct task_struct *tsk); 1252 extern void perf_event_text_poke(const void *addr, 1253 const void *old_bytes, size_t old_len, 1254 const void *new_bytes, size_t new_len); 1255 1256 /* Callchains */ 1257 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1258 1259 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1260 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1261 extern struct perf_callchain_entry * 1262 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1263 u32 max_stack, bool crosstask, bool add_mark); 1264 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1265 extern int get_callchain_buffers(int max_stack); 1266 extern void put_callchain_buffers(void); 1267 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1268 extern void put_callchain_entry(int rctx); 1269 1270 extern int sysctl_perf_event_max_stack; 1271 extern int sysctl_perf_event_max_contexts_per_stack; 1272 1273 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1274 { 1275 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1276 struct perf_callchain_entry *entry = ctx->entry; 1277 entry->ip[entry->nr++] = ip; 1278 ++ctx->contexts; 1279 return 0; 1280 } else { 1281 ctx->contexts_maxed = true; 1282 return -1; /* no more room, stop walking the stack */ 1283 } 1284 } 1285 1286 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1287 { 1288 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1289 struct perf_callchain_entry *entry = ctx->entry; 1290 entry->ip[entry->nr++] = ip; 1291 ++ctx->nr; 1292 return 0; 1293 } else { 1294 return -1; /* no more room, stop walking the stack */ 1295 } 1296 } 1297 1298 extern int sysctl_perf_event_paranoid; 1299 extern int sysctl_perf_event_mlock; 1300 extern int sysctl_perf_event_sample_rate; 1301 extern int sysctl_perf_cpu_time_max_percent; 1302 1303 extern void perf_sample_event_took(u64 sample_len_ns); 1304 1305 int perf_proc_update_handler(struct ctl_table *table, int write, 1306 void *buffer, size_t *lenp, loff_t *ppos); 1307 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1308 void *buffer, size_t *lenp, loff_t *ppos); 1309 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1310 void *buffer, size_t *lenp, loff_t *ppos); 1311 1312 /* Access to perf_event_open(2) syscall. */ 1313 #define PERF_SECURITY_OPEN 0 1314 1315 /* Finer grained perf_event_open(2) access control. */ 1316 #define PERF_SECURITY_CPU 1 1317 #define PERF_SECURITY_KERNEL 2 1318 #define PERF_SECURITY_TRACEPOINT 3 1319 1320 static inline int perf_is_paranoid(void) 1321 { 1322 return sysctl_perf_event_paranoid > -1; 1323 } 1324 1325 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1326 { 1327 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1328 return -EACCES; 1329 1330 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1331 } 1332 1333 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1334 { 1335 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1336 return -EACCES; 1337 1338 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1339 } 1340 1341 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1342 { 1343 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1344 return -EPERM; 1345 1346 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1347 } 1348 1349 extern void perf_event_init(void); 1350 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1351 int entry_size, struct pt_regs *regs, 1352 struct hlist_head *head, int rctx, 1353 struct task_struct *task); 1354 extern void perf_bp_event(struct perf_event *event, void *data); 1355 1356 #ifndef perf_misc_flags 1357 # define perf_misc_flags(regs) \ 1358 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1359 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1360 #endif 1361 #ifndef perf_arch_bpf_user_pt_regs 1362 # define perf_arch_bpf_user_pt_regs(regs) regs 1363 #endif 1364 1365 static inline bool has_branch_stack(struct perf_event *event) 1366 { 1367 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1368 } 1369 1370 static inline bool needs_branch_stack(struct perf_event *event) 1371 { 1372 return event->attr.branch_sample_type != 0; 1373 } 1374 1375 static inline bool has_aux(struct perf_event *event) 1376 { 1377 return event->pmu->setup_aux; 1378 } 1379 1380 static inline bool is_write_backward(struct perf_event *event) 1381 { 1382 return !!event->attr.write_backward; 1383 } 1384 1385 static inline bool has_addr_filter(struct perf_event *event) 1386 { 1387 return event->pmu->nr_addr_filters; 1388 } 1389 1390 /* 1391 * An inherited event uses parent's filters 1392 */ 1393 static inline struct perf_addr_filters_head * 1394 perf_event_addr_filters(struct perf_event *event) 1395 { 1396 struct perf_addr_filters_head *ifh = &event->addr_filters; 1397 1398 if (event->parent) 1399 ifh = &event->parent->addr_filters; 1400 1401 return ifh; 1402 } 1403 1404 extern void perf_event_addr_filters_sync(struct perf_event *event); 1405 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1406 1407 extern int perf_output_begin(struct perf_output_handle *handle, 1408 struct perf_sample_data *data, 1409 struct perf_event *event, unsigned int size); 1410 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1411 struct perf_sample_data *data, 1412 struct perf_event *event, 1413 unsigned int size); 1414 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1415 struct perf_sample_data *data, 1416 struct perf_event *event, 1417 unsigned int size); 1418 1419 extern void perf_output_end(struct perf_output_handle *handle); 1420 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1421 const void *buf, unsigned int len); 1422 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1423 unsigned int len); 1424 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1425 struct perf_output_handle *handle, 1426 unsigned long from, unsigned long to); 1427 extern int perf_swevent_get_recursion_context(void); 1428 extern void perf_swevent_put_recursion_context(int rctx); 1429 extern u64 perf_swevent_set_period(struct perf_event *event); 1430 extern void perf_event_enable(struct perf_event *event); 1431 extern void perf_event_disable(struct perf_event *event); 1432 extern void perf_event_disable_local(struct perf_event *event); 1433 extern void perf_event_disable_inatomic(struct perf_event *event); 1434 extern void perf_event_task_tick(void); 1435 extern int perf_event_account_interrupt(struct perf_event *event); 1436 extern int perf_event_period(struct perf_event *event, u64 value); 1437 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1438 #else /* !CONFIG_PERF_EVENTS: */ 1439 static inline void * 1440 perf_aux_output_begin(struct perf_output_handle *handle, 1441 struct perf_event *event) { return NULL; } 1442 static inline void 1443 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1444 { } 1445 static inline int 1446 perf_aux_output_skip(struct perf_output_handle *handle, 1447 unsigned long size) { return -EINVAL; } 1448 static inline void * 1449 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1450 static inline void 1451 perf_event_task_migrate(struct task_struct *task) { } 1452 static inline void 1453 perf_event_task_sched_in(struct task_struct *prev, 1454 struct task_struct *task) { } 1455 static inline void 1456 perf_event_task_sched_out(struct task_struct *prev, 1457 struct task_struct *next) { } 1458 static inline int perf_event_init_task(struct task_struct *child, 1459 u64 clone_flags) { return 0; } 1460 static inline void perf_event_exit_task(struct task_struct *child) { } 1461 static inline void perf_event_free_task(struct task_struct *task) { } 1462 static inline void perf_event_delayed_put(struct task_struct *task) { } 1463 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1464 static inline const struct perf_event *perf_get_event(struct file *file) 1465 { 1466 return ERR_PTR(-EINVAL); 1467 } 1468 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1469 { 1470 return ERR_PTR(-EINVAL); 1471 } 1472 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1473 u64 *enabled, u64 *running) 1474 { 1475 return -EINVAL; 1476 } 1477 static inline void perf_event_print_debug(void) { } 1478 static inline int perf_event_task_disable(void) { return -EINVAL; } 1479 static inline int perf_event_task_enable(void) { return -EINVAL; } 1480 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1481 { 1482 return -EINVAL; 1483 } 1484 1485 static inline void 1486 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1487 static inline void 1488 perf_bp_event(struct perf_event *event, void *data) { } 1489 1490 static inline int perf_register_guest_info_callbacks 1491 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1492 static inline int perf_unregister_guest_info_callbacks 1493 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1494 1495 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1496 1497 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1498 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1499 bool unregister, const char *sym) { } 1500 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1501 enum perf_bpf_event_type type, 1502 u16 flags) { } 1503 static inline void perf_event_exec(void) { } 1504 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1505 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1506 static inline void perf_event_fork(struct task_struct *tsk) { } 1507 static inline void perf_event_text_poke(const void *addr, 1508 const void *old_bytes, 1509 size_t old_len, 1510 const void *new_bytes, 1511 size_t new_len) { } 1512 static inline void perf_event_init(void) { } 1513 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1514 static inline void perf_swevent_put_recursion_context(int rctx) { } 1515 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1516 static inline void perf_event_enable(struct perf_event *event) { } 1517 static inline void perf_event_disable(struct perf_event *event) { } 1518 static inline int __perf_event_disable(void *info) { return -1; } 1519 static inline void perf_event_task_tick(void) { } 1520 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1521 static inline int perf_event_period(struct perf_event *event, u64 value) 1522 { 1523 return -EINVAL; 1524 } 1525 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1526 { 1527 return 0; 1528 } 1529 #endif 1530 1531 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1532 extern void perf_restore_debug_store(void); 1533 #else 1534 static inline void perf_restore_debug_store(void) { } 1535 #endif 1536 1537 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1538 { 1539 return frag->pad < sizeof(u64); 1540 } 1541 1542 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1543 1544 struct perf_pmu_events_attr { 1545 struct device_attribute attr; 1546 u64 id; 1547 const char *event_str; 1548 }; 1549 1550 struct perf_pmu_events_ht_attr { 1551 struct device_attribute attr; 1552 u64 id; 1553 const char *event_str_ht; 1554 const char *event_str_noht; 1555 }; 1556 1557 struct perf_pmu_events_hybrid_attr { 1558 struct device_attribute attr; 1559 u64 id; 1560 const char *event_str; 1561 u64 pmu_type; 1562 }; 1563 1564 struct perf_pmu_format_hybrid_attr { 1565 struct device_attribute attr; 1566 u64 pmu_type; 1567 }; 1568 1569 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1570 char *page); 1571 1572 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1573 static struct perf_pmu_events_attr _var = { \ 1574 .attr = __ATTR(_name, 0444, _show, NULL), \ 1575 .id = _id, \ 1576 }; 1577 1578 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1579 static struct perf_pmu_events_attr _var = { \ 1580 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1581 .id = 0, \ 1582 .event_str = _str, \ 1583 }; 1584 1585 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1586 (&((struct perf_pmu_events_attr[]) { \ 1587 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1588 .id = _id, } \ 1589 })[0].attr.attr) 1590 1591 #define PMU_FORMAT_ATTR(_name, _format) \ 1592 static ssize_t \ 1593 _name##_show(struct device *dev, \ 1594 struct device_attribute *attr, \ 1595 char *page) \ 1596 { \ 1597 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1598 return sprintf(page, _format "\n"); \ 1599 } \ 1600 \ 1601 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1602 1603 /* Performance counter hotplug functions */ 1604 #ifdef CONFIG_PERF_EVENTS 1605 int perf_event_init_cpu(unsigned int cpu); 1606 int perf_event_exit_cpu(unsigned int cpu); 1607 #else 1608 #define perf_event_init_cpu NULL 1609 #define perf_event_exit_cpu NULL 1610 #endif 1611 1612 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1613 struct perf_event_mmap_page *userpg, 1614 u64 now); 1615 1616 #ifdef CONFIG_MMU 1617 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1618 #endif 1619 1620 /* 1621 * Snapshot branch stack on software events. 1622 * 1623 * Branch stack can be very useful in understanding software events. For 1624 * example, when a long function, e.g. sys_perf_event_open, returns an 1625 * errno, it is not obvious why the function failed. Branch stack could 1626 * provide very helpful information in this type of scenarios. 1627 * 1628 * On software event, it is necessary to stop the hardware branch recorder 1629 * fast. Otherwise, the hardware register/buffer will be flushed with 1630 * entries of the triggering event. Therefore, static call is used to 1631 * stop the hardware recorder. 1632 */ 1633 1634 /* 1635 * cnt is the number of entries allocated for entries. 1636 * Return number of entries copied to . 1637 */ 1638 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1639 unsigned int cnt); 1640 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1641 1642 #endif /* _LINUX_PERF_EVENT_H */ 1643