xref: /linux-6.15/include/linux/perf_event.h (revision 86effd0d)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 				     unsigned long off, unsigned long len);
74 
75 struct perf_raw_frag {
76 	union {
77 		struct perf_raw_frag	*next;
78 		unsigned long		pad;
79 	};
80 	perf_copy_f			copy;
81 	void				*data;
82 	u32				size;
83 } __packed;
84 
85 struct perf_raw_record {
86 	struct perf_raw_frag		frag;
87 	u32				size;
88 };
89 
90 /*
91  * branch stack layout:
92  *  nr: number of taken branches stored in entries[]
93  *
94  * Note that nr can vary from sample to sample
95  * branches (to, from) are stored from most recent
96  * to least recent, i.e., entries[0] contains the most
97  * recent branch.
98  */
99 struct perf_branch_stack {
100 	__u64				nr;
101 	struct perf_branch_entry	entries[0];
102 };
103 
104 struct task_struct;
105 
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110 	u64		config;	/* register value */
111 	unsigned int	reg;	/* register address or index */
112 	int		alloc;	/* extra register already allocated */
113 	int		idx;	/* index in shared_regs->regs[] */
114 };
115 
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 	union {
122 		struct { /* hardware */
123 			u64		config;
124 			u64		last_tag;
125 			unsigned long	config_base;
126 			unsigned long	event_base;
127 			int		event_base_rdpmc;
128 			int		idx;
129 			int		last_cpu;
130 			int		flags;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			/* for tp_event->class */
140 			struct list_head	tp_list;
141 		};
142 		struct { /* intel_cqm */
143 			int			cqm_state;
144 			u32			cqm_rmid;
145 			int			is_group_event;
146 			struct list_head	cqm_events_entry;
147 			struct list_head	cqm_groups_entry;
148 			struct list_head	cqm_group_entry;
149 		};
150 		struct { /* itrace */
151 			int			itrace_started;
152 		};
153 		struct { /* amd_power */
154 			u64	pwr_acc;
155 			u64	ptsc;
156 		};
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 		struct { /* breakpoint */
159 			/*
160 			 * Crufty hack to avoid the chicken and egg
161 			 * problem hw_breakpoint has with context
162 			 * creation and event initalization.
163 			 */
164 			struct arch_hw_breakpoint	info;
165 			struct list_head		bp_list;
166 		};
167 #endif
168 	};
169 	/*
170 	 * If the event is a per task event, this will point to the task in
171 	 * question. See the comment in perf_event_alloc().
172 	 */
173 	struct task_struct		*target;
174 
175 	/*
176 	 * PMU would store hardware filter configuration
177 	 * here.
178 	 */
179 	void				*addr_filters;
180 
181 	/* Last sync'ed generation of filters */
182 	unsigned long			addr_filters_gen;
183 
184 /*
185  * hw_perf_event::state flags; used to track the PERF_EF_* state.
186  */
187 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH		0x04
190 
191 	int				state;
192 
193 	/*
194 	 * The last observed hardware counter value, updated with a
195 	 * local64_cmpxchg() such that pmu::read() can be called nested.
196 	 */
197 	local64_t			prev_count;
198 
199 	/*
200 	 * The period to start the next sample with.
201 	 */
202 	u64				sample_period;
203 
204 	/*
205 	 * The period we started this sample with.
206 	 */
207 	u64				last_period;
208 
209 	/*
210 	 * However much is left of the current period; note that this is
211 	 * a full 64bit value and allows for generation of periods longer
212 	 * than hardware might allow.
213 	 */
214 	local64_t			period_left;
215 
216 	/*
217 	 * State for throttling the event, see __perf_event_overflow() and
218 	 * perf_adjust_freq_unthr_context().
219 	 */
220 	u64                             interrupts_seq;
221 	u64				interrupts;
222 
223 	/*
224 	 * State for freq target events, see __perf_event_overflow() and
225 	 * perf_adjust_freq_unthr_context().
226 	 */
227 	u64				freq_time_stamp;
228 	u64				freq_count_stamp;
229 #endif
230 };
231 
232 struct perf_event;
233 
234 /*
235  * Common implementation detail of pmu::{start,commit,cancel}_txn
236  */
237 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
239 
240 /**
241  * pmu::capabilities flags
242  */
243 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
244 #define PERF_PMU_CAP_NO_NMI			0x02
245 #define PERF_PMU_CAP_AUX_NO_SG			0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
247 #define PERF_PMU_CAP_EXCLUSIVE			0x10
248 #define PERF_PMU_CAP_ITRACE			0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
250 
251 /**
252  * struct pmu - generic performance monitoring unit
253  */
254 struct pmu {
255 	struct list_head		entry;
256 
257 	struct module			*module;
258 	struct device			*dev;
259 	const struct attribute_group	**attr_groups;
260 	const char			*name;
261 	int				type;
262 
263 	/*
264 	 * various common per-pmu feature flags
265 	 */
266 	int				capabilities;
267 
268 	int * __percpu			pmu_disable_count;
269 	struct perf_cpu_context * __percpu pmu_cpu_context;
270 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 	int				task_ctx_nr;
272 	int				hrtimer_interval_ms;
273 
274 	/* number of address filters this PMU can do */
275 	unsigned int			nr_addr_filters;
276 
277 	/*
278 	 * Fully disable/enable this PMU, can be used to protect from the PMI
279 	 * as well as for lazy/batch writing of the MSRs.
280 	 */
281 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
282 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
283 
284 	/*
285 	 * Try and initialize the event for this PMU.
286 	 *
287 	 * Returns:
288 	 *  -ENOENT	-- @event is not for this PMU
289 	 *
290 	 *  -ENODEV	-- @event is for this PMU but PMU not present
291 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
292 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
293 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
295 	 *
296 	 *  0		-- @event is for this PMU and valid
297 	 *
298 	 * Other error return values are allowed.
299 	 */
300 	int (*event_init)		(struct perf_event *event);
301 
302 	/*
303 	 * Notification that the event was mapped or unmapped.  Called
304 	 * in the context of the mapping task.
305 	 */
306 	void (*event_mapped)		(struct perf_event *event); /*optional*/
307 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
308 
309 	/*
310 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 	 * matching hw_perf_event::state flags.
312 	 */
313 #define PERF_EF_START	0x01		/* start the counter when adding    */
314 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
315 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
316 
317 	/*
318 	 * Adds/Removes a counter to/from the PMU, can be done inside a
319 	 * transaction, see the ->*_txn() methods.
320 	 *
321 	 * The add/del callbacks will reserve all hardware resources required
322 	 * to service the event, this includes any counter constraint
323 	 * scheduling etc.
324 	 *
325 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 	 * is on.
327 	 *
328 	 * ->add() called without PERF_EF_START should result in the same state
329 	 *  as ->add() followed by ->stop().
330 	 *
331 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 	 *  ->stop() that must deal with already being stopped without
333 	 *  PERF_EF_UPDATE.
334 	 */
335 	int  (*add)			(struct perf_event *event, int flags);
336 	void (*del)			(struct perf_event *event, int flags);
337 
338 	/*
339 	 * Starts/Stops a counter present on the PMU.
340 	 *
341 	 * The PMI handler should stop the counter when perf_event_overflow()
342 	 * returns !0. ->start() will be used to continue.
343 	 *
344 	 * Also used to change the sample period.
345 	 *
346 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 	 * is on -- will be called from NMI context with the PMU generates
348 	 * NMIs.
349 	 *
350 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 	 *  period/count values like ->read() would.
352 	 *
353 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 	 */
356 	void (*start)			(struct perf_event *event, int flags);
357 	void (*stop)			(struct perf_event *event, int flags);
358 
359 	/*
360 	 * Updates the counter value of the event.
361 	 *
362 	 * For sampling capable PMUs this will also update the software period
363 	 * hw_perf_event::period_left field.
364 	 */
365 	void (*read)			(struct perf_event *event);
366 
367 	/*
368 	 * Group events scheduling is treated as a transaction, add
369 	 * group events as a whole and perform one schedulability test.
370 	 * If the test fails, roll back the whole group
371 	 *
372 	 * Start the transaction, after this ->add() doesn't need to
373 	 * do schedulability tests.
374 	 *
375 	 * Optional.
376 	 */
377 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
378 	/*
379 	 * If ->start_txn() disabled the ->add() schedulability test
380 	 * then ->commit_txn() is required to perform one. On success
381 	 * the transaction is closed. On error the transaction is kept
382 	 * open until ->cancel_txn() is called.
383 	 *
384 	 * Optional.
385 	 */
386 	int  (*commit_txn)		(struct pmu *pmu);
387 	/*
388 	 * Will cancel the transaction, assumes ->del() is called
389 	 * for each successful ->add() during the transaction.
390 	 *
391 	 * Optional.
392 	 */
393 	void (*cancel_txn)		(struct pmu *pmu);
394 
395 	/*
396 	 * Will return the value for perf_event_mmap_page::index for this event,
397 	 * if no implementation is provided it will default to: event->hw.idx + 1.
398 	 */
399 	int (*event_idx)		(struct perf_event *event); /*optional */
400 
401 	/*
402 	 * context-switches callback
403 	 */
404 	void (*sched_task)		(struct perf_event_context *ctx,
405 					bool sched_in);
406 	/*
407 	 * PMU specific data size
408 	 */
409 	size_t				task_ctx_size;
410 
411 
412 	/*
413 	 * Return the count value for a counter.
414 	 */
415 	u64 (*count)			(struct perf_event *event); /*optional*/
416 
417 	/*
418 	 * Set up pmu-private data structures for an AUX area
419 	 */
420 	void *(*setup_aux)		(int cpu, void **pages,
421 					 int nr_pages, bool overwrite);
422 					/* optional */
423 
424 	/*
425 	 * Free pmu-private AUX data structures
426 	 */
427 	void (*free_aux)		(void *aux); /* optional */
428 
429 	/*
430 	 * Validate address range filters: make sure the HW supports the
431 	 * requested configuration and number of filters; return 0 if the
432 	 * supplied filters are valid, -errno otherwise.
433 	 *
434 	 * Runs in the context of the ioctl()ing process and is not serialized
435 	 * with the rest of the PMU callbacks.
436 	 */
437 	int (*addr_filters_validate)	(struct list_head *filters);
438 					/* optional */
439 
440 	/*
441 	 * Synchronize address range filter configuration:
442 	 * translate hw-agnostic filters into hardware configuration in
443 	 * event::hw::addr_filters.
444 	 *
445 	 * Runs as a part of filter sync sequence that is done in ->start()
446 	 * callback by calling perf_event_addr_filters_sync().
447 	 *
448 	 * May (and should) traverse event::addr_filters::list, for which its
449 	 * caller provides necessary serialization.
450 	 */
451 	void (*addr_filters_sync)	(struct perf_event *event);
452 					/* optional */
453 
454 	/*
455 	 * Filter events for PMU-specific reasons.
456 	 */
457 	int (*filter_match)		(struct perf_event *event); /* optional */
458 };
459 
460 /**
461  * struct perf_addr_filter - address range filter definition
462  * @entry:	event's filter list linkage
463  * @inode:	object file's inode for file-based filters
464  * @offset:	filter range offset
465  * @size:	filter range size
466  * @range:	1: range, 0: address
467  * @filter:	1: filter/start, 0: stop
468  *
469  * This is a hardware-agnostic filter configuration as specified by the user.
470  */
471 struct perf_addr_filter {
472 	struct list_head	entry;
473 	struct inode		*inode;
474 	unsigned long		offset;
475 	unsigned long		size;
476 	unsigned int		range	: 1,
477 				filter	: 1;
478 };
479 
480 /**
481  * struct perf_addr_filters_head - container for address range filters
482  * @list:	list of filters for this event
483  * @lock:	spinlock that serializes accesses to the @list and event's
484  *		(and its children's) filter generations.
485  *
486  * A child event will use parent's @list (and therefore @lock), so they are
487  * bundled together; see perf_event_addr_filters().
488  */
489 struct perf_addr_filters_head {
490 	struct list_head	list;
491 	raw_spinlock_t		lock;
492 };
493 
494 /**
495  * enum perf_event_active_state - the states of a event
496  */
497 enum perf_event_active_state {
498 	PERF_EVENT_STATE_DEAD		= -4,
499 	PERF_EVENT_STATE_EXIT		= -3,
500 	PERF_EVENT_STATE_ERROR		= -2,
501 	PERF_EVENT_STATE_OFF		= -1,
502 	PERF_EVENT_STATE_INACTIVE	=  0,
503 	PERF_EVENT_STATE_ACTIVE		=  1,
504 };
505 
506 struct file;
507 struct perf_sample_data;
508 
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510 					struct perf_sample_data *,
511 					struct pt_regs *regs);
512 
513 enum perf_group_flag {
514 	PERF_GROUP_SOFTWARE		= 0x1,
515 };
516 
517 #define SWEVENT_HLIST_BITS		8
518 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
519 
520 struct swevent_hlist {
521 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
522 	struct rcu_head			rcu_head;
523 };
524 
525 #define PERF_ATTACH_CONTEXT	0x01
526 #define PERF_ATTACH_GROUP	0x02
527 #define PERF_ATTACH_TASK	0x04
528 #define PERF_ATTACH_TASK_DATA	0x08
529 
530 struct perf_cgroup;
531 struct ring_buffer;
532 
533 struct pmu_event_list {
534 	raw_spinlock_t		lock;
535 	struct list_head	list;
536 };
537 
538 /**
539  * struct perf_event - performance event kernel representation:
540  */
541 struct perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543 	/*
544 	 * entry onto perf_event_context::event_list;
545 	 *   modifications require ctx->lock
546 	 *   RCU safe iterations.
547 	 */
548 	struct list_head		event_entry;
549 
550 	/*
551 	 * XXX: group_entry and sibling_list should be mutually exclusive;
552 	 * either you're a sibling on a group, or you're the group leader.
553 	 * Rework the code to always use the same list element.
554 	 *
555 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
556 	 * either sufficies for read.
557 	 */
558 	struct list_head		group_entry;
559 	struct list_head		sibling_list;
560 
561 	/*
562 	 * We need storage to track the entries in perf_pmu_migrate_context; we
563 	 * cannot use the event_entry because of RCU and we want to keep the
564 	 * group in tact which avoids us using the other two entries.
565 	 */
566 	struct list_head		migrate_entry;
567 
568 	struct hlist_node		hlist_entry;
569 	struct list_head		active_entry;
570 	int				nr_siblings;
571 	int				group_flags;
572 	struct perf_event		*group_leader;
573 	struct pmu			*pmu;
574 	void				*pmu_private;
575 
576 	enum perf_event_active_state	state;
577 	unsigned int			attach_state;
578 	local64_t			count;
579 	atomic64_t			child_count;
580 
581 	/*
582 	 * These are the total time in nanoseconds that the event
583 	 * has been enabled (i.e. eligible to run, and the task has
584 	 * been scheduled in, if this is a per-task event)
585 	 * and running (scheduled onto the CPU), respectively.
586 	 *
587 	 * They are computed from tstamp_enabled, tstamp_running and
588 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
589 	 */
590 	u64				total_time_enabled;
591 	u64				total_time_running;
592 
593 	/*
594 	 * These are timestamps used for computing total_time_enabled
595 	 * and total_time_running when the event is in INACTIVE or
596 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
597 	 * in time.
598 	 * tstamp_enabled: the notional time when the event was enabled
599 	 * tstamp_running: the notional time when the event was scheduled on
600 	 * tstamp_stopped: in INACTIVE state, the notional time when the
601 	 *	event was scheduled off.
602 	 */
603 	u64				tstamp_enabled;
604 	u64				tstamp_running;
605 	u64				tstamp_stopped;
606 
607 	/*
608 	 * timestamp shadows the actual context timing but it can
609 	 * be safely used in NMI interrupt context. It reflects the
610 	 * context time as it was when the event was last scheduled in.
611 	 *
612 	 * ctx_time already accounts for ctx->timestamp. Therefore to
613 	 * compute ctx_time for a sample, simply add perf_clock().
614 	 */
615 	u64				shadow_ctx_time;
616 
617 	struct perf_event_attr		attr;
618 	u16				header_size;
619 	u16				id_header_size;
620 	u16				read_size;
621 	struct hw_perf_event		hw;
622 
623 	struct perf_event_context	*ctx;
624 	atomic_long_t			refcount;
625 
626 	/*
627 	 * These accumulate total time (in nanoseconds) that children
628 	 * events have been enabled and running, respectively.
629 	 */
630 	atomic64_t			child_total_time_enabled;
631 	atomic64_t			child_total_time_running;
632 
633 	/*
634 	 * Protect attach/detach and child_list:
635 	 */
636 	struct mutex			child_mutex;
637 	struct list_head		child_list;
638 	struct perf_event		*parent;
639 
640 	int				oncpu;
641 	int				cpu;
642 
643 	struct list_head		owner_entry;
644 	struct task_struct		*owner;
645 
646 	/* mmap bits */
647 	struct mutex			mmap_mutex;
648 	atomic_t			mmap_count;
649 
650 	struct ring_buffer		*rb;
651 	struct list_head		rb_entry;
652 	unsigned long			rcu_batches;
653 	int				rcu_pending;
654 
655 	/* poll related */
656 	wait_queue_head_t		waitq;
657 	struct fasync_struct		*fasync;
658 
659 	/* delayed work for NMIs and such */
660 	int				pending_wakeup;
661 	int				pending_kill;
662 	int				pending_disable;
663 	struct irq_work			pending;
664 
665 	atomic_t			event_limit;
666 
667 	/* address range filters */
668 	struct perf_addr_filters_head	addr_filters;
669 	/* vma address array for file-based filders */
670 	unsigned long			*addr_filters_offs;
671 	unsigned long			addr_filters_gen;
672 
673 	void (*destroy)(struct perf_event *);
674 	struct rcu_head			rcu_head;
675 
676 	struct pid_namespace		*ns;
677 	u64				id;
678 
679 	u64				(*clock)(void);
680 	perf_overflow_handler_t		overflow_handler;
681 	void				*overflow_handler_context;
682 
683 #ifdef CONFIG_EVENT_TRACING
684 	struct trace_event_call		*tp_event;
685 	struct event_filter		*filter;
686 #ifdef CONFIG_FUNCTION_TRACER
687 	struct ftrace_ops               ftrace_ops;
688 #endif
689 #endif
690 
691 #ifdef CONFIG_CGROUP_PERF
692 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
693 	int				cgrp_defer_enabled;
694 #endif
695 
696 	struct list_head		sb_list;
697 #endif /* CONFIG_PERF_EVENTS */
698 };
699 
700 /**
701  * struct perf_event_context - event context structure
702  *
703  * Used as a container for task events and CPU events as well:
704  */
705 struct perf_event_context {
706 	struct pmu			*pmu;
707 	/*
708 	 * Protect the states of the events in the list,
709 	 * nr_active, and the list:
710 	 */
711 	raw_spinlock_t			lock;
712 	/*
713 	 * Protect the list of events.  Locking either mutex or lock
714 	 * is sufficient to ensure the list doesn't change; to change
715 	 * the list you need to lock both the mutex and the spinlock.
716 	 */
717 	struct mutex			mutex;
718 
719 	struct list_head		active_ctx_list;
720 	struct list_head		pinned_groups;
721 	struct list_head		flexible_groups;
722 	struct list_head		event_list;
723 	int				nr_events;
724 	int				nr_active;
725 	int				is_active;
726 	int				nr_stat;
727 	int				nr_freq;
728 	int				rotate_disable;
729 	atomic_t			refcount;
730 	struct task_struct		*task;
731 
732 	/*
733 	 * Context clock, runs when context enabled.
734 	 */
735 	u64				time;
736 	u64				timestamp;
737 
738 	/*
739 	 * These fields let us detect when two contexts have both
740 	 * been cloned (inherited) from a common ancestor.
741 	 */
742 	struct perf_event_context	*parent_ctx;
743 	u64				parent_gen;
744 	u64				generation;
745 	int				pin_count;
746 #ifdef CONFIG_CGROUP_PERF
747 	int				nr_cgroups;	 /* cgroup evts */
748 #endif
749 	void				*task_ctx_data; /* pmu specific data */
750 	struct rcu_head			rcu_head;
751 };
752 
753 /*
754  * Number of contexts where an event can trigger:
755  *	task, softirq, hardirq, nmi.
756  */
757 #define PERF_NR_CONTEXTS	4
758 
759 /**
760  * struct perf_event_cpu_context - per cpu event context structure
761  */
762 struct perf_cpu_context {
763 	struct perf_event_context	ctx;
764 	struct perf_event_context	*task_ctx;
765 	int				active_oncpu;
766 	int				exclusive;
767 
768 	raw_spinlock_t			hrtimer_lock;
769 	struct hrtimer			hrtimer;
770 	ktime_t				hrtimer_interval;
771 	unsigned int			hrtimer_active;
772 
773 	struct pmu			*unique_pmu;
774 #ifdef CONFIG_CGROUP_PERF
775 	struct perf_cgroup		*cgrp;
776 #endif
777 };
778 
779 struct perf_output_handle {
780 	struct perf_event		*event;
781 	struct ring_buffer		*rb;
782 	unsigned long			wakeup;
783 	unsigned long			size;
784 	union {
785 		void			*addr;
786 		unsigned long		head;
787 	};
788 	int				page;
789 };
790 
791 #ifdef CONFIG_CGROUP_PERF
792 
793 /*
794  * perf_cgroup_info keeps track of time_enabled for a cgroup.
795  * This is a per-cpu dynamically allocated data structure.
796  */
797 struct perf_cgroup_info {
798 	u64				time;
799 	u64				timestamp;
800 };
801 
802 struct perf_cgroup {
803 	struct cgroup_subsys_state	css;
804 	struct perf_cgroup_info	__percpu *info;
805 };
806 
807 /*
808  * Must ensure cgroup is pinned (css_get) before calling
809  * this function. In other words, we cannot call this function
810  * if there is no cgroup event for the current CPU context.
811  */
812 static inline struct perf_cgroup *
813 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
814 {
815 	return container_of(task_css_check(task, perf_event_cgrp_id,
816 					   ctx ? lockdep_is_held(&ctx->lock)
817 					       : true),
818 			    struct perf_cgroup, css);
819 }
820 #endif /* CONFIG_CGROUP_PERF */
821 
822 #ifdef CONFIG_PERF_EVENTS
823 
824 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
825 				   struct perf_event *event);
826 extern void perf_aux_output_end(struct perf_output_handle *handle,
827 				unsigned long size, bool truncated);
828 extern int perf_aux_output_skip(struct perf_output_handle *handle,
829 				unsigned long size);
830 extern void *perf_get_aux(struct perf_output_handle *handle);
831 
832 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
833 extern void perf_pmu_unregister(struct pmu *pmu);
834 
835 extern int perf_num_counters(void);
836 extern const char *perf_pmu_name(void);
837 extern void __perf_event_task_sched_in(struct task_struct *prev,
838 				       struct task_struct *task);
839 extern void __perf_event_task_sched_out(struct task_struct *prev,
840 					struct task_struct *next);
841 extern int perf_event_init_task(struct task_struct *child);
842 extern void perf_event_exit_task(struct task_struct *child);
843 extern void perf_event_free_task(struct task_struct *task);
844 extern void perf_event_delayed_put(struct task_struct *task);
845 extern struct file *perf_event_get(unsigned int fd);
846 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
847 extern void perf_event_print_debug(void);
848 extern void perf_pmu_disable(struct pmu *pmu);
849 extern void perf_pmu_enable(struct pmu *pmu);
850 extern void perf_sched_cb_dec(struct pmu *pmu);
851 extern void perf_sched_cb_inc(struct pmu *pmu);
852 extern int perf_event_task_disable(void);
853 extern int perf_event_task_enable(void);
854 extern int perf_event_refresh(struct perf_event *event, int refresh);
855 extern void perf_event_update_userpage(struct perf_event *event);
856 extern int perf_event_release_kernel(struct perf_event *event);
857 extern struct perf_event *
858 perf_event_create_kernel_counter(struct perf_event_attr *attr,
859 				int cpu,
860 				struct task_struct *task,
861 				perf_overflow_handler_t callback,
862 				void *context);
863 extern void perf_pmu_migrate_context(struct pmu *pmu,
864 				int src_cpu, int dst_cpu);
865 extern u64 perf_event_read_local(struct perf_event *event);
866 extern u64 perf_event_read_value(struct perf_event *event,
867 				 u64 *enabled, u64 *running);
868 
869 
870 struct perf_sample_data {
871 	/*
872 	 * Fields set by perf_sample_data_init(), group so as to
873 	 * minimize the cachelines touched.
874 	 */
875 	u64				addr;
876 	struct perf_raw_record		*raw;
877 	struct perf_branch_stack	*br_stack;
878 	u64				period;
879 	u64				weight;
880 	u64				txn;
881 	union  perf_mem_data_src	data_src;
882 
883 	/*
884 	 * The other fields, optionally {set,used} by
885 	 * perf_{prepare,output}_sample().
886 	 */
887 	u64				type;
888 	u64				ip;
889 	struct {
890 		u32	pid;
891 		u32	tid;
892 	}				tid_entry;
893 	u64				time;
894 	u64				id;
895 	u64				stream_id;
896 	struct {
897 		u32	cpu;
898 		u32	reserved;
899 	}				cpu_entry;
900 	struct perf_callchain_entry	*callchain;
901 
902 	/*
903 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
904 	 * on arch details.
905 	 */
906 	struct perf_regs		regs_user;
907 	struct pt_regs			regs_user_copy;
908 
909 	struct perf_regs		regs_intr;
910 	u64				stack_user_size;
911 } ____cacheline_aligned;
912 
913 /* default value for data source */
914 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
915 		    PERF_MEM_S(LVL, NA)   |\
916 		    PERF_MEM_S(SNOOP, NA) |\
917 		    PERF_MEM_S(LOCK, NA)  |\
918 		    PERF_MEM_S(TLB, NA))
919 
920 static inline void perf_sample_data_init(struct perf_sample_data *data,
921 					 u64 addr, u64 period)
922 {
923 	/* remaining struct members initialized in perf_prepare_sample() */
924 	data->addr = addr;
925 	data->raw  = NULL;
926 	data->br_stack = NULL;
927 	data->period = period;
928 	data->weight = 0;
929 	data->data_src.val = PERF_MEM_NA;
930 	data->txn = 0;
931 }
932 
933 extern void perf_output_sample(struct perf_output_handle *handle,
934 			       struct perf_event_header *header,
935 			       struct perf_sample_data *data,
936 			       struct perf_event *event);
937 extern void perf_prepare_sample(struct perf_event_header *header,
938 				struct perf_sample_data *data,
939 				struct perf_event *event,
940 				struct pt_regs *regs);
941 
942 extern int perf_event_overflow(struct perf_event *event,
943 				 struct perf_sample_data *data,
944 				 struct pt_regs *regs);
945 
946 extern void perf_event_output_forward(struct perf_event *event,
947 				     struct perf_sample_data *data,
948 				     struct pt_regs *regs);
949 extern void perf_event_output_backward(struct perf_event *event,
950 				       struct perf_sample_data *data,
951 				       struct pt_regs *regs);
952 extern void perf_event_output(struct perf_event *event,
953 			      struct perf_sample_data *data,
954 			      struct pt_regs *regs);
955 
956 static inline bool
957 is_default_overflow_handler(struct perf_event *event)
958 {
959 	if (likely(event->overflow_handler == perf_event_output_forward))
960 		return true;
961 	if (unlikely(event->overflow_handler == perf_event_output_backward))
962 		return true;
963 	return false;
964 }
965 
966 extern void
967 perf_event_header__init_id(struct perf_event_header *header,
968 			   struct perf_sample_data *data,
969 			   struct perf_event *event);
970 extern void
971 perf_event__output_id_sample(struct perf_event *event,
972 			     struct perf_output_handle *handle,
973 			     struct perf_sample_data *sample);
974 
975 extern void
976 perf_log_lost_samples(struct perf_event *event, u64 lost);
977 
978 static inline bool is_sampling_event(struct perf_event *event)
979 {
980 	return event->attr.sample_period != 0;
981 }
982 
983 /*
984  * Return 1 for a software event, 0 for a hardware event
985  */
986 static inline int is_software_event(struct perf_event *event)
987 {
988 	return event->pmu->task_ctx_nr == perf_sw_context;
989 }
990 
991 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
992 
993 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
994 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
995 
996 #ifndef perf_arch_fetch_caller_regs
997 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
998 #endif
999 
1000 /*
1001  * Take a snapshot of the regs. Skip ip and frame pointer to
1002  * the nth caller. We only need a few of the regs:
1003  * - ip for PERF_SAMPLE_IP
1004  * - cs for user_mode() tests
1005  * - bp for callchains
1006  * - eflags, for future purposes, just in case
1007  */
1008 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1009 {
1010 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1011 }
1012 
1013 static __always_inline void
1014 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1015 {
1016 	if (static_key_false(&perf_swevent_enabled[event_id]))
1017 		__perf_sw_event(event_id, nr, regs, addr);
1018 }
1019 
1020 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1021 
1022 /*
1023  * 'Special' version for the scheduler, it hard assumes no recursion,
1024  * which is guaranteed by us not actually scheduling inside other swevents
1025  * because those disable preemption.
1026  */
1027 static __always_inline void
1028 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1029 {
1030 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1031 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1032 
1033 		perf_fetch_caller_regs(regs);
1034 		___perf_sw_event(event_id, nr, regs, addr);
1035 	}
1036 }
1037 
1038 extern struct static_key_false perf_sched_events;
1039 
1040 static __always_inline bool
1041 perf_sw_migrate_enabled(void)
1042 {
1043 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1044 		return true;
1045 	return false;
1046 }
1047 
1048 static inline void perf_event_task_migrate(struct task_struct *task)
1049 {
1050 	if (perf_sw_migrate_enabled())
1051 		task->sched_migrated = 1;
1052 }
1053 
1054 static inline void perf_event_task_sched_in(struct task_struct *prev,
1055 					    struct task_struct *task)
1056 {
1057 	if (static_branch_unlikely(&perf_sched_events))
1058 		__perf_event_task_sched_in(prev, task);
1059 
1060 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1061 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1062 
1063 		perf_fetch_caller_regs(regs);
1064 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1065 		task->sched_migrated = 0;
1066 	}
1067 }
1068 
1069 static inline void perf_event_task_sched_out(struct task_struct *prev,
1070 					     struct task_struct *next)
1071 {
1072 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1073 
1074 	if (static_branch_unlikely(&perf_sched_events))
1075 		__perf_event_task_sched_out(prev, next);
1076 }
1077 
1078 static inline u64 __perf_event_count(struct perf_event *event)
1079 {
1080 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1081 }
1082 
1083 extern void perf_event_mmap(struct vm_area_struct *vma);
1084 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1085 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1086 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1087 
1088 extern void perf_event_exec(void);
1089 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1090 extern void perf_event_fork(struct task_struct *tsk);
1091 
1092 /* Callchains */
1093 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1094 
1095 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1096 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1097 extern struct perf_callchain_entry *
1098 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1099 		   u32 max_stack, bool crosstask, bool add_mark);
1100 extern int get_callchain_buffers(int max_stack);
1101 extern void put_callchain_buffers(void);
1102 
1103 extern int sysctl_perf_event_max_stack;
1104 extern int sysctl_perf_event_max_contexts_per_stack;
1105 
1106 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1107 {
1108 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1109 		struct perf_callchain_entry *entry = ctx->entry;
1110 		entry->ip[entry->nr++] = ip;
1111 		++ctx->contexts;
1112 		return 0;
1113 	} else {
1114 		ctx->contexts_maxed = true;
1115 		return -1; /* no more room, stop walking the stack */
1116 	}
1117 }
1118 
1119 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1120 {
1121 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1122 		struct perf_callchain_entry *entry = ctx->entry;
1123 		entry->ip[entry->nr++] = ip;
1124 		++ctx->nr;
1125 		return 0;
1126 	} else {
1127 		return -1; /* no more room, stop walking the stack */
1128 	}
1129 }
1130 
1131 extern int sysctl_perf_event_paranoid;
1132 extern int sysctl_perf_event_mlock;
1133 extern int sysctl_perf_event_sample_rate;
1134 extern int sysctl_perf_cpu_time_max_percent;
1135 
1136 extern void perf_sample_event_took(u64 sample_len_ns);
1137 
1138 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1139 		void __user *buffer, size_t *lenp,
1140 		loff_t *ppos);
1141 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1142 		void __user *buffer, size_t *lenp,
1143 		loff_t *ppos);
1144 
1145 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1146 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1147 
1148 static inline bool perf_paranoid_tracepoint_raw(void)
1149 {
1150 	return sysctl_perf_event_paranoid > -1;
1151 }
1152 
1153 static inline bool perf_paranoid_cpu(void)
1154 {
1155 	return sysctl_perf_event_paranoid > 0;
1156 }
1157 
1158 static inline bool perf_paranoid_kernel(void)
1159 {
1160 	return sysctl_perf_event_paranoid > 1;
1161 }
1162 
1163 extern void perf_event_init(void);
1164 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1165 			  int entry_size, struct pt_regs *regs,
1166 			  struct hlist_head *head, int rctx,
1167 			  struct task_struct *task);
1168 extern void perf_bp_event(struct perf_event *event, void *data);
1169 
1170 #ifndef perf_misc_flags
1171 # define perf_misc_flags(regs) \
1172 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1173 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1174 #endif
1175 
1176 static inline bool has_branch_stack(struct perf_event *event)
1177 {
1178 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1179 }
1180 
1181 static inline bool needs_branch_stack(struct perf_event *event)
1182 {
1183 	return event->attr.branch_sample_type != 0;
1184 }
1185 
1186 static inline bool has_aux(struct perf_event *event)
1187 {
1188 	return event->pmu->setup_aux;
1189 }
1190 
1191 static inline bool is_write_backward(struct perf_event *event)
1192 {
1193 	return !!event->attr.write_backward;
1194 }
1195 
1196 static inline bool has_addr_filter(struct perf_event *event)
1197 {
1198 	return event->pmu->nr_addr_filters;
1199 }
1200 
1201 /*
1202  * An inherited event uses parent's filters
1203  */
1204 static inline struct perf_addr_filters_head *
1205 perf_event_addr_filters(struct perf_event *event)
1206 {
1207 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1208 
1209 	if (event->parent)
1210 		ifh = &event->parent->addr_filters;
1211 
1212 	return ifh;
1213 }
1214 
1215 extern void perf_event_addr_filters_sync(struct perf_event *event);
1216 
1217 extern int perf_output_begin(struct perf_output_handle *handle,
1218 			     struct perf_event *event, unsigned int size);
1219 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1220 				    struct perf_event *event,
1221 				    unsigned int size);
1222 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1223 				      struct perf_event *event,
1224 				      unsigned int size);
1225 
1226 extern void perf_output_end(struct perf_output_handle *handle);
1227 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1228 			     const void *buf, unsigned int len);
1229 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1230 				     unsigned int len);
1231 extern int perf_swevent_get_recursion_context(void);
1232 extern void perf_swevent_put_recursion_context(int rctx);
1233 extern u64 perf_swevent_set_period(struct perf_event *event);
1234 extern void perf_event_enable(struct perf_event *event);
1235 extern void perf_event_disable(struct perf_event *event);
1236 extern void perf_event_disable_local(struct perf_event *event);
1237 extern void perf_event_task_tick(void);
1238 #else /* !CONFIG_PERF_EVENTS: */
1239 static inline void *
1240 perf_aux_output_begin(struct perf_output_handle *handle,
1241 		      struct perf_event *event)				{ return NULL; }
1242 static inline void
1243 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1244 		    bool truncated)					{ }
1245 static inline int
1246 perf_aux_output_skip(struct perf_output_handle *handle,
1247 		     unsigned long size)				{ return -EINVAL; }
1248 static inline void *
1249 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1250 static inline void
1251 perf_event_task_migrate(struct task_struct *task)			{ }
1252 static inline void
1253 perf_event_task_sched_in(struct task_struct *prev,
1254 			 struct task_struct *task)			{ }
1255 static inline void
1256 perf_event_task_sched_out(struct task_struct *prev,
1257 			  struct task_struct *next)			{ }
1258 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1259 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1260 static inline void perf_event_free_task(struct task_struct *task)	{ }
1261 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1262 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1263 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1264 {
1265 	return ERR_PTR(-EINVAL);
1266 }
1267 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1268 static inline void perf_event_print_debug(void)				{ }
1269 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1270 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1271 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1272 {
1273 	return -EINVAL;
1274 }
1275 
1276 static inline void
1277 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1278 static inline void
1279 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1280 static inline void
1281 perf_bp_event(struct perf_event *event, void *data)			{ }
1282 
1283 static inline int perf_register_guest_info_callbacks
1284 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1285 static inline int perf_unregister_guest_info_callbacks
1286 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1287 
1288 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1289 static inline void perf_event_exec(void)				{ }
1290 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1291 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1292 static inline void perf_event_init(void)				{ }
1293 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1294 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1295 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1296 static inline void perf_event_enable(struct perf_event *event)		{ }
1297 static inline void perf_event_disable(struct perf_event *event)		{ }
1298 static inline int __perf_event_disable(void *info)			{ return -1; }
1299 static inline void perf_event_task_tick(void)				{ }
1300 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1301 #endif
1302 
1303 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1304 extern void perf_restore_debug_store(void);
1305 #else
1306 static inline void perf_restore_debug_store(void)			{ }
1307 #endif
1308 
1309 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1310 {
1311 	return frag->pad < sizeof(u64);
1312 }
1313 
1314 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1315 
1316 struct perf_pmu_events_attr {
1317 	struct device_attribute attr;
1318 	u64 id;
1319 	const char *event_str;
1320 };
1321 
1322 struct perf_pmu_events_ht_attr {
1323 	struct device_attribute			attr;
1324 	u64					id;
1325 	const char				*event_str_ht;
1326 	const char				*event_str_noht;
1327 };
1328 
1329 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1330 			      char *page);
1331 
1332 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1333 static struct perf_pmu_events_attr _var = {				\
1334 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1335 	.id   =  _id,							\
1336 };
1337 
1338 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1339 static struct perf_pmu_events_attr _var = {				    \
1340 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1341 	.id		= 0,						    \
1342 	.event_str	= _str,						    \
1343 };
1344 
1345 #define PMU_FORMAT_ATTR(_name, _format)					\
1346 static ssize_t								\
1347 _name##_show(struct device *dev,					\
1348 			       struct device_attribute *attr,		\
1349 			       char *page)				\
1350 {									\
1351 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1352 	return sprintf(page, _format "\n");				\
1353 }									\
1354 									\
1355 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1356 
1357 /* Performance counter hotplug functions */
1358 #ifdef CONFIG_PERF_EVENTS
1359 int perf_event_init_cpu(unsigned int cpu);
1360 int perf_event_exit_cpu(unsigned int cpu);
1361 #else
1362 #define perf_event_init_cpu	NULL
1363 #define perf_event_exit_cpu	NULL
1364 #endif
1365 
1366 #endif /* _LINUX_PERF_EVENT_H */
1367