1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 #define PERF_GUEST_ACTIVE 0x01 30 #define PERF_GUEST_USER 0x02 31 32 struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36 }; 37 38 #ifdef CONFIG_HAVE_HW_BREAKPOINT 39 #include <linux/rhashtable-types.h> 40 #include <asm/hw_breakpoint.h> 41 #endif 42 43 #include <linux/list.h> 44 #include <linux/mutex.h> 45 #include <linux/rculist.h> 46 #include <linux/rcupdate.h> 47 #include <linux/spinlock.h> 48 #include <linux/hrtimer.h> 49 #include <linux/fs.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/workqueue.h> 52 #include <linux/ftrace.h> 53 #include <linux/cpu.h> 54 #include <linux/irq_work.h> 55 #include <linux/static_key.h> 56 #include <linux/jump_label_ratelimit.h> 57 #include <linux/atomic.h> 58 #include <linux/sysfs.h> 59 #include <linux/perf_regs.h> 60 #include <linux/cgroup.h> 61 #include <linux/refcount.h> 62 #include <linux/security.h> 63 #include <linux/static_call.h> 64 #include <linux/lockdep.h> 65 #include <asm/local.h> 66 67 struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70 }; 71 72 struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78 }; 79 80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83 struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91 } __packed; 92 93 struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96 }; 97 98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 99 { 100 return frag->pad < sizeof(u64); 101 } 102 103 /* 104 * branch stack layout: 105 * nr: number of taken branches stored in entries[] 106 * hw_idx: The low level index of raw branch records 107 * for the most recent branch. 108 * -1ULL means invalid/unknown. 109 * 110 * Note that nr can vary from sample to sample 111 * branches (to, from) are stored from most recent 112 * to least recent, i.e., entries[0] contains the most 113 * recent branch. 114 * The entries[] is an abstraction of raw branch records, 115 * which may not be stored in age order in HW, e.g. Intel LBR. 116 * The hw_idx is to expose the low level index of raw 117 * branch record for the most recent branch aka entries[0]. 118 * The hw_idx index is between -1 (unknown) and max depth, 119 * which can be retrieved in /sys/devices/cpu/caps/branches. 120 * For the architectures whose raw branch records are 121 * already stored in age order, the hw_idx should be 0. 122 */ 123 struct perf_branch_stack { 124 __u64 nr; 125 __u64 hw_idx; 126 struct perf_branch_entry entries[]; 127 }; 128 129 struct task_struct; 130 131 /* 132 * extra PMU register associated with an event 133 */ 134 struct hw_perf_event_extra { 135 u64 config; /* register value */ 136 unsigned int reg; /* register address or index */ 137 int alloc; /* extra register already allocated */ 138 int idx; /* index in shared_regs->regs[] */ 139 }; 140 141 /** 142 * hw_perf_event::flag values 143 * 144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 145 * usage. 146 */ 147 #define PERF_EVENT_FLAG_ARCH 0x000fffff 148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 149 150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 151 152 /** 153 * struct hw_perf_event - performance event hardware details: 154 */ 155 struct hw_perf_event { 156 #ifdef CONFIG_PERF_EVENTS 157 union { 158 struct { /* hardware */ 159 u64 config; 160 u64 last_tag; 161 unsigned long config_base; 162 unsigned long event_base; 163 int event_base_rdpmc; 164 int idx; 165 int last_cpu; 166 int flags; 167 168 struct hw_perf_event_extra extra_reg; 169 struct hw_perf_event_extra branch_reg; 170 }; 171 struct { /* software */ 172 struct hrtimer hrtimer; 173 }; 174 struct { /* tracepoint */ 175 /* for tp_event->class */ 176 struct list_head tp_list; 177 }; 178 struct { /* amd_power */ 179 u64 pwr_acc; 180 u64 ptsc; 181 }; 182 #ifdef CONFIG_HAVE_HW_BREAKPOINT 183 struct { /* breakpoint */ 184 /* 185 * Crufty hack to avoid the chicken and egg 186 * problem hw_breakpoint has with context 187 * creation and event initalization. 188 */ 189 struct arch_hw_breakpoint info; 190 struct rhlist_head bp_list; 191 }; 192 #endif 193 struct { /* amd_iommu */ 194 u8 iommu_bank; 195 u8 iommu_cntr; 196 u16 padding; 197 u64 conf; 198 u64 conf1; 199 }; 200 }; 201 /* 202 * If the event is a per task event, this will point to the task in 203 * question. See the comment in perf_event_alloc(). 204 */ 205 struct task_struct *target; 206 207 /* 208 * PMU would store hardware filter configuration 209 * here. 210 */ 211 void *addr_filters; 212 213 /* Last sync'ed generation of filters */ 214 unsigned long addr_filters_gen; 215 216 /* 217 * hw_perf_event::state flags; used to track the PERF_EF_* state. 218 */ 219 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 220 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 221 #define PERF_HES_ARCH 0x04 222 223 int state; 224 225 /* 226 * The last observed hardware counter value, updated with a 227 * local64_cmpxchg() such that pmu::read() can be called nested. 228 */ 229 local64_t prev_count; 230 231 /* 232 * The period to start the next sample with. 233 */ 234 u64 sample_period; 235 236 union { 237 struct { /* Sampling */ 238 /* 239 * The period we started this sample with. 240 */ 241 u64 last_period; 242 243 /* 244 * However much is left of the current period; 245 * note that this is a full 64bit value and 246 * allows for generation of periods longer 247 * than hardware might allow. 248 */ 249 local64_t period_left; 250 }; 251 struct { /* Topdown events counting for context switch */ 252 u64 saved_metric; 253 u64 saved_slots; 254 }; 255 }; 256 257 /* 258 * State for throttling the event, see __perf_event_overflow() and 259 * perf_adjust_freq_unthr_context(). 260 */ 261 u64 interrupts_seq; 262 u64 interrupts; 263 264 /* 265 * State for freq target events, see __perf_event_overflow() and 266 * perf_adjust_freq_unthr_context(). 267 */ 268 u64 freq_time_stamp; 269 u64 freq_count_stamp; 270 #endif 271 }; 272 273 struct perf_event; 274 struct perf_event_pmu_context; 275 276 /* 277 * Common implementation detail of pmu::{start,commit,cancel}_txn 278 */ 279 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 280 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 281 282 /** 283 * pmu::capabilities flags 284 */ 285 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 286 #define PERF_PMU_CAP_NO_NMI 0x0002 287 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 288 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 289 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 290 #define PERF_PMU_CAP_ITRACE 0x0020 291 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 292 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 293 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 294 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 295 296 struct perf_output_handle; 297 298 #define PMU_NULL_DEV ((void *)(~0UL)) 299 300 /** 301 * struct pmu - generic performance monitoring unit 302 */ 303 struct pmu { 304 struct list_head entry; 305 306 struct module *module; 307 struct device *dev; 308 struct device *parent; 309 const struct attribute_group **attr_groups; 310 const struct attribute_group **attr_update; 311 const char *name; 312 int type; 313 314 /* 315 * various common per-pmu feature flags 316 */ 317 int capabilities; 318 319 int __percpu *pmu_disable_count; 320 struct perf_cpu_pmu_context __percpu *cpu_pmu_context; 321 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 322 int task_ctx_nr; 323 int hrtimer_interval_ms; 324 325 /* number of address filters this PMU can do */ 326 unsigned int nr_addr_filters; 327 328 /* 329 * Fully disable/enable this PMU, can be used to protect from the PMI 330 * as well as for lazy/batch writing of the MSRs. 331 */ 332 void (*pmu_enable) (struct pmu *pmu); /* optional */ 333 void (*pmu_disable) (struct pmu *pmu); /* optional */ 334 335 /* 336 * Try and initialize the event for this PMU. 337 * 338 * Returns: 339 * -ENOENT -- @event is not for this PMU 340 * 341 * -ENODEV -- @event is for this PMU but PMU not present 342 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 343 * -EINVAL -- @event is for this PMU but @event is not valid 344 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 345 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 346 * 347 * 0 -- @event is for this PMU and valid 348 * 349 * Other error return values are allowed. 350 */ 351 int (*event_init) (struct perf_event *event); 352 353 /* 354 * Notification that the event was mapped or unmapped. Called 355 * in the context of the mapping task. 356 */ 357 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 358 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 359 360 /* 361 * Flags for ->add()/->del()/ ->start()/->stop(). There are 362 * matching hw_perf_event::state flags. 363 */ 364 #define PERF_EF_START 0x01 /* start the counter when adding */ 365 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 366 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 367 368 /* 369 * Adds/Removes a counter to/from the PMU, can be done inside a 370 * transaction, see the ->*_txn() methods. 371 * 372 * The add/del callbacks will reserve all hardware resources required 373 * to service the event, this includes any counter constraint 374 * scheduling etc. 375 * 376 * Called with IRQs disabled and the PMU disabled on the CPU the event 377 * is on. 378 * 379 * ->add() called without PERF_EF_START should result in the same state 380 * as ->add() followed by ->stop(). 381 * 382 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 383 * ->stop() that must deal with already being stopped without 384 * PERF_EF_UPDATE. 385 */ 386 int (*add) (struct perf_event *event, int flags); 387 void (*del) (struct perf_event *event, int flags); 388 389 /* 390 * Starts/Stops a counter present on the PMU. 391 * 392 * The PMI handler should stop the counter when perf_event_overflow() 393 * returns !0. ->start() will be used to continue. 394 * 395 * Also used to change the sample period. 396 * 397 * Called with IRQs disabled and the PMU disabled on the CPU the event 398 * is on -- will be called from NMI context with the PMU generates 399 * NMIs. 400 * 401 * ->stop() with PERF_EF_UPDATE will read the counter and update 402 * period/count values like ->read() would. 403 * 404 * ->start() with PERF_EF_RELOAD will reprogram the counter 405 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 406 */ 407 void (*start) (struct perf_event *event, int flags); 408 void (*stop) (struct perf_event *event, int flags); 409 410 /* 411 * Updates the counter value of the event. 412 * 413 * For sampling capable PMUs this will also update the software period 414 * hw_perf_event::period_left field. 415 */ 416 void (*read) (struct perf_event *event); 417 418 /* 419 * Group events scheduling is treated as a transaction, add 420 * group events as a whole and perform one schedulability test. 421 * If the test fails, roll back the whole group 422 * 423 * Start the transaction, after this ->add() doesn't need to 424 * do schedulability tests. 425 * 426 * Optional. 427 */ 428 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 429 /* 430 * If ->start_txn() disabled the ->add() schedulability test 431 * then ->commit_txn() is required to perform one. On success 432 * the transaction is closed. On error the transaction is kept 433 * open until ->cancel_txn() is called. 434 * 435 * Optional. 436 */ 437 int (*commit_txn) (struct pmu *pmu); 438 /* 439 * Will cancel the transaction, assumes ->del() is called 440 * for each successful ->add() during the transaction. 441 * 442 * Optional. 443 */ 444 void (*cancel_txn) (struct pmu *pmu); 445 446 /* 447 * Will return the value for perf_event_mmap_page::index for this event, 448 * if no implementation is provided it will default to: event->hw.idx + 1. 449 */ 450 int (*event_idx) (struct perf_event *event); /*optional */ 451 452 /* 453 * context-switches callback 454 */ 455 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, 456 bool sched_in); 457 458 /* 459 * Kmem cache of PMU specific data 460 */ 461 struct kmem_cache *task_ctx_cache; 462 463 /* 464 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 465 * can be synchronized using this function. See Intel LBR callstack support 466 * implementation and Perf core context switch handling callbacks for usage 467 * examples. 468 */ 469 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc, 470 struct perf_event_pmu_context *next_epc); 471 /* optional */ 472 473 /* 474 * Set up pmu-private data structures for an AUX area 475 */ 476 void *(*setup_aux) (struct perf_event *event, void **pages, 477 int nr_pages, bool overwrite); 478 /* optional */ 479 480 /* 481 * Free pmu-private AUX data structures 482 */ 483 void (*free_aux) (void *aux); /* optional */ 484 485 /* 486 * Take a snapshot of the AUX buffer without touching the event 487 * state, so that preempting ->start()/->stop() callbacks does 488 * not interfere with their logic. Called in PMI context. 489 * 490 * Returns the size of AUX data copied to the output handle. 491 * 492 * Optional. 493 */ 494 long (*snapshot_aux) (struct perf_event *event, 495 struct perf_output_handle *handle, 496 unsigned long size); 497 498 /* 499 * Validate address range filters: make sure the HW supports the 500 * requested configuration and number of filters; return 0 if the 501 * supplied filters are valid, -errno otherwise. 502 * 503 * Runs in the context of the ioctl()ing process and is not serialized 504 * with the rest of the PMU callbacks. 505 */ 506 int (*addr_filters_validate) (struct list_head *filters); 507 /* optional */ 508 509 /* 510 * Synchronize address range filter configuration: 511 * translate hw-agnostic filters into hardware configuration in 512 * event::hw::addr_filters. 513 * 514 * Runs as a part of filter sync sequence that is done in ->start() 515 * callback by calling perf_event_addr_filters_sync(). 516 * 517 * May (and should) traverse event::addr_filters::list, for which its 518 * caller provides necessary serialization. 519 */ 520 void (*addr_filters_sync) (struct perf_event *event); 521 /* optional */ 522 523 /* 524 * Check if event can be used for aux_output purposes for 525 * events of this PMU. 526 * 527 * Runs from perf_event_open(). Should return 0 for "no match" 528 * or non-zero for "match". 529 */ 530 int (*aux_output_match) (struct perf_event *event); 531 /* optional */ 532 533 /* 534 * Skip programming this PMU on the given CPU. Typically needed for 535 * big.LITTLE things. 536 */ 537 bool (*filter) (struct pmu *pmu, int cpu); /* optional */ 538 539 /* 540 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 541 */ 542 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 543 }; 544 545 enum perf_addr_filter_action_t { 546 PERF_ADDR_FILTER_ACTION_STOP = 0, 547 PERF_ADDR_FILTER_ACTION_START, 548 PERF_ADDR_FILTER_ACTION_FILTER, 549 }; 550 551 /** 552 * struct perf_addr_filter - address range filter definition 553 * @entry: event's filter list linkage 554 * @path: object file's path for file-based filters 555 * @offset: filter range offset 556 * @size: filter range size (size==0 means single address trigger) 557 * @action: filter/start/stop 558 * 559 * This is a hardware-agnostic filter configuration as specified by the user. 560 */ 561 struct perf_addr_filter { 562 struct list_head entry; 563 struct path path; 564 unsigned long offset; 565 unsigned long size; 566 enum perf_addr_filter_action_t action; 567 }; 568 569 /** 570 * struct perf_addr_filters_head - container for address range filters 571 * @list: list of filters for this event 572 * @lock: spinlock that serializes accesses to the @list and event's 573 * (and its children's) filter generations. 574 * @nr_file_filters: number of file-based filters 575 * 576 * A child event will use parent's @list (and therefore @lock), so they are 577 * bundled together; see perf_event_addr_filters(). 578 */ 579 struct perf_addr_filters_head { 580 struct list_head list; 581 raw_spinlock_t lock; 582 unsigned int nr_file_filters; 583 }; 584 585 struct perf_addr_filter_range { 586 unsigned long start; 587 unsigned long size; 588 }; 589 590 /** 591 * enum perf_event_state - the states of an event: 592 */ 593 enum perf_event_state { 594 PERF_EVENT_STATE_DEAD = -4, 595 PERF_EVENT_STATE_EXIT = -3, 596 PERF_EVENT_STATE_ERROR = -2, 597 PERF_EVENT_STATE_OFF = -1, 598 PERF_EVENT_STATE_INACTIVE = 0, 599 PERF_EVENT_STATE_ACTIVE = 1, 600 }; 601 602 struct file; 603 struct perf_sample_data; 604 605 typedef void (*perf_overflow_handler_t)(struct perf_event *, 606 struct perf_sample_data *, 607 struct pt_regs *regs); 608 609 /* 610 * Event capabilities. For event_caps and groups caps. 611 * 612 * PERF_EV_CAP_SOFTWARE: Is a software event. 613 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 614 * from any CPU in the package where it is active. 615 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 616 * cannot be a group leader. If an event with this flag is detached from the 617 * group it is scheduled out and moved into an unrecoverable ERROR state. 618 */ 619 #define PERF_EV_CAP_SOFTWARE BIT(0) 620 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 621 #define PERF_EV_CAP_SIBLING BIT(2) 622 623 #define SWEVENT_HLIST_BITS 8 624 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 625 626 struct swevent_hlist { 627 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 628 struct rcu_head rcu_head; 629 }; 630 631 #define PERF_ATTACH_CONTEXT 0x01 632 #define PERF_ATTACH_GROUP 0x02 633 #define PERF_ATTACH_TASK 0x04 634 #define PERF_ATTACH_TASK_DATA 0x08 635 #define PERF_ATTACH_ITRACE 0x10 636 #define PERF_ATTACH_SCHED_CB 0x20 637 #define PERF_ATTACH_CHILD 0x40 638 639 struct bpf_prog; 640 struct perf_cgroup; 641 struct perf_buffer; 642 643 struct pmu_event_list { 644 raw_spinlock_t lock; 645 struct list_head list; 646 }; 647 648 /* 649 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 650 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 651 * safe lock, and is only held by the CPU doing the modification, having IRQs 652 * disabled is sufficient since it will hold-off the IPIs. 653 */ 654 #ifdef CONFIG_PROVE_LOCKING 655 #define lockdep_assert_event_ctx(event) \ 656 WARN_ON_ONCE(__lockdep_enabled && \ 657 (this_cpu_read(hardirqs_enabled) && \ 658 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 659 #else 660 #define lockdep_assert_event_ctx(event) 661 #endif 662 663 #define for_each_sibling_event(sibling, event) \ 664 lockdep_assert_event_ctx(event); \ 665 if ((event)->group_leader == (event)) \ 666 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 667 668 /** 669 * struct perf_event - performance event kernel representation: 670 */ 671 struct perf_event { 672 #ifdef CONFIG_PERF_EVENTS 673 /* 674 * entry onto perf_event_context::event_list; 675 * modifications require ctx->lock 676 * RCU safe iterations. 677 */ 678 struct list_head event_entry; 679 680 /* 681 * Locked for modification by both ctx->mutex and ctx->lock; holding 682 * either sufficies for read. 683 */ 684 struct list_head sibling_list; 685 struct list_head active_list; 686 /* 687 * Node on the pinned or flexible tree located at the event context; 688 */ 689 struct rb_node group_node; 690 u64 group_index; 691 /* 692 * We need storage to track the entries in perf_pmu_migrate_context; we 693 * cannot use the event_entry because of RCU and we want to keep the 694 * group in tact which avoids us using the other two entries. 695 */ 696 struct list_head migrate_entry; 697 698 struct hlist_node hlist_entry; 699 struct list_head active_entry; 700 int nr_siblings; 701 702 /* Not serialized. Only written during event initialization. */ 703 int event_caps; 704 /* The cumulative AND of all event_caps for events in this group. */ 705 int group_caps; 706 707 struct perf_event *group_leader; 708 /* 709 * event->pmu will always point to pmu in which this event belongs. 710 * Whereas event->pmu_ctx->pmu may point to other pmu when group of 711 * different pmu events is created. 712 */ 713 struct pmu *pmu; 714 void *pmu_private; 715 716 enum perf_event_state state; 717 unsigned int attach_state; 718 local64_t count; 719 atomic64_t child_count; 720 721 /* 722 * These are the total time in nanoseconds that the event 723 * has been enabled (i.e. eligible to run, and the task has 724 * been scheduled in, if this is a per-task event) 725 * and running (scheduled onto the CPU), respectively. 726 */ 727 u64 total_time_enabled; 728 u64 total_time_running; 729 u64 tstamp; 730 731 struct perf_event_attr attr; 732 u16 header_size; 733 u16 id_header_size; 734 u16 read_size; 735 struct hw_perf_event hw; 736 737 struct perf_event_context *ctx; 738 /* 739 * event->pmu_ctx points to perf_event_pmu_context in which the event 740 * is added. This pmu_ctx can be of other pmu for sw event when that 741 * sw event is part of a group which also contains non-sw events. 742 */ 743 struct perf_event_pmu_context *pmu_ctx; 744 atomic_long_t refcount; 745 746 /* 747 * These accumulate total time (in nanoseconds) that children 748 * events have been enabled and running, respectively. 749 */ 750 atomic64_t child_total_time_enabled; 751 atomic64_t child_total_time_running; 752 753 /* 754 * Protect attach/detach and child_list: 755 */ 756 struct mutex child_mutex; 757 struct list_head child_list; 758 struct perf_event *parent; 759 760 int oncpu; 761 int cpu; 762 763 struct list_head owner_entry; 764 struct task_struct *owner; 765 766 /* mmap bits */ 767 struct mutex mmap_mutex; 768 atomic_t mmap_count; 769 770 struct perf_buffer *rb; 771 struct list_head rb_entry; 772 unsigned long rcu_batches; 773 int rcu_pending; 774 775 /* poll related */ 776 wait_queue_head_t waitq; 777 struct fasync_struct *fasync; 778 779 /* delayed work for NMIs and such */ 780 unsigned int pending_wakeup; 781 unsigned int pending_kill; 782 unsigned int pending_disable; 783 unsigned int pending_sigtrap; 784 unsigned long pending_addr; /* SIGTRAP */ 785 struct irq_work pending_irq; 786 struct callback_head pending_task; 787 unsigned int pending_work; 788 789 atomic_t event_limit; 790 791 /* address range filters */ 792 struct perf_addr_filters_head addr_filters; 793 /* vma address array for file-based filders */ 794 struct perf_addr_filter_range *addr_filter_ranges; 795 unsigned long addr_filters_gen; 796 797 /* for aux_output events */ 798 struct perf_event *aux_event; 799 800 void (*destroy)(struct perf_event *); 801 struct rcu_head rcu_head; 802 803 struct pid_namespace *ns; 804 u64 id; 805 806 atomic64_t lost_samples; 807 808 u64 (*clock)(void); 809 perf_overflow_handler_t overflow_handler; 810 void *overflow_handler_context; 811 #ifdef CONFIG_BPF_SYSCALL 812 perf_overflow_handler_t orig_overflow_handler; 813 struct bpf_prog *prog; 814 u64 bpf_cookie; 815 #endif 816 817 #ifdef CONFIG_EVENT_TRACING 818 struct trace_event_call *tp_event; 819 struct event_filter *filter; 820 #ifdef CONFIG_FUNCTION_TRACER 821 struct ftrace_ops ftrace_ops; 822 #endif 823 #endif 824 825 #ifdef CONFIG_CGROUP_PERF 826 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 827 #endif 828 829 #ifdef CONFIG_SECURITY 830 void *security; 831 #endif 832 struct list_head sb_list; 833 834 /* 835 * Certain events gets forwarded to another pmu internally by over- 836 * writing kernel copy of event->attr.type without user being aware 837 * of it. event->orig_type contains original 'type' requested by 838 * user. 839 */ 840 __u32 orig_type; 841 #endif /* CONFIG_PERF_EVENTS */ 842 }; 843 844 /* 845 * ,-----------------------[1:n]----------------------. 846 * V V 847 * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event 848 * ^ ^ | | 849 * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-' 850 * 851 * 852 * struct perf_event_pmu_context lifetime is refcount based and RCU freed 853 * (similar to perf_event_context). Locking is as if it were a member of 854 * perf_event_context; specifically: 855 * 856 * modification, both: ctx->mutex && ctx->lock 857 * reading, either: ctx->mutex || ctx->lock 858 * 859 * There is one exception to this; namely put_pmu_ctx() isn't always called 860 * with ctx->mutex held; this means that as long as we can guarantee the epc 861 * has events the above rules hold. 862 * 863 * Specificially, sys_perf_event_open()'s group_leader case depends on 864 * ctx->mutex pinning the configuration. Since we hold a reference on 865 * group_leader (through the filedesc) it can't go away, therefore it's 866 * associated pmu_ctx must exist and cannot change due to ctx->mutex. 867 */ 868 struct perf_event_pmu_context { 869 struct pmu *pmu; 870 struct perf_event_context *ctx; 871 872 struct list_head pmu_ctx_entry; 873 874 struct list_head pinned_active; 875 struct list_head flexible_active; 876 877 /* Used to avoid freeing per-cpu perf_event_pmu_context */ 878 unsigned int embedded : 1; 879 880 unsigned int nr_events; 881 882 atomic_t refcount; /* event <-> epc */ 883 struct rcu_head rcu_head; 884 885 void *task_ctx_data; /* pmu specific data */ 886 /* 887 * Set when one or more (plausibly active) event can't be scheduled 888 * due to pmu overcommit or pmu constraints, except tolerant to 889 * events not necessary to be active due to scheduling constraints, 890 * such as cgroups. 891 */ 892 int rotate_necessary; 893 }; 894 895 struct perf_event_groups { 896 struct rb_root tree; 897 u64 index; 898 }; 899 900 901 /** 902 * struct perf_event_context - event context structure 903 * 904 * Used as a container for task events and CPU events as well: 905 */ 906 struct perf_event_context { 907 /* 908 * Protect the states of the events in the list, 909 * nr_active, and the list: 910 */ 911 raw_spinlock_t lock; 912 /* 913 * Protect the list of events. Locking either mutex or lock 914 * is sufficient to ensure the list doesn't change; to change 915 * the list you need to lock both the mutex and the spinlock. 916 */ 917 struct mutex mutex; 918 919 struct list_head pmu_ctx_list; 920 struct perf_event_groups pinned_groups; 921 struct perf_event_groups flexible_groups; 922 struct list_head event_list; 923 924 int nr_events; 925 int nr_user; 926 int is_active; 927 928 int nr_task_data; 929 int nr_stat; 930 int nr_freq; 931 int rotate_disable; 932 933 refcount_t refcount; /* event <-> ctx */ 934 struct task_struct *task; 935 936 /* 937 * Context clock, runs when context enabled. 938 */ 939 u64 time; 940 u64 timestamp; 941 u64 timeoffset; 942 943 /* 944 * These fields let us detect when two contexts have both 945 * been cloned (inherited) from a common ancestor. 946 */ 947 struct perf_event_context *parent_ctx; 948 u64 parent_gen; 949 u64 generation; 950 int pin_count; 951 #ifdef CONFIG_CGROUP_PERF 952 int nr_cgroups; /* cgroup evts */ 953 #endif 954 struct rcu_head rcu_head; 955 956 /* 957 * Sum (event->pending_sigtrap + event->pending_work) 958 * 959 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 960 * that until the signal is delivered. 961 */ 962 local_t nr_pending; 963 }; 964 965 /* 966 * Number of contexts where an event can trigger: 967 * task, softirq, hardirq, nmi. 968 */ 969 #define PERF_NR_CONTEXTS 4 970 971 struct perf_cpu_pmu_context { 972 struct perf_event_pmu_context epc; 973 struct perf_event_pmu_context *task_epc; 974 975 struct list_head sched_cb_entry; 976 int sched_cb_usage; 977 978 int active_oncpu; 979 int exclusive; 980 981 raw_spinlock_t hrtimer_lock; 982 struct hrtimer hrtimer; 983 ktime_t hrtimer_interval; 984 unsigned int hrtimer_active; 985 }; 986 987 /** 988 * struct perf_event_cpu_context - per cpu event context structure 989 */ 990 struct perf_cpu_context { 991 struct perf_event_context ctx; 992 struct perf_event_context *task_ctx; 993 int online; 994 995 #ifdef CONFIG_CGROUP_PERF 996 struct perf_cgroup *cgrp; 997 #endif 998 999 /* 1000 * Per-CPU storage for iterators used in visit_groups_merge. The default 1001 * storage is of size 2 to hold the CPU and any CPU event iterators. 1002 */ 1003 int heap_size; 1004 struct perf_event **heap; 1005 struct perf_event *heap_default[2]; 1006 }; 1007 1008 struct perf_output_handle { 1009 struct perf_event *event; 1010 struct perf_buffer *rb; 1011 unsigned long wakeup; 1012 unsigned long size; 1013 u64 aux_flags; 1014 union { 1015 void *addr; 1016 unsigned long head; 1017 }; 1018 int page; 1019 }; 1020 1021 struct bpf_perf_event_data_kern { 1022 bpf_user_pt_regs_t *regs; 1023 struct perf_sample_data *data; 1024 struct perf_event *event; 1025 }; 1026 1027 #ifdef CONFIG_CGROUP_PERF 1028 1029 /* 1030 * perf_cgroup_info keeps track of time_enabled for a cgroup. 1031 * This is a per-cpu dynamically allocated data structure. 1032 */ 1033 struct perf_cgroup_info { 1034 u64 time; 1035 u64 timestamp; 1036 u64 timeoffset; 1037 int active; 1038 }; 1039 1040 struct perf_cgroup { 1041 struct cgroup_subsys_state css; 1042 struct perf_cgroup_info __percpu *info; 1043 }; 1044 1045 /* 1046 * Must ensure cgroup is pinned (css_get) before calling 1047 * this function. In other words, we cannot call this function 1048 * if there is no cgroup event for the current CPU context. 1049 */ 1050 static inline struct perf_cgroup * 1051 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 1052 { 1053 return container_of(task_css_check(task, perf_event_cgrp_id, 1054 ctx ? lockdep_is_held(&ctx->lock) 1055 : true), 1056 struct perf_cgroup, css); 1057 } 1058 #endif /* CONFIG_CGROUP_PERF */ 1059 1060 #ifdef CONFIG_PERF_EVENTS 1061 1062 extern struct perf_event_context *perf_cpu_task_ctx(void); 1063 1064 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 1065 struct perf_event *event); 1066 extern void perf_aux_output_end(struct perf_output_handle *handle, 1067 unsigned long size); 1068 extern int perf_aux_output_skip(struct perf_output_handle *handle, 1069 unsigned long size); 1070 extern void *perf_get_aux(struct perf_output_handle *handle); 1071 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 1072 extern void perf_event_itrace_started(struct perf_event *event); 1073 1074 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 1075 extern void perf_pmu_unregister(struct pmu *pmu); 1076 1077 extern void __perf_event_task_sched_in(struct task_struct *prev, 1078 struct task_struct *task); 1079 extern void __perf_event_task_sched_out(struct task_struct *prev, 1080 struct task_struct *next); 1081 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1082 extern void perf_event_exit_task(struct task_struct *child); 1083 extern void perf_event_free_task(struct task_struct *task); 1084 extern void perf_event_delayed_put(struct task_struct *task); 1085 extern struct file *perf_event_get(unsigned int fd); 1086 extern const struct perf_event *perf_get_event(struct file *file); 1087 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1088 extern void perf_event_print_debug(void); 1089 extern void perf_pmu_disable(struct pmu *pmu); 1090 extern void perf_pmu_enable(struct pmu *pmu); 1091 extern void perf_sched_cb_dec(struct pmu *pmu); 1092 extern void perf_sched_cb_inc(struct pmu *pmu); 1093 extern int perf_event_task_disable(void); 1094 extern int perf_event_task_enable(void); 1095 1096 extern void perf_pmu_resched(struct pmu *pmu); 1097 1098 extern int perf_event_refresh(struct perf_event *event, int refresh); 1099 extern void perf_event_update_userpage(struct perf_event *event); 1100 extern int perf_event_release_kernel(struct perf_event *event); 1101 extern struct perf_event * 1102 perf_event_create_kernel_counter(struct perf_event_attr *attr, 1103 int cpu, 1104 struct task_struct *task, 1105 perf_overflow_handler_t callback, 1106 void *context); 1107 extern void perf_pmu_migrate_context(struct pmu *pmu, 1108 int src_cpu, int dst_cpu); 1109 int perf_event_read_local(struct perf_event *event, u64 *value, 1110 u64 *enabled, u64 *running); 1111 extern u64 perf_event_read_value(struct perf_event *event, 1112 u64 *enabled, u64 *running); 1113 1114 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1115 1116 static inline bool branch_sample_no_flags(const struct perf_event *event) 1117 { 1118 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1119 } 1120 1121 static inline bool branch_sample_no_cycles(const struct perf_event *event) 1122 { 1123 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1124 } 1125 1126 static inline bool branch_sample_type(const struct perf_event *event) 1127 { 1128 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1129 } 1130 1131 static inline bool branch_sample_hw_index(const struct perf_event *event) 1132 { 1133 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1134 } 1135 1136 static inline bool branch_sample_priv(const struct perf_event *event) 1137 { 1138 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1139 } 1140 1141 1142 struct perf_sample_data { 1143 /* 1144 * Fields set by perf_sample_data_init() unconditionally, 1145 * group so as to minimize the cachelines touched. 1146 */ 1147 u64 sample_flags; 1148 u64 period; 1149 u64 dyn_size; 1150 1151 /* 1152 * Fields commonly set by __perf_event_header__init_id(), 1153 * group so as to minimize the cachelines touched. 1154 */ 1155 u64 type; 1156 struct { 1157 u32 pid; 1158 u32 tid; 1159 } tid_entry; 1160 u64 time; 1161 u64 id; 1162 struct { 1163 u32 cpu; 1164 u32 reserved; 1165 } cpu_entry; 1166 1167 /* 1168 * The other fields, optionally {set,used} by 1169 * perf_{prepare,output}_sample(). 1170 */ 1171 u64 ip; 1172 struct perf_callchain_entry *callchain; 1173 struct perf_raw_record *raw; 1174 struct perf_branch_stack *br_stack; 1175 union perf_sample_weight weight; 1176 union perf_mem_data_src data_src; 1177 u64 txn; 1178 1179 struct perf_regs regs_user; 1180 struct perf_regs regs_intr; 1181 u64 stack_user_size; 1182 1183 u64 stream_id; 1184 u64 cgroup; 1185 u64 addr; 1186 u64 phys_addr; 1187 u64 data_page_size; 1188 u64 code_page_size; 1189 u64 aux_size; 1190 } ____cacheline_aligned; 1191 1192 /* default value for data source */ 1193 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1194 PERF_MEM_S(LVL, NA) |\ 1195 PERF_MEM_S(SNOOP, NA) |\ 1196 PERF_MEM_S(LOCK, NA) |\ 1197 PERF_MEM_S(TLB, NA)) 1198 1199 static inline void perf_sample_data_init(struct perf_sample_data *data, 1200 u64 addr, u64 period) 1201 { 1202 /* remaining struct members initialized in perf_prepare_sample() */ 1203 data->sample_flags = PERF_SAMPLE_PERIOD; 1204 data->period = period; 1205 data->dyn_size = 0; 1206 1207 if (addr) { 1208 data->addr = addr; 1209 data->sample_flags |= PERF_SAMPLE_ADDR; 1210 } 1211 } 1212 1213 static inline void perf_sample_save_callchain(struct perf_sample_data *data, 1214 struct perf_event *event, 1215 struct pt_regs *regs) 1216 { 1217 int size = 1; 1218 1219 data->callchain = perf_callchain(event, regs); 1220 size += data->callchain->nr; 1221 1222 data->dyn_size += size * sizeof(u64); 1223 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1224 } 1225 1226 static inline void perf_sample_save_raw_data(struct perf_sample_data *data, 1227 struct perf_raw_record *raw) 1228 { 1229 struct perf_raw_frag *frag = &raw->frag; 1230 u32 sum = 0; 1231 int size; 1232 1233 do { 1234 sum += frag->size; 1235 if (perf_raw_frag_last(frag)) 1236 break; 1237 frag = frag->next; 1238 } while (1); 1239 1240 size = round_up(sum + sizeof(u32), sizeof(u64)); 1241 raw->size = size - sizeof(u32); 1242 frag->pad = raw->size - sum; 1243 1244 data->raw = raw; 1245 data->dyn_size += size; 1246 data->sample_flags |= PERF_SAMPLE_RAW; 1247 } 1248 1249 static inline void perf_sample_save_brstack(struct perf_sample_data *data, 1250 struct perf_event *event, 1251 struct perf_branch_stack *brs) 1252 { 1253 int size = sizeof(u64); /* nr */ 1254 1255 if (branch_sample_hw_index(event)) 1256 size += sizeof(u64); 1257 size += brs->nr * sizeof(struct perf_branch_entry); 1258 1259 data->br_stack = brs; 1260 data->dyn_size += size; 1261 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1262 } 1263 1264 static inline u32 perf_sample_data_size(struct perf_sample_data *data, 1265 struct perf_event *event) 1266 { 1267 u32 size = sizeof(struct perf_event_header); 1268 1269 size += event->header_size + event->id_header_size; 1270 size += data->dyn_size; 1271 1272 return size; 1273 } 1274 1275 /* 1276 * Clear all bitfields in the perf_branch_entry. 1277 * The to and from fields are not cleared because they are 1278 * systematically modified by caller. 1279 */ 1280 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1281 { 1282 br->mispred = 0; 1283 br->predicted = 0; 1284 br->in_tx = 0; 1285 br->abort = 0; 1286 br->cycles = 0; 1287 br->type = 0; 1288 br->spec = PERF_BR_SPEC_NA; 1289 br->reserved = 0; 1290 } 1291 1292 extern void perf_output_sample(struct perf_output_handle *handle, 1293 struct perf_event_header *header, 1294 struct perf_sample_data *data, 1295 struct perf_event *event); 1296 extern void perf_prepare_sample(struct perf_sample_data *data, 1297 struct perf_event *event, 1298 struct pt_regs *regs); 1299 extern void perf_prepare_header(struct perf_event_header *header, 1300 struct perf_sample_data *data, 1301 struct perf_event *event, 1302 struct pt_regs *regs); 1303 1304 extern int perf_event_overflow(struct perf_event *event, 1305 struct perf_sample_data *data, 1306 struct pt_regs *regs); 1307 1308 extern void perf_event_output_forward(struct perf_event *event, 1309 struct perf_sample_data *data, 1310 struct pt_regs *regs); 1311 extern void perf_event_output_backward(struct perf_event *event, 1312 struct perf_sample_data *data, 1313 struct pt_regs *regs); 1314 extern int perf_event_output(struct perf_event *event, 1315 struct perf_sample_data *data, 1316 struct pt_regs *regs); 1317 1318 static inline bool 1319 is_default_overflow_handler(struct perf_event *event) 1320 { 1321 if (likely(event->overflow_handler == perf_event_output_forward)) 1322 return true; 1323 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1324 return true; 1325 return false; 1326 } 1327 1328 extern void 1329 perf_event_header__init_id(struct perf_event_header *header, 1330 struct perf_sample_data *data, 1331 struct perf_event *event); 1332 extern void 1333 perf_event__output_id_sample(struct perf_event *event, 1334 struct perf_output_handle *handle, 1335 struct perf_sample_data *sample); 1336 1337 extern void 1338 perf_log_lost_samples(struct perf_event *event, u64 lost); 1339 1340 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1341 { 1342 struct perf_event_attr *attr = &event->attr; 1343 1344 return attr->exclude_idle || attr->exclude_user || 1345 attr->exclude_kernel || attr->exclude_hv || 1346 attr->exclude_guest || attr->exclude_host; 1347 } 1348 1349 static inline bool is_sampling_event(struct perf_event *event) 1350 { 1351 return event->attr.sample_period != 0; 1352 } 1353 1354 /* 1355 * Return 1 for a software event, 0 for a hardware event 1356 */ 1357 static inline int is_software_event(struct perf_event *event) 1358 { 1359 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1360 } 1361 1362 /* 1363 * Return 1 for event in sw context, 0 for event in hw context 1364 */ 1365 static inline int in_software_context(struct perf_event *event) 1366 { 1367 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; 1368 } 1369 1370 static inline int is_exclusive_pmu(struct pmu *pmu) 1371 { 1372 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1373 } 1374 1375 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1376 1377 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1378 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1379 1380 #ifndef perf_arch_fetch_caller_regs 1381 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1382 #endif 1383 1384 /* 1385 * When generating a perf sample in-line, instead of from an interrupt / 1386 * exception, we lack a pt_regs. This is typically used from software events 1387 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1388 * 1389 * We typically don't need a full set, but (for x86) do require: 1390 * - ip for PERF_SAMPLE_IP 1391 * - cs for user_mode() tests 1392 * - sp for PERF_SAMPLE_CALLCHAIN 1393 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1394 * 1395 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1396 * things like PERF_SAMPLE_REGS_INTR. 1397 */ 1398 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1399 { 1400 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1401 } 1402 1403 static __always_inline void 1404 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1405 { 1406 if (static_key_false(&perf_swevent_enabled[event_id])) 1407 __perf_sw_event(event_id, nr, regs, addr); 1408 } 1409 1410 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1411 1412 /* 1413 * 'Special' version for the scheduler, it hard assumes no recursion, 1414 * which is guaranteed by us not actually scheduling inside other swevents 1415 * because those disable preemption. 1416 */ 1417 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1418 { 1419 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1420 1421 perf_fetch_caller_regs(regs); 1422 ___perf_sw_event(event_id, nr, regs, addr); 1423 } 1424 1425 extern struct static_key_false perf_sched_events; 1426 1427 static __always_inline bool __perf_sw_enabled(int swevt) 1428 { 1429 return static_key_false(&perf_swevent_enabled[swevt]); 1430 } 1431 1432 static inline void perf_event_task_migrate(struct task_struct *task) 1433 { 1434 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1435 task->sched_migrated = 1; 1436 } 1437 1438 static inline void perf_event_task_sched_in(struct task_struct *prev, 1439 struct task_struct *task) 1440 { 1441 if (static_branch_unlikely(&perf_sched_events)) 1442 __perf_event_task_sched_in(prev, task); 1443 1444 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1445 task->sched_migrated) { 1446 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1447 task->sched_migrated = 0; 1448 } 1449 } 1450 1451 static inline void perf_event_task_sched_out(struct task_struct *prev, 1452 struct task_struct *next) 1453 { 1454 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1455 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1456 1457 #ifdef CONFIG_CGROUP_PERF 1458 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1459 perf_cgroup_from_task(prev, NULL) != 1460 perf_cgroup_from_task(next, NULL)) 1461 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1462 #endif 1463 1464 if (static_branch_unlikely(&perf_sched_events)) 1465 __perf_event_task_sched_out(prev, next); 1466 } 1467 1468 extern void perf_event_mmap(struct vm_area_struct *vma); 1469 1470 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1471 bool unregister, const char *sym); 1472 extern void perf_event_bpf_event(struct bpf_prog *prog, 1473 enum perf_bpf_event_type type, 1474 u16 flags); 1475 1476 #ifdef CONFIG_GUEST_PERF_EVENTS 1477 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1478 1479 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1480 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1481 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1482 1483 static inline unsigned int perf_guest_state(void) 1484 { 1485 return static_call(__perf_guest_state)(); 1486 } 1487 static inline unsigned long perf_guest_get_ip(void) 1488 { 1489 return static_call(__perf_guest_get_ip)(); 1490 } 1491 static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1492 { 1493 return static_call(__perf_guest_handle_intel_pt_intr)(); 1494 } 1495 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1496 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1497 #else 1498 static inline unsigned int perf_guest_state(void) { return 0; } 1499 static inline unsigned long perf_guest_get_ip(void) { return 0; } 1500 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1501 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1502 1503 extern void perf_event_exec(void); 1504 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1505 extern void perf_event_namespaces(struct task_struct *tsk); 1506 extern void perf_event_fork(struct task_struct *tsk); 1507 extern void perf_event_text_poke(const void *addr, 1508 const void *old_bytes, size_t old_len, 1509 const void *new_bytes, size_t new_len); 1510 1511 /* Callchains */ 1512 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1513 1514 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1515 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1516 extern struct perf_callchain_entry * 1517 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1518 u32 max_stack, bool crosstask, bool add_mark); 1519 extern int get_callchain_buffers(int max_stack); 1520 extern void put_callchain_buffers(void); 1521 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1522 extern void put_callchain_entry(int rctx); 1523 1524 extern int sysctl_perf_event_max_stack; 1525 extern int sysctl_perf_event_max_contexts_per_stack; 1526 1527 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1528 { 1529 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1530 struct perf_callchain_entry *entry = ctx->entry; 1531 entry->ip[entry->nr++] = ip; 1532 ++ctx->contexts; 1533 return 0; 1534 } else { 1535 ctx->contexts_maxed = true; 1536 return -1; /* no more room, stop walking the stack */ 1537 } 1538 } 1539 1540 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1541 { 1542 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1543 struct perf_callchain_entry *entry = ctx->entry; 1544 entry->ip[entry->nr++] = ip; 1545 ++ctx->nr; 1546 return 0; 1547 } else { 1548 return -1; /* no more room, stop walking the stack */ 1549 } 1550 } 1551 1552 extern int sysctl_perf_event_paranoid; 1553 extern int sysctl_perf_event_mlock; 1554 extern int sysctl_perf_event_sample_rate; 1555 extern int sysctl_perf_cpu_time_max_percent; 1556 1557 extern void perf_sample_event_took(u64 sample_len_ns); 1558 1559 int perf_proc_update_handler(struct ctl_table *table, int write, 1560 void *buffer, size_t *lenp, loff_t *ppos); 1561 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1562 void *buffer, size_t *lenp, loff_t *ppos); 1563 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1564 void *buffer, size_t *lenp, loff_t *ppos); 1565 1566 /* Access to perf_event_open(2) syscall. */ 1567 #define PERF_SECURITY_OPEN 0 1568 1569 /* Finer grained perf_event_open(2) access control. */ 1570 #define PERF_SECURITY_CPU 1 1571 #define PERF_SECURITY_KERNEL 2 1572 #define PERF_SECURITY_TRACEPOINT 3 1573 1574 static inline int perf_is_paranoid(void) 1575 { 1576 return sysctl_perf_event_paranoid > -1; 1577 } 1578 1579 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1580 { 1581 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1582 return -EACCES; 1583 1584 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1585 } 1586 1587 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1588 { 1589 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1590 return -EACCES; 1591 1592 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1593 } 1594 1595 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1596 { 1597 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1598 return -EPERM; 1599 1600 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1601 } 1602 1603 extern void perf_event_init(void); 1604 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1605 int entry_size, struct pt_regs *regs, 1606 struct hlist_head *head, int rctx, 1607 struct task_struct *task); 1608 extern void perf_bp_event(struct perf_event *event, void *data); 1609 1610 #ifndef perf_misc_flags 1611 # define perf_misc_flags(regs) \ 1612 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1613 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1614 #endif 1615 #ifndef perf_arch_bpf_user_pt_regs 1616 # define perf_arch_bpf_user_pt_regs(regs) regs 1617 #endif 1618 1619 static inline bool has_branch_stack(struct perf_event *event) 1620 { 1621 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1622 } 1623 1624 static inline bool needs_branch_stack(struct perf_event *event) 1625 { 1626 return event->attr.branch_sample_type != 0; 1627 } 1628 1629 static inline bool has_aux(struct perf_event *event) 1630 { 1631 return event->pmu->setup_aux; 1632 } 1633 1634 static inline bool is_write_backward(struct perf_event *event) 1635 { 1636 return !!event->attr.write_backward; 1637 } 1638 1639 static inline bool has_addr_filter(struct perf_event *event) 1640 { 1641 return event->pmu->nr_addr_filters; 1642 } 1643 1644 /* 1645 * An inherited event uses parent's filters 1646 */ 1647 static inline struct perf_addr_filters_head * 1648 perf_event_addr_filters(struct perf_event *event) 1649 { 1650 struct perf_addr_filters_head *ifh = &event->addr_filters; 1651 1652 if (event->parent) 1653 ifh = &event->parent->addr_filters; 1654 1655 return ifh; 1656 } 1657 1658 extern void perf_event_addr_filters_sync(struct perf_event *event); 1659 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1660 1661 extern int perf_output_begin(struct perf_output_handle *handle, 1662 struct perf_sample_data *data, 1663 struct perf_event *event, unsigned int size); 1664 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1665 struct perf_sample_data *data, 1666 struct perf_event *event, 1667 unsigned int size); 1668 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1669 struct perf_sample_data *data, 1670 struct perf_event *event, 1671 unsigned int size); 1672 1673 extern void perf_output_end(struct perf_output_handle *handle); 1674 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1675 const void *buf, unsigned int len); 1676 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1677 unsigned int len); 1678 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1679 struct perf_output_handle *handle, 1680 unsigned long from, unsigned long to); 1681 extern int perf_swevent_get_recursion_context(void); 1682 extern void perf_swevent_put_recursion_context(int rctx); 1683 extern u64 perf_swevent_set_period(struct perf_event *event); 1684 extern void perf_event_enable(struct perf_event *event); 1685 extern void perf_event_disable(struct perf_event *event); 1686 extern void perf_event_disable_local(struct perf_event *event); 1687 extern void perf_event_disable_inatomic(struct perf_event *event); 1688 extern void perf_event_task_tick(void); 1689 extern int perf_event_account_interrupt(struct perf_event *event); 1690 extern int perf_event_period(struct perf_event *event, u64 value); 1691 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1692 #else /* !CONFIG_PERF_EVENTS: */ 1693 static inline void * 1694 perf_aux_output_begin(struct perf_output_handle *handle, 1695 struct perf_event *event) { return NULL; } 1696 static inline void 1697 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1698 { } 1699 static inline int 1700 perf_aux_output_skip(struct perf_output_handle *handle, 1701 unsigned long size) { return -EINVAL; } 1702 static inline void * 1703 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1704 static inline void 1705 perf_event_task_migrate(struct task_struct *task) { } 1706 static inline void 1707 perf_event_task_sched_in(struct task_struct *prev, 1708 struct task_struct *task) { } 1709 static inline void 1710 perf_event_task_sched_out(struct task_struct *prev, 1711 struct task_struct *next) { } 1712 static inline int perf_event_init_task(struct task_struct *child, 1713 u64 clone_flags) { return 0; } 1714 static inline void perf_event_exit_task(struct task_struct *child) { } 1715 static inline void perf_event_free_task(struct task_struct *task) { } 1716 static inline void perf_event_delayed_put(struct task_struct *task) { } 1717 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1718 static inline const struct perf_event *perf_get_event(struct file *file) 1719 { 1720 return ERR_PTR(-EINVAL); 1721 } 1722 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1723 { 1724 return ERR_PTR(-EINVAL); 1725 } 1726 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1727 u64 *enabled, u64 *running) 1728 { 1729 return -EINVAL; 1730 } 1731 static inline void perf_event_print_debug(void) { } 1732 static inline int perf_event_task_disable(void) { return -EINVAL; } 1733 static inline int perf_event_task_enable(void) { return -EINVAL; } 1734 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1735 { 1736 return -EINVAL; 1737 } 1738 1739 static inline void 1740 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1741 static inline void 1742 perf_bp_event(struct perf_event *event, void *data) { } 1743 1744 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1745 1746 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1747 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1748 bool unregister, const char *sym) { } 1749 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1750 enum perf_bpf_event_type type, 1751 u16 flags) { } 1752 static inline void perf_event_exec(void) { } 1753 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1754 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1755 static inline void perf_event_fork(struct task_struct *tsk) { } 1756 static inline void perf_event_text_poke(const void *addr, 1757 const void *old_bytes, 1758 size_t old_len, 1759 const void *new_bytes, 1760 size_t new_len) { } 1761 static inline void perf_event_init(void) { } 1762 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1763 static inline void perf_swevent_put_recursion_context(int rctx) { } 1764 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1765 static inline void perf_event_enable(struct perf_event *event) { } 1766 static inline void perf_event_disable(struct perf_event *event) { } 1767 static inline int __perf_event_disable(void *info) { return -1; } 1768 static inline void perf_event_task_tick(void) { } 1769 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1770 static inline int perf_event_period(struct perf_event *event, u64 value) 1771 { 1772 return -EINVAL; 1773 } 1774 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1775 { 1776 return 0; 1777 } 1778 #endif 1779 1780 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1781 extern void perf_restore_debug_store(void); 1782 #else 1783 static inline void perf_restore_debug_store(void) { } 1784 #endif 1785 1786 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1787 1788 struct perf_pmu_events_attr { 1789 struct device_attribute attr; 1790 u64 id; 1791 const char *event_str; 1792 }; 1793 1794 struct perf_pmu_events_ht_attr { 1795 struct device_attribute attr; 1796 u64 id; 1797 const char *event_str_ht; 1798 const char *event_str_noht; 1799 }; 1800 1801 struct perf_pmu_events_hybrid_attr { 1802 struct device_attribute attr; 1803 u64 id; 1804 const char *event_str; 1805 u64 pmu_type; 1806 }; 1807 1808 struct perf_pmu_format_hybrid_attr { 1809 struct device_attribute attr; 1810 u64 pmu_type; 1811 }; 1812 1813 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1814 char *page); 1815 1816 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1817 static struct perf_pmu_events_attr _var = { \ 1818 .attr = __ATTR(_name, 0444, _show, NULL), \ 1819 .id = _id, \ 1820 }; 1821 1822 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1823 static struct perf_pmu_events_attr _var = { \ 1824 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1825 .id = 0, \ 1826 .event_str = _str, \ 1827 }; 1828 1829 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1830 (&((struct perf_pmu_events_attr[]) { \ 1831 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1832 .id = _id, } \ 1833 })[0].attr.attr) 1834 1835 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1836 static ssize_t \ 1837 _name##_show(struct device *dev, \ 1838 struct device_attribute *attr, \ 1839 char *page) \ 1840 { \ 1841 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1842 return sprintf(page, _format "\n"); \ 1843 } \ 1844 1845 #define PMU_FORMAT_ATTR(_name, _format) \ 1846 PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1847 \ 1848 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1849 1850 /* Performance counter hotplug functions */ 1851 #ifdef CONFIG_PERF_EVENTS 1852 int perf_event_init_cpu(unsigned int cpu); 1853 int perf_event_exit_cpu(unsigned int cpu); 1854 #else 1855 #define perf_event_init_cpu NULL 1856 #define perf_event_exit_cpu NULL 1857 #endif 1858 1859 extern void arch_perf_update_userpage(struct perf_event *event, 1860 struct perf_event_mmap_page *userpg, 1861 u64 now); 1862 1863 #ifdef CONFIG_MMU 1864 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1865 #endif 1866 1867 /* 1868 * Snapshot branch stack on software events. 1869 * 1870 * Branch stack can be very useful in understanding software events. For 1871 * example, when a long function, e.g. sys_perf_event_open, returns an 1872 * errno, it is not obvious why the function failed. Branch stack could 1873 * provide very helpful information in this type of scenarios. 1874 * 1875 * On software event, it is necessary to stop the hardware branch recorder 1876 * fast. Otherwise, the hardware register/buffer will be flushed with 1877 * entries of the triggering event. Therefore, static call is used to 1878 * stop the hardware recorder. 1879 */ 1880 1881 /* 1882 * cnt is the number of entries allocated for entries. 1883 * Return number of entries copied to . 1884 */ 1885 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1886 unsigned int cnt); 1887 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1888 1889 #ifndef PERF_NEEDS_LOPWR_CB 1890 static inline void perf_lopwr_cb(bool mode) 1891 { 1892 } 1893 #endif 1894 1895 #endif /* _LINUX_PERF_EVENT_H */ 1896