1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 #define PERF_GUEST_ACTIVE 0x01 30 #define PERF_GUEST_USER 0x02 31 32 struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36 }; 37 38 #ifdef CONFIG_HAVE_HW_BREAKPOINT 39 #include <linux/rhashtable-types.h> 40 #include <asm/hw_breakpoint.h> 41 #endif 42 43 #include <linux/list.h> 44 #include <linux/mutex.h> 45 #include <linux/rculist.h> 46 #include <linux/rcupdate.h> 47 #include <linux/spinlock.h> 48 #include <linux/hrtimer.h> 49 #include <linux/fs.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/workqueue.h> 52 #include <linux/ftrace.h> 53 #include <linux/cpu.h> 54 #include <linux/irq_work.h> 55 #include <linux/static_key.h> 56 #include <linux/jump_label_ratelimit.h> 57 #include <linux/atomic.h> 58 #include <linux/sysfs.h> 59 #include <linux/perf_regs.h> 60 #include <linux/cgroup.h> 61 #include <linux/refcount.h> 62 #include <linux/security.h> 63 #include <linux/static_call.h> 64 #include <linux/lockdep.h> 65 #include <asm/local.h> 66 67 struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70 }; 71 72 struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78 }; 79 80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83 struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91 } __packed; 92 93 struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96 }; 97 98 /* 99 * branch stack layout: 100 * nr: number of taken branches stored in entries[] 101 * hw_idx: The low level index of raw branch records 102 * for the most recent branch. 103 * -1ULL means invalid/unknown. 104 * 105 * Note that nr can vary from sample to sample 106 * branches (to, from) are stored from most recent 107 * to least recent, i.e., entries[0] contains the most 108 * recent branch. 109 * The entries[] is an abstraction of raw branch records, 110 * which may not be stored in age order in HW, e.g. Intel LBR. 111 * The hw_idx is to expose the low level index of raw 112 * branch record for the most recent branch aka entries[0]. 113 * The hw_idx index is between -1 (unknown) and max depth, 114 * which can be retrieved in /sys/devices/cpu/caps/branches. 115 * For the architectures whose raw branch records are 116 * already stored in age order, the hw_idx should be 0. 117 */ 118 struct perf_branch_stack { 119 __u64 nr; 120 __u64 hw_idx; 121 struct perf_branch_entry entries[]; 122 }; 123 124 struct task_struct; 125 126 /* 127 * extra PMU register associated with an event 128 */ 129 struct hw_perf_event_extra { 130 u64 config; /* register value */ 131 unsigned int reg; /* register address or index */ 132 int alloc; /* extra register already allocated */ 133 int idx; /* index in shared_regs->regs[] */ 134 }; 135 136 /** 137 * hw_perf_event::flag values 138 * 139 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 140 * usage. 141 */ 142 #define PERF_EVENT_FLAG_ARCH 0x000fffff 143 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 144 145 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 146 147 /** 148 * struct hw_perf_event - performance event hardware details: 149 */ 150 struct hw_perf_event { 151 #ifdef CONFIG_PERF_EVENTS 152 union { 153 struct { /* hardware */ 154 u64 config; 155 u64 last_tag; 156 unsigned long config_base; 157 unsigned long event_base; 158 int event_base_rdpmc; 159 int idx; 160 int last_cpu; 161 int flags; 162 163 struct hw_perf_event_extra extra_reg; 164 struct hw_perf_event_extra branch_reg; 165 }; 166 struct { /* software */ 167 struct hrtimer hrtimer; 168 }; 169 struct { /* tracepoint */ 170 /* for tp_event->class */ 171 struct list_head tp_list; 172 }; 173 struct { /* amd_power */ 174 u64 pwr_acc; 175 u64 ptsc; 176 }; 177 #ifdef CONFIG_HAVE_HW_BREAKPOINT 178 struct { /* breakpoint */ 179 /* 180 * Crufty hack to avoid the chicken and egg 181 * problem hw_breakpoint has with context 182 * creation and event initalization. 183 */ 184 struct arch_hw_breakpoint info; 185 struct rhlist_head bp_list; 186 }; 187 #endif 188 struct { /* amd_iommu */ 189 u8 iommu_bank; 190 u8 iommu_cntr; 191 u16 padding; 192 u64 conf; 193 u64 conf1; 194 }; 195 }; 196 /* 197 * If the event is a per task event, this will point to the task in 198 * question. See the comment in perf_event_alloc(). 199 */ 200 struct task_struct *target; 201 202 /* 203 * PMU would store hardware filter configuration 204 * here. 205 */ 206 void *addr_filters; 207 208 /* Last sync'ed generation of filters */ 209 unsigned long addr_filters_gen; 210 211 /* 212 * hw_perf_event::state flags; used to track the PERF_EF_* state. 213 */ 214 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 215 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 216 #define PERF_HES_ARCH 0x04 217 218 int state; 219 220 /* 221 * The last observed hardware counter value, updated with a 222 * local64_cmpxchg() such that pmu::read() can be called nested. 223 */ 224 local64_t prev_count; 225 226 /* 227 * The period to start the next sample with. 228 */ 229 u64 sample_period; 230 231 union { 232 struct { /* Sampling */ 233 /* 234 * The period we started this sample with. 235 */ 236 u64 last_period; 237 238 /* 239 * However much is left of the current period; 240 * note that this is a full 64bit value and 241 * allows for generation of periods longer 242 * than hardware might allow. 243 */ 244 local64_t period_left; 245 }; 246 struct { /* Topdown events counting for context switch */ 247 u64 saved_metric; 248 u64 saved_slots; 249 }; 250 }; 251 252 /* 253 * State for throttling the event, see __perf_event_overflow() and 254 * perf_adjust_freq_unthr_context(). 255 */ 256 u64 interrupts_seq; 257 u64 interrupts; 258 259 /* 260 * State for freq target events, see __perf_event_overflow() and 261 * perf_adjust_freq_unthr_context(). 262 */ 263 u64 freq_time_stamp; 264 u64 freq_count_stamp; 265 #endif 266 }; 267 268 struct perf_event; 269 270 /* 271 * Common implementation detail of pmu::{start,commit,cancel}_txn 272 */ 273 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 274 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 275 276 /** 277 * pmu::capabilities flags 278 */ 279 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 280 #define PERF_PMU_CAP_NO_NMI 0x0002 281 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 282 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 283 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 284 #define PERF_PMU_CAP_ITRACE 0x0020 285 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 286 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080 287 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100 288 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 289 290 struct perf_output_handle; 291 292 /** 293 * struct pmu - generic performance monitoring unit 294 */ 295 struct pmu { 296 struct list_head entry; 297 298 struct module *module; 299 struct device *dev; 300 const struct attribute_group **attr_groups; 301 const struct attribute_group **attr_update; 302 const char *name; 303 int type; 304 305 /* 306 * various common per-pmu feature flags 307 */ 308 int capabilities; 309 310 int __percpu *pmu_disable_count; 311 struct perf_cpu_context __percpu *pmu_cpu_context; 312 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 313 int task_ctx_nr; 314 int hrtimer_interval_ms; 315 316 /* number of address filters this PMU can do */ 317 unsigned int nr_addr_filters; 318 319 /* 320 * Fully disable/enable this PMU, can be used to protect from the PMI 321 * as well as for lazy/batch writing of the MSRs. 322 */ 323 void (*pmu_enable) (struct pmu *pmu); /* optional */ 324 void (*pmu_disable) (struct pmu *pmu); /* optional */ 325 326 /* 327 * Try and initialize the event for this PMU. 328 * 329 * Returns: 330 * -ENOENT -- @event is not for this PMU 331 * 332 * -ENODEV -- @event is for this PMU but PMU not present 333 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 334 * -EINVAL -- @event is for this PMU but @event is not valid 335 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 336 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 337 * 338 * 0 -- @event is for this PMU and valid 339 * 340 * Other error return values are allowed. 341 */ 342 int (*event_init) (struct perf_event *event); 343 344 /* 345 * Notification that the event was mapped or unmapped. Called 346 * in the context of the mapping task. 347 */ 348 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 349 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 350 351 /* 352 * Flags for ->add()/->del()/ ->start()/->stop(). There are 353 * matching hw_perf_event::state flags. 354 */ 355 #define PERF_EF_START 0x01 /* start the counter when adding */ 356 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 357 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 358 359 /* 360 * Adds/Removes a counter to/from the PMU, can be done inside a 361 * transaction, see the ->*_txn() methods. 362 * 363 * The add/del callbacks will reserve all hardware resources required 364 * to service the event, this includes any counter constraint 365 * scheduling etc. 366 * 367 * Called with IRQs disabled and the PMU disabled on the CPU the event 368 * is on. 369 * 370 * ->add() called without PERF_EF_START should result in the same state 371 * as ->add() followed by ->stop(). 372 * 373 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 374 * ->stop() that must deal with already being stopped without 375 * PERF_EF_UPDATE. 376 */ 377 int (*add) (struct perf_event *event, int flags); 378 void (*del) (struct perf_event *event, int flags); 379 380 /* 381 * Starts/Stops a counter present on the PMU. 382 * 383 * The PMI handler should stop the counter when perf_event_overflow() 384 * returns !0. ->start() will be used to continue. 385 * 386 * Also used to change the sample period. 387 * 388 * Called with IRQs disabled and the PMU disabled on the CPU the event 389 * is on -- will be called from NMI context with the PMU generates 390 * NMIs. 391 * 392 * ->stop() with PERF_EF_UPDATE will read the counter and update 393 * period/count values like ->read() would. 394 * 395 * ->start() with PERF_EF_RELOAD will reprogram the counter 396 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 397 */ 398 void (*start) (struct perf_event *event, int flags); 399 void (*stop) (struct perf_event *event, int flags); 400 401 /* 402 * Updates the counter value of the event. 403 * 404 * For sampling capable PMUs this will also update the software period 405 * hw_perf_event::period_left field. 406 */ 407 void (*read) (struct perf_event *event); 408 409 /* 410 * Group events scheduling is treated as a transaction, add 411 * group events as a whole and perform one schedulability test. 412 * If the test fails, roll back the whole group 413 * 414 * Start the transaction, after this ->add() doesn't need to 415 * do schedulability tests. 416 * 417 * Optional. 418 */ 419 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 420 /* 421 * If ->start_txn() disabled the ->add() schedulability test 422 * then ->commit_txn() is required to perform one. On success 423 * the transaction is closed. On error the transaction is kept 424 * open until ->cancel_txn() is called. 425 * 426 * Optional. 427 */ 428 int (*commit_txn) (struct pmu *pmu); 429 /* 430 * Will cancel the transaction, assumes ->del() is called 431 * for each successful ->add() during the transaction. 432 * 433 * Optional. 434 */ 435 void (*cancel_txn) (struct pmu *pmu); 436 437 /* 438 * Will return the value for perf_event_mmap_page::index for this event, 439 * if no implementation is provided it will default to: event->hw.idx + 1. 440 */ 441 int (*event_idx) (struct perf_event *event); /*optional */ 442 443 /* 444 * context-switches callback 445 */ 446 void (*sched_task) (struct perf_event_context *ctx, 447 bool sched_in); 448 449 /* 450 * Kmem cache of PMU specific data 451 */ 452 struct kmem_cache *task_ctx_cache; 453 454 /* 455 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 456 * can be synchronized using this function. See Intel LBR callstack support 457 * implementation and Perf core context switch handling callbacks for usage 458 * examples. 459 */ 460 void (*swap_task_ctx) (struct perf_event_context *prev, 461 struct perf_event_context *next); 462 /* optional */ 463 464 /* 465 * Set up pmu-private data structures for an AUX area 466 */ 467 void *(*setup_aux) (struct perf_event *event, void **pages, 468 int nr_pages, bool overwrite); 469 /* optional */ 470 471 /* 472 * Free pmu-private AUX data structures 473 */ 474 void (*free_aux) (void *aux); /* optional */ 475 476 /* 477 * Take a snapshot of the AUX buffer without touching the event 478 * state, so that preempting ->start()/->stop() callbacks does 479 * not interfere with their logic. Called in PMI context. 480 * 481 * Returns the size of AUX data copied to the output handle. 482 * 483 * Optional. 484 */ 485 long (*snapshot_aux) (struct perf_event *event, 486 struct perf_output_handle *handle, 487 unsigned long size); 488 489 /* 490 * Validate address range filters: make sure the HW supports the 491 * requested configuration and number of filters; return 0 if the 492 * supplied filters are valid, -errno otherwise. 493 * 494 * Runs in the context of the ioctl()ing process and is not serialized 495 * with the rest of the PMU callbacks. 496 */ 497 int (*addr_filters_validate) (struct list_head *filters); 498 /* optional */ 499 500 /* 501 * Synchronize address range filter configuration: 502 * translate hw-agnostic filters into hardware configuration in 503 * event::hw::addr_filters. 504 * 505 * Runs as a part of filter sync sequence that is done in ->start() 506 * callback by calling perf_event_addr_filters_sync(). 507 * 508 * May (and should) traverse event::addr_filters::list, for which its 509 * caller provides necessary serialization. 510 */ 511 void (*addr_filters_sync) (struct perf_event *event); 512 /* optional */ 513 514 /* 515 * Check if event can be used for aux_output purposes for 516 * events of this PMU. 517 * 518 * Runs from perf_event_open(). Should return 0 for "no match" 519 * or non-zero for "match". 520 */ 521 int (*aux_output_match) (struct perf_event *event); 522 /* optional */ 523 524 /* 525 * Filter events for PMU-specific reasons. 526 */ 527 int (*filter_match) (struct perf_event *event); /* optional */ 528 529 /* 530 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 531 */ 532 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 533 }; 534 535 enum perf_addr_filter_action_t { 536 PERF_ADDR_FILTER_ACTION_STOP = 0, 537 PERF_ADDR_FILTER_ACTION_START, 538 PERF_ADDR_FILTER_ACTION_FILTER, 539 }; 540 541 /** 542 * struct perf_addr_filter - address range filter definition 543 * @entry: event's filter list linkage 544 * @path: object file's path for file-based filters 545 * @offset: filter range offset 546 * @size: filter range size (size==0 means single address trigger) 547 * @action: filter/start/stop 548 * 549 * This is a hardware-agnostic filter configuration as specified by the user. 550 */ 551 struct perf_addr_filter { 552 struct list_head entry; 553 struct path path; 554 unsigned long offset; 555 unsigned long size; 556 enum perf_addr_filter_action_t action; 557 }; 558 559 /** 560 * struct perf_addr_filters_head - container for address range filters 561 * @list: list of filters for this event 562 * @lock: spinlock that serializes accesses to the @list and event's 563 * (and its children's) filter generations. 564 * @nr_file_filters: number of file-based filters 565 * 566 * A child event will use parent's @list (and therefore @lock), so they are 567 * bundled together; see perf_event_addr_filters(). 568 */ 569 struct perf_addr_filters_head { 570 struct list_head list; 571 raw_spinlock_t lock; 572 unsigned int nr_file_filters; 573 }; 574 575 struct perf_addr_filter_range { 576 unsigned long start; 577 unsigned long size; 578 }; 579 580 /** 581 * enum perf_event_state - the states of an event: 582 */ 583 enum perf_event_state { 584 PERF_EVENT_STATE_DEAD = -4, 585 PERF_EVENT_STATE_EXIT = -3, 586 PERF_EVENT_STATE_ERROR = -2, 587 PERF_EVENT_STATE_OFF = -1, 588 PERF_EVENT_STATE_INACTIVE = 0, 589 PERF_EVENT_STATE_ACTIVE = 1, 590 }; 591 592 struct file; 593 struct perf_sample_data; 594 595 typedef void (*perf_overflow_handler_t)(struct perf_event *, 596 struct perf_sample_data *, 597 struct pt_regs *regs); 598 599 /* 600 * Event capabilities. For event_caps and groups caps. 601 * 602 * PERF_EV_CAP_SOFTWARE: Is a software event. 603 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 604 * from any CPU in the package where it is active. 605 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 606 * cannot be a group leader. If an event with this flag is detached from the 607 * group it is scheduled out and moved into an unrecoverable ERROR state. 608 */ 609 #define PERF_EV_CAP_SOFTWARE BIT(0) 610 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 611 #define PERF_EV_CAP_SIBLING BIT(2) 612 613 #define SWEVENT_HLIST_BITS 8 614 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 615 616 struct swevent_hlist { 617 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 618 struct rcu_head rcu_head; 619 }; 620 621 #define PERF_ATTACH_CONTEXT 0x01 622 #define PERF_ATTACH_GROUP 0x02 623 #define PERF_ATTACH_TASK 0x04 624 #define PERF_ATTACH_TASK_DATA 0x08 625 #define PERF_ATTACH_ITRACE 0x10 626 #define PERF_ATTACH_SCHED_CB 0x20 627 #define PERF_ATTACH_CHILD 0x40 628 629 struct bpf_prog; 630 struct perf_cgroup; 631 struct perf_buffer; 632 633 struct pmu_event_list { 634 raw_spinlock_t lock; 635 struct list_head list; 636 }; 637 638 /* 639 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 640 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 641 * safe lock, and is only held by the CPU doing the modification, having IRQs 642 * disabled is sufficient since it will hold-off the IPIs. 643 */ 644 #ifdef CONFIG_PROVE_LOCKING 645 #define lockdep_assert_event_ctx(event) \ 646 WARN_ON_ONCE(__lockdep_enabled && \ 647 (this_cpu_read(hardirqs_enabled) && \ 648 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 649 #else 650 #define lockdep_assert_event_ctx(event) 651 #endif 652 653 #define for_each_sibling_event(sibling, event) \ 654 lockdep_assert_event_ctx(event); \ 655 if ((event)->group_leader == (event)) \ 656 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 657 658 /** 659 * struct perf_event - performance event kernel representation: 660 */ 661 struct perf_event { 662 #ifdef CONFIG_PERF_EVENTS 663 /* 664 * entry onto perf_event_context::event_list; 665 * modifications require ctx->lock 666 * RCU safe iterations. 667 */ 668 struct list_head event_entry; 669 670 /* 671 * Locked for modification by both ctx->mutex and ctx->lock; holding 672 * either sufficies for read. 673 */ 674 struct list_head sibling_list; 675 struct list_head active_list; 676 /* 677 * Node on the pinned or flexible tree located at the event context; 678 */ 679 struct rb_node group_node; 680 u64 group_index; 681 /* 682 * We need storage to track the entries in perf_pmu_migrate_context; we 683 * cannot use the event_entry because of RCU and we want to keep the 684 * group in tact which avoids us using the other two entries. 685 */ 686 struct list_head migrate_entry; 687 688 struct hlist_node hlist_entry; 689 struct list_head active_entry; 690 int nr_siblings; 691 692 /* Not serialized. Only written during event initialization. */ 693 int event_caps; 694 /* The cumulative AND of all event_caps for events in this group. */ 695 int group_caps; 696 697 struct perf_event *group_leader; 698 struct pmu *pmu; 699 void *pmu_private; 700 701 enum perf_event_state state; 702 unsigned int attach_state; 703 local64_t count; 704 atomic64_t child_count; 705 706 /* 707 * These are the total time in nanoseconds that the event 708 * has been enabled (i.e. eligible to run, and the task has 709 * been scheduled in, if this is a per-task event) 710 * and running (scheduled onto the CPU), respectively. 711 */ 712 u64 total_time_enabled; 713 u64 total_time_running; 714 u64 tstamp; 715 716 struct perf_event_attr attr; 717 u16 header_size; 718 u16 id_header_size; 719 u16 read_size; 720 struct hw_perf_event hw; 721 722 struct perf_event_context *ctx; 723 atomic_long_t refcount; 724 725 /* 726 * These accumulate total time (in nanoseconds) that children 727 * events have been enabled and running, respectively. 728 */ 729 atomic64_t child_total_time_enabled; 730 atomic64_t child_total_time_running; 731 732 /* 733 * Protect attach/detach and child_list: 734 */ 735 struct mutex child_mutex; 736 struct list_head child_list; 737 struct perf_event *parent; 738 739 int oncpu; 740 int cpu; 741 742 struct list_head owner_entry; 743 struct task_struct *owner; 744 745 /* mmap bits */ 746 struct mutex mmap_mutex; 747 atomic_t mmap_count; 748 749 struct perf_buffer *rb; 750 struct list_head rb_entry; 751 unsigned long rcu_batches; 752 int rcu_pending; 753 754 /* poll related */ 755 wait_queue_head_t waitq; 756 struct fasync_struct *fasync; 757 758 /* delayed work for NMIs and such */ 759 int pending_wakeup; 760 int pending_kill; 761 int pending_disable; 762 unsigned long pending_addr; /* SIGTRAP */ 763 struct irq_work pending; 764 765 atomic_t event_limit; 766 767 /* address range filters */ 768 struct perf_addr_filters_head addr_filters; 769 /* vma address array for file-based filders */ 770 struct perf_addr_filter_range *addr_filter_ranges; 771 unsigned long addr_filters_gen; 772 773 /* for aux_output events */ 774 struct perf_event *aux_event; 775 776 void (*destroy)(struct perf_event *); 777 struct rcu_head rcu_head; 778 779 struct pid_namespace *ns; 780 u64 id; 781 782 atomic64_t lost_samples; 783 784 u64 (*clock)(void); 785 perf_overflow_handler_t overflow_handler; 786 void *overflow_handler_context; 787 #ifdef CONFIG_BPF_SYSCALL 788 perf_overflow_handler_t orig_overflow_handler; 789 struct bpf_prog *prog; 790 u64 bpf_cookie; 791 #endif 792 793 #ifdef CONFIG_EVENT_TRACING 794 struct trace_event_call *tp_event; 795 struct event_filter *filter; 796 #ifdef CONFIG_FUNCTION_TRACER 797 struct ftrace_ops ftrace_ops; 798 #endif 799 #endif 800 801 #ifdef CONFIG_CGROUP_PERF 802 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 803 #endif 804 805 #ifdef CONFIG_SECURITY 806 void *security; 807 #endif 808 struct list_head sb_list; 809 #endif /* CONFIG_PERF_EVENTS */ 810 }; 811 812 813 struct perf_event_groups { 814 struct rb_root tree; 815 u64 index; 816 }; 817 818 /** 819 * struct perf_event_context - event context structure 820 * 821 * Used as a container for task events and CPU events as well: 822 */ 823 struct perf_event_context { 824 struct pmu *pmu; 825 /* 826 * Protect the states of the events in the list, 827 * nr_active, and the list: 828 */ 829 raw_spinlock_t lock; 830 /* 831 * Protect the list of events. Locking either mutex or lock 832 * is sufficient to ensure the list doesn't change; to change 833 * the list you need to lock both the mutex and the spinlock. 834 */ 835 struct mutex mutex; 836 837 struct list_head active_ctx_list; 838 struct perf_event_groups pinned_groups; 839 struct perf_event_groups flexible_groups; 840 struct list_head event_list; 841 842 struct list_head pinned_active; 843 struct list_head flexible_active; 844 845 int nr_events; 846 int nr_active; 847 int nr_user; 848 int is_active; 849 int nr_stat; 850 int nr_freq; 851 int rotate_disable; 852 /* 853 * Set when nr_events != nr_active, except tolerant to events not 854 * necessary to be active due to scheduling constraints, such as cgroups. 855 */ 856 int rotate_necessary; 857 refcount_t refcount; 858 struct task_struct *task; 859 860 /* 861 * Context clock, runs when context enabled. 862 */ 863 u64 time; 864 u64 timestamp; 865 u64 timeoffset; 866 867 /* 868 * These fields let us detect when two contexts have both 869 * been cloned (inherited) from a common ancestor. 870 */ 871 struct perf_event_context *parent_ctx; 872 u64 parent_gen; 873 u64 generation; 874 int pin_count; 875 #ifdef CONFIG_CGROUP_PERF 876 int nr_cgroups; /* cgroup evts */ 877 #endif 878 void *task_ctx_data; /* pmu specific data */ 879 struct rcu_head rcu_head; 880 }; 881 882 /* 883 * Number of contexts where an event can trigger: 884 * task, softirq, hardirq, nmi. 885 */ 886 #define PERF_NR_CONTEXTS 4 887 888 /** 889 * struct perf_cpu_context - per cpu event context structure 890 */ 891 struct perf_cpu_context { 892 struct perf_event_context ctx; 893 struct perf_event_context *task_ctx; 894 int active_oncpu; 895 int exclusive; 896 897 raw_spinlock_t hrtimer_lock; 898 struct hrtimer hrtimer; 899 ktime_t hrtimer_interval; 900 unsigned int hrtimer_active; 901 902 #ifdef CONFIG_CGROUP_PERF 903 struct perf_cgroup *cgrp; 904 struct list_head cgrp_cpuctx_entry; 905 #endif 906 907 struct list_head sched_cb_entry; 908 int sched_cb_usage; 909 910 int online; 911 /* 912 * Per-CPU storage for iterators used in visit_groups_merge. The default 913 * storage is of size 2 to hold the CPU and any CPU event iterators. 914 */ 915 int heap_size; 916 struct perf_event **heap; 917 struct perf_event *heap_default[2]; 918 }; 919 920 struct perf_output_handle { 921 struct perf_event *event; 922 struct perf_buffer *rb; 923 unsigned long wakeup; 924 unsigned long size; 925 u64 aux_flags; 926 union { 927 void *addr; 928 unsigned long head; 929 }; 930 int page; 931 }; 932 933 struct bpf_perf_event_data_kern { 934 bpf_user_pt_regs_t *regs; 935 struct perf_sample_data *data; 936 struct perf_event *event; 937 }; 938 939 #ifdef CONFIG_CGROUP_PERF 940 941 /* 942 * perf_cgroup_info keeps track of time_enabled for a cgroup. 943 * This is a per-cpu dynamically allocated data structure. 944 */ 945 struct perf_cgroup_info { 946 u64 time; 947 u64 timestamp; 948 u64 timeoffset; 949 int active; 950 }; 951 952 struct perf_cgroup { 953 struct cgroup_subsys_state css; 954 struct perf_cgroup_info __percpu *info; 955 }; 956 957 /* 958 * Must ensure cgroup is pinned (css_get) before calling 959 * this function. In other words, we cannot call this function 960 * if there is no cgroup event for the current CPU context. 961 */ 962 static inline struct perf_cgroup * 963 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 964 { 965 return container_of(task_css_check(task, perf_event_cgrp_id, 966 ctx ? lockdep_is_held(&ctx->lock) 967 : true), 968 struct perf_cgroup, css); 969 } 970 #endif /* CONFIG_CGROUP_PERF */ 971 972 #ifdef CONFIG_PERF_EVENTS 973 974 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 975 struct perf_event *event); 976 extern void perf_aux_output_end(struct perf_output_handle *handle, 977 unsigned long size); 978 extern int perf_aux_output_skip(struct perf_output_handle *handle, 979 unsigned long size); 980 extern void *perf_get_aux(struct perf_output_handle *handle); 981 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 982 extern void perf_event_itrace_started(struct perf_event *event); 983 984 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 985 extern void perf_pmu_unregister(struct pmu *pmu); 986 987 extern void __perf_event_task_sched_in(struct task_struct *prev, 988 struct task_struct *task); 989 extern void __perf_event_task_sched_out(struct task_struct *prev, 990 struct task_struct *next); 991 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 992 extern void perf_event_exit_task(struct task_struct *child); 993 extern void perf_event_free_task(struct task_struct *task); 994 extern void perf_event_delayed_put(struct task_struct *task); 995 extern struct file *perf_event_get(unsigned int fd); 996 extern const struct perf_event *perf_get_event(struct file *file); 997 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 998 extern void perf_event_print_debug(void); 999 extern void perf_pmu_disable(struct pmu *pmu); 1000 extern void perf_pmu_enable(struct pmu *pmu); 1001 extern void perf_sched_cb_dec(struct pmu *pmu); 1002 extern void perf_sched_cb_inc(struct pmu *pmu); 1003 extern int perf_event_task_disable(void); 1004 extern int perf_event_task_enable(void); 1005 1006 extern void perf_pmu_resched(struct pmu *pmu); 1007 1008 extern int perf_event_refresh(struct perf_event *event, int refresh); 1009 extern void perf_event_update_userpage(struct perf_event *event); 1010 extern int perf_event_release_kernel(struct perf_event *event); 1011 extern struct perf_event * 1012 perf_event_create_kernel_counter(struct perf_event_attr *attr, 1013 int cpu, 1014 struct task_struct *task, 1015 perf_overflow_handler_t callback, 1016 void *context); 1017 extern void perf_pmu_migrate_context(struct pmu *pmu, 1018 int src_cpu, int dst_cpu); 1019 int perf_event_read_local(struct perf_event *event, u64 *value, 1020 u64 *enabled, u64 *running); 1021 extern u64 perf_event_read_value(struct perf_event *event, 1022 u64 *enabled, u64 *running); 1023 1024 1025 struct perf_sample_data { 1026 /* 1027 * Fields set by perf_sample_data_init(), group so as to 1028 * minimize the cachelines touched. 1029 */ 1030 u64 sample_flags; 1031 u64 period; 1032 1033 /* 1034 * The other fields, optionally {set,used} by 1035 * perf_{prepare,output}_sample(). 1036 */ 1037 struct perf_branch_stack *br_stack; 1038 union perf_sample_weight weight; 1039 union perf_mem_data_src data_src; 1040 u64 txn; 1041 u64 addr; 1042 struct perf_raw_record *raw; 1043 1044 u64 type; 1045 u64 ip; 1046 struct { 1047 u32 pid; 1048 u32 tid; 1049 } tid_entry; 1050 u64 time; 1051 u64 id; 1052 u64 stream_id; 1053 struct { 1054 u32 cpu; 1055 u32 reserved; 1056 } cpu_entry; 1057 struct perf_callchain_entry *callchain; 1058 u64 aux_size; 1059 1060 struct perf_regs regs_user; 1061 struct perf_regs regs_intr; 1062 u64 stack_user_size; 1063 1064 u64 phys_addr; 1065 u64 cgroup; 1066 u64 data_page_size; 1067 u64 code_page_size; 1068 } ____cacheline_aligned; 1069 1070 /* default value for data source */ 1071 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1072 PERF_MEM_S(LVL, NA) |\ 1073 PERF_MEM_S(SNOOP, NA) |\ 1074 PERF_MEM_S(LOCK, NA) |\ 1075 PERF_MEM_S(TLB, NA)) 1076 1077 static inline void perf_sample_data_init(struct perf_sample_data *data, 1078 u64 addr, u64 period) 1079 { 1080 /* remaining struct members initialized in perf_prepare_sample() */ 1081 data->sample_flags = PERF_SAMPLE_PERIOD; 1082 data->period = period; 1083 1084 if (addr) { 1085 data->addr = addr; 1086 data->sample_flags |= PERF_SAMPLE_ADDR; 1087 } 1088 } 1089 1090 /* 1091 * Clear all bitfields in the perf_branch_entry. 1092 * The to and from fields are not cleared because they are 1093 * systematically modified by caller. 1094 */ 1095 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1096 { 1097 br->mispred = 0; 1098 br->predicted = 0; 1099 br->in_tx = 0; 1100 br->abort = 0; 1101 br->cycles = 0; 1102 br->type = 0; 1103 br->spec = PERF_BR_SPEC_NA; 1104 br->reserved = 0; 1105 } 1106 1107 extern void perf_output_sample(struct perf_output_handle *handle, 1108 struct perf_event_header *header, 1109 struct perf_sample_data *data, 1110 struct perf_event *event); 1111 extern void perf_prepare_sample(struct perf_event_header *header, 1112 struct perf_sample_data *data, 1113 struct perf_event *event, 1114 struct pt_regs *regs); 1115 1116 extern int perf_event_overflow(struct perf_event *event, 1117 struct perf_sample_data *data, 1118 struct pt_regs *regs); 1119 1120 extern void perf_event_output_forward(struct perf_event *event, 1121 struct perf_sample_data *data, 1122 struct pt_regs *regs); 1123 extern void perf_event_output_backward(struct perf_event *event, 1124 struct perf_sample_data *data, 1125 struct pt_regs *regs); 1126 extern int perf_event_output(struct perf_event *event, 1127 struct perf_sample_data *data, 1128 struct pt_regs *regs); 1129 1130 static inline bool 1131 is_default_overflow_handler(struct perf_event *event) 1132 { 1133 if (likely(event->overflow_handler == perf_event_output_forward)) 1134 return true; 1135 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1136 return true; 1137 return false; 1138 } 1139 1140 extern void 1141 perf_event_header__init_id(struct perf_event_header *header, 1142 struct perf_sample_data *data, 1143 struct perf_event *event); 1144 extern void 1145 perf_event__output_id_sample(struct perf_event *event, 1146 struct perf_output_handle *handle, 1147 struct perf_sample_data *sample); 1148 1149 extern void 1150 perf_log_lost_samples(struct perf_event *event, u64 lost); 1151 1152 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1153 { 1154 struct perf_event_attr *attr = &event->attr; 1155 1156 return attr->exclude_idle || attr->exclude_user || 1157 attr->exclude_kernel || attr->exclude_hv || 1158 attr->exclude_guest || attr->exclude_host; 1159 } 1160 1161 static inline bool is_sampling_event(struct perf_event *event) 1162 { 1163 return event->attr.sample_period != 0; 1164 } 1165 1166 /* 1167 * Return 1 for a software event, 0 for a hardware event 1168 */ 1169 static inline int is_software_event(struct perf_event *event) 1170 { 1171 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1172 } 1173 1174 /* 1175 * Return 1 for event in sw context, 0 for event in hw context 1176 */ 1177 static inline int in_software_context(struct perf_event *event) 1178 { 1179 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1180 } 1181 1182 static inline int is_exclusive_pmu(struct pmu *pmu) 1183 { 1184 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1185 } 1186 1187 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1188 1189 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1190 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1191 1192 #ifndef perf_arch_fetch_caller_regs 1193 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1194 #endif 1195 1196 /* 1197 * When generating a perf sample in-line, instead of from an interrupt / 1198 * exception, we lack a pt_regs. This is typically used from software events 1199 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1200 * 1201 * We typically don't need a full set, but (for x86) do require: 1202 * - ip for PERF_SAMPLE_IP 1203 * - cs for user_mode() tests 1204 * - sp for PERF_SAMPLE_CALLCHAIN 1205 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1206 * 1207 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1208 * things like PERF_SAMPLE_REGS_INTR. 1209 */ 1210 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1211 { 1212 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1213 } 1214 1215 static __always_inline void 1216 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1217 { 1218 if (static_key_false(&perf_swevent_enabled[event_id])) 1219 __perf_sw_event(event_id, nr, regs, addr); 1220 } 1221 1222 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1223 1224 /* 1225 * 'Special' version for the scheduler, it hard assumes no recursion, 1226 * which is guaranteed by us not actually scheduling inside other swevents 1227 * because those disable preemption. 1228 */ 1229 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1230 { 1231 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1232 1233 perf_fetch_caller_regs(regs); 1234 ___perf_sw_event(event_id, nr, regs, addr); 1235 } 1236 1237 extern struct static_key_false perf_sched_events; 1238 1239 static __always_inline bool __perf_sw_enabled(int swevt) 1240 { 1241 return static_key_false(&perf_swevent_enabled[swevt]); 1242 } 1243 1244 static inline void perf_event_task_migrate(struct task_struct *task) 1245 { 1246 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1247 task->sched_migrated = 1; 1248 } 1249 1250 static inline void perf_event_task_sched_in(struct task_struct *prev, 1251 struct task_struct *task) 1252 { 1253 if (static_branch_unlikely(&perf_sched_events)) 1254 __perf_event_task_sched_in(prev, task); 1255 1256 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1257 task->sched_migrated) { 1258 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1259 task->sched_migrated = 0; 1260 } 1261 } 1262 1263 static inline void perf_event_task_sched_out(struct task_struct *prev, 1264 struct task_struct *next) 1265 { 1266 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1267 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1268 1269 #ifdef CONFIG_CGROUP_PERF 1270 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1271 perf_cgroup_from_task(prev, NULL) != 1272 perf_cgroup_from_task(next, NULL)) 1273 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1274 #endif 1275 1276 if (static_branch_unlikely(&perf_sched_events)) 1277 __perf_event_task_sched_out(prev, next); 1278 } 1279 1280 extern void perf_event_mmap(struct vm_area_struct *vma); 1281 1282 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1283 bool unregister, const char *sym); 1284 extern void perf_event_bpf_event(struct bpf_prog *prog, 1285 enum perf_bpf_event_type type, 1286 u16 flags); 1287 1288 #ifdef CONFIG_GUEST_PERF_EVENTS 1289 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1290 1291 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1292 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1293 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1294 1295 static inline unsigned int perf_guest_state(void) 1296 { 1297 return static_call(__perf_guest_state)(); 1298 } 1299 static inline unsigned long perf_guest_get_ip(void) 1300 { 1301 return static_call(__perf_guest_get_ip)(); 1302 } 1303 static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1304 { 1305 return static_call(__perf_guest_handle_intel_pt_intr)(); 1306 } 1307 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1308 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1309 #else 1310 static inline unsigned int perf_guest_state(void) { return 0; } 1311 static inline unsigned long perf_guest_get_ip(void) { return 0; } 1312 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1313 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1314 1315 extern void perf_event_exec(void); 1316 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1317 extern void perf_event_namespaces(struct task_struct *tsk); 1318 extern void perf_event_fork(struct task_struct *tsk); 1319 extern void perf_event_text_poke(const void *addr, 1320 const void *old_bytes, size_t old_len, 1321 const void *new_bytes, size_t new_len); 1322 1323 /* Callchains */ 1324 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1325 1326 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1327 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1328 extern struct perf_callchain_entry * 1329 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1330 u32 max_stack, bool crosstask, bool add_mark); 1331 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1332 extern int get_callchain_buffers(int max_stack); 1333 extern void put_callchain_buffers(void); 1334 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1335 extern void put_callchain_entry(int rctx); 1336 1337 extern int sysctl_perf_event_max_stack; 1338 extern int sysctl_perf_event_max_contexts_per_stack; 1339 1340 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1341 { 1342 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1343 struct perf_callchain_entry *entry = ctx->entry; 1344 entry->ip[entry->nr++] = ip; 1345 ++ctx->contexts; 1346 return 0; 1347 } else { 1348 ctx->contexts_maxed = true; 1349 return -1; /* no more room, stop walking the stack */ 1350 } 1351 } 1352 1353 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1354 { 1355 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1356 struct perf_callchain_entry *entry = ctx->entry; 1357 entry->ip[entry->nr++] = ip; 1358 ++ctx->nr; 1359 return 0; 1360 } else { 1361 return -1; /* no more room, stop walking the stack */ 1362 } 1363 } 1364 1365 extern int sysctl_perf_event_paranoid; 1366 extern int sysctl_perf_event_mlock; 1367 extern int sysctl_perf_event_sample_rate; 1368 extern int sysctl_perf_cpu_time_max_percent; 1369 1370 extern void perf_sample_event_took(u64 sample_len_ns); 1371 1372 int perf_proc_update_handler(struct ctl_table *table, int write, 1373 void *buffer, size_t *lenp, loff_t *ppos); 1374 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1375 void *buffer, size_t *lenp, loff_t *ppos); 1376 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1377 void *buffer, size_t *lenp, loff_t *ppos); 1378 1379 /* Access to perf_event_open(2) syscall. */ 1380 #define PERF_SECURITY_OPEN 0 1381 1382 /* Finer grained perf_event_open(2) access control. */ 1383 #define PERF_SECURITY_CPU 1 1384 #define PERF_SECURITY_KERNEL 2 1385 #define PERF_SECURITY_TRACEPOINT 3 1386 1387 static inline int perf_is_paranoid(void) 1388 { 1389 return sysctl_perf_event_paranoid > -1; 1390 } 1391 1392 static inline int perf_allow_kernel(struct perf_event_attr *attr) 1393 { 1394 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1395 return -EACCES; 1396 1397 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1398 } 1399 1400 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1401 { 1402 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1403 return -EACCES; 1404 1405 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1406 } 1407 1408 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1409 { 1410 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1411 return -EPERM; 1412 1413 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1414 } 1415 1416 extern void perf_event_init(void); 1417 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1418 int entry_size, struct pt_regs *regs, 1419 struct hlist_head *head, int rctx, 1420 struct task_struct *task); 1421 extern void perf_bp_event(struct perf_event *event, void *data); 1422 1423 #ifndef perf_misc_flags 1424 # define perf_misc_flags(regs) \ 1425 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1426 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1427 #endif 1428 #ifndef perf_arch_bpf_user_pt_regs 1429 # define perf_arch_bpf_user_pt_regs(regs) regs 1430 #endif 1431 1432 static inline bool has_branch_stack(struct perf_event *event) 1433 { 1434 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1435 } 1436 1437 static inline bool needs_branch_stack(struct perf_event *event) 1438 { 1439 return event->attr.branch_sample_type != 0; 1440 } 1441 1442 static inline bool has_aux(struct perf_event *event) 1443 { 1444 return event->pmu->setup_aux; 1445 } 1446 1447 static inline bool is_write_backward(struct perf_event *event) 1448 { 1449 return !!event->attr.write_backward; 1450 } 1451 1452 static inline bool has_addr_filter(struct perf_event *event) 1453 { 1454 return event->pmu->nr_addr_filters; 1455 } 1456 1457 /* 1458 * An inherited event uses parent's filters 1459 */ 1460 static inline struct perf_addr_filters_head * 1461 perf_event_addr_filters(struct perf_event *event) 1462 { 1463 struct perf_addr_filters_head *ifh = &event->addr_filters; 1464 1465 if (event->parent) 1466 ifh = &event->parent->addr_filters; 1467 1468 return ifh; 1469 } 1470 1471 extern void perf_event_addr_filters_sync(struct perf_event *event); 1472 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1473 1474 extern int perf_output_begin(struct perf_output_handle *handle, 1475 struct perf_sample_data *data, 1476 struct perf_event *event, unsigned int size); 1477 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1478 struct perf_sample_data *data, 1479 struct perf_event *event, 1480 unsigned int size); 1481 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1482 struct perf_sample_data *data, 1483 struct perf_event *event, 1484 unsigned int size); 1485 1486 extern void perf_output_end(struct perf_output_handle *handle); 1487 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1488 const void *buf, unsigned int len); 1489 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1490 unsigned int len); 1491 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1492 struct perf_output_handle *handle, 1493 unsigned long from, unsigned long to); 1494 extern int perf_swevent_get_recursion_context(void); 1495 extern void perf_swevent_put_recursion_context(int rctx); 1496 extern u64 perf_swevent_set_period(struct perf_event *event); 1497 extern void perf_event_enable(struct perf_event *event); 1498 extern void perf_event_disable(struct perf_event *event); 1499 extern void perf_event_disable_local(struct perf_event *event); 1500 extern void perf_event_disable_inatomic(struct perf_event *event); 1501 extern void perf_event_task_tick(void); 1502 extern int perf_event_account_interrupt(struct perf_event *event); 1503 extern int perf_event_period(struct perf_event *event, u64 value); 1504 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1505 #else /* !CONFIG_PERF_EVENTS: */ 1506 static inline void * 1507 perf_aux_output_begin(struct perf_output_handle *handle, 1508 struct perf_event *event) { return NULL; } 1509 static inline void 1510 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1511 { } 1512 static inline int 1513 perf_aux_output_skip(struct perf_output_handle *handle, 1514 unsigned long size) { return -EINVAL; } 1515 static inline void * 1516 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1517 static inline void 1518 perf_event_task_migrate(struct task_struct *task) { } 1519 static inline void 1520 perf_event_task_sched_in(struct task_struct *prev, 1521 struct task_struct *task) { } 1522 static inline void 1523 perf_event_task_sched_out(struct task_struct *prev, 1524 struct task_struct *next) { } 1525 static inline int perf_event_init_task(struct task_struct *child, 1526 u64 clone_flags) { return 0; } 1527 static inline void perf_event_exit_task(struct task_struct *child) { } 1528 static inline void perf_event_free_task(struct task_struct *task) { } 1529 static inline void perf_event_delayed_put(struct task_struct *task) { } 1530 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1531 static inline const struct perf_event *perf_get_event(struct file *file) 1532 { 1533 return ERR_PTR(-EINVAL); 1534 } 1535 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1536 { 1537 return ERR_PTR(-EINVAL); 1538 } 1539 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1540 u64 *enabled, u64 *running) 1541 { 1542 return -EINVAL; 1543 } 1544 static inline void perf_event_print_debug(void) { } 1545 static inline int perf_event_task_disable(void) { return -EINVAL; } 1546 static inline int perf_event_task_enable(void) { return -EINVAL; } 1547 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1548 { 1549 return -EINVAL; 1550 } 1551 1552 static inline void 1553 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1554 static inline void 1555 perf_bp_event(struct perf_event *event, void *data) { } 1556 1557 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1558 1559 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1560 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1561 bool unregister, const char *sym) { } 1562 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1563 enum perf_bpf_event_type type, 1564 u16 flags) { } 1565 static inline void perf_event_exec(void) { } 1566 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1567 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1568 static inline void perf_event_fork(struct task_struct *tsk) { } 1569 static inline void perf_event_text_poke(const void *addr, 1570 const void *old_bytes, 1571 size_t old_len, 1572 const void *new_bytes, 1573 size_t new_len) { } 1574 static inline void perf_event_init(void) { } 1575 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1576 static inline void perf_swevent_put_recursion_context(int rctx) { } 1577 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1578 static inline void perf_event_enable(struct perf_event *event) { } 1579 static inline void perf_event_disable(struct perf_event *event) { } 1580 static inline int __perf_event_disable(void *info) { return -1; } 1581 static inline void perf_event_task_tick(void) { } 1582 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1583 static inline int perf_event_period(struct perf_event *event, u64 value) 1584 { 1585 return -EINVAL; 1586 } 1587 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1588 { 1589 return 0; 1590 } 1591 #endif 1592 1593 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1594 extern void perf_restore_debug_store(void); 1595 #else 1596 static inline void perf_restore_debug_store(void) { } 1597 #endif 1598 1599 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1600 { 1601 return frag->pad < sizeof(u64); 1602 } 1603 1604 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1605 1606 struct perf_pmu_events_attr { 1607 struct device_attribute attr; 1608 u64 id; 1609 const char *event_str; 1610 }; 1611 1612 struct perf_pmu_events_ht_attr { 1613 struct device_attribute attr; 1614 u64 id; 1615 const char *event_str_ht; 1616 const char *event_str_noht; 1617 }; 1618 1619 struct perf_pmu_events_hybrid_attr { 1620 struct device_attribute attr; 1621 u64 id; 1622 const char *event_str; 1623 u64 pmu_type; 1624 }; 1625 1626 struct perf_pmu_format_hybrid_attr { 1627 struct device_attribute attr; 1628 u64 pmu_type; 1629 }; 1630 1631 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1632 char *page); 1633 1634 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1635 static struct perf_pmu_events_attr _var = { \ 1636 .attr = __ATTR(_name, 0444, _show, NULL), \ 1637 .id = _id, \ 1638 }; 1639 1640 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1641 static struct perf_pmu_events_attr _var = { \ 1642 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1643 .id = 0, \ 1644 .event_str = _str, \ 1645 }; 1646 1647 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1648 (&((struct perf_pmu_events_attr[]) { \ 1649 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1650 .id = _id, } \ 1651 })[0].attr.attr) 1652 1653 #define PMU_FORMAT_ATTR(_name, _format) \ 1654 static ssize_t \ 1655 _name##_show(struct device *dev, \ 1656 struct device_attribute *attr, \ 1657 char *page) \ 1658 { \ 1659 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1660 return sprintf(page, _format "\n"); \ 1661 } \ 1662 \ 1663 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1664 1665 /* Performance counter hotplug functions */ 1666 #ifdef CONFIG_PERF_EVENTS 1667 int perf_event_init_cpu(unsigned int cpu); 1668 int perf_event_exit_cpu(unsigned int cpu); 1669 #else 1670 #define perf_event_init_cpu NULL 1671 #define perf_event_exit_cpu NULL 1672 #endif 1673 1674 extern void __weak arch_perf_update_userpage(struct perf_event *event, 1675 struct perf_event_mmap_page *userpg, 1676 u64 now); 1677 1678 #ifdef CONFIG_MMU 1679 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1680 #endif 1681 1682 /* 1683 * Snapshot branch stack on software events. 1684 * 1685 * Branch stack can be very useful in understanding software events. For 1686 * example, when a long function, e.g. sys_perf_event_open, returns an 1687 * errno, it is not obvious why the function failed. Branch stack could 1688 * provide very helpful information in this type of scenarios. 1689 * 1690 * On software event, it is necessary to stop the hardware branch recorder 1691 * fast. Otherwise, the hardware register/buffer will be flushed with 1692 * entries of the triggering event. Therefore, static call is used to 1693 * stop the hardware recorder. 1694 */ 1695 1696 /* 1697 * cnt is the number of entries allocated for entries. 1698 * Return number of entries copied to . 1699 */ 1700 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1701 unsigned int cnt); 1702 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1703 1704 #ifndef PERF_NEEDS_LOPWR_CB 1705 static inline void perf_lopwr_cb(bool mode) 1706 { 1707 } 1708 #endif 1709 1710 #ifdef CONFIG_PERF_EVENTS 1711 static inline bool branch_sample_no_flags(const struct perf_event *event) 1712 { 1713 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1714 } 1715 1716 static inline bool branch_sample_no_cycles(const struct perf_event *event) 1717 { 1718 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1719 } 1720 1721 static inline bool branch_sample_type(const struct perf_event *event) 1722 { 1723 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1724 } 1725 1726 static inline bool branch_sample_hw_index(const struct perf_event *event) 1727 { 1728 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1729 } 1730 1731 static inline bool branch_sample_priv(const struct perf_event *event) 1732 { 1733 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1734 } 1735 #endif /* CONFIG_PERF_EVENTS */ 1736 #endif /* _LINUX_PERF_EVENT_H */ 1737