xref: /linux-6.15/include/linux/perf_event.h (revision 82d00a93)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61 
62 struct perf_callchain_entry {
63 	__u64				nr;
64 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66 
67 struct perf_callchain_entry_ctx {
68 	struct perf_callchain_entry *entry;
69 	u32			    max_stack;
70 	u32			    nr;
71 	short			    contexts;
72 	bool			    contexts_maxed;
73 };
74 
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 				     unsigned long off, unsigned long len);
77 
78 struct perf_raw_frag {
79 	union {
80 		struct perf_raw_frag	*next;
81 		unsigned long		pad;
82 	};
83 	perf_copy_f			copy;
84 	void				*data;
85 	u32				size;
86 } __packed;
87 
88 struct perf_raw_record {
89 	struct perf_raw_frag		frag;
90 	u32				size;
91 };
92 
93 /*
94  * branch stack layout:
95  *  nr: number of taken branches stored in entries[]
96  *  hw_idx: The low level index of raw branch records
97  *          for the most recent branch.
98  *          -1ULL means invalid/unknown.
99  *
100  * Note that nr can vary from sample to sample
101  * branches (to, from) are stored from most recent
102  * to least recent, i.e., entries[0] contains the most
103  * recent branch.
104  * The entries[] is an abstraction of raw branch records,
105  * which may not be stored in age order in HW, e.g. Intel LBR.
106  * The hw_idx is to expose the low level index of raw
107  * branch record for the most recent branch aka entries[0].
108  * The hw_idx index is between -1 (unknown) and max depth,
109  * which can be retrieved in /sys/devices/cpu/caps/branches.
110  * For the architectures whose raw branch records are
111  * already stored in age order, the hw_idx should be 0.
112  */
113 struct perf_branch_stack {
114 	__u64				nr;
115 	__u64				hw_idx;
116 	struct perf_branch_entry	entries[0];
117 };
118 
119 struct task_struct;
120 
121 /*
122  * extra PMU register associated with an event
123  */
124 struct hw_perf_event_extra {
125 	u64		config;	/* register value */
126 	unsigned int	reg;	/* register address or index */
127 	int		alloc;	/* extra register already allocated */
128 	int		idx;	/* index in shared_regs->regs[] */
129 };
130 
131 /**
132  * struct hw_perf_event - performance event hardware details:
133  */
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
136 	union {
137 		struct { /* hardware */
138 			u64		config;
139 			u64		last_tag;
140 			unsigned long	config_base;
141 			unsigned long	event_base;
142 			int		event_base_rdpmc;
143 			int		idx;
144 			int		last_cpu;
145 			int		flags;
146 
147 			struct hw_perf_event_extra extra_reg;
148 			struct hw_perf_event_extra branch_reg;
149 		};
150 		struct { /* software */
151 			struct hrtimer	hrtimer;
152 		};
153 		struct { /* tracepoint */
154 			/* for tp_event->class */
155 			struct list_head	tp_list;
156 		};
157 		struct { /* amd_power */
158 			u64	pwr_acc;
159 			u64	ptsc;
160 		};
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 		struct { /* breakpoint */
163 			/*
164 			 * Crufty hack to avoid the chicken and egg
165 			 * problem hw_breakpoint has with context
166 			 * creation and event initalization.
167 			 */
168 			struct arch_hw_breakpoint	info;
169 			struct list_head		bp_list;
170 		};
171 #endif
172 		struct { /* amd_iommu */
173 			u8	iommu_bank;
174 			u8	iommu_cntr;
175 			u16	padding;
176 			u64	conf;
177 			u64	conf1;
178 		};
179 	};
180 	/*
181 	 * If the event is a per task event, this will point to the task in
182 	 * question. See the comment in perf_event_alloc().
183 	 */
184 	struct task_struct		*target;
185 
186 	/*
187 	 * PMU would store hardware filter configuration
188 	 * here.
189 	 */
190 	void				*addr_filters;
191 
192 	/* Last sync'ed generation of filters */
193 	unsigned long			addr_filters_gen;
194 
195 /*
196  * hw_perf_event::state flags; used to track the PERF_EF_* state.
197  */
198 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH		0x04
201 
202 	int				state;
203 
204 	/*
205 	 * The last observed hardware counter value, updated with a
206 	 * local64_cmpxchg() such that pmu::read() can be called nested.
207 	 */
208 	local64_t			prev_count;
209 
210 	/*
211 	 * The period to start the next sample with.
212 	 */
213 	u64				sample_period;
214 
215 	/*
216 	 * The period we started this sample with.
217 	 */
218 	u64				last_period;
219 
220 	/*
221 	 * However much is left of the current period; note that this is
222 	 * a full 64bit value and allows for generation of periods longer
223 	 * than hardware might allow.
224 	 */
225 	local64_t			period_left;
226 
227 	/*
228 	 * State for throttling the event, see __perf_event_overflow() and
229 	 * perf_adjust_freq_unthr_context().
230 	 */
231 	u64                             interrupts_seq;
232 	u64				interrupts;
233 
234 	/*
235 	 * State for freq target events, see __perf_event_overflow() and
236 	 * perf_adjust_freq_unthr_context().
237 	 */
238 	u64				freq_time_stamp;
239 	u64				freq_count_stamp;
240 #endif
241 };
242 
243 struct perf_event;
244 
245 /*
246  * Common implementation detail of pmu::{start,commit,cancel}_txn
247  */
248 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
249 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
250 
251 /**
252  * pmu::capabilities flags
253  */
254 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
255 #define PERF_PMU_CAP_NO_NMI			0x02
256 #define PERF_PMU_CAP_AUX_NO_SG			0x04
257 #define PERF_PMU_CAP_EXTENDED_REGS		0x08
258 #define PERF_PMU_CAP_EXCLUSIVE			0x10
259 #define PERF_PMU_CAP_ITRACE			0x20
260 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
261 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
262 #define PERF_PMU_CAP_AUX_OUTPUT			0x100
263 
264 struct perf_output_handle;
265 
266 /**
267  * struct pmu - generic performance monitoring unit
268  */
269 struct pmu {
270 	struct list_head		entry;
271 
272 	struct module			*module;
273 	struct device			*dev;
274 	const struct attribute_group	**attr_groups;
275 	const struct attribute_group	**attr_update;
276 	const char			*name;
277 	int				type;
278 
279 	/*
280 	 * various common per-pmu feature flags
281 	 */
282 	int				capabilities;
283 
284 	int __percpu			*pmu_disable_count;
285 	struct perf_cpu_context __percpu *pmu_cpu_context;
286 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
287 	int				task_ctx_nr;
288 	int				hrtimer_interval_ms;
289 
290 	/* number of address filters this PMU can do */
291 	unsigned int			nr_addr_filters;
292 
293 	/*
294 	 * Fully disable/enable this PMU, can be used to protect from the PMI
295 	 * as well as for lazy/batch writing of the MSRs.
296 	 */
297 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
298 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
299 
300 	/*
301 	 * Try and initialize the event for this PMU.
302 	 *
303 	 * Returns:
304 	 *  -ENOENT	-- @event is not for this PMU
305 	 *
306 	 *  -ENODEV	-- @event is for this PMU but PMU not present
307 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
308 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
309 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
310 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
311 	 *
312 	 *  0		-- @event is for this PMU and valid
313 	 *
314 	 * Other error return values are allowed.
315 	 */
316 	int (*event_init)		(struct perf_event *event);
317 
318 	/*
319 	 * Notification that the event was mapped or unmapped.  Called
320 	 * in the context of the mapping task.
321 	 */
322 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
323 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
324 
325 	/*
326 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
327 	 * matching hw_perf_event::state flags.
328 	 */
329 #define PERF_EF_START	0x01		/* start the counter when adding    */
330 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
331 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
332 
333 	/*
334 	 * Adds/Removes a counter to/from the PMU, can be done inside a
335 	 * transaction, see the ->*_txn() methods.
336 	 *
337 	 * The add/del callbacks will reserve all hardware resources required
338 	 * to service the event, this includes any counter constraint
339 	 * scheduling etc.
340 	 *
341 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
342 	 * is on.
343 	 *
344 	 * ->add() called without PERF_EF_START should result in the same state
345 	 *  as ->add() followed by ->stop().
346 	 *
347 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
348 	 *  ->stop() that must deal with already being stopped without
349 	 *  PERF_EF_UPDATE.
350 	 */
351 	int  (*add)			(struct perf_event *event, int flags);
352 	void (*del)			(struct perf_event *event, int flags);
353 
354 	/*
355 	 * Starts/Stops a counter present on the PMU.
356 	 *
357 	 * The PMI handler should stop the counter when perf_event_overflow()
358 	 * returns !0. ->start() will be used to continue.
359 	 *
360 	 * Also used to change the sample period.
361 	 *
362 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
363 	 * is on -- will be called from NMI context with the PMU generates
364 	 * NMIs.
365 	 *
366 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
367 	 *  period/count values like ->read() would.
368 	 *
369 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
370 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
371 	 */
372 	void (*start)			(struct perf_event *event, int flags);
373 	void (*stop)			(struct perf_event *event, int flags);
374 
375 	/*
376 	 * Updates the counter value of the event.
377 	 *
378 	 * For sampling capable PMUs this will also update the software period
379 	 * hw_perf_event::period_left field.
380 	 */
381 	void (*read)			(struct perf_event *event);
382 
383 	/*
384 	 * Group events scheduling is treated as a transaction, add
385 	 * group events as a whole and perform one schedulability test.
386 	 * If the test fails, roll back the whole group
387 	 *
388 	 * Start the transaction, after this ->add() doesn't need to
389 	 * do schedulability tests.
390 	 *
391 	 * Optional.
392 	 */
393 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
394 	/*
395 	 * If ->start_txn() disabled the ->add() schedulability test
396 	 * then ->commit_txn() is required to perform one. On success
397 	 * the transaction is closed. On error the transaction is kept
398 	 * open until ->cancel_txn() is called.
399 	 *
400 	 * Optional.
401 	 */
402 	int  (*commit_txn)		(struct pmu *pmu);
403 	/*
404 	 * Will cancel the transaction, assumes ->del() is called
405 	 * for each successful ->add() during the transaction.
406 	 *
407 	 * Optional.
408 	 */
409 	void (*cancel_txn)		(struct pmu *pmu);
410 
411 	/*
412 	 * Will return the value for perf_event_mmap_page::index for this event,
413 	 * if no implementation is provided it will default to: event->hw.idx + 1.
414 	 */
415 	int (*event_idx)		(struct perf_event *event); /*optional */
416 
417 	/*
418 	 * context-switches callback
419 	 */
420 	void (*sched_task)		(struct perf_event_context *ctx,
421 					bool sched_in);
422 	/*
423 	 * PMU specific data size
424 	 */
425 	size_t				task_ctx_size;
426 
427 	/*
428 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
429 	 * can be synchronized using this function. See Intel LBR callstack support
430 	 * implementation and Perf core context switch handling callbacks for usage
431 	 * examples.
432 	 */
433 	void (*swap_task_ctx)		(struct perf_event_context *prev,
434 					 struct perf_event_context *next);
435 					/* optional */
436 
437 	/*
438 	 * Set up pmu-private data structures for an AUX area
439 	 */
440 	void *(*setup_aux)		(struct perf_event *event, void **pages,
441 					 int nr_pages, bool overwrite);
442 					/* optional */
443 
444 	/*
445 	 * Free pmu-private AUX data structures
446 	 */
447 	void (*free_aux)		(void *aux); /* optional */
448 
449 	/*
450 	 * Take a snapshot of the AUX buffer without touching the event
451 	 * state, so that preempting ->start()/->stop() callbacks does
452 	 * not interfere with their logic. Called in PMI context.
453 	 *
454 	 * Returns the size of AUX data copied to the output handle.
455 	 *
456 	 * Optional.
457 	 */
458 	long (*snapshot_aux)		(struct perf_event *event,
459 					 struct perf_output_handle *handle,
460 					 unsigned long size);
461 
462 	/*
463 	 * Validate address range filters: make sure the HW supports the
464 	 * requested configuration and number of filters; return 0 if the
465 	 * supplied filters are valid, -errno otherwise.
466 	 *
467 	 * Runs in the context of the ioctl()ing process and is not serialized
468 	 * with the rest of the PMU callbacks.
469 	 */
470 	int (*addr_filters_validate)	(struct list_head *filters);
471 					/* optional */
472 
473 	/*
474 	 * Synchronize address range filter configuration:
475 	 * translate hw-agnostic filters into hardware configuration in
476 	 * event::hw::addr_filters.
477 	 *
478 	 * Runs as a part of filter sync sequence that is done in ->start()
479 	 * callback by calling perf_event_addr_filters_sync().
480 	 *
481 	 * May (and should) traverse event::addr_filters::list, for which its
482 	 * caller provides necessary serialization.
483 	 */
484 	void (*addr_filters_sync)	(struct perf_event *event);
485 					/* optional */
486 
487 	/*
488 	 * Check if event can be used for aux_output purposes for
489 	 * events of this PMU.
490 	 *
491 	 * Runs from perf_event_open(). Should return 0 for "no match"
492 	 * or non-zero for "match".
493 	 */
494 	int (*aux_output_match)		(struct perf_event *event);
495 					/* optional */
496 
497 	/*
498 	 * Filter events for PMU-specific reasons.
499 	 */
500 	int (*filter_match)		(struct perf_event *event); /* optional */
501 
502 	/*
503 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
504 	 */
505 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
506 };
507 
508 enum perf_addr_filter_action_t {
509 	PERF_ADDR_FILTER_ACTION_STOP = 0,
510 	PERF_ADDR_FILTER_ACTION_START,
511 	PERF_ADDR_FILTER_ACTION_FILTER,
512 };
513 
514 /**
515  * struct perf_addr_filter - address range filter definition
516  * @entry:	event's filter list linkage
517  * @path:	object file's path for file-based filters
518  * @offset:	filter range offset
519  * @size:	filter range size (size==0 means single address trigger)
520  * @action:	filter/start/stop
521  *
522  * This is a hardware-agnostic filter configuration as specified by the user.
523  */
524 struct perf_addr_filter {
525 	struct list_head	entry;
526 	struct path		path;
527 	unsigned long		offset;
528 	unsigned long		size;
529 	enum perf_addr_filter_action_t	action;
530 };
531 
532 /**
533  * struct perf_addr_filters_head - container for address range filters
534  * @list:	list of filters for this event
535  * @lock:	spinlock that serializes accesses to the @list and event's
536  *		(and its children's) filter generations.
537  * @nr_file_filters:	number of file-based filters
538  *
539  * A child event will use parent's @list (and therefore @lock), so they are
540  * bundled together; see perf_event_addr_filters().
541  */
542 struct perf_addr_filters_head {
543 	struct list_head	list;
544 	raw_spinlock_t		lock;
545 	unsigned int		nr_file_filters;
546 };
547 
548 struct perf_addr_filter_range {
549 	unsigned long		start;
550 	unsigned long		size;
551 };
552 
553 /**
554  * enum perf_event_state - the states of an event:
555  */
556 enum perf_event_state {
557 	PERF_EVENT_STATE_DEAD		= -4,
558 	PERF_EVENT_STATE_EXIT		= -3,
559 	PERF_EVENT_STATE_ERROR		= -2,
560 	PERF_EVENT_STATE_OFF		= -1,
561 	PERF_EVENT_STATE_INACTIVE	=  0,
562 	PERF_EVENT_STATE_ACTIVE		=  1,
563 };
564 
565 struct file;
566 struct perf_sample_data;
567 
568 typedef void (*perf_overflow_handler_t)(struct perf_event *,
569 					struct perf_sample_data *,
570 					struct pt_regs *regs);
571 
572 /*
573  * Event capabilities. For event_caps and groups caps.
574  *
575  * PERF_EV_CAP_SOFTWARE: Is a software event.
576  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
577  * from any CPU in the package where it is active.
578  */
579 #define PERF_EV_CAP_SOFTWARE		BIT(0)
580 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
581 
582 #define SWEVENT_HLIST_BITS		8
583 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
584 
585 struct swevent_hlist {
586 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
587 	struct rcu_head			rcu_head;
588 };
589 
590 #define PERF_ATTACH_CONTEXT	0x01
591 #define PERF_ATTACH_GROUP	0x02
592 #define PERF_ATTACH_TASK	0x04
593 #define PERF_ATTACH_TASK_DATA	0x08
594 #define PERF_ATTACH_ITRACE	0x10
595 
596 struct perf_cgroup;
597 struct perf_buffer;
598 
599 struct pmu_event_list {
600 	raw_spinlock_t		lock;
601 	struct list_head	list;
602 };
603 
604 #define for_each_sibling_event(sibling, event)			\
605 	if ((event)->group_leader == (event))			\
606 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
607 
608 /**
609  * struct perf_event - performance event kernel representation:
610  */
611 struct perf_event {
612 #ifdef CONFIG_PERF_EVENTS
613 	/*
614 	 * entry onto perf_event_context::event_list;
615 	 *   modifications require ctx->lock
616 	 *   RCU safe iterations.
617 	 */
618 	struct list_head		event_entry;
619 
620 	/*
621 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
622 	 * either sufficies for read.
623 	 */
624 	struct list_head		sibling_list;
625 	struct list_head		active_list;
626 	/*
627 	 * Node on the pinned or flexible tree located at the event context;
628 	 */
629 	struct rb_node			group_node;
630 	u64				group_index;
631 	/*
632 	 * We need storage to track the entries in perf_pmu_migrate_context; we
633 	 * cannot use the event_entry because of RCU and we want to keep the
634 	 * group in tact which avoids us using the other two entries.
635 	 */
636 	struct list_head		migrate_entry;
637 
638 	struct hlist_node		hlist_entry;
639 	struct list_head		active_entry;
640 	int				nr_siblings;
641 
642 	/* Not serialized. Only written during event initialization. */
643 	int				event_caps;
644 	/* The cumulative AND of all event_caps for events in this group. */
645 	int				group_caps;
646 
647 	struct perf_event		*group_leader;
648 	struct pmu			*pmu;
649 	void				*pmu_private;
650 
651 	enum perf_event_state		state;
652 	unsigned int			attach_state;
653 	local64_t			count;
654 	atomic64_t			child_count;
655 
656 	/*
657 	 * These are the total time in nanoseconds that the event
658 	 * has been enabled (i.e. eligible to run, and the task has
659 	 * been scheduled in, if this is a per-task event)
660 	 * and running (scheduled onto the CPU), respectively.
661 	 */
662 	u64				total_time_enabled;
663 	u64				total_time_running;
664 	u64				tstamp;
665 
666 	/*
667 	 * timestamp shadows the actual context timing but it can
668 	 * be safely used in NMI interrupt context. It reflects the
669 	 * context time as it was when the event was last scheduled in.
670 	 *
671 	 * ctx_time already accounts for ctx->timestamp. Therefore to
672 	 * compute ctx_time for a sample, simply add perf_clock().
673 	 */
674 	u64				shadow_ctx_time;
675 
676 	struct perf_event_attr		attr;
677 	u16				header_size;
678 	u16				id_header_size;
679 	u16				read_size;
680 	struct hw_perf_event		hw;
681 
682 	struct perf_event_context	*ctx;
683 	atomic_long_t			refcount;
684 
685 	/*
686 	 * These accumulate total time (in nanoseconds) that children
687 	 * events have been enabled and running, respectively.
688 	 */
689 	atomic64_t			child_total_time_enabled;
690 	atomic64_t			child_total_time_running;
691 
692 	/*
693 	 * Protect attach/detach and child_list:
694 	 */
695 	struct mutex			child_mutex;
696 	struct list_head		child_list;
697 	struct perf_event		*parent;
698 
699 	int				oncpu;
700 	int				cpu;
701 
702 	struct list_head		owner_entry;
703 	struct task_struct		*owner;
704 
705 	/* mmap bits */
706 	struct mutex			mmap_mutex;
707 	atomic_t			mmap_count;
708 
709 	struct perf_buffer		*rb;
710 	struct list_head		rb_entry;
711 	unsigned long			rcu_batches;
712 	int				rcu_pending;
713 
714 	/* poll related */
715 	wait_queue_head_t		waitq;
716 	struct fasync_struct		*fasync;
717 
718 	/* delayed work for NMIs and such */
719 	int				pending_wakeup;
720 	int				pending_kill;
721 	int				pending_disable;
722 	struct irq_work			pending;
723 
724 	atomic_t			event_limit;
725 
726 	/* address range filters */
727 	struct perf_addr_filters_head	addr_filters;
728 	/* vma address array for file-based filders */
729 	struct perf_addr_filter_range	*addr_filter_ranges;
730 	unsigned long			addr_filters_gen;
731 
732 	/* for aux_output events */
733 	struct perf_event		*aux_event;
734 
735 	void (*destroy)(struct perf_event *);
736 	struct rcu_head			rcu_head;
737 
738 	struct pid_namespace		*ns;
739 	u64				id;
740 
741 	u64				(*clock)(void);
742 	perf_overflow_handler_t		overflow_handler;
743 	void				*overflow_handler_context;
744 #ifdef CONFIG_BPF_SYSCALL
745 	perf_overflow_handler_t		orig_overflow_handler;
746 	struct bpf_prog			*prog;
747 #endif
748 
749 #ifdef CONFIG_EVENT_TRACING
750 	struct trace_event_call		*tp_event;
751 	struct event_filter		*filter;
752 #ifdef CONFIG_FUNCTION_TRACER
753 	struct ftrace_ops               ftrace_ops;
754 #endif
755 #endif
756 
757 #ifdef CONFIG_CGROUP_PERF
758 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
759 #endif
760 
761 #ifdef CONFIG_SECURITY
762 	void *security;
763 #endif
764 	struct list_head		sb_list;
765 #endif /* CONFIG_PERF_EVENTS */
766 };
767 
768 
769 struct perf_event_groups {
770 	struct rb_root	tree;
771 	u64		index;
772 };
773 
774 /**
775  * struct perf_event_context - event context structure
776  *
777  * Used as a container for task events and CPU events as well:
778  */
779 struct perf_event_context {
780 	struct pmu			*pmu;
781 	/*
782 	 * Protect the states of the events in the list,
783 	 * nr_active, and the list:
784 	 */
785 	raw_spinlock_t			lock;
786 	/*
787 	 * Protect the list of events.  Locking either mutex or lock
788 	 * is sufficient to ensure the list doesn't change; to change
789 	 * the list you need to lock both the mutex and the spinlock.
790 	 */
791 	struct mutex			mutex;
792 
793 	struct list_head		active_ctx_list;
794 	struct perf_event_groups	pinned_groups;
795 	struct perf_event_groups	flexible_groups;
796 	struct list_head		event_list;
797 
798 	struct list_head		pinned_active;
799 	struct list_head		flexible_active;
800 
801 	int				nr_events;
802 	int				nr_active;
803 	int				is_active;
804 	int				nr_stat;
805 	int				nr_freq;
806 	int				rotate_disable;
807 	/*
808 	 * Set when nr_events != nr_active, except tolerant to events not
809 	 * necessary to be active due to scheduling constraints, such as cgroups.
810 	 */
811 	int				rotate_necessary;
812 	refcount_t			refcount;
813 	struct task_struct		*task;
814 
815 	/*
816 	 * Context clock, runs when context enabled.
817 	 */
818 	u64				time;
819 	u64				timestamp;
820 
821 	/*
822 	 * These fields let us detect when two contexts have both
823 	 * been cloned (inherited) from a common ancestor.
824 	 */
825 	struct perf_event_context	*parent_ctx;
826 	u64				parent_gen;
827 	u64				generation;
828 	int				pin_count;
829 #ifdef CONFIG_CGROUP_PERF
830 	int				nr_cgroups;	 /* cgroup evts */
831 #endif
832 	void				*task_ctx_data; /* pmu specific data */
833 	struct rcu_head			rcu_head;
834 };
835 
836 /*
837  * Number of contexts where an event can trigger:
838  *	task, softirq, hardirq, nmi.
839  */
840 #define PERF_NR_CONTEXTS	4
841 
842 /**
843  * struct perf_event_cpu_context - per cpu event context structure
844  */
845 struct perf_cpu_context {
846 	struct perf_event_context	ctx;
847 	struct perf_event_context	*task_ctx;
848 	int				active_oncpu;
849 	int				exclusive;
850 
851 	raw_spinlock_t			hrtimer_lock;
852 	struct hrtimer			hrtimer;
853 	ktime_t				hrtimer_interval;
854 	unsigned int			hrtimer_active;
855 
856 #ifdef CONFIG_CGROUP_PERF
857 	struct perf_cgroup		*cgrp;
858 	struct list_head		cgrp_cpuctx_entry;
859 #endif
860 
861 	struct list_head		sched_cb_entry;
862 	int				sched_cb_usage;
863 
864 	int				online;
865 	/*
866 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
867 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
868 	 */
869 	int				heap_size;
870 	struct perf_event		**heap;
871 	struct perf_event		*heap_default[2];
872 };
873 
874 struct perf_output_handle {
875 	struct perf_event		*event;
876 	struct perf_buffer		*rb;
877 	unsigned long			wakeup;
878 	unsigned long			size;
879 	u64				aux_flags;
880 	union {
881 		void			*addr;
882 		unsigned long		head;
883 	};
884 	int				page;
885 };
886 
887 struct bpf_perf_event_data_kern {
888 	bpf_user_pt_regs_t *regs;
889 	struct perf_sample_data *data;
890 	struct perf_event *event;
891 };
892 
893 #ifdef CONFIG_CGROUP_PERF
894 
895 /*
896  * perf_cgroup_info keeps track of time_enabled for a cgroup.
897  * This is a per-cpu dynamically allocated data structure.
898  */
899 struct perf_cgroup_info {
900 	u64				time;
901 	u64				timestamp;
902 };
903 
904 struct perf_cgroup {
905 	struct cgroup_subsys_state	css;
906 	struct perf_cgroup_info	__percpu *info;
907 };
908 
909 /*
910  * Must ensure cgroup is pinned (css_get) before calling
911  * this function. In other words, we cannot call this function
912  * if there is no cgroup event for the current CPU context.
913  */
914 static inline struct perf_cgroup *
915 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
916 {
917 	return container_of(task_css_check(task, perf_event_cgrp_id,
918 					   ctx ? lockdep_is_held(&ctx->lock)
919 					       : true),
920 			    struct perf_cgroup, css);
921 }
922 #endif /* CONFIG_CGROUP_PERF */
923 
924 #ifdef CONFIG_PERF_EVENTS
925 
926 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
927 				   struct perf_event *event);
928 extern void perf_aux_output_end(struct perf_output_handle *handle,
929 				unsigned long size);
930 extern int perf_aux_output_skip(struct perf_output_handle *handle,
931 				unsigned long size);
932 extern void *perf_get_aux(struct perf_output_handle *handle);
933 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
934 extern void perf_event_itrace_started(struct perf_event *event);
935 
936 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
937 extern void perf_pmu_unregister(struct pmu *pmu);
938 
939 extern int perf_num_counters(void);
940 extern const char *perf_pmu_name(void);
941 extern void __perf_event_task_sched_in(struct task_struct *prev,
942 				       struct task_struct *task);
943 extern void __perf_event_task_sched_out(struct task_struct *prev,
944 					struct task_struct *next);
945 extern int perf_event_init_task(struct task_struct *child);
946 extern void perf_event_exit_task(struct task_struct *child);
947 extern void perf_event_free_task(struct task_struct *task);
948 extern void perf_event_delayed_put(struct task_struct *task);
949 extern struct file *perf_event_get(unsigned int fd);
950 extern const struct perf_event *perf_get_event(struct file *file);
951 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
952 extern void perf_event_print_debug(void);
953 extern void perf_pmu_disable(struct pmu *pmu);
954 extern void perf_pmu_enable(struct pmu *pmu);
955 extern void perf_sched_cb_dec(struct pmu *pmu);
956 extern void perf_sched_cb_inc(struct pmu *pmu);
957 extern int perf_event_task_disable(void);
958 extern int perf_event_task_enable(void);
959 
960 extern void perf_pmu_resched(struct pmu *pmu);
961 
962 extern int perf_event_refresh(struct perf_event *event, int refresh);
963 extern void perf_event_update_userpage(struct perf_event *event);
964 extern int perf_event_release_kernel(struct perf_event *event);
965 extern struct perf_event *
966 perf_event_create_kernel_counter(struct perf_event_attr *attr,
967 				int cpu,
968 				struct task_struct *task,
969 				perf_overflow_handler_t callback,
970 				void *context);
971 extern void perf_pmu_migrate_context(struct pmu *pmu,
972 				int src_cpu, int dst_cpu);
973 int perf_event_read_local(struct perf_event *event, u64 *value,
974 			  u64 *enabled, u64 *running);
975 extern u64 perf_event_read_value(struct perf_event *event,
976 				 u64 *enabled, u64 *running);
977 
978 
979 struct perf_sample_data {
980 	/*
981 	 * Fields set by perf_sample_data_init(), group so as to
982 	 * minimize the cachelines touched.
983 	 */
984 	u64				addr;
985 	struct perf_raw_record		*raw;
986 	struct perf_branch_stack	*br_stack;
987 	u64				period;
988 	u64				weight;
989 	u64				txn;
990 	union  perf_mem_data_src	data_src;
991 
992 	/*
993 	 * The other fields, optionally {set,used} by
994 	 * perf_{prepare,output}_sample().
995 	 */
996 	u64				type;
997 	u64				ip;
998 	struct {
999 		u32	pid;
1000 		u32	tid;
1001 	}				tid_entry;
1002 	u64				time;
1003 	u64				id;
1004 	u64				stream_id;
1005 	struct {
1006 		u32	cpu;
1007 		u32	reserved;
1008 	}				cpu_entry;
1009 	struct perf_callchain_entry	*callchain;
1010 	u64				aux_size;
1011 
1012 	/*
1013 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
1014 	 * on arch details.
1015 	 */
1016 	struct perf_regs		regs_user;
1017 	struct pt_regs			regs_user_copy;
1018 
1019 	struct perf_regs		regs_intr;
1020 	u64				stack_user_size;
1021 
1022 	u64				phys_addr;
1023 	u64				cgroup;
1024 } ____cacheline_aligned;
1025 
1026 /* default value for data source */
1027 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1028 		    PERF_MEM_S(LVL, NA)   |\
1029 		    PERF_MEM_S(SNOOP, NA) |\
1030 		    PERF_MEM_S(LOCK, NA)  |\
1031 		    PERF_MEM_S(TLB, NA))
1032 
1033 static inline void perf_sample_data_init(struct perf_sample_data *data,
1034 					 u64 addr, u64 period)
1035 {
1036 	/* remaining struct members initialized in perf_prepare_sample() */
1037 	data->addr = addr;
1038 	data->raw  = NULL;
1039 	data->br_stack = NULL;
1040 	data->period = period;
1041 	data->weight = 0;
1042 	data->data_src.val = PERF_MEM_NA;
1043 	data->txn = 0;
1044 }
1045 
1046 extern void perf_output_sample(struct perf_output_handle *handle,
1047 			       struct perf_event_header *header,
1048 			       struct perf_sample_data *data,
1049 			       struct perf_event *event);
1050 extern void perf_prepare_sample(struct perf_event_header *header,
1051 				struct perf_sample_data *data,
1052 				struct perf_event *event,
1053 				struct pt_regs *regs);
1054 
1055 extern int perf_event_overflow(struct perf_event *event,
1056 				 struct perf_sample_data *data,
1057 				 struct pt_regs *regs);
1058 
1059 extern void perf_event_output_forward(struct perf_event *event,
1060 				     struct perf_sample_data *data,
1061 				     struct pt_regs *regs);
1062 extern void perf_event_output_backward(struct perf_event *event,
1063 				       struct perf_sample_data *data,
1064 				       struct pt_regs *regs);
1065 extern int perf_event_output(struct perf_event *event,
1066 			     struct perf_sample_data *data,
1067 			     struct pt_regs *regs);
1068 
1069 static inline bool
1070 is_default_overflow_handler(struct perf_event *event)
1071 {
1072 	if (likely(event->overflow_handler == perf_event_output_forward))
1073 		return true;
1074 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1075 		return true;
1076 	return false;
1077 }
1078 
1079 extern void
1080 perf_event_header__init_id(struct perf_event_header *header,
1081 			   struct perf_sample_data *data,
1082 			   struct perf_event *event);
1083 extern void
1084 perf_event__output_id_sample(struct perf_event *event,
1085 			     struct perf_output_handle *handle,
1086 			     struct perf_sample_data *sample);
1087 
1088 extern void
1089 perf_log_lost_samples(struct perf_event *event, u64 lost);
1090 
1091 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1092 {
1093 	struct perf_event_attr *attr = &event->attr;
1094 
1095 	return attr->exclude_idle || attr->exclude_user ||
1096 	       attr->exclude_kernel || attr->exclude_hv ||
1097 	       attr->exclude_guest || attr->exclude_host;
1098 }
1099 
1100 static inline bool is_sampling_event(struct perf_event *event)
1101 {
1102 	return event->attr.sample_period != 0;
1103 }
1104 
1105 /*
1106  * Return 1 for a software event, 0 for a hardware event
1107  */
1108 static inline int is_software_event(struct perf_event *event)
1109 {
1110 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1111 }
1112 
1113 /*
1114  * Return 1 for event in sw context, 0 for event in hw context
1115  */
1116 static inline int in_software_context(struct perf_event *event)
1117 {
1118 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1119 }
1120 
1121 static inline int is_exclusive_pmu(struct pmu *pmu)
1122 {
1123 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1124 }
1125 
1126 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1127 
1128 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1129 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1130 
1131 #ifndef perf_arch_fetch_caller_regs
1132 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1133 #endif
1134 
1135 /*
1136  * When generating a perf sample in-line, instead of from an interrupt /
1137  * exception, we lack a pt_regs. This is typically used from software events
1138  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1139  *
1140  * We typically don't need a full set, but (for x86) do require:
1141  * - ip for PERF_SAMPLE_IP
1142  * - cs for user_mode() tests
1143  * - sp for PERF_SAMPLE_CALLCHAIN
1144  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1145  *
1146  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1147  * things like PERF_SAMPLE_REGS_INTR.
1148  */
1149 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1150 {
1151 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1152 }
1153 
1154 static __always_inline void
1155 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1156 {
1157 	if (static_key_false(&perf_swevent_enabled[event_id]))
1158 		__perf_sw_event(event_id, nr, regs, addr);
1159 }
1160 
1161 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1162 
1163 /*
1164  * 'Special' version for the scheduler, it hard assumes no recursion,
1165  * which is guaranteed by us not actually scheduling inside other swevents
1166  * because those disable preemption.
1167  */
1168 static __always_inline void
1169 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1170 {
1171 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1172 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1173 
1174 		perf_fetch_caller_regs(regs);
1175 		___perf_sw_event(event_id, nr, regs, addr);
1176 	}
1177 }
1178 
1179 extern struct static_key_false perf_sched_events;
1180 
1181 static __always_inline bool
1182 perf_sw_migrate_enabled(void)
1183 {
1184 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1185 		return true;
1186 	return false;
1187 }
1188 
1189 static inline void perf_event_task_migrate(struct task_struct *task)
1190 {
1191 	if (perf_sw_migrate_enabled())
1192 		task->sched_migrated = 1;
1193 }
1194 
1195 static inline void perf_event_task_sched_in(struct task_struct *prev,
1196 					    struct task_struct *task)
1197 {
1198 	if (static_branch_unlikely(&perf_sched_events))
1199 		__perf_event_task_sched_in(prev, task);
1200 
1201 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1202 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1203 
1204 		perf_fetch_caller_regs(regs);
1205 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1206 		task->sched_migrated = 0;
1207 	}
1208 }
1209 
1210 static inline void perf_event_task_sched_out(struct task_struct *prev,
1211 					     struct task_struct *next)
1212 {
1213 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1214 
1215 	if (static_branch_unlikely(&perf_sched_events))
1216 		__perf_event_task_sched_out(prev, next);
1217 }
1218 
1219 extern void perf_event_mmap(struct vm_area_struct *vma);
1220 
1221 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1222 			       bool unregister, const char *sym);
1223 extern void perf_event_bpf_event(struct bpf_prog *prog,
1224 				 enum perf_bpf_event_type type,
1225 				 u16 flags);
1226 
1227 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1228 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1229 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1230 
1231 extern void perf_event_exec(void);
1232 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1233 extern void perf_event_namespaces(struct task_struct *tsk);
1234 extern void perf_event_fork(struct task_struct *tsk);
1235 
1236 /* Callchains */
1237 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1238 
1239 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1240 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1241 extern struct perf_callchain_entry *
1242 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1243 		   u32 max_stack, bool crosstask, bool add_mark);
1244 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1245 extern int get_callchain_buffers(int max_stack);
1246 extern void put_callchain_buffers(void);
1247 
1248 extern int sysctl_perf_event_max_stack;
1249 extern int sysctl_perf_event_max_contexts_per_stack;
1250 
1251 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1252 {
1253 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1254 		struct perf_callchain_entry *entry = ctx->entry;
1255 		entry->ip[entry->nr++] = ip;
1256 		++ctx->contexts;
1257 		return 0;
1258 	} else {
1259 		ctx->contexts_maxed = true;
1260 		return -1; /* no more room, stop walking the stack */
1261 	}
1262 }
1263 
1264 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1265 {
1266 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1267 		struct perf_callchain_entry *entry = ctx->entry;
1268 		entry->ip[entry->nr++] = ip;
1269 		++ctx->nr;
1270 		return 0;
1271 	} else {
1272 		return -1; /* no more room, stop walking the stack */
1273 	}
1274 }
1275 
1276 extern int sysctl_perf_event_paranoid;
1277 extern int sysctl_perf_event_mlock;
1278 extern int sysctl_perf_event_sample_rate;
1279 extern int sysctl_perf_cpu_time_max_percent;
1280 
1281 extern void perf_sample_event_took(u64 sample_len_ns);
1282 
1283 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1284 		void __user *buffer, size_t *lenp,
1285 		loff_t *ppos);
1286 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1287 		void __user *buffer, size_t *lenp,
1288 		loff_t *ppos);
1289 
1290 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1291 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1292 
1293 /* Access to perf_event_open(2) syscall. */
1294 #define PERF_SECURITY_OPEN		0
1295 
1296 /* Finer grained perf_event_open(2) access control. */
1297 #define PERF_SECURITY_CPU		1
1298 #define PERF_SECURITY_KERNEL		2
1299 #define PERF_SECURITY_TRACEPOINT	3
1300 
1301 static inline int perf_is_paranoid(void)
1302 {
1303 	return sysctl_perf_event_paranoid > -1;
1304 }
1305 
1306 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1307 {
1308 	if (sysctl_perf_event_paranoid > 1 && !capable(CAP_SYS_ADMIN))
1309 		return -EACCES;
1310 
1311 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1312 }
1313 
1314 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1315 {
1316 	if (sysctl_perf_event_paranoid > 0 && !capable(CAP_SYS_ADMIN))
1317 		return -EACCES;
1318 
1319 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1320 }
1321 
1322 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1323 {
1324 	if (sysctl_perf_event_paranoid > -1 && !capable(CAP_SYS_ADMIN))
1325 		return -EPERM;
1326 
1327 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1328 }
1329 
1330 extern void perf_event_init(void);
1331 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1332 			  int entry_size, struct pt_regs *regs,
1333 			  struct hlist_head *head, int rctx,
1334 			  struct task_struct *task);
1335 extern void perf_bp_event(struct perf_event *event, void *data);
1336 
1337 #ifndef perf_misc_flags
1338 # define perf_misc_flags(regs) \
1339 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1340 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1341 #endif
1342 #ifndef perf_arch_bpf_user_pt_regs
1343 # define perf_arch_bpf_user_pt_regs(regs) regs
1344 #endif
1345 
1346 static inline bool has_branch_stack(struct perf_event *event)
1347 {
1348 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1349 }
1350 
1351 static inline bool needs_branch_stack(struct perf_event *event)
1352 {
1353 	return event->attr.branch_sample_type != 0;
1354 }
1355 
1356 static inline bool has_aux(struct perf_event *event)
1357 {
1358 	return event->pmu->setup_aux;
1359 }
1360 
1361 static inline bool is_write_backward(struct perf_event *event)
1362 {
1363 	return !!event->attr.write_backward;
1364 }
1365 
1366 static inline bool has_addr_filter(struct perf_event *event)
1367 {
1368 	return event->pmu->nr_addr_filters;
1369 }
1370 
1371 /*
1372  * An inherited event uses parent's filters
1373  */
1374 static inline struct perf_addr_filters_head *
1375 perf_event_addr_filters(struct perf_event *event)
1376 {
1377 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1378 
1379 	if (event->parent)
1380 		ifh = &event->parent->addr_filters;
1381 
1382 	return ifh;
1383 }
1384 
1385 extern void perf_event_addr_filters_sync(struct perf_event *event);
1386 
1387 extern int perf_output_begin(struct perf_output_handle *handle,
1388 			     struct perf_event *event, unsigned int size);
1389 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1390 				    struct perf_event *event,
1391 				    unsigned int size);
1392 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1393 				      struct perf_event *event,
1394 				      unsigned int size);
1395 
1396 extern void perf_output_end(struct perf_output_handle *handle);
1397 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1398 			     const void *buf, unsigned int len);
1399 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1400 				     unsigned int len);
1401 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1402 				 struct perf_output_handle *handle,
1403 				 unsigned long from, unsigned long to);
1404 extern int perf_swevent_get_recursion_context(void);
1405 extern void perf_swevent_put_recursion_context(int rctx);
1406 extern u64 perf_swevent_set_period(struct perf_event *event);
1407 extern void perf_event_enable(struct perf_event *event);
1408 extern void perf_event_disable(struct perf_event *event);
1409 extern void perf_event_disable_local(struct perf_event *event);
1410 extern void perf_event_disable_inatomic(struct perf_event *event);
1411 extern void perf_event_task_tick(void);
1412 extern int perf_event_account_interrupt(struct perf_event *event);
1413 extern int perf_event_period(struct perf_event *event, u64 value);
1414 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1415 #else /* !CONFIG_PERF_EVENTS: */
1416 static inline void *
1417 perf_aux_output_begin(struct perf_output_handle *handle,
1418 		      struct perf_event *event)				{ return NULL; }
1419 static inline void
1420 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1421 									{ }
1422 static inline int
1423 perf_aux_output_skip(struct perf_output_handle *handle,
1424 		     unsigned long size)				{ return -EINVAL; }
1425 static inline void *
1426 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1427 static inline void
1428 perf_event_task_migrate(struct task_struct *task)			{ }
1429 static inline void
1430 perf_event_task_sched_in(struct task_struct *prev,
1431 			 struct task_struct *task)			{ }
1432 static inline void
1433 perf_event_task_sched_out(struct task_struct *prev,
1434 			  struct task_struct *next)			{ }
1435 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1436 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1437 static inline void perf_event_free_task(struct task_struct *task)	{ }
1438 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1439 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1440 static inline const struct perf_event *perf_get_event(struct file *file)
1441 {
1442 	return ERR_PTR(-EINVAL);
1443 }
1444 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1445 {
1446 	return ERR_PTR(-EINVAL);
1447 }
1448 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1449 					u64 *enabled, u64 *running)
1450 {
1451 	return -EINVAL;
1452 }
1453 static inline void perf_event_print_debug(void)				{ }
1454 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1455 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1456 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1457 {
1458 	return -EINVAL;
1459 }
1460 
1461 static inline void
1462 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1463 static inline void
1464 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1465 static inline void
1466 perf_bp_event(struct perf_event *event, void *data)			{ }
1467 
1468 static inline int perf_register_guest_info_callbacks
1469 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1470 static inline int perf_unregister_guest_info_callbacks
1471 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1472 
1473 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1474 
1475 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1476 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1477 				      bool unregister, const char *sym)	{ }
1478 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1479 					enum perf_bpf_event_type type,
1480 					u16 flags)			{ }
1481 static inline void perf_event_exec(void)				{ }
1482 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1483 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1484 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1485 static inline void perf_event_init(void)				{ }
1486 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1487 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1488 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1489 static inline void perf_event_enable(struct perf_event *event)		{ }
1490 static inline void perf_event_disable(struct perf_event *event)		{ }
1491 static inline int __perf_event_disable(void *info)			{ return -1; }
1492 static inline void perf_event_task_tick(void)				{ }
1493 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1494 static inline int perf_event_period(struct perf_event *event, u64 value)
1495 {
1496 	return -EINVAL;
1497 }
1498 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1499 {
1500 	return 0;
1501 }
1502 #endif
1503 
1504 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1505 extern void perf_restore_debug_store(void);
1506 #else
1507 static inline void perf_restore_debug_store(void)			{ }
1508 #endif
1509 
1510 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1511 {
1512 	return frag->pad < sizeof(u64);
1513 }
1514 
1515 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1516 
1517 struct perf_pmu_events_attr {
1518 	struct device_attribute attr;
1519 	u64 id;
1520 	const char *event_str;
1521 };
1522 
1523 struct perf_pmu_events_ht_attr {
1524 	struct device_attribute			attr;
1525 	u64					id;
1526 	const char				*event_str_ht;
1527 	const char				*event_str_noht;
1528 };
1529 
1530 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1531 			      char *page);
1532 
1533 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1534 static struct perf_pmu_events_attr _var = {				\
1535 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1536 	.id   =  _id,							\
1537 };
1538 
1539 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1540 static struct perf_pmu_events_attr _var = {				    \
1541 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1542 	.id		= 0,						    \
1543 	.event_str	= _str,						    \
1544 };
1545 
1546 #define PMU_FORMAT_ATTR(_name, _format)					\
1547 static ssize_t								\
1548 _name##_show(struct device *dev,					\
1549 			       struct device_attribute *attr,		\
1550 			       char *page)				\
1551 {									\
1552 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1553 	return sprintf(page, _format "\n");				\
1554 }									\
1555 									\
1556 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1557 
1558 /* Performance counter hotplug functions */
1559 #ifdef CONFIG_PERF_EVENTS
1560 int perf_event_init_cpu(unsigned int cpu);
1561 int perf_event_exit_cpu(unsigned int cpu);
1562 #else
1563 #define perf_event_init_cpu	NULL
1564 #define perf_event_exit_cpu	NULL
1565 #endif
1566 
1567 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1568 					     struct perf_event_mmap_page *userpg,
1569 					     u64 now);
1570 
1571 #endif /* _LINUX_PERF_EVENT_H */
1572