1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <asm/local.h> 56 57 struct perf_callchain_entry { 58 __u64 nr; 59 __u64 ip[PERF_MAX_STACK_DEPTH]; 60 }; 61 62 struct perf_raw_record { 63 u32 size; 64 void *data; 65 }; 66 67 /* 68 * branch stack layout: 69 * nr: number of taken branches stored in entries[] 70 * 71 * Note that nr can vary from sample to sample 72 * branches (to, from) are stored from most recent 73 * to least recent, i.e., entries[0] contains the most 74 * recent branch. 75 */ 76 struct perf_branch_stack { 77 __u64 nr; 78 struct perf_branch_entry entries[0]; 79 }; 80 81 struct perf_regs_user { 82 __u64 abi; 83 struct pt_regs *regs; 84 }; 85 86 struct task_struct; 87 88 /* 89 * extra PMU register associated with an event 90 */ 91 struct hw_perf_event_extra { 92 u64 config; /* register value */ 93 unsigned int reg; /* register address or index */ 94 int alloc; /* extra register already allocated */ 95 int idx; /* index in shared_regs->regs[] */ 96 }; 97 98 struct event_constraint; 99 100 /** 101 * struct hw_perf_event - performance event hardware details: 102 */ 103 struct hw_perf_event { 104 #ifdef CONFIG_PERF_EVENTS 105 union { 106 struct { /* hardware */ 107 u64 config; 108 u64 last_tag; 109 unsigned long config_base; 110 unsigned long event_base; 111 int event_base_rdpmc; 112 int idx; 113 int last_cpu; 114 int flags; 115 116 struct hw_perf_event_extra extra_reg; 117 struct hw_perf_event_extra branch_reg; 118 119 struct event_constraint *constraint; 120 }; 121 struct { /* software */ 122 struct hrtimer hrtimer; 123 }; 124 struct { /* tracepoint */ 125 struct task_struct *tp_target; 126 /* for tp_event->class */ 127 struct list_head tp_list; 128 }; 129 #ifdef CONFIG_HAVE_HW_BREAKPOINT 130 struct { /* breakpoint */ 131 /* 132 * Crufty hack to avoid the chicken and egg 133 * problem hw_breakpoint has with context 134 * creation and event initalization. 135 */ 136 struct task_struct *bp_target; 137 struct arch_hw_breakpoint info; 138 struct list_head bp_list; 139 }; 140 #endif 141 }; 142 int state; 143 local64_t prev_count; 144 u64 sample_period; 145 u64 last_period; 146 local64_t period_left; 147 u64 interrupts_seq; 148 u64 interrupts; 149 150 u64 freq_time_stamp; 151 u64 freq_count_stamp; 152 #endif 153 }; 154 155 /* 156 * hw_perf_event::state flags 157 */ 158 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 159 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 160 #define PERF_HES_ARCH 0x04 161 162 struct perf_event; 163 164 /* 165 * Common implementation detail of pmu::{start,commit,cancel}_txn 166 */ 167 #define PERF_EVENT_TXN 0x1 168 169 /** 170 * struct pmu - generic performance monitoring unit 171 */ 172 struct pmu { 173 struct list_head entry; 174 175 struct device *dev; 176 const struct attribute_group **attr_groups; 177 const char *name; 178 int type; 179 180 int * __percpu pmu_disable_count; 181 struct perf_cpu_context * __percpu pmu_cpu_context; 182 int task_ctx_nr; 183 int hrtimer_interval_ms; 184 185 /* 186 * Fully disable/enable this PMU, can be used to protect from the PMI 187 * as well as for lazy/batch writing of the MSRs. 188 */ 189 void (*pmu_enable) (struct pmu *pmu); /* optional */ 190 void (*pmu_disable) (struct pmu *pmu); /* optional */ 191 192 /* 193 * Try and initialize the event for this PMU. 194 * Should return -ENOENT when the @event doesn't match this PMU. 195 */ 196 int (*event_init) (struct perf_event *event); 197 198 #define PERF_EF_START 0x01 /* start the counter when adding */ 199 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 200 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 201 202 /* 203 * Adds/Removes a counter to/from the PMU, can be done inside 204 * a transaction, see the ->*_txn() methods. 205 */ 206 int (*add) (struct perf_event *event, int flags); 207 void (*del) (struct perf_event *event, int flags); 208 209 /* 210 * Starts/Stops a counter present on the PMU. The PMI handler 211 * should stop the counter when perf_event_overflow() returns 212 * !0. ->start() will be used to continue. 213 */ 214 void (*start) (struct perf_event *event, int flags); 215 void (*stop) (struct perf_event *event, int flags); 216 217 /* 218 * Updates the counter value of the event. 219 */ 220 void (*read) (struct perf_event *event); 221 222 /* 223 * Group events scheduling is treated as a transaction, add 224 * group events as a whole and perform one schedulability test. 225 * If the test fails, roll back the whole group 226 * 227 * Start the transaction, after this ->add() doesn't need to 228 * do schedulability tests. 229 */ 230 void (*start_txn) (struct pmu *pmu); /* optional */ 231 /* 232 * If ->start_txn() disabled the ->add() schedulability test 233 * then ->commit_txn() is required to perform one. On success 234 * the transaction is closed. On error the transaction is kept 235 * open until ->cancel_txn() is called. 236 */ 237 int (*commit_txn) (struct pmu *pmu); /* optional */ 238 /* 239 * Will cancel the transaction, assumes ->del() is called 240 * for each successful ->add() during the transaction. 241 */ 242 void (*cancel_txn) (struct pmu *pmu); /* optional */ 243 244 /* 245 * Will return the value for perf_event_mmap_page::index for this event, 246 * if no implementation is provided it will default to: event->hw.idx + 1. 247 */ 248 int (*event_idx) (struct perf_event *event); /*optional */ 249 250 /* 251 * flush branch stack on context-switches (needed in cpu-wide mode) 252 */ 253 void (*flush_branch_stack) (void); 254 }; 255 256 /** 257 * enum perf_event_active_state - the states of a event 258 */ 259 enum perf_event_active_state { 260 PERF_EVENT_STATE_ERROR = -2, 261 PERF_EVENT_STATE_OFF = -1, 262 PERF_EVENT_STATE_INACTIVE = 0, 263 PERF_EVENT_STATE_ACTIVE = 1, 264 }; 265 266 struct file; 267 struct perf_sample_data; 268 269 typedef void (*perf_overflow_handler_t)(struct perf_event *, 270 struct perf_sample_data *, 271 struct pt_regs *regs); 272 273 enum perf_group_flag { 274 PERF_GROUP_SOFTWARE = 0x1, 275 }; 276 277 #define SWEVENT_HLIST_BITS 8 278 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 279 280 struct swevent_hlist { 281 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 282 struct rcu_head rcu_head; 283 }; 284 285 #define PERF_ATTACH_CONTEXT 0x01 286 #define PERF_ATTACH_GROUP 0x02 287 #define PERF_ATTACH_TASK 0x04 288 289 struct perf_cgroup; 290 struct ring_buffer; 291 292 /** 293 * struct perf_event - performance event kernel representation: 294 */ 295 struct perf_event { 296 #ifdef CONFIG_PERF_EVENTS 297 struct list_head group_entry; 298 struct list_head event_entry; 299 struct list_head sibling_list; 300 struct hlist_node hlist_entry; 301 int nr_siblings; 302 int group_flags; 303 struct perf_event *group_leader; 304 struct pmu *pmu; 305 306 enum perf_event_active_state state; 307 unsigned int attach_state; 308 local64_t count; 309 atomic64_t child_count; 310 311 /* 312 * These are the total time in nanoseconds that the event 313 * has been enabled (i.e. eligible to run, and the task has 314 * been scheduled in, if this is a per-task event) 315 * and running (scheduled onto the CPU), respectively. 316 * 317 * They are computed from tstamp_enabled, tstamp_running and 318 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 319 */ 320 u64 total_time_enabled; 321 u64 total_time_running; 322 323 /* 324 * These are timestamps used for computing total_time_enabled 325 * and total_time_running when the event is in INACTIVE or 326 * ACTIVE state, measured in nanoseconds from an arbitrary point 327 * in time. 328 * tstamp_enabled: the notional time when the event was enabled 329 * tstamp_running: the notional time when the event was scheduled on 330 * tstamp_stopped: in INACTIVE state, the notional time when the 331 * event was scheduled off. 332 */ 333 u64 tstamp_enabled; 334 u64 tstamp_running; 335 u64 tstamp_stopped; 336 337 /* 338 * timestamp shadows the actual context timing but it can 339 * be safely used in NMI interrupt context. It reflects the 340 * context time as it was when the event was last scheduled in. 341 * 342 * ctx_time already accounts for ctx->timestamp. Therefore to 343 * compute ctx_time for a sample, simply add perf_clock(). 344 */ 345 u64 shadow_ctx_time; 346 347 struct perf_event_attr attr; 348 u16 header_size; 349 u16 id_header_size; 350 u16 read_size; 351 struct hw_perf_event hw; 352 353 struct perf_event_context *ctx; 354 atomic_long_t refcount; 355 356 /* 357 * These accumulate total time (in nanoseconds) that children 358 * events have been enabled and running, respectively. 359 */ 360 atomic64_t child_total_time_enabled; 361 atomic64_t child_total_time_running; 362 363 /* 364 * Protect attach/detach and child_list: 365 */ 366 struct mutex child_mutex; 367 struct list_head child_list; 368 struct perf_event *parent; 369 370 int oncpu; 371 int cpu; 372 373 struct list_head owner_entry; 374 struct task_struct *owner; 375 376 /* mmap bits */ 377 struct mutex mmap_mutex; 378 atomic_t mmap_count; 379 380 struct ring_buffer *rb; 381 struct list_head rb_entry; 382 383 /* poll related */ 384 wait_queue_head_t waitq; 385 struct fasync_struct *fasync; 386 387 /* delayed work for NMIs and such */ 388 int pending_wakeup; 389 int pending_kill; 390 int pending_disable; 391 struct irq_work pending; 392 393 atomic_t event_limit; 394 395 void (*destroy)(struct perf_event *); 396 struct rcu_head rcu_head; 397 398 struct pid_namespace *ns; 399 u64 id; 400 401 perf_overflow_handler_t overflow_handler; 402 void *overflow_handler_context; 403 404 #ifdef CONFIG_EVENT_TRACING 405 struct ftrace_event_call *tp_event; 406 struct event_filter *filter; 407 #ifdef CONFIG_FUNCTION_TRACER 408 struct ftrace_ops ftrace_ops; 409 #endif 410 #endif 411 412 #ifdef CONFIG_CGROUP_PERF 413 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 414 int cgrp_defer_enabled; 415 #endif 416 417 #endif /* CONFIG_PERF_EVENTS */ 418 }; 419 420 enum perf_event_context_type { 421 task_context, 422 cpu_context, 423 }; 424 425 /** 426 * struct perf_event_context - event context structure 427 * 428 * Used as a container for task events and CPU events as well: 429 */ 430 struct perf_event_context { 431 struct pmu *pmu; 432 enum perf_event_context_type type; 433 /* 434 * Protect the states of the events in the list, 435 * nr_active, and the list: 436 */ 437 raw_spinlock_t lock; 438 /* 439 * Protect the list of events. Locking either mutex or lock 440 * is sufficient to ensure the list doesn't change; to change 441 * the list you need to lock both the mutex and the spinlock. 442 */ 443 struct mutex mutex; 444 445 struct list_head pinned_groups; 446 struct list_head flexible_groups; 447 struct list_head event_list; 448 int nr_events; 449 int nr_active; 450 int is_active; 451 int nr_stat; 452 int nr_freq; 453 int rotate_disable; 454 atomic_t refcount; 455 struct task_struct *task; 456 457 /* 458 * Context clock, runs when context enabled. 459 */ 460 u64 time; 461 u64 timestamp; 462 463 /* 464 * These fields let us detect when two contexts have both 465 * been cloned (inherited) from a common ancestor. 466 */ 467 struct perf_event_context *parent_ctx; 468 u64 parent_gen; 469 u64 generation; 470 int pin_count; 471 int nr_cgroups; /* cgroup evts */ 472 int nr_branch_stack; /* branch_stack evt */ 473 struct rcu_head rcu_head; 474 }; 475 476 /* 477 * Number of contexts where an event can trigger: 478 * task, softirq, hardirq, nmi. 479 */ 480 #define PERF_NR_CONTEXTS 4 481 482 /** 483 * struct perf_event_cpu_context - per cpu event context structure 484 */ 485 struct perf_cpu_context { 486 struct perf_event_context ctx; 487 struct perf_event_context *task_ctx; 488 int active_oncpu; 489 int exclusive; 490 struct hrtimer hrtimer; 491 ktime_t hrtimer_interval; 492 struct list_head rotation_list; 493 struct pmu *unique_pmu; 494 struct perf_cgroup *cgrp; 495 }; 496 497 struct perf_output_handle { 498 struct perf_event *event; 499 struct ring_buffer *rb; 500 unsigned long wakeup; 501 unsigned long size; 502 void *addr; 503 int page; 504 }; 505 506 #ifdef CONFIG_PERF_EVENTS 507 508 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 509 extern void perf_pmu_unregister(struct pmu *pmu); 510 511 extern int perf_num_counters(void); 512 extern const char *perf_pmu_name(void); 513 extern void __perf_event_task_sched_in(struct task_struct *prev, 514 struct task_struct *task); 515 extern void __perf_event_task_sched_out(struct task_struct *prev, 516 struct task_struct *next); 517 extern int perf_event_init_task(struct task_struct *child); 518 extern void perf_event_exit_task(struct task_struct *child); 519 extern void perf_event_free_task(struct task_struct *task); 520 extern void perf_event_delayed_put(struct task_struct *task); 521 extern void perf_event_print_debug(void); 522 extern void perf_pmu_disable(struct pmu *pmu); 523 extern void perf_pmu_enable(struct pmu *pmu); 524 extern int perf_event_task_disable(void); 525 extern int perf_event_task_enable(void); 526 extern int perf_event_refresh(struct perf_event *event, int refresh); 527 extern void perf_event_update_userpage(struct perf_event *event); 528 extern int perf_event_release_kernel(struct perf_event *event); 529 extern struct perf_event * 530 perf_event_create_kernel_counter(struct perf_event_attr *attr, 531 int cpu, 532 struct task_struct *task, 533 perf_overflow_handler_t callback, 534 void *context); 535 extern void perf_pmu_migrate_context(struct pmu *pmu, 536 int src_cpu, int dst_cpu); 537 extern u64 perf_event_read_value(struct perf_event *event, 538 u64 *enabled, u64 *running); 539 540 541 struct perf_sample_data { 542 u64 type; 543 544 u64 ip; 545 struct { 546 u32 pid; 547 u32 tid; 548 } tid_entry; 549 u64 time; 550 u64 addr; 551 u64 id; 552 u64 stream_id; 553 struct { 554 u32 cpu; 555 u32 reserved; 556 } cpu_entry; 557 u64 period; 558 union perf_mem_data_src data_src; 559 struct perf_callchain_entry *callchain; 560 struct perf_raw_record *raw; 561 struct perf_branch_stack *br_stack; 562 struct perf_regs_user regs_user; 563 u64 stack_user_size; 564 u64 weight; 565 }; 566 567 static inline void perf_sample_data_init(struct perf_sample_data *data, 568 u64 addr, u64 period) 569 { 570 /* remaining struct members initialized in perf_prepare_sample() */ 571 data->addr = addr; 572 data->raw = NULL; 573 data->br_stack = NULL; 574 data->period = period; 575 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 576 data->regs_user.regs = NULL; 577 data->stack_user_size = 0; 578 data->weight = 0; 579 data->data_src.val = 0; 580 } 581 582 extern void perf_output_sample(struct perf_output_handle *handle, 583 struct perf_event_header *header, 584 struct perf_sample_data *data, 585 struct perf_event *event); 586 extern void perf_prepare_sample(struct perf_event_header *header, 587 struct perf_sample_data *data, 588 struct perf_event *event, 589 struct pt_regs *regs); 590 591 extern int perf_event_overflow(struct perf_event *event, 592 struct perf_sample_data *data, 593 struct pt_regs *regs); 594 595 static inline bool is_sampling_event(struct perf_event *event) 596 { 597 return event->attr.sample_period != 0; 598 } 599 600 /* 601 * Return 1 for a software event, 0 for a hardware event 602 */ 603 static inline int is_software_event(struct perf_event *event) 604 { 605 return event->pmu->task_ctx_nr == perf_sw_context; 606 } 607 608 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 609 610 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 611 612 #ifndef perf_arch_fetch_caller_regs 613 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 614 #endif 615 616 /* 617 * Take a snapshot of the regs. Skip ip and frame pointer to 618 * the nth caller. We only need a few of the regs: 619 * - ip for PERF_SAMPLE_IP 620 * - cs for user_mode() tests 621 * - bp for callchains 622 * - eflags, for future purposes, just in case 623 */ 624 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 625 { 626 memset(regs, 0, sizeof(*regs)); 627 628 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 629 } 630 631 static __always_inline void 632 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 633 { 634 struct pt_regs hot_regs; 635 636 if (static_key_false(&perf_swevent_enabled[event_id])) { 637 if (!regs) { 638 perf_fetch_caller_regs(&hot_regs); 639 regs = &hot_regs; 640 } 641 __perf_sw_event(event_id, nr, regs, addr); 642 } 643 } 644 645 extern struct static_key_deferred perf_sched_events; 646 647 static inline void perf_event_task_sched_in(struct task_struct *prev, 648 struct task_struct *task) 649 { 650 if (static_key_false(&perf_sched_events.key)) 651 __perf_event_task_sched_in(prev, task); 652 } 653 654 static inline void perf_event_task_sched_out(struct task_struct *prev, 655 struct task_struct *next) 656 { 657 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 658 659 if (static_key_false(&perf_sched_events.key)) 660 __perf_event_task_sched_out(prev, next); 661 } 662 663 extern void perf_event_mmap(struct vm_area_struct *vma); 664 extern struct perf_guest_info_callbacks *perf_guest_cbs; 665 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 666 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 667 668 extern void perf_event_comm(struct task_struct *tsk); 669 extern void perf_event_fork(struct task_struct *tsk); 670 671 /* Callchains */ 672 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 673 674 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 675 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 676 677 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 678 { 679 if (entry->nr < PERF_MAX_STACK_DEPTH) 680 entry->ip[entry->nr++] = ip; 681 } 682 683 extern int sysctl_perf_event_paranoid; 684 extern int sysctl_perf_event_mlock; 685 extern int sysctl_perf_event_sample_rate; 686 extern int sysctl_perf_cpu_time_max_percent; 687 688 extern void perf_sample_event_took(u64 sample_len_ns); 689 690 extern int perf_proc_update_handler(struct ctl_table *table, int write, 691 void __user *buffer, size_t *lenp, 692 loff_t *ppos); 693 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 694 void __user *buffer, size_t *lenp, 695 loff_t *ppos); 696 697 698 static inline bool perf_paranoid_tracepoint_raw(void) 699 { 700 return sysctl_perf_event_paranoid > -1; 701 } 702 703 static inline bool perf_paranoid_cpu(void) 704 { 705 return sysctl_perf_event_paranoid > 0; 706 } 707 708 static inline bool perf_paranoid_kernel(void) 709 { 710 return sysctl_perf_event_paranoid > 1; 711 } 712 713 extern void perf_event_init(void); 714 extern void perf_tp_event(u64 addr, u64 count, void *record, 715 int entry_size, struct pt_regs *regs, 716 struct hlist_head *head, int rctx, 717 struct task_struct *task); 718 extern void perf_bp_event(struct perf_event *event, void *data); 719 720 #ifndef perf_misc_flags 721 # define perf_misc_flags(regs) \ 722 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 723 # define perf_instruction_pointer(regs) instruction_pointer(regs) 724 #endif 725 726 static inline bool has_branch_stack(struct perf_event *event) 727 { 728 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 729 } 730 731 extern int perf_output_begin(struct perf_output_handle *handle, 732 struct perf_event *event, unsigned int size); 733 extern void perf_output_end(struct perf_output_handle *handle); 734 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 735 const void *buf, unsigned int len); 736 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 737 unsigned int len); 738 extern int perf_swevent_get_recursion_context(void); 739 extern void perf_swevent_put_recursion_context(int rctx); 740 extern u64 perf_swevent_set_period(struct perf_event *event); 741 extern void perf_event_enable(struct perf_event *event); 742 extern void perf_event_disable(struct perf_event *event); 743 extern int __perf_event_disable(void *info); 744 extern void perf_event_task_tick(void); 745 #else 746 static inline void 747 perf_event_task_sched_in(struct task_struct *prev, 748 struct task_struct *task) { } 749 static inline void 750 perf_event_task_sched_out(struct task_struct *prev, 751 struct task_struct *next) { } 752 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 753 static inline void perf_event_exit_task(struct task_struct *child) { } 754 static inline void perf_event_free_task(struct task_struct *task) { } 755 static inline void perf_event_delayed_put(struct task_struct *task) { } 756 static inline void perf_event_print_debug(void) { } 757 static inline int perf_event_task_disable(void) { return -EINVAL; } 758 static inline int perf_event_task_enable(void) { return -EINVAL; } 759 static inline int perf_event_refresh(struct perf_event *event, int refresh) 760 { 761 return -EINVAL; 762 } 763 764 static inline void 765 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 766 static inline void 767 perf_bp_event(struct perf_event *event, void *data) { } 768 769 static inline int perf_register_guest_info_callbacks 770 (struct perf_guest_info_callbacks *callbacks) { return 0; } 771 static inline int perf_unregister_guest_info_callbacks 772 (struct perf_guest_info_callbacks *callbacks) { return 0; } 773 774 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 775 static inline void perf_event_comm(struct task_struct *tsk) { } 776 static inline void perf_event_fork(struct task_struct *tsk) { } 777 static inline void perf_event_init(void) { } 778 static inline int perf_swevent_get_recursion_context(void) { return -1; } 779 static inline void perf_swevent_put_recursion_context(int rctx) { } 780 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 781 static inline void perf_event_enable(struct perf_event *event) { } 782 static inline void perf_event_disable(struct perf_event *event) { } 783 static inline int __perf_event_disable(void *info) { return -1; } 784 static inline void perf_event_task_tick(void) { } 785 #endif 786 787 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 788 extern bool perf_event_can_stop_tick(void); 789 #else 790 static inline bool perf_event_can_stop_tick(void) { return true; } 791 #endif 792 793 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 794 extern void perf_restore_debug_store(void); 795 #else 796 static inline void perf_restore_debug_store(void) { } 797 #endif 798 799 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 800 801 /* 802 * This has to have a higher priority than migration_notifier in sched/core.c. 803 */ 804 #define perf_cpu_notifier(fn) \ 805 do { \ 806 static struct notifier_block fn##_nb = \ 807 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 808 unsigned long cpu = smp_processor_id(); \ 809 unsigned long flags; \ 810 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 811 (void *)(unsigned long)cpu); \ 812 local_irq_save(flags); \ 813 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 814 (void *)(unsigned long)cpu); \ 815 local_irq_restore(flags); \ 816 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 817 (void *)(unsigned long)cpu); \ 818 register_cpu_notifier(&fn##_nb); \ 819 } while (0) 820 821 822 struct perf_pmu_events_attr { 823 struct device_attribute attr; 824 u64 id; 825 const char *event_str; 826 }; 827 828 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 829 static struct perf_pmu_events_attr _var = { \ 830 .attr = __ATTR(_name, 0444, _show, NULL), \ 831 .id = _id, \ 832 }; 833 834 #define PMU_FORMAT_ATTR(_name, _format) \ 835 static ssize_t \ 836 _name##_show(struct device *dev, \ 837 struct device_attribute *attr, \ 838 char *page) \ 839 { \ 840 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 841 return sprintf(page, _format "\n"); \ 842 } \ 843 \ 844 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 845 846 #endif /* _LINUX_PERF_EVENT_H */ 847