1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/types.h> 18 #include <linux/ioctl.h> 19 #include <asm/byteorder.h> 20 21 /* 22 * User-space ABI bits: 23 */ 24 25 /* 26 * attr.type 27 */ 28 enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37 }; 38 39 /* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44 enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57 }; 58 59 /* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66 enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75 }; 76 77 enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83 }; 84 85 enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90 }; 91 92 /* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98 enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110 }; 111 112 /* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116 enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130 }; 131 132 /* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152 enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159 }; 160 161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163 /* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166 struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 /* 207 * precise_ip: 208 * 209 * 0 - SAMPLE_IP can have arbitrary skid 210 * 1 - SAMPLE_IP must have constant skid 211 * 2 - SAMPLE_IP requested to have 0 skid 212 * 3 - SAMPLE_IP must have 0 skid 213 * 214 * See also PERF_RECORD_MISC_EXACT_IP 215 */ 216 precise_ip : 2, /* skid constraint */ 217 mmap_data : 1, /* non-exec mmap data */ 218 219 __reserved_1 : 46; 220 221 union { 222 __u32 wakeup_events; /* wakeup every n events */ 223 __u32 wakeup_watermark; /* bytes before wakeup */ 224 }; 225 226 __u32 bp_type; 227 __u64 bp_addr; 228 __u64 bp_len; 229 }; 230 231 /* 232 * Ioctls that can be done on a perf event fd: 233 */ 234 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 235 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 236 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 237 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 238 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 239 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 240 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 241 242 enum perf_event_ioc_flags { 243 PERF_IOC_FLAG_GROUP = 1U << 0, 244 }; 245 246 /* 247 * Structure of the page that can be mapped via mmap 248 */ 249 struct perf_event_mmap_page { 250 __u32 version; /* version number of this structure */ 251 __u32 compat_version; /* lowest version this is compat with */ 252 253 /* 254 * Bits needed to read the hw events in user-space. 255 * 256 * u32 seq; 257 * s64 count; 258 * 259 * do { 260 * seq = pc->lock; 261 * 262 * barrier() 263 * if (pc->index) { 264 * count = pmc_read(pc->index - 1); 265 * count += pc->offset; 266 * } else 267 * goto regular_read; 268 * 269 * barrier(); 270 * } while (pc->lock != seq); 271 * 272 * NOTE: for obvious reason this only works on self-monitoring 273 * processes. 274 */ 275 __u32 lock; /* seqlock for synchronization */ 276 __u32 index; /* hardware event identifier */ 277 __s64 offset; /* add to hardware event value */ 278 __u64 time_enabled; /* time event active */ 279 __u64 time_running; /* time event on cpu */ 280 281 /* 282 * Hole for extension of the self monitor capabilities 283 */ 284 285 __u64 __reserved[123]; /* align to 1k */ 286 287 /* 288 * Control data for the mmap() data buffer. 289 * 290 * User-space reading the @data_head value should issue an rmb(), on 291 * SMP capable platforms, after reading this value -- see 292 * perf_event_wakeup(). 293 * 294 * When the mapping is PROT_WRITE the @data_tail value should be 295 * written by userspace to reflect the last read data. In this case 296 * the kernel will not over-write unread data. 297 */ 298 __u64 data_head; /* head in the data section */ 299 __u64 data_tail; /* user-space written tail */ 300 }; 301 302 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 303 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 304 #define PERF_RECORD_MISC_KERNEL (1 << 0) 305 #define PERF_RECORD_MISC_USER (2 << 0) 306 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 307 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 308 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 309 310 /* 311 * Indicates that the content of PERF_SAMPLE_IP points to 312 * the actual instruction that triggered the event. See also 313 * perf_event_attr::precise_ip. 314 */ 315 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 316 /* 317 * Reserve the last bit to indicate some extended misc field 318 */ 319 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 320 321 struct perf_event_header { 322 __u32 type; 323 __u16 misc; 324 __u16 size; 325 }; 326 327 enum perf_event_type { 328 329 /* 330 * The MMAP events record the PROT_EXEC mappings so that we can 331 * correlate userspace IPs to code. They have the following structure: 332 * 333 * struct { 334 * struct perf_event_header header; 335 * 336 * u32 pid, tid; 337 * u64 addr; 338 * u64 len; 339 * u64 pgoff; 340 * char filename[]; 341 * }; 342 */ 343 PERF_RECORD_MMAP = 1, 344 345 /* 346 * struct { 347 * struct perf_event_header header; 348 * u64 id; 349 * u64 lost; 350 * }; 351 */ 352 PERF_RECORD_LOST = 2, 353 354 /* 355 * struct { 356 * struct perf_event_header header; 357 * 358 * u32 pid, tid; 359 * char comm[]; 360 * }; 361 */ 362 PERF_RECORD_COMM = 3, 363 364 /* 365 * struct { 366 * struct perf_event_header header; 367 * u32 pid, ppid; 368 * u32 tid, ptid; 369 * u64 time; 370 * }; 371 */ 372 PERF_RECORD_EXIT = 4, 373 374 /* 375 * struct { 376 * struct perf_event_header header; 377 * u64 time; 378 * u64 id; 379 * u64 stream_id; 380 * }; 381 */ 382 PERF_RECORD_THROTTLE = 5, 383 PERF_RECORD_UNTHROTTLE = 6, 384 385 /* 386 * struct { 387 * struct perf_event_header header; 388 * u32 pid, ppid; 389 * u32 tid, ptid; 390 * u64 time; 391 * }; 392 */ 393 PERF_RECORD_FORK = 7, 394 395 /* 396 * struct { 397 * struct perf_event_header header; 398 * u32 pid, tid; 399 * 400 * struct read_format values; 401 * }; 402 */ 403 PERF_RECORD_READ = 8, 404 405 /* 406 * struct { 407 * struct perf_event_header header; 408 * 409 * { u64 ip; } && PERF_SAMPLE_IP 410 * { u32 pid, tid; } && PERF_SAMPLE_TID 411 * { u64 time; } && PERF_SAMPLE_TIME 412 * { u64 addr; } && PERF_SAMPLE_ADDR 413 * { u64 id; } && PERF_SAMPLE_ID 414 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 415 * { u32 cpu, res; } && PERF_SAMPLE_CPU 416 * { u64 period; } && PERF_SAMPLE_PERIOD 417 * 418 * { struct read_format values; } && PERF_SAMPLE_READ 419 * 420 * { u64 nr, 421 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 422 * 423 * # 424 * # The RAW record below is opaque data wrt the ABI 425 * # 426 * # That is, the ABI doesn't make any promises wrt to 427 * # the stability of its content, it may vary depending 428 * # on event, hardware, kernel version and phase of 429 * # the moon. 430 * # 431 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 432 * # 433 * 434 * { u32 size; 435 * char data[size];}&& PERF_SAMPLE_RAW 436 * }; 437 */ 438 PERF_RECORD_SAMPLE = 9, 439 440 PERF_RECORD_MAX, /* non-ABI */ 441 }; 442 443 enum perf_callchain_context { 444 PERF_CONTEXT_HV = (__u64)-32, 445 PERF_CONTEXT_KERNEL = (__u64)-128, 446 PERF_CONTEXT_USER = (__u64)-512, 447 448 PERF_CONTEXT_GUEST = (__u64)-2048, 449 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 450 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 451 452 PERF_CONTEXT_MAX = (__u64)-4095, 453 }; 454 455 #define PERF_FLAG_FD_NO_GROUP (1U << 0) 456 #define PERF_FLAG_FD_OUTPUT (1U << 1) 457 458 #ifdef __KERNEL__ 459 /* 460 * Kernel-internal data types and definitions: 461 */ 462 463 #ifdef CONFIG_PERF_EVENTS 464 # include <asm/perf_event.h> 465 # include <asm/local64.h> 466 #endif 467 468 struct perf_guest_info_callbacks { 469 int (*is_in_guest) (void); 470 int (*is_user_mode) (void); 471 unsigned long (*get_guest_ip) (void); 472 }; 473 474 #ifdef CONFIG_HAVE_HW_BREAKPOINT 475 #include <asm/hw_breakpoint.h> 476 #endif 477 478 #include <linux/list.h> 479 #include <linux/mutex.h> 480 #include <linux/rculist.h> 481 #include <linux/rcupdate.h> 482 #include <linux/spinlock.h> 483 #include <linux/hrtimer.h> 484 #include <linux/fs.h> 485 #include <linux/pid_namespace.h> 486 #include <linux/workqueue.h> 487 #include <linux/ftrace.h> 488 #include <linux/cpu.h> 489 #include <linux/irq_work.h> 490 #include <linux/jump_label_ref.h> 491 #include <asm/atomic.h> 492 #include <asm/local.h> 493 494 #define PERF_MAX_STACK_DEPTH 255 495 496 struct perf_callchain_entry { 497 __u64 nr; 498 __u64 ip[PERF_MAX_STACK_DEPTH]; 499 }; 500 501 struct perf_raw_record { 502 u32 size; 503 void *data; 504 }; 505 506 struct perf_branch_entry { 507 __u64 from; 508 __u64 to; 509 __u64 flags; 510 }; 511 512 struct perf_branch_stack { 513 __u64 nr; 514 struct perf_branch_entry entries[0]; 515 }; 516 517 struct task_struct; 518 519 /** 520 * struct hw_perf_event - performance event hardware details: 521 */ 522 struct hw_perf_event { 523 #ifdef CONFIG_PERF_EVENTS 524 union { 525 struct { /* hardware */ 526 u64 config; 527 u64 last_tag; 528 unsigned long config_base; 529 unsigned long event_base; 530 int idx; 531 int last_cpu; 532 }; 533 struct { /* software */ 534 struct hrtimer hrtimer; 535 }; 536 #ifdef CONFIG_HAVE_HW_BREAKPOINT 537 struct { /* breakpoint */ 538 struct arch_hw_breakpoint info; 539 struct list_head bp_list; 540 /* 541 * Crufty hack to avoid the chicken and egg 542 * problem hw_breakpoint has with context 543 * creation and event initalization. 544 */ 545 struct task_struct *bp_target; 546 }; 547 #endif 548 }; 549 int state; 550 local64_t prev_count; 551 u64 sample_period; 552 u64 last_period; 553 local64_t period_left; 554 u64 interrupts; 555 556 u64 freq_time_stamp; 557 u64 freq_count_stamp; 558 #endif 559 }; 560 561 /* 562 * hw_perf_event::state flags 563 */ 564 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 565 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 566 #define PERF_HES_ARCH 0x04 567 568 struct perf_event; 569 570 /* 571 * Common implementation detail of pmu::{start,commit,cancel}_txn 572 */ 573 #define PERF_EVENT_TXN 0x1 574 575 /** 576 * struct pmu - generic performance monitoring unit 577 */ 578 struct pmu { 579 struct list_head entry; 580 581 int * __percpu pmu_disable_count; 582 struct perf_cpu_context * __percpu pmu_cpu_context; 583 int task_ctx_nr; 584 585 /* 586 * Fully disable/enable this PMU, can be used to protect from the PMI 587 * as well as for lazy/batch writing of the MSRs. 588 */ 589 void (*pmu_enable) (struct pmu *pmu); /* optional */ 590 void (*pmu_disable) (struct pmu *pmu); /* optional */ 591 592 /* 593 * Try and initialize the event for this PMU. 594 * Should return -ENOENT when the @event doesn't match this PMU. 595 */ 596 int (*event_init) (struct perf_event *event); 597 598 #define PERF_EF_START 0x01 /* start the counter when adding */ 599 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 600 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 601 602 /* 603 * Adds/Removes a counter to/from the PMU, can be done inside 604 * a transaction, see the ->*_txn() methods. 605 */ 606 int (*add) (struct perf_event *event, int flags); 607 void (*del) (struct perf_event *event, int flags); 608 609 /* 610 * Starts/Stops a counter present on the PMU. The PMI handler 611 * should stop the counter when perf_event_overflow() returns 612 * !0. ->start() will be used to continue. 613 */ 614 void (*start) (struct perf_event *event, int flags); 615 void (*stop) (struct perf_event *event, int flags); 616 617 /* 618 * Updates the counter value of the event. 619 */ 620 void (*read) (struct perf_event *event); 621 622 /* 623 * Group events scheduling is treated as a transaction, add 624 * group events as a whole and perform one schedulability test. 625 * If the test fails, roll back the whole group 626 * 627 * Start the transaction, after this ->add() doesn't need to 628 * do schedulability tests. 629 */ 630 void (*start_txn) (struct pmu *pmu); /* optional */ 631 /* 632 * If ->start_txn() disabled the ->add() schedulability test 633 * then ->commit_txn() is required to perform one. On success 634 * the transaction is closed. On error the transaction is kept 635 * open until ->cancel_txn() is called. 636 */ 637 int (*commit_txn) (struct pmu *pmu); /* optional */ 638 /* 639 * Will cancel the transaction, assumes ->del() is called 640 * for each successfull ->add() during the transaction. 641 */ 642 void (*cancel_txn) (struct pmu *pmu); /* optional */ 643 }; 644 645 /** 646 * enum perf_event_active_state - the states of a event 647 */ 648 enum perf_event_active_state { 649 PERF_EVENT_STATE_ERROR = -2, 650 PERF_EVENT_STATE_OFF = -1, 651 PERF_EVENT_STATE_INACTIVE = 0, 652 PERF_EVENT_STATE_ACTIVE = 1, 653 }; 654 655 struct file; 656 657 #define PERF_BUFFER_WRITABLE 0x01 658 659 struct perf_buffer { 660 atomic_t refcount; 661 struct rcu_head rcu_head; 662 #ifdef CONFIG_PERF_USE_VMALLOC 663 struct work_struct work; 664 int page_order; /* allocation order */ 665 #endif 666 int nr_pages; /* nr of data pages */ 667 int writable; /* are we writable */ 668 669 atomic_t poll; /* POLL_ for wakeups */ 670 671 local_t head; /* write position */ 672 local_t nest; /* nested writers */ 673 local_t events; /* event limit */ 674 local_t wakeup; /* wakeup stamp */ 675 local_t lost; /* nr records lost */ 676 677 long watermark; /* wakeup watermark */ 678 679 struct perf_event_mmap_page *user_page; 680 void *data_pages[0]; 681 }; 682 683 struct perf_sample_data; 684 685 typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 686 struct perf_sample_data *, 687 struct pt_regs *regs); 688 689 enum perf_group_flag { 690 PERF_GROUP_SOFTWARE = 0x1, 691 }; 692 693 #define SWEVENT_HLIST_BITS 8 694 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 695 696 struct swevent_hlist { 697 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 698 struct rcu_head rcu_head; 699 }; 700 701 #define PERF_ATTACH_CONTEXT 0x01 702 #define PERF_ATTACH_GROUP 0x02 703 #define PERF_ATTACH_TASK 0x04 704 705 /** 706 * struct perf_event - performance event kernel representation: 707 */ 708 struct perf_event { 709 #ifdef CONFIG_PERF_EVENTS 710 struct list_head group_entry; 711 struct list_head event_entry; 712 struct list_head sibling_list; 713 struct hlist_node hlist_entry; 714 int nr_siblings; 715 int group_flags; 716 struct perf_event *group_leader; 717 struct pmu *pmu; 718 719 enum perf_event_active_state state; 720 unsigned int attach_state; 721 local64_t count; 722 atomic64_t child_count; 723 724 /* 725 * These are the total time in nanoseconds that the event 726 * has been enabled (i.e. eligible to run, and the task has 727 * been scheduled in, if this is a per-task event) 728 * and running (scheduled onto the CPU), respectively. 729 * 730 * They are computed from tstamp_enabled, tstamp_running and 731 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 732 */ 733 u64 total_time_enabled; 734 u64 total_time_running; 735 736 /* 737 * These are timestamps used for computing total_time_enabled 738 * and total_time_running when the event is in INACTIVE or 739 * ACTIVE state, measured in nanoseconds from an arbitrary point 740 * in time. 741 * tstamp_enabled: the notional time when the event was enabled 742 * tstamp_running: the notional time when the event was scheduled on 743 * tstamp_stopped: in INACTIVE state, the notional time when the 744 * event was scheduled off. 745 */ 746 u64 tstamp_enabled; 747 u64 tstamp_running; 748 u64 tstamp_stopped; 749 750 struct perf_event_attr attr; 751 struct hw_perf_event hw; 752 753 struct perf_event_context *ctx; 754 struct file *filp; 755 756 /* 757 * These accumulate total time (in nanoseconds) that children 758 * events have been enabled and running, respectively. 759 */ 760 atomic64_t child_total_time_enabled; 761 atomic64_t child_total_time_running; 762 763 /* 764 * Protect attach/detach and child_list: 765 */ 766 struct mutex child_mutex; 767 struct list_head child_list; 768 struct perf_event *parent; 769 770 int oncpu; 771 int cpu; 772 773 struct list_head owner_entry; 774 struct task_struct *owner; 775 776 /* mmap bits */ 777 struct mutex mmap_mutex; 778 atomic_t mmap_count; 779 int mmap_locked; 780 struct user_struct *mmap_user; 781 struct perf_buffer *buffer; 782 783 /* poll related */ 784 wait_queue_head_t waitq; 785 struct fasync_struct *fasync; 786 787 /* delayed work for NMIs and such */ 788 int pending_wakeup; 789 int pending_kill; 790 int pending_disable; 791 struct irq_work pending; 792 793 atomic_t event_limit; 794 795 void (*destroy)(struct perf_event *); 796 struct rcu_head rcu_head; 797 798 struct pid_namespace *ns; 799 u64 id; 800 801 perf_overflow_handler_t overflow_handler; 802 803 #ifdef CONFIG_EVENT_TRACING 804 struct ftrace_event_call *tp_event; 805 struct event_filter *filter; 806 #endif 807 808 #endif /* CONFIG_PERF_EVENTS */ 809 }; 810 811 enum perf_event_context_type { 812 task_context, 813 cpu_context, 814 }; 815 816 /** 817 * struct perf_event_context - event context structure 818 * 819 * Used as a container for task events and CPU events as well: 820 */ 821 struct perf_event_context { 822 enum perf_event_context_type type; 823 struct pmu *pmu; 824 /* 825 * Protect the states of the events in the list, 826 * nr_active, and the list: 827 */ 828 raw_spinlock_t lock; 829 /* 830 * Protect the list of events. Locking either mutex or lock 831 * is sufficient to ensure the list doesn't change; to change 832 * the list you need to lock both the mutex and the spinlock. 833 */ 834 struct mutex mutex; 835 836 struct list_head pinned_groups; 837 struct list_head flexible_groups; 838 struct list_head event_list; 839 int nr_events; 840 int nr_active; 841 int is_active; 842 int nr_stat; 843 atomic_t refcount; 844 struct task_struct *task; 845 846 /* 847 * Context clock, runs when context enabled. 848 */ 849 u64 time; 850 u64 timestamp; 851 852 /* 853 * These fields let us detect when two contexts have both 854 * been cloned (inherited) from a common ancestor. 855 */ 856 struct perf_event_context *parent_ctx; 857 u64 parent_gen; 858 u64 generation; 859 int pin_count; 860 struct rcu_head rcu_head; 861 }; 862 863 /* 864 * Number of contexts where an event can trigger: 865 * task, softirq, hardirq, nmi. 866 */ 867 #define PERF_NR_CONTEXTS 4 868 869 /** 870 * struct perf_event_cpu_context - per cpu event context structure 871 */ 872 struct perf_cpu_context { 873 struct perf_event_context ctx; 874 struct perf_event_context *task_ctx; 875 int active_oncpu; 876 int exclusive; 877 struct list_head rotation_list; 878 int jiffies_interval; 879 }; 880 881 struct perf_output_handle { 882 struct perf_event *event; 883 struct perf_buffer *buffer; 884 unsigned long wakeup; 885 unsigned long size; 886 void *addr; 887 int page; 888 int nmi; 889 int sample; 890 }; 891 892 #ifdef CONFIG_PERF_EVENTS 893 894 extern int perf_pmu_register(struct pmu *pmu); 895 extern void perf_pmu_unregister(struct pmu *pmu); 896 897 extern int perf_num_counters(void); 898 extern const char *perf_pmu_name(void); 899 extern void __perf_event_task_sched_in(struct task_struct *task); 900 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 901 902 extern atomic_t perf_task_events; 903 904 static inline void perf_event_task_sched_in(struct task_struct *task) 905 { 906 COND_STMT(&perf_task_events, __perf_event_task_sched_in(task)); 907 } 908 909 static inline 910 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) 911 { 912 COND_STMT(&perf_task_events, __perf_event_task_sched_out(task, next)); 913 } 914 915 extern int perf_event_init_task(struct task_struct *child); 916 extern void perf_event_exit_task(struct task_struct *child); 917 extern void perf_event_free_task(struct task_struct *task); 918 extern void perf_event_delayed_put(struct task_struct *task); 919 extern void perf_event_print_debug(void); 920 extern void perf_pmu_disable(struct pmu *pmu); 921 extern void perf_pmu_enable(struct pmu *pmu); 922 extern int perf_event_task_disable(void); 923 extern int perf_event_task_enable(void); 924 extern void perf_event_update_userpage(struct perf_event *event); 925 extern int perf_event_release_kernel(struct perf_event *event); 926 extern struct perf_event * 927 perf_event_create_kernel_counter(struct perf_event_attr *attr, 928 int cpu, 929 struct task_struct *task, 930 perf_overflow_handler_t callback); 931 extern u64 perf_event_read_value(struct perf_event *event, 932 u64 *enabled, u64 *running); 933 934 struct perf_sample_data { 935 u64 type; 936 937 u64 ip; 938 struct { 939 u32 pid; 940 u32 tid; 941 } tid_entry; 942 u64 time; 943 u64 addr; 944 u64 id; 945 u64 stream_id; 946 struct { 947 u32 cpu; 948 u32 reserved; 949 } cpu_entry; 950 u64 period; 951 struct perf_callchain_entry *callchain; 952 struct perf_raw_record *raw; 953 }; 954 955 static inline 956 void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 957 { 958 data->addr = addr; 959 data->raw = NULL; 960 } 961 962 extern void perf_output_sample(struct perf_output_handle *handle, 963 struct perf_event_header *header, 964 struct perf_sample_data *data, 965 struct perf_event *event); 966 extern void perf_prepare_sample(struct perf_event_header *header, 967 struct perf_sample_data *data, 968 struct perf_event *event, 969 struct pt_regs *regs); 970 971 extern int perf_event_overflow(struct perf_event *event, int nmi, 972 struct perf_sample_data *data, 973 struct pt_regs *regs); 974 975 /* 976 * Return 1 for a software event, 0 for a hardware event 977 */ 978 static inline int is_software_event(struct perf_event *event) 979 { 980 return event->pmu->task_ctx_nr == perf_sw_context; 981 } 982 983 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 984 985 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 986 987 #ifndef perf_arch_fetch_caller_regs 988 static inline void 989 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 990 #endif 991 992 /* 993 * Take a snapshot of the regs. Skip ip and frame pointer to 994 * the nth caller. We only need a few of the regs: 995 * - ip for PERF_SAMPLE_IP 996 * - cs for user_mode() tests 997 * - bp for callchains 998 * - eflags, for future purposes, just in case 999 */ 1000 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1001 { 1002 memset(regs, 0, sizeof(*regs)); 1003 1004 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1005 } 1006 1007 static __always_inline void 1008 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 1009 { 1010 struct pt_regs hot_regs; 1011 1012 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event); 1013 return; 1014 1015 have_event: 1016 if (!regs) { 1017 perf_fetch_caller_regs(&hot_regs); 1018 regs = &hot_regs; 1019 } 1020 __perf_sw_event(event_id, nr, nmi, regs, addr); 1021 } 1022 1023 extern void perf_event_mmap(struct vm_area_struct *vma); 1024 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1025 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1026 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1027 1028 extern void perf_event_comm(struct task_struct *tsk); 1029 extern void perf_event_fork(struct task_struct *tsk); 1030 1031 /* Callchains */ 1032 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1033 1034 extern void perf_callchain_user(struct perf_callchain_entry *entry, 1035 struct pt_regs *regs); 1036 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, 1037 struct pt_regs *regs); 1038 1039 1040 static inline void 1041 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1042 { 1043 if (entry->nr < PERF_MAX_STACK_DEPTH) 1044 entry->ip[entry->nr++] = ip; 1045 } 1046 1047 extern int sysctl_perf_event_paranoid; 1048 extern int sysctl_perf_event_mlock; 1049 extern int sysctl_perf_event_sample_rate; 1050 1051 static inline bool perf_paranoid_tracepoint_raw(void) 1052 { 1053 return sysctl_perf_event_paranoid > -1; 1054 } 1055 1056 static inline bool perf_paranoid_cpu(void) 1057 { 1058 return sysctl_perf_event_paranoid > 0; 1059 } 1060 1061 static inline bool perf_paranoid_kernel(void) 1062 { 1063 return sysctl_perf_event_paranoid > 1; 1064 } 1065 1066 extern void perf_event_init(void); 1067 extern void perf_tp_event(u64 addr, u64 count, void *record, 1068 int entry_size, struct pt_regs *regs, 1069 struct hlist_head *head, int rctx); 1070 extern void perf_bp_event(struct perf_event *event, void *data); 1071 1072 #ifndef perf_misc_flags 1073 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 1074 PERF_RECORD_MISC_KERNEL) 1075 #define perf_instruction_pointer(regs) instruction_pointer(regs) 1076 #endif 1077 1078 extern int perf_output_begin(struct perf_output_handle *handle, 1079 struct perf_event *event, unsigned int size, 1080 int nmi, int sample); 1081 extern void perf_output_end(struct perf_output_handle *handle); 1082 extern void perf_output_copy(struct perf_output_handle *handle, 1083 const void *buf, unsigned int len); 1084 extern int perf_swevent_get_recursion_context(void); 1085 extern void perf_swevent_put_recursion_context(int rctx); 1086 extern void perf_event_enable(struct perf_event *event); 1087 extern void perf_event_disable(struct perf_event *event); 1088 extern void perf_event_task_tick(void); 1089 #else 1090 static inline void 1091 perf_event_task_sched_in(struct task_struct *task) { } 1092 static inline void 1093 perf_event_task_sched_out(struct task_struct *task, 1094 struct task_struct *next) { } 1095 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1096 static inline void perf_event_exit_task(struct task_struct *child) { } 1097 static inline void perf_event_free_task(struct task_struct *task) { } 1098 static inline void perf_event_delayed_put(struct task_struct *task) { } 1099 static inline void perf_event_print_debug(void) { } 1100 static inline int perf_event_task_disable(void) { return -EINVAL; } 1101 static inline int perf_event_task_enable(void) { return -EINVAL; } 1102 1103 static inline void 1104 perf_sw_event(u32 event_id, u64 nr, int nmi, 1105 struct pt_regs *regs, u64 addr) { } 1106 static inline void 1107 perf_bp_event(struct perf_event *event, void *data) { } 1108 1109 static inline int perf_register_guest_info_callbacks 1110 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1111 static inline int perf_unregister_guest_info_callbacks 1112 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1113 1114 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1115 static inline void perf_event_comm(struct task_struct *tsk) { } 1116 static inline void perf_event_fork(struct task_struct *tsk) { } 1117 static inline void perf_event_init(void) { } 1118 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1119 static inline void perf_swevent_put_recursion_context(int rctx) { } 1120 static inline void perf_event_enable(struct perf_event *event) { } 1121 static inline void perf_event_disable(struct perf_event *event) { } 1122 static inline void perf_event_task_tick(void) { } 1123 #endif 1124 1125 #define perf_output_put(handle, x) \ 1126 perf_output_copy((handle), &(x), sizeof(x)) 1127 1128 /* 1129 * This has to have a higher priority than migration_notifier in sched.c. 1130 */ 1131 #define perf_cpu_notifier(fn) \ 1132 do { \ 1133 static struct notifier_block fn##_nb __cpuinitdata = \ 1134 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1135 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1136 (void *)(unsigned long)smp_processor_id()); \ 1137 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1138 (void *)(unsigned long)smp_processor_id()); \ 1139 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1140 (void *)(unsigned long)smp_processor_id()); \ 1141 register_cpu_notifier(&fn##_nb); \ 1142 } while (0) 1143 1144 #endif /* __KERNEL__ */ 1145 #endif /* _LINUX_PERF_EVENT_H */ 1146