xref: /linux-6.15/include/linux/perf_event.h (revision 71ccc212)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 
56 	PERF_COUNT_HW_MAX,			/* non-ABI */
57 };
58 
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67 	PERF_COUNT_HW_CACHE_L1D			= 0,
68 	PERF_COUNT_HW_CACHE_L1I			= 1,
69 	PERF_COUNT_HW_CACHE_LL			= 2,
70 	PERF_COUNT_HW_CACHE_DTLB		= 3,
71 	PERF_COUNT_HW_CACHE_ITLB		= 4,
72 	PERF_COUNT_HW_CACHE_BPU			= 5,
73 
74 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
75 };
76 
77 enum perf_hw_cache_op_id {
78 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
79 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
80 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
81 
82 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
83 };
84 
85 enum perf_hw_cache_op_result_id {
86 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
87 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
88 
89 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
90 };
91 
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99 	PERF_COUNT_SW_CPU_CLOCK			= 0,
100 	PERF_COUNT_SW_TASK_CLOCK		= 1,
101 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
102 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
103 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
104 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
105 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
106 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
107 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
108 
109 	PERF_COUNT_SW_MAX,			/* non-ABI */
110 };
111 
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117 	PERF_SAMPLE_IP				= 1U << 0,
118 	PERF_SAMPLE_TID				= 1U << 1,
119 	PERF_SAMPLE_TIME			= 1U << 2,
120 	PERF_SAMPLE_ADDR			= 1U << 3,
121 	PERF_SAMPLE_READ			= 1U << 4,
122 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
123 	PERF_SAMPLE_ID				= 1U << 6,
124 	PERF_SAMPLE_CPU				= 1U << 7,
125 	PERF_SAMPLE_PERIOD			= 1U << 8,
126 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
127 	PERF_SAMPLE_RAW				= 1U << 10,
128 
129 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
130 };
131 
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *	{ u64		value;
138  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
139  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
140  *	  { u64		id;           } && PERF_FORMAT_ID
141  *	} && !PERF_FORMAT_GROUP
142  *
143  *	{ u64		nr;
144  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
145  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
146  *	  { u64		value;
147  *	    { u64	id;           } && PERF_FORMAT_ID
148  *	  }		cntr[nr];
149  *	} && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
154 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
155 	PERF_FORMAT_ID				= 1U << 2,
156 	PERF_FORMAT_GROUP			= 1U << 3,
157 
158 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
159 };
160 
161 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
162 
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167 
168 	/*
169 	 * Major type: hardware/software/tracepoint/etc.
170 	 */
171 	__u32			type;
172 
173 	/*
174 	 * Size of the attr structure, for fwd/bwd compat.
175 	 */
176 	__u32			size;
177 
178 	/*
179 	 * Type specific configuration information.
180 	 */
181 	__u64			config;
182 
183 	union {
184 		__u64		sample_period;
185 		__u64		sample_freq;
186 	};
187 
188 	__u64			sample_type;
189 	__u64			read_format;
190 
191 	__u64			disabled       :  1, /* off by default        */
192 				inherit	       :  1, /* children inherit it   */
193 				pinned	       :  1, /* must always be on PMU */
194 				exclusive      :  1, /* only group on PMU     */
195 				exclude_user   :  1, /* don't count user      */
196 				exclude_kernel :  1, /* ditto kernel          */
197 				exclude_hv     :  1, /* ditto hypervisor      */
198 				exclude_idle   :  1, /* don't count when idle */
199 				mmap           :  1, /* include mmap data     */
200 				comm	       :  1, /* include comm data     */
201 				freq           :  1, /* use freq, not period  */
202 				inherit_stat   :  1, /* per task counts       */
203 				enable_on_exec :  1, /* next exec enables     */
204 				task           :  1, /* trace fork/exit       */
205 				watermark      :  1, /* wakeup_watermark      */
206 				/*
207 				 * precise_ip:
208 				 *
209 				 *  0 - SAMPLE_IP can have arbitrary skid
210 				 *  1 - SAMPLE_IP must have constant skid
211 				 *  2 - SAMPLE_IP requested to have 0 skid
212 				 *  3 - SAMPLE_IP must have 0 skid
213 				 *
214 				 *  See also PERF_RECORD_MISC_EXACT_IP
215 				 */
216 				precise_ip     :  2, /* skid constraint       */
217 				mmap_data      :  1, /* non-exec mmap data    */
218 
219 				__reserved_1   : 46;
220 
221 	union {
222 		__u32		wakeup_events;	  /* wakeup every n events */
223 		__u32		wakeup_watermark; /* bytes before wakeup   */
224 	};
225 
226 	__u32			bp_type;
227 	__u64			bp_addr;
228 	__u64			bp_len;
229 };
230 
231 /*
232  * Ioctls that can be done on a perf event fd:
233  */
234 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
235 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
236 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
237 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
238 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
239 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
240 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
241 
242 enum perf_event_ioc_flags {
243 	PERF_IOC_FLAG_GROUP		= 1U << 0,
244 };
245 
246 /*
247  * Structure of the page that can be mapped via mmap
248  */
249 struct perf_event_mmap_page {
250 	__u32	version;		/* version number of this structure */
251 	__u32	compat_version;		/* lowest version this is compat with */
252 
253 	/*
254 	 * Bits needed to read the hw events in user-space.
255 	 *
256 	 *   u32 seq;
257 	 *   s64 count;
258 	 *
259 	 *   do {
260 	 *     seq = pc->lock;
261 	 *
262 	 *     barrier()
263 	 *     if (pc->index) {
264 	 *       count = pmc_read(pc->index - 1);
265 	 *       count += pc->offset;
266 	 *     } else
267 	 *       goto regular_read;
268 	 *
269 	 *     barrier();
270 	 *   } while (pc->lock != seq);
271 	 *
272 	 * NOTE: for obvious reason this only works on self-monitoring
273 	 *       processes.
274 	 */
275 	__u32	lock;			/* seqlock for synchronization */
276 	__u32	index;			/* hardware event identifier */
277 	__s64	offset;			/* add to hardware event value */
278 	__u64	time_enabled;		/* time event active */
279 	__u64	time_running;		/* time event on cpu */
280 
281 		/*
282 		 * Hole for extension of the self monitor capabilities
283 		 */
284 
285 	__u64	__reserved[123];	/* align to 1k */
286 
287 	/*
288 	 * Control data for the mmap() data buffer.
289 	 *
290 	 * User-space reading the @data_head value should issue an rmb(), on
291 	 * SMP capable platforms, after reading this value -- see
292 	 * perf_event_wakeup().
293 	 *
294 	 * When the mapping is PROT_WRITE the @data_tail value should be
295 	 * written by userspace to reflect the last read data. In this case
296 	 * the kernel will not over-write unread data.
297 	 */
298 	__u64   data_head;		/* head in the data section */
299 	__u64	data_tail;		/* user-space written tail */
300 };
301 
302 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
303 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
304 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
305 #define PERF_RECORD_MISC_USER			(2 << 0)
306 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
307 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
308 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
309 
310 /*
311  * Indicates that the content of PERF_SAMPLE_IP points to
312  * the actual instruction that triggered the event. See also
313  * perf_event_attr::precise_ip.
314  */
315 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
316 /*
317  * Reserve the last bit to indicate some extended misc field
318  */
319 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
320 
321 struct perf_event_header {
322 	__u32	type;
323 	__u16	misc;
324 	__u16	size;
325 };
326 
327 enum perf_event_type {
328 
329 	/*
330 	 * The MMAP events record the PROT_EXEC mappings so that we can
331 	 * correlate userspace IPs to code. They have the following structure:
332 	 *
333 	 * struct {
334 	 *	struct perf_event_header	header;
335 	 *
336 	 *	u32				pid, tid;
337 	 *	u64				addr;
338 	 *	u64				len;
339 	 *	u64				pgoff;
340 	 *	char				filename[];
341 	 * };
342 	 */
343 	PERF_RECORD_MMAP			= 1,
344 
345 	/*
346 	 * struct {
347 	 *	struct perf_event_header	header;
348 	 *	u64				id;
349 	 *	u64				lost;
350 	 * };
351 	 */
352 	PERF_RECORD_LOST			= 2,
353 
354 	/*
355 	 * struct {
356 	 *	struct perf_event_header	header;
357 	 *
358 	 *	u32				pid, tid;
359 	 *	char				comm[];
360 	 * };
361 	 */
362 	PERF_RECORD_COMM			= 3,
363 
364 	/*
365 	 * struct {
366 	 *	struct perf_event_header	header;
367 	 *	u32				pid, ppid;
368 	 *	u32				tid, ptid;
369 	 *	u64				time;
370 	 * };
371 	 */
372 	PERF_RECORD_EXIT			= 4,
373 
374 	/*
375 	 * struct {
376 	 *	struct perf_event_header	header;
377 	 *	u64				time;
378 	 *	u64				id;
379 	 *	u64				stream_id;
380 	 * };
381 	 */
382 	PERF_RECORD_THROTTLE			= 5,
383 	PERF_RECORD_UNTHROTTLE			= 6,
384 
385 	/*
386 	 * struct {
387 	 *	struct perf_event_header	header;
388 	 *	u32				pid, ppid;
389 	 *	u32				tid, ptid;
390 	 *	u64				time;
391 	 * };
392 	 */
393 	PERF_RECORD_FORK			= 7,
394 
395 	/*
396 	 * struct {
397 	 *	struct perf_event_header	header;
398 	 *	u32				pid, tid;
399 	 *
400 	 *	struct read_format		values;
401 	 * };
402 	 */
403 	PERF_RECORD_READ			= 8,
404 
405 	/*
406 	 * struct {
407 	 *	struct perf_event_header	header;
408 	 *
409 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
410 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
411 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
412 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
413 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
414 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
415 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
416 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
417 	 *
418 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
419 	 *
420 	 *	{ u64			nr,
421 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
422 	 *
423 	 *	#
424 	 *	# The RAW record below is opaque data wrt the ABI
425 	 *	#
426 	 *	# That is, the ABI doesn't make any promises wrt to
427 	 *	# the stability of its content, it may vary depending
428 	 *	# on event, hardware, kernel version and phase of
429 	 *	# the moon.
430 	 *	#
431 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
432 	 *	#
433 	 *
434 	 *	{ u32			size;
435 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
436 	 * };
437 	 */
438 	PERF_RECORD_SAMPLE			= 9,
439 
440 	PERF_RECORD_MAX,			/* non-ABI */
441 };
442 
443 enum perf_callchain_context {
444 	PERF_CONTEXT_HV			= (__u64)-32,
445 	PERF_CONTEXT_KERNEL		= (__u64)-128,
446 	PERF_CONTEXT_USER		= (__u64)-512,
447 
448 	PERF_CONTEXT_GUEST		= (__u64)-2048,
449 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
450 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
451 
452 	PERF_CONTEXT_MAX		= (__u64)-4095,
453 };
454 
455 #define PERF_FLAG_FD_NO_GROUP	(1U << 0)
456 #define PERF_FLAG_FD_OUTPUT	(1U << 1)
457 
458 #ifdef __KERNEL__
459 /*
460  * Kernel-internal data types and definitions:
461  */
462 
463 #ifdef CONFIG_PERF_EVENTS
464 # include <asm/perf_event.h>
465 # include <asm/local64.h>
466 #endif
467 
468 struct perf_guest_info_callbacks {
469 	int (*is_in_guest) (void);
470 	int (*is_user_mode) (void);
471 	unsigned long (*get_guest_ip) (void);
472 };
473 
474 #ifdef CONFIG_HAVE_HW_BREAKPOINT
475 #include <asm/hw_breakpoint.h>
476 #endif
477 
478 #include <linux/list.h>
479 #include <linux/mutex.h>
480 #include <linux/rculist.h>
481 #include <linux/rcupdate.h>
482 #include <linux/spinlock.h>
483 #include <linux/hrtimer.h>
484 #include <linux/fs.h>
485 #include <linux/pid_namespace.h>
486 #include <linux/workqueue.h>
487 #include <linux/ftrace.h>
488 #include <linux/cpu.h>
489 #include <linux/irq_work.h>
490 #include <linux/jump_label_ref.h>
491 #include <asm/atomic.h>
492 #include <asm/local.h>
493 
494 #define PERF_MAX_STACK_DEPTH		255
495 
496 struct perf_callchain_entry {
497 	__u64				nr;
498 	__u64				ip[PERF_MAX_STACK_DEPTH];
499 };
500 
501 struct perf_raw_record {
502 	u32				size;
503 	void				*data;
504 };
505 
506 struct perf_branch_entry {
507 	__u64				from;
508 	__u64				to;
509 	__u64				flags;
510 };
511 
512 struct perf_branch_stack {
513 	__u64				nr;
514 	struct perf_branch_entry	entries[0];
515 };
516 
517 struct task_struct;
518 
519 /**
520  * struct hw_perf_event - performance event hardware details:
521  */
522 struct hw_perf_event {
523 #ifdef CONFIG_PERF_EVENTS
524 	union {
525 		struct { /* hardware */
526 			u64		config;
527 			u64		last_tag;
528 			unsigned long	config_base;
529 			unsigned long	event_base;
530 			int		idx;
531 			int		last_cpu;
532 		};
533 		struct { /* software */
534 			struct hrtimer	hrtimer;
535 		};
536 #ifdef CONFIG_HAVE_HW_BREAKPOINT
537 		struct { /* breakpoint */
538 			struct arch_hw_breakpoint	info;
539 			struct list_head		bp_list;
540 			/*
541 			 * Crufty hack to avoid the chicken and egg
542 			 * problem hw_breakpoint has with context
543 			 * creation and event initalization.
544 			 */
545 			struct task_struct		*bp_target;
546 		};
547 #endif
548 	};
549 	int				state;
550 	local64_t			prev_count;
551 	u64				sample_period;
552 	u64				last_period;
553 	local64_t			period_left;
554 	u64				interrupts;
555 
556 	u64				freq_time_stamp;
557 	u64				freq_count_stamp;
558 #endif
559 };
560 
561 /*
562  * hw_perf_event::state flags
563  */
564 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
565 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
566 #define PERF_HES_ARCH		0x04
567 
568 struct perf_event;
569 
570 /*
571  * Common implementation detail of pmu::{start,commit,cancel}_txn
572  */
573 #define PERF_EVENT_TXN 0x1
574 
575 /**
576  * struct pmu - generic performance monitoring unit
577  */
578 struct pmu {
579 	struct list_head		entry;
580 
581 	int * __percpu			pmu_disable_count;
582 	struct perf_cpu_context * __percpu pmu_cpu_context;
583 	int				task_ctx_nr;
584 
585 	/*
586 	 * Fully disable/enable this PMU, can be used to protect from the PMI
587 	 * as well as for lazy/batch writing of the MSRs.
588 	 */
589 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
590 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
591 
592 	/*
593 	 * Try and initialize the event for this PMU.
594 	 * Should return -ENOENT when the @event doesn't match this PMU.
595 	 */
596 	int (*event_init)		(struct perf_event *event);
597 
598 #define PERF_EF_START	0x01		/* start the counter when adding    */
599 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
600 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
601 
602 	/*
603 	 * Adds/Removes a counter to/from the PMU, can be done inside
604 	 * a transaction, see the ->*_txn() methods.
605 	 */
606 	int  (*add)			(struct perf_event *event, int flags);
607 	void (*del)			(struct perf_event *event, int flags);
608 
609 	/*
610 	 * Starts/Stops a counter present on the PMU. The PMI handler
611 	 * should stop the counter when perf_event_overflow() returns
612 	 * !0. ->start() will be used to continue.
613 	 */
614 	void (*start)			(struct perf_event *event, int flags);
615 	void (*stop)			(struct perf_event *event, int flags);
616 
617 	/*
618 	 * Updates the counter value of the event.
619 	 */
620 	void (*read)			(struct perf_event *event);
621 
622 	/*
623 	 * Group events scheduling is treated as a transaction, add
624 	 * group events as a whole and perform one schedulability test.
625 	 * If the test fails, roll back the whole group
626 	 *
627 	 * Start the transaction, after this ->add() doesn't need to
628 	 * do schedulability tests.
629 	 */
630 	void (*start_txn)	(struct pmu *pmu); /* optional */
631 	/*
632 	 * If ->start_txn() disabled the ->add() schedulability test
633 	 * then ->commit_txn() is required to perform one. On success
634 	 * the transaction is closed. On error the transaction is kept
635 	 * open until ->cancel_txn() is called.
636 	 */
637 	int  (*commit_txn)	(struct pmu *pmu); /* optional */
638 	/*
639 	 * Will cancel the transaction, assumes ->del() is called
640 	 * for each successfull ->add() during the transaction.
641 	 */
642 	void (*cancel_txn)	(struct pmu *pmu); /* optional */
643 };
644 
645 /**
646  * enum perf_event_active_state - the states of a event
647  */
648 enum perf_event_active_state {
649 	PERF_EVENT_STATE_ERROR		= -2,
650 	PERF_EVENT_STATE_OFF		= -1,
651 	PERF_EVENT_STATE_INACTIVE	=  0,
652 	PERF_EVENT_STATE_ACTIVE		=  1,
653 };
654 
655 struct file;
656 
657 #define PERF_BUFFER_WRITABLE		0x01
658 
659 struct perf_buffer {
660 	atomic_t			refcount;
661 	struct rcu_head			rcu_head;
662 #ifdef CONFIG_PERF_USE_VMALLOC
663 	struct work_struct		work;
664 	int				page_order;	/* allocation order  */
665 #endif
666 	int				nr_pages;	/* nr of data pages  */
667 	int				writable;	/* are we writable   */
668 
669 	atomic_t			poll;		/* POLL_ for wakeups */
670 
671 	local_t				head;		/* write position    */
672 	local_t				nest;		/* nested writers    */
673 	local_t				events;		/* event limit       */
674 	local_t				wakeup;		/* wakeup stamp      */
675 	local_t				lost;		/* nr records lost   */
676 
677 	long				watermark;	/* wakeup watermark  */
678 
679 	struct perf_event_mmap_page	*user_page;
680 	void				*data_pages[0];
681 };
682 
683 struct perf_sample_data;
684 
685 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
686 					struct perf_sample_data *,
687 					struct pt_regs *regs);
688 
689 enum perf_group_flag {
690 	PERF_GROUP_SOFTWARE = 0x1,
691 };
692 
693 #define SWEVENT_HLIST_BITS	8
694 #define SWEVENT_HLIST_SIZE	(1 << SWEVENT_HLIST_BITS)
695 
696 struct swevent_hlist {
697 	struct hlist_head	heads[SWEVENT_HLIST_SIZE];
698 	struct rcu_head		rcu_head;
699 };
700 
701 #define PERF_ATTACH_CONTEXT	0x01
702 #define PERF_ATTACH_GROUP	0x02
703 #define PERF_ATTACH_TASK	0x04
704 
705 /**
706  * struct perf_event - performance event kernel representation:
707  */
708 struct perf_event {
709 #ifdef CONFIG_PERF_EVENTS
710 	struct list_head		group_entry;
711 	struct list_head		event_entry;
712 	struct list_head		sibling_list;
713 	struct hlist_node		hlist_entry;
714 	int				nr_siblings;
715 	int				group_flags;
716 	struct perf_event		*group_leader;
717 	struct pmu			*pmu;
718 
719 	enum perf_event_active_state	state;
720 	unsigned int			attach_state;
721 	local64_t			count;
722 	atomic64_t			child_count;
723 
724 	/*
725 	 * These are the total time in nanoseconds that the event
726 	 * has been enabled (i.e. eligible to run, and the task has
727 	 * been scheduled in, if this is a per-task event)
728 	 * and running (scheduled onto the CPU), respectively.
729 	 *
730 	 * They are computed from tstamp_enabled, tstamp_running and
731 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
732 	 */
733 	u64				total_time_enabled;
734 	u64				total_time_running;
735 
736 	/*
737 	 * These are timestamps used for computing total_time_enabled
738 	 * and total_time_running when the event is in INACTIVE or
739 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
740 	 * in time.
741 	 * tstamp_enabled: the notional time when the event was enabled
742 	 * tstamp_running: the notional time when the event was scheduled on
743 	 * tstamp_stopped: in INACTIVE state, the notional time when the
744 	 *	event was scheduled off.
745 	 */
746 	u64				tstamp_enabled;
747 	u64				tstamp_running;
748 	u64				tstamp_stopped;
749 
750 	struct perf_event_attr		attr;
751 	struct hw_perf_event		hw;
752 
753 	struct perf_event_context	*ctx;
754 	struct file			*filp;
755 
756 	/*
757 	 * These accumulate total time (in nanoseconds) that children
758 	 * events have been enabled and running, respectively.
759 	 */
760 	atomic64_t			child_total_time_enabled;
761 	atomic64_t			child_total_time_running;
762 
763 	/*
764 	 * Protect attach/detach and child_list:
765 	 */
766 	struct mutex			child_mutex;
767 	struct list_head		child_list;
768 	struct perf_event		*parent;
769 
770 	int				oncpu;
771 	int				cpu;
772 
773 	struct list_head		owner_entry;
774 	struct task_struct		*owner;
775 
776 	/* mmap bits */
777 	struct mutex			mmap_mutex;
778 	atomic_t			mmap_count;
779 	int				mmap_locked;
780 	struct user_struct		*mmap_user;
781 	struct perf_buffer		*buffer;
782 
783 	/* poll related */
784 	wait_queue_head_t		waitq;
785 	struct fasync_struct		*fasync;
786 
787 	/* delayed work for NMIs and such */
788 	int				pending_wakeup;
789 	int				pending_kill;
790 	int				pending_disable;
791 	struct irq_work			pending;
792 
793 	atomic_t			event_limit;
794 
795 	void (*destroy)(struct perf_event *);
796 	struct rcu_head			rcu_head;
797 
798 	struct pid_namespace		*ns;
799 	u64				id;
800 
801 	perf_overflow_handler_t		overflow_handler;
802 
803 #ifdef CONFIG_EVENT_TRACING
804 	struct ftrace_event_call	*tp_event;
805 	struct event_filter		*filter;
806 #endif
807 
808 #endif /* CONFIG_PERF_EVENTS */
809 };
810 
811 enum perf_event_context_type {
812 	task_context,
813 	cpu_context,
814 };
815 
816 /**
817  * struct perf_event_context - event context structure
818  *
819  * Used as a container for task events and CPU events as well:
820  */
821 struct perf_event_context {
822 	enum perf_event_context_type	type;
823 	struct pmu			*pmu;
824 	/*
825 	 * Protect the states of the events in the list,
826 	 * nr_active, and the list:
827 	 */
828 	raw_spinlock_t			lock;
829 	/*
830 	 * Protect the list of events.  Locking either mutex or lock
831 	 * is sufficient to ensure the list doesn't change; to change
832 	 * the list you need to lock both the mutex and the spinlock.
833 	 */
834 	struct mutex			mutex;
835 
836 	struct list_head		pinned_groups;
837 	struct list_head		flexible_groups;
838 	struct list_head		event_list;
839 	int				nr_events;
840 	int				nr_active;
841 	int				is_active;
842 	int				nr_stat;
843 	atomic_t			refcount;
844 	struct task_struct		*task;
845 
846 	/*
847 	 * Context clock, runs when context enabled.
848 	 */
849 	u64				time;
850 	u64				timestamp;
851 
852 	/*
853 	 * These fields let us detect when two contexts have both
854 	 * been cloned (inherited) from a common ancestor.
855 	 */
856 	struct perf_event_context	*parent_ctx;
857 	u64				parent_gen;
858 	u64				generation;
859 	int				pin_count;
860 	struct rcu_head			rcu_head;
861 };
862 
863 /*
864  * Number of contexts where an event can trigger:
865  * 	task, softirq, hardirq, nmi.
866  */
867 #define PERF_NR_CONTEXTS	4
868 
869 /**
870  * struct perf_event_cpu_context - per cpu event context structure
871  */
872 struct perf_cpu_context {
873 	struct perf_event_context	ctx;
874 	struct perf_event_context	*task_ctx;
875 	int				active_oncpu;
876 	int				exclusive;
877 	struct list_head		rotation_list;
878 	int				jiffies_interval;
879 };
880 
881 struct perf_output_handle {
882 	struct perf_event		*event;
883 	struct perf_buffer		*buffer;
884 	unsigned long			wakeup;
885 	unsigned long			size;
886 	void				*addr;
887 	int				page;
888 	int				nmi;
889 	int				sample;
890 };
891 
892 #ifdef CONFIG_PERF_EVENTS
893 
894 extern int perf_pmu_register(struct pmu *pmu);
895 extern void perf_pmu_unregister(struct pmu *pmu);
896 
897 extern int perf_num_counters(void);
898 extern const char *perf_pmu_name(void);
899 extern void __perf_event_task_sched_in(struct task_struct *task);
900 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
901 
902 extern atomic_t perf_task_events;
903 
904 static inline void perf_event_task_sched_in(struct task_struct *task)
905 {
906 	COND_STMT(&perf_task_events, __perf_event_task_sched_in(task));
907 }
908 
909 static inline
910 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
911 {
912 	COND_STMT(&perf_task_events, __perf_event_task_sched_out(task, next));
913 }
914 
915 extern int perf_event_init_task(struct task_struct *child);
916 extern void perf_event_exit_task(struct task_struct *child);
917 extern void perf_event_free_task(struct task_struct *task);
918 extern void perf_event_delayed_put(struct task_struct *task);
919 extern void perf_event_print_debug(void);
920 extern void perf_pmu_disable(struct pmu *pmu);
921 extern void perf_pmu_enable(struct pmu *pmu);
922 extern int perf_event_task_disable(void);
923 extern int perf_event_task_enable(void);
924 extern void perf_event_update_userpage(struct perf_event *event);
925 extern int perf_event_release_kernel(struct perf_event *event);
926 extern struct perf_event *
927 perf_event_create_kernel_counter(struct perf_event_attr *attr,
928 				int cpu,
929 				struct task_struct *task,
930 				perf_overflow_handler_t callback);
931 extern u64 perf_event_read_value(struct perf_event *event,
932 				 u64 *enabled, u64 *running);
933 
934 struct perf_sample_data {
935 	u64				type;
936 
937 	u64				ip;
938 	struct {
939 		u32	pid;
940 		u32	tid;
941 	}				tid_entry;
942 	u64				time;
943 	u64				addr;
944 	u64				id;
945 	u64				stream_id;
946 	struct {
947 		u32	cpu;
948 		u32	reserved;
949 	}				cpu_entry;
950 	u64				period;
951 	struct perf_callchain_entry	*callchain;
952 	struct perf_raw_record		*raw;
953 };
954 
955 static inline
956 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
957 {
958 	data->addr = addr;
959 	data->raw  = NULL;
960 }
961 
962 extern void perf_output_sample(struct perf_output_handle *handle,
963 			       struct perf_event_header *header,
964 			       struct perf_sample_data *data,
965 			       struct perf_event *event);
966 extern void perf_prepare_sample(struct perf_event_header *header,
967 				struct perf_sample_data *data,
968 				struct perf_event *event,
969 				struct pt_regs *regs);
970 
971 extern int perf_event_overflow(struct perf_event *event, int nmi,
972 				 struct perf_sample_data *data,
973 				 struct pt_regs *regs);
974 
975 /*
976  * Return 1 for a software event, 0 for a hardware event
977  */
978 static inline int is_software_event(struct perf_event *event)
979 {
980 	return event->pmu->task_ctx_nr == perf_sw_context;
981 }
982 
983 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
984 
985 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
986 
987 #ifndef perf_arch_fetch_caller_regs
988 static inline void
989 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
990 #endif
991 
992 /*
993  * Take a snapshot of the regs. Skip ip and frame pointer to
994  * the nth caller. We only need a few of the regs:
995  * - ip for PERF_SAMPLE_IP
996  * - cs for user_mode() tests
997  * - bp for callchains
998  * - eflags, for future purposes, just in case
999  */
1000 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1001 {
1002 	memset(regs, 0, sizeof(*regs));
1003 
1004 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1005 }
1006 
1007 static __always_inline void
1008 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1009 {
1010 	struct pt_regs hot_regs;
1011 
1012 	JUMP_LABEL(&perf_swevent_enabled[event_id], have_event);
1013 	return;
1014 
1015 have_event:
1016 	if (!regs) {
1017 		perf_fetch_caller_regs(&hot_regs);
1018 		regs = &hot_regs;
1019 	}
1020 	__perf_sw_event(event_id, nr, nmi, regs, addr);
1021 }
1022 
1023 extern void perf_event_mmap(struct vm_area_struct *vma);
1024 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1025 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1026 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1027 
1028 extern void perf_event_comm(struct task_struct *tsk);
1029 extern void perf_event_fork(struct task_struct *tsk);
1030 
1031 /* Callchains */
1032 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1033 
1034 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1035 				struct pt_regs *regs);
1036 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1037 				  struct pt_regs *regs);
1038 
1039 
1040 static inline void
1041 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1042 {
1043 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1044 		entry->ip[entry->nr++] = ip;
1045 }
1046 
1047 extern int sysctl_perf_event_paranoid;
1048 extern int sysctl_perf_event_mlock;
1049 extern int sysctl_perf_event_sample_rate;
1050 
1051 static inline bool perf_paranoid_tracepoint_raw(void)
1052 {
1053 	return sysctl_perf_event_paranoid > -1;
1054 }
1055 
1056 static inline bool perf_paranoid_cpu(void)
1057 {
1058 	return sysctl_perf_event_paranoid > 0;
1059 }
1060 
1061 static inline bool perf_paranoid_kernel(void)
1062 {
1063 	return sysctl_perf_event_paranoid > 1;
1064 }
1065 
1066 extern void perf_event_init(void);
1067 extern void perf_tp_event(u64 addr, u64 count, void *record,
1068 			  int entry_size, struct pt_regs *regs,
1069 			  struct hlist_head *head, int rctx);
1070 extern void perf_bp_event(struct perf_event *event, void *data);
1071 
1072 #ifndef perf_misc_flags
1073 #define perf_misc_flags(regs)	(user_mode(regs) ? PERF_RECORD_MISC_USER : \
1074 				 PERF_RECORD_MISC_KERNEL)
1075 #define perf_instruction_pointer(regs)	instruction_pointer(regs)
1076 #endif
1077 
1078 extern int perf_output_begin(struct perf_output_handle *handle,
1079 			     struct perf_event *event, unsigned int size,
1080 			     int nmi, int sample);
1081 extern void perf_output_end(struct perf_output_handle *handle);
1082 extern void perf_output_copy(struct perf_output_handle *handle,
1083 			     const void *buf, unsigned int len);
1084 extern int perf_swevent_get_recursion_context(void);
1085 extern void perf_swevent_put_recursion_context(int rctx);
1086 extern void perf_event_enable(struct perf_event *event);
1087 extern void perf_event_disable(struct perf_event *event);
1088 extern void perf_event_task_tick(void);
1089 #else
1090 static inline void
1091 perf_event_task_sched_in(struct task_struct *task)			{ }
1092 static inline void
1093 perf_event_task_sched_out(struct task_struct *task,
1094 			    struct task_struct *next)			{ }
1095 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1096 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1097 static inline void perf_event_free_task(struct task_struct *task)	{ }
1098 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1099 static inline void perf_event_print_debug(void)				{ }
1100 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1101 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1102 
1103 static inline void
1104 perf_sw_event(u32 event_id, u64 nr, int nmi,
1105 		     struct pt_regs *regs, u64 addr)			{ }
1106 static inline void
1107 perf_bp_event(struct perf_event *event, void *data)			{ }
1108 
1109 static inline int perf_register_guest_info_callbacks
1110 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1111 static inline int perf_unregister_guest_info_callbacks
1112 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1113 
1114 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1115 static inline void perf_event_comm(struct task_struct *tsk)		{ }
1116 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1117 static inline void perf_event_init(void)				{ }
1118 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1119 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1120 static inline void perf_event_enable(struct perf_event *event)		{ }
1121 static inline void perf_event_disable(struct perf_event *event)		{ }
1122 static inline void perf_event_task_tick(void)				{ }
1123 #endif
1124 
1125 #define perf_output_put(handle, x) \
1126 	perf_output_copy((handle), &(x), sizeof(x))
1127 
1128 /*
1129  * This has to have a higher priority than migration_notifier in sched.c.
1130  */
1131 #define perf_cpu_notifier(fn)					\
1132 do {								\
1133 	static struct notifier_block fn##_nb __cpuinitdata =	\
1134 		{ .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1135 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,		\
1136 		(void *)(unsigned long)smp_processor_id());	\
1137 	fn(&fn##_nb, (unsigned long)CPU_STARTING,		\
1138 		(void *)(unsigned long)smp_processor_id());	\
1139 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,			\
1140 		(void *)(unsigned long)smp_processor_id());	\
1141 	register_cpu_notifier(&fn##_nb);			\
1142 } while (0)
1143 
1144 #endif /* __KERNEL__ */
1145 #endif /* _LINUX_PERF_EVENT_H */
1146