xref: /linux-6.15/include/linux/perf_event.h (revision 6faeeea4)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <asm/local.h>
57 
58 struct perf_callchain_entry {
59 	__u64				nr;
60 	__u64				ip[PERF_MAX_STACK_DEPTH];
61 };
62 
63 struct perf_raw_record {
64 	u32				size;
65 	void				*data;
66 };
67 
68 /*
69  * branch stack layout:
70  *  nr: number of taken branches stored in entries[]
71  *
72  * Note that nr can vary from sample to sample
73  * branches (to, from) are stored from most recent
74  * to least recent, i.e., entries[0] contains the most
75  * recent branch.
76  */
77 struct perf_branch_stack {
78 	__u64				nr;
79 	struct perf_branch_entry	entries[0];
80 };
81 
82 struct task_struct;
83 
84 /*
85  * extra PMU register associated with an event
86  */
87 struct hw_perf_event_extra {
88 	u64		config;	/* register value */
89 	unsigned int	reg;	/* register address or index */
90 	int		alloc;	/* extra register already allocated */
91 	int		idx;	/* index in shared_regs->regs[] */
92 };
93 
94 struct event_constraint;
95 
96 /**
97  * struct hw_perf_event - performance event hardware details:
98  */
99 struct hw_perf_event {
100 #ifdef CONFIG_PERF_EVENTS
101 	union {
102 		struct { /* hardware */
103 			u64		config;
104 			u64		last_tag;
105 			unsigned long	config_base;
106 			unsigned long	event_base;
107 			int		event_base_rdpmc;
108 			int		idx;
109 			int		last_cpu;
110 			int		flags;
111 
112 			struct hw_perf_event_extra extra_reg;
113 			struct hw_perf_event_extra branch_reg;
114 
115 			struct event_constraint *constraint;
116 		};
117 		struct { /* software */
118 			struct hrtimer	hrtimer;
119 		};
120 		struct { /* tracepoint */
121 			struct task_struct	*tp_target;
122 			/* for tp_event->class */
123 			struct list_head	tp_list;
124 		};
125 #ifdef CONFIG_HAVE_HW_BREAKPOINT
126 		struct { /* breakpoint */
127 			/*
128 			 * Crufty hack to avoid the chicken and egg
129 			 * problem hw_breakpoint has with context
130 			 * creation and event initalization.
131 			 */
132 			struct task_struct		*bp_target;
133 			struct arch_hw_breakpoint	info;
134 			struct list_head		bp_list;
135 		};
136 #endif
137 	};
138 	int				state;
139 	local64_t			prev_count;
140 	u64				sample_period;
141 	u64				last_period;
142 	local64_t			period_left;
143 	u64                             interrupts_seq;
144 	u64				interrupts;
145 
146 	u64				freq_time_stamp;
147 	u64				freq_count_stamp;
148 #endif
149 };
150 
151 /*
152  * hw_perf_event::state flags
153  */
154 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
155 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
156 #define PERF_HES_ARCH		0x04
157 
158 struct perf_event;
159 
160 /*
161  * Common implementation detail of pmu::{start,commit,cancel}_txn
162  */
163 #define PERF_EVENT_TXN 0x1
164 
165 /**
166  * pmu::capabilities flags
167  */
168 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
169 
170 /**
171  * struct pmu - generic performance monitoring unit
172  */
173 struct pmu {
174 	struct list_head		entry;
175 
176 	struct module			*module;
177 	struct device			*dev;
178 	const struct attribute_group	**attr_groups;
179 	const char			*name;
180 	int				type;
181 
182 	/*
183 	 * various common per-pmu feature flags
184 	 */
185 	int				capabilities;
186 
187 	int * __percpu			pmu_disable_count;
188 	struct perf_cpu_context * __percpu pmu_cpu_context;
189 	int				task_ctx_nr;
190 	int				hrtimer_interval_ms;
191 
192 	/*
193 	 * Fully disable/enable this PMU, can be used to protect from the PMI
194 	 * as well as for lazy/batch writing of the MSRs.
195 	 */
196 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
197 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
198 
199 	/*
200 	 * Try and initialize the event for this PMU.
201 	 * Should return -ENOENT when the @event doesn't match this PMU.
202 	 */
203 	int (*event_init)		(struct perf_event *event);
204 
205 	/*
206 	 * Notification that the event was mapped or unmapped.  Called
207 	 * in the context of the mapping task.
208 	 */
209 	void (*event_mapped)		(struct perf_event *event); /*optional*/
210 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
211 
212 #define PERF_EF_START	0x01		/* start the counter when adding    */
213 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
214 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
215 
216 	/*
217 	 * Adds/Removes a counter to/from the PMU, can be done inside
218 	 * a transaction, see the ->*_txn() methods.
219 	 */
220 	int  (*add)			(struct perf_event *event, int flags);
221 	void (*del)			(struct perf_event *event, int flags);
222 
223 	/*
224 	 * Starts/Stops a counter present on the PMU. The PMI handler
225 	 * should stop the counter when perf_event_overflow() returns
226 	 * !0. ->start() will be used to continue.
227 	 */
228 	void (*start)			(struct perf_event *event, int flags);
229 	void (*stop)			(struct perf_event *event, int flags);
230 
231 	/*
232 	 * Updates the counter value of the event.
233 	 */
234 	void (*read)			(struct perf_event *event);
235 
236 	/*
237 	 * Group events scheduling is treated as a transaction, add
238 	 * group events as a whole and perform one schedulability test.
239 	 * If the test fails, roll back the whole group
240 	 *
241 	 * Start the transaction, after this ->add() doesn't need to
242 	 * do schedulability tests.
243 	 */
244 	void (*start_txn)		(struct pmu *pmu); /* optional */
245 	/*
246 	 * If ->start_txn() disabled the ->add() schedulability test
247 	 * then ->commit_txn() is required to perform one. On success
248 	 * the transaction is closed. On error the transaction is kept
249 	 * open until ->cancel_txn() is called.
250 	 */
251 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
252 	/*
253 	 * Will cancel the transaction, assumes ->del() is called
254 	 * for each successful ->add() during the transaction.
255 	 */
256 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
257 
258 	/*
259 	 * Will return the value for perf_event_mmap_page::index for this event,
260 	 * if no implementation is provided it will default to: event->hw.idx + 1.
261 	 */
262 	int (*event_idx)		(struct perf_event *event); /*optional */
263 
264 	/*
265 	 * flush branch stack on context-switches (needed in cpu-wide mode)
266 	 */
267 	void (*flush_branch_stack)	(void);
268 };
269 
270 /**
271  * enum perf_event_active_state - the states of a event
272  */
273 enum perf_event_active_state {
274 	PERF_EVENT_STATE_EXIT		= -3,
275 	PERF_EVENT_STATE_ERROR		= -2,
276 	PERF_EVENT_STATE_OFF		= -1,
277 	PERF_EVENT_STATE_INACTIVE	=  0,
278 	PERF_EVENT_STATE_ACTIVE		=  1,
279 };
280 
281 struct file;
282 struct perf_sample_data;
283 
284 typedef void (*perf_overflow_handler_t)(struct perf_event *,
285 					struct perf_sample_data *,
286 					struct pt_regs *regs);
287 
288 enum perf_group_flag {
289 	PERF_GROUP_SOFTWARE		= 0x1,
290 };
291 
292 #define SWEVENT_HLIST_BITS		8
293 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
294 
295 struct swevent_hlist {
296 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
297 	struct rcu_head			rcu_head;
298 };
299 
300 #define PERF_ATTACH_CONTEXT	0x01
301 #define PERF_ATTACH_GROUP	0x02
302 #define PERF_ATTACH_TASK	0x04
303 
304 struct perf_cgroup;
305 struct ring_buffer;
306 
307 /**
308  * struct perf_event - performance event kernel representation:
309  */
310 struct perf_event {
311 #ifdef CONFIG_PERF_EVENTS
312 	/*
313 	 * entry onto perf_event_context::event_list;
314 	 *   modifications require ctx->lock
315 	 *   RCU safe iterations.
316 	 */
317 	struct list_head		event_entry;
318 
319 	/*
320 	 * XXX: group_entry and sibling_list should be mutually exclusive;
321 	 * either you're a sibling on a group, or you're the group leader.
322 	 * Rework the code to always use the same list element.
323 	 *
324 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
325 	 * either sufficies for read.
326 	 */
327 	struct list_head		group_entry;
328 	struct list_head		sibling_list;
329 
330 	/*
331 	 * We need storage to track the entries in perf_pmu_migrate_context; we
332 	 * cannot use the event_entry because of RCU and we want to keep the
333 	 * group in tact which avoids us using the other two entries.
334 	 */
335 	struct list_head		migrate_entry;
336 
337 	struct hlist_node		hlist_entry;
338 	struct list_head		active_entry;
339 	int				nr_siblings;
340 	int				group_flags;
341 	struct perf_event		*group_leader;
342 	struct pmu			*pmu;
343 
344 	enum perf_event_active_state	state;
345 	unsigned int			attach_state;
346 	local64_t			count;
347 	atomic64_t			child_count;
348 
349 	/*
350 	 * These are the total time in nanoseconds that the event
351 	 * has been enabled (i.e. eligible to run, and the task has
352 	 * been scheduled in, if this is a per-task event)
353 	 * and running (scheduled onto the CPU), respectively.
354 	 *
355 	 * They are computed from tstamp_enabled, tstamp_running and
356 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
357 	 */
358 	u64				total_time_enabled;
359 	u64				total_time_running;
360 
361 	/*
362 	 * These are timestamps used for computing total_time_enabled
363 	 * and total_time_running when the event is in INACTIVE or
364 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
365 	 * in time.
366 	 * tstamp_enabled: the notional time when the event was enabled
367 	 * tstamp_running: the notional time when the event was scheduled on
368 	 * tstamp_stopped: in INACTIVE state, the notional time when the
369 	 *	event was scheduled off.
370 	 */
371 	u64				tstamp_enabled;
372 	u64				tstamp_running;
373 	u64				tstamp_stopped;
374 
375 	/*
376 	 * timestamp shadows the actual context timing but it can
377 	 * be safely used in NMI interrupt context. It reflects the
378 	 * context time as it was when the event was last scheduled in.
379 	 *
380 	 * ctx_time already accounts for ctx->timestamp. Therefore to
381 	 * compute ctx_time for a sample, simply add perf_clock().
382 	 */
383 	u64				shadow_ctx_time;
384 
385 	struct perf_event_attr		attr;
386 	u16				header_size;
387 	u16				id_header_size;
388 	u16				read_size;
389 	struct hw_perf_event		hw;
390 
391 	struct perf_event_context	*ctx;
392 	atomic_long_t			refcount;
393 
394 	/*
395 	 * These accumulate total time (in nanoseconds) that children
396 	 * events have been enabled and running, respectively.
397 	 */
398 	atomic64_t			child_total_time_enabled;
399 	atomic64_t			child_total_time_running;
400 
401 	/*
402 	 * Protect attach/detach and child_list:
403 	 */
404 	struct mutex			child_mutex;
405 	struct list_head		child_list;
406 	struct perf_event		*parent;
407 
408 	int				oncpu;
409 	int				cpu;
410 
411 	struct list_head		owner_entry;
412 	struct task_struct		*owner;
413 
414 	/* mmap bits */
415 	struct mutex			mmap_mutex;
416 	atomic_t			mmap_count;
417 
418 	struct ring_buffer		*rb;
419 	struct list_head		rb_entry;
420 	unsigned long			rcu_batches;
421 	int				rcu_pending;
422 
423 	/* poll related */
424 	wait_queue_head_t		waitq;
425 	struct fasync_struct		*fasync;
426 
427 	/* delayed work for NMIs and such */
428 	int				pending_wakeup;
429 	int				pending_kill;
430 	int				pending_disable;
431 	struct irq_work			pending;
432 
433 	atomic_t			event_limit;
434 
435 	void (*destroy)(struct perf_event *);
436 	struct rcu_head			rcu_head;
437 
438 	struct pid_namespace		*ns;
439 	u64				id;
440 
441 	perf_overflow_handler_t		overflow_handler;
442 	void				*overflow_handler_context;
443 
444 #ifdef CONFIG_EVENT_TRACING
445 	struct ftrace_event_call	*tp_event;
446 	struct event_filter		*filter;
447 #ifdef CONFIG_FUNCTION_TRACER
448 	struct ftrace_ops               ftrace_ops;
449 #endif
450 #endif
451 
452 #ifdef CONFIG_CGROUP_PERF
453 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
454 	int				cgrp_defer_enabled;
455 #endif
456 
457 #endif /* CONFIG_PERF_EVENTS */
458 };
459 
460 /**
461  * struct perf_event_context - event context structure
462  *
463  * Used as a container for task events and CPU events as well:
464  */
465 struct perf_event_context {
466 	struct pmu			*pmu;
467 	/*
468 	 * Protect the states of the events in the list,
469 	 * nr_active, and the list:
470 	 */
471 	raw_spinlock_t			lock;
472 	/*
473 	 * Protect the list of events.  Locking either mutex or lock
474 	 * is sufficient to ensure the list doesn't change; to change
475 	 * the list you need to lock both the mutex and the spinlock.
476 	 */
477 	struct mutex			mutex;
478 
479 	struct list_head		active_ctx_list;
480 	struct list_head		pinned_groups;
481 	struct list_head		flexible_groups;
482 	struct list_head		event_list;
483 	int				nr_events;
484 	int				nr_active;
485 	int				is_active;
486 	int				nr_stat;
487 	int				nr_freq;
488 	int				rotate_disable;
489 	atomic_t			refcount;
490 	struct task_struct		*task;
491 
492 	/*
493 	 * Context clock, runs when context enabled.
494 	 */
495 	u64				time;
496 	u64				timestamp;
497 
498 	/*
499 	 * These fields let us detect when two contexts have both
500 	 * been cloned (inherited) from a common ancestor.
501 	 */
502 	struct perf_event_context	*parent_ctx;
503 	u64				parent_gen;
504 	u64				generation;
505 	int				pin_count;
506 	int				nr_cgroups;	 /* cgroup evts */
507 	int				nr_branch_stack; /* branch_stack evt */
508 	struct rcu_head			rcu_head;
509 
510 	struct delayed_work		orphans_remove;
511 	bool				orphans_remove_sched;
512 };
513 
514 /*
515  * Number of contexts where an event can trigger:
516  *	task, softirq, hardirq, nmi.
517  */
518 #define PERF_NR_CONTEXTS	4
519 
520 /**
521  * struct perf_event_cpu_context - per cpu event context structure
522  */
523 struct perf_cpu_context {
524 	struct perf_event_context	ctx;
525 	struct perf_event_context	*task_ctx;
526 	int				active_oncpu;
527 	int				exclusive;
528 	struct hrtimer			hrtimer;
529 	ktime_t				hrtimer_interval;
530 	struct pmu			*unique_pmu;
531 	struct perf_cgroup		*cgrp;
532 };
533 
534 struct perf_output_handle {
535 	struct perf_event		*event;
536 	struct ring_buffer		*rb;
537 	unsigned long			wakeup;
538 	unsigned long			size;
539 	void				*addr;
540 	int				page;
541 };
542 
543 #ifdef CONFIG_PERF_EVENTS
544 
545 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
546 extern void perf_pmu_unregister(struct pmu *pmu);
547 
548 extern int perf_num_counters(void);
549 extern const char *perf_pmu_name(void);
550 extern void __perf_event_task_sched_in(struct task_struct *prev,
551 				       struct task_struct *task);
552 extern void __perf_event_task_sched_out(struct task_struct *prev,
553 					struct task_struct *next);
554 extern int perf_event_init_task(struct task_struct *child);
555 extern void perf_event_exit_task(struct task_struct *child);
556 extern void perf_event_free_task(struct task_struct *task);
557 extern void perf_event_delayed_put(struct task_struct *task);
558 extern void perf_event_print_debug(void);
559 extern void perf_pmu_disable(struct pmu *pmu);
560 extern void perf_pmu_enable(struct pmu *pmu);
561 extern int perf_event_task_disable(void);
562 extern int perf_event_task_enable(void);
563 extern int perf_event_refresh(struct perf_event *event, int refresh);
564 extern void perf_event_update_userpage(struct perf_event *event);
565 extern int perf_event_release_kernel(struct perf_event *event);
566 extern struct perf_event *
567 perf_event_create_kernel_counter(struct perf_event_attr *attr,
568 				int cpu,
569 				struct task_struct *task,
570 				perf_overflow_handler_t callback,
571 				void *context);
572 extern void perf_pmu_migrate_context(struct pmu *pmu,
573 				int src_cpu, int dst_cpu);
574 extern u64 perf_event_read_value(struct perf_event *event,
575 				 u64 *enabled, u64 *running);
576 
577 
578 struct perf_sample_data {
579 	/*
580 	 * Fields set by perf_sample_data_init(), group so as to
581 	 * minimize the cachelines touched.
582 	 */
583 	u64				addr;
584 	struct perf_raw_record		*raw;
585 	struct perf_branch_stack	*br_stack;
586 	u64				period;
587 	u64				weight;
588 	u64				txn;
589 	union  perf_mem_data_src	data_src;
590 
591 	/*
592 	 * The other fields, optionally {set,used} by
593 	 * perf_{prepare,output}_sample().
594 	 */
595 	u64				type;
596 	u64				ip;
597 	struct {
598 		u32	pid;
599 		u32	tid;
600 	}				tid_entry;
601 	u64				time;
602 	u64				id;
603 	u64				stream_id;
604 	struct {
605 		u32	cpu;
606 		u32	reserved;
607 	}				cpu_entry;
608 	struct perf_callchain_entry	*callchain;
609 
610 	/*
611 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
612 	 * on arch details.
613 	 */
614 	struct perf_regs		regs_user;
615 	struct pt_regs			regs_user_copy;
616 
617 	struct perf_regs		regs_intr;
618 	u64				stack_user_size;
619 } ____cacheline_aligned;
620 
621 /* default value for data source */
622 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
623 		    PERF_MEM_S(LVL, NA)   |\
624 		    PERF_MEM_S(SNOOP, NA) |\
625 		    PERF_MEM_S(LOCK, NA)  |\
626 		    PERF_MEM_S(TLB, NA))
627 
628 static inline void perf_sample_data_init(struct perf_sample_data *data,
629 					 u64 addr, u64 period)
630 {
631 	/* remaining struct members initialized in perf_prepare_sample() */
632 	data->addr = addr;
633 	data->raw  = NULL;
634 	data->br_stack = NULL;
635 	data->period = period;
636 	data->weight = 0;
637 	data->data_src.val = PERF_MEM_NA;
638 	data->txn = 0;
639 }
640 
641 extern void perf_output_sample(struct perf_output_handle *handle,
642 			       struct perf_event_header *header,
643 			       struct perf_sample_data *data,
644 			       struct perf_event *event);
645 extern void perf_prepare_sample(struct perf_event_header *header,
646 				struct perf_sample_data *data,
647 				struct perf_event *event,
648 				struct pt_regs *regs);
649 
650 extern int perf_event_overflow(struct perf_event *event,
651 				 struct perf_sample_data *data,
652 				 struct pt_regs *regs);
653 
654 static inline bool is_sampling_event(struct perf_event *event)
655 {
656 	return event->attr.sample_period != 0;
657 }
658 
659 /*
660  * Return 1 for a software event, 0 for a hardware event
661  */
662 static inline int is_software_event(struct perf_event *event)
663 {
664 	return event->pmu->task_ctx_nr == perf_sw_context;
665 }
666 
667 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
668 
669 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
670 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
671 
672 #ifndef perf_arch_fetch_caller_regs
673 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
674 #endif
675 
676 /*
677  * Take a snapshot of the regs. Skip ip and frame pointer to
678  * the nth caller. We only need a few of the regs:
679  * - ip for PERF_SAMPLE_IP
680  * - cs for user_mode() tests
681  * - bp for callchains
682  * - eflags, for future purposes, just in case
683  */
684 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
685 {
686 	memset(regs, 0, sizeof(*regs));
687 
688 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
689 }
690 
691 static __always_inline void
692 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
693 {
694 	if (static_key_false(&perf_swevent_enabled[event_id]))
695 		__perf_sw_event(event_id, nr, regs, addr);
696 }
697 
698 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
699 
700 /*
701  * 'Special' version for the scheduler, it hard assumes no recursion,
702  * which is guaranteed by us not actually scheduling inside other swevents
703  * because those disable preemption.
704  */
705 static __always_inline void
706 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
707 {
708 	if (static_key_false(&perf_swevent_enabled[event_id])) {
709 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
710 
711 		perf_fetch_caller_regs(regs);
712 		___perf_sw_event(event_id, nr, regs, addr);
713 	}
714 }
715 
716 extern struct static_key_deferred perf_sched_events;
717 
718 static inline void perf_event_task_sched_in(struct task_struct *prev,
719 					    struct task_struct *task)
720 {
721 	if (static_key_false(&perf_sched_events.key))
722 		__perf_event_task_sched_in(prev, task);
723 }
724 
725 static inline void perf_event_task_sched_out(struct task_struct *prev,
726 					     struct task_struct *next)
727 {
728 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
729 
730 	if (static_key_false(&perf_sched_events.key))
731 		__perf_event_task_sched_out(prev, next);
732 }
733 
734 extern void perf_event_mmap(struct vm_area_struct *vma);
735 extern struct perf_guest_info_callbacks *perf_guest_cbs;
736 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
737 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
738 
739 extern void perf_event_exec(void);
740 extern void perf_event_comm(struct task_struct *tsk, bool exec);
741 extern void perf_event_fork(struct task_struct *tsk);
742 
743 /* Callchains */
744 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
745 
746 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
747 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
748 
749 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
750 {
751 	if (entry->nr < PERF_MAX_STACK_DEPTH)
752 		entry->ip[entry->nr++] = ip;
753 }
754 
755 extern int sysctl_perf_event_paranoid;
756 extern int sysctl_perf_event_mlock;
757 extern int sysctl_perf_event_sample_rate;
758 extern int sysctl_perf_cpu_time_max_percent;
759 
760 extern void perf_sample_event_took(u64 sample_len_ns);
761 
762 extern int perf_proc_update_handler(struct ctl_table *table, int write,
763 		void __user *buffer, size_t *lenp,
764 		loff_t *ppos);
765 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
766 		void __user *buffer, size_t *lenp,
767 		loff_t *ppos);
768 
769 
770 static inline bool perf_paranoid_tracepoint_raw(void)
771 {
772 	return sysctl_perf_event_paranoid > -1;
773 }
774 
775 static inline bool perf_paranoid_cpu(void)
776 {
777 	return sysctl_perf_event_paranoid > 0;
778 }
779 
780 static inline bool perf_paranoid_kernel(void)
781 {
782 	return sysctl_perf_event_paranoid > 1;
783 }
784 
785 extern void perf_event_init(void);
786 extern void perf_tp_event(u64 addr, u64 count, void *record,
787 			  int entry_size, struct pt_regs *regs,
788 			  struct hlist_head *head, int rctx,
789 			  struct task_struct *task);
790 extern void perf_bp_event(struct perf_event *event, void *data);
791 
792 #ifndef perf_misc_flags
793 # define perf_misc_flags(regs) \
794 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
795 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
796 #endif
797 
798 static inline bool has_branch_stack(struct perf_event *event)
799 {
800 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
801 }
802 
803 extern int perf_output_begin(struct perf_output_handle *handle,
804 			     struct perf_event *event, unsigned int size);
805 extern void perf_output_end(struct perf_output_handle *handle);
806 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
807 			     const void *buf, unsigned int len);
808 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
809 				     unsigned int len);
810 extern int perf_swevent_get_recursion_context(void);
811 extern void perf_swevent_put_recursion_context(int rctx);
812 extern u64 perf_swevent_set_period(struct perf_event *event);
813 extern void perf_event_enable(struct perf_event *event);
814 extern void perf_event_disable(struct perf_event *event);
815 extern int __perf_event_disable(void *info);
816 extern void perf_event_task_tick(void);
817 #else /* !CONFIG_PERF_EVENTS: */
818 static inline void
819 perf_event_task_sched_in(struct task_struct *prev,
820 			 struct task_struct *task)			{ }
821 static inline void
822 perf_event_task_sched_out(struct task_struct *prev,
823 			  struct task_struct *next)			{ }
824 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
825 static inline void perf_event_exit_task(struct task_struct *child)	{ }
826 static inline void perf_event_free_task(struct task_struct *task)	{ }
827 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
828 static inline void perf_event_print_debug(void)				{ }
829 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
830 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
831 static inline int perf_event_refresh(struct perf_event *event, int refresh)
832 {
833 	return -EINVAL;
834 }
835 
836 static inline void
837 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
838 static inline void
839 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
840 static inline void
841 perf_bp_event(struct perf_event *event, void *data)			{ }
842 
843 static inline int perf_register_guest_info_callbacks
844 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
845 static inline int perf_unregister_guest_info_callbacks
846 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
847 
848 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
849 static inline void perf_event_exec(void)				{ }
850 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
851 static inline void perf_event_fork(struct task_struct *tsk)		{ }
852 static inline void perf_event_init(void)				{ }
853 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
854 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
855 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
856 static inline void perf_event_enable(struct perf_event *event)		{ }
857 static inline void perf_event_disable(struct perf_event *event)		{ }
858 static inline int __perf_event_disable(void *info)			{ return -1; }
859 static inline void perf_event_task_tick(void)				{ }
860 #endif
861 
862 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
863 extern bool perf_event_can_stop_tick(void);
864 #else
865 static inline bool perf_event_can_stop_tick(void)			{ return true; }
866 #endif
867 
868 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
869 extern void perf_restore_debug_store(void);
870 #else
871 static inline void perf_restore_debug_store(void)			{ }
872 #endif
873 
874 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
875 
876 /*
877  * This has to have a higher priority than migration_notifier in sched/core.c.
878  */
879 #define perf_cpu_notifier(fn)						\
880 do {									\
881 	static struct notifier_block fn##_nb =				\
882 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
883 	unsigned long cpu = smp_processor_id();				\
884 	unsigned long flags;						\
885 									\
886 	cpu_notifier_register_begin();					\
887 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
888 		(void *)(unsigned long)cpu);				\
889 	local_irq_save(flags);						\
890 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
891 		(void *)(unsigned long)cpu);				\
892 	local_irq_restore(flags);					\
893 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
894 		(void *)(unsigned long)cpu);				\
895 	__register_cpu_notifier(&fn##_nb);				\
896 	cpu_notifier_register_done();					\
897 } while (0)
898 
899 /*
900  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
901  * callback for already online CPUs.
902  */
903 #define __perf_cpu_notifier(fn)						\
904 do {									\
905 	static struct notifier_block fn##_nb =				\
906 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
907 									\
908 	__register_cpu_notifier(&fn##_nb);				\
909 } while (0)
910 
911 struct perf_pmu_events_attr {
912 	struct device_attribute attr;
913 	u64 id;
914 	const char *event_str;
915 };
916 
917 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
918 			      char *page);
919 
920 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
921 static struct perf_pmu_events_attr _var = {				\
922 	.attr = __ATTR(_name, 0444, _show, NULL),			\
923 	.id   =  _id,							\
924 };
925 
926 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
927 static struct perf_pmu_events_attr _var = {				    \
928 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
929 	.id		= 0,						    \
930 	.event_str	= _str,						    \
931 };
932 
933 #define PMU_FORMAT_ATTR(_name, _format)					\
934 static ssize_t								\
935 _name##_show(struct device *dev,					\
936 			       struct device_attribute *attr,		\
937 			       char *page)				\
938 {									\
939 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
940 	return sprintf(page, _format "\n");				\
941 }									\
942 									\
943 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
944 
945 #endif /* _LINUX_PERF_EVENT_H */
946