xref: /linux-6.15/include/linux/perf_event.h (revision 6ed7ffdd)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <linux/cgroup.h>
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56 
57 struct perf_callchain_entry {
58 	__u64				nr;
59 	__u64				ip[PERF_MAX_STACK_DEPTH];
60 };
61 
62 struct perf_raw_record {
63 	u32				size;
64 	void				*data;
65 };
66 
67 /*
68  * single taken branch record layout:
69  *
70  *      from: source instruction (may not always be a branch insn)
71  *        to: branch target
72  *   mispred: branch target was mispredicted
73  * predicted: branch target was predicted
74  *
75  * support for mispred, predicted is optional. In case it
76  * is not supported mispred = predicted = 0.
77  */
78 struct perf_branch_entry {
79 	__u64	from;
80 	__u64	to;
81 	__u64	mispred:1,  /* target mispredicted */
82 		predicted:1,/* target predicted */
83 		reserved:62;
84 };
85 
86 /*
87  * branch stack layout:
88  *  nr: number of taken branches stored in entries[]
89  *
90  * Note that nr can vary from sample to sample
91  * branches (to, from) are stored from most recent
92  * to least recent, i.e., entries[0] contains the most
93  * recent branch.
94  */
95 struct perf_branch_stack {
96 	__u64				nr;
97 	struct perf_branch_entry	entries[0];
98 };
99 
100 struct perf_regs_user {
101 	__u64		abi;
102 	struct pt_regs	*regs;
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111 	u64		config;	/* register value */
112 	unsigned int	reg;	/* register address or index */
113 	int		alloc;	/* extra register already allocated */
114 	int		idx;	/* index in shared_regs->regs[] */
115 };
116 
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 	union {
123 		struct { /* hardware */
124 			u64		config;
125 			u64		last_tag;
126 			unsigned long	config_base;
127 			unsigned long	event_base;
128 			int		event_base_rdpmc;
129 			int		idx;
130 			int		last_cpu;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			struct task_struct	*tp_target;
140 			/* for tp_event->class */
141 			struct list_head	tp_list;
142 		};
143 #ifdef CONFIG_HAVE_HW_BREAKPOINT
144 		struct { /* breakpoint */
145 			/*
146 			 * Crufty hack to avoid the chicken and egg
147 			 * problem hw_breakpoint has with context
148 			 * creation and event initalization.
149 			 */
150 			struct task_struct		*bp_target;
151 			struct arch_hw_breakpoint	info;
152 			struct list_head		bp_list;
153 		};
154 #endif
155 	};
156 	int				state;
157 	local64_t			prev_count;
158 	u64				sample_period;
159 	u64				last_period;
160 	local64_t			period_left;
161 	u64                             interrupts_seq;
162 	u64				interrupts;
163 
164 	u64				freq_time_stamp;
165 	u64				freq_count_stamp;
166 #endif
167 };
168 
169 /*
170  * hw_perf_event::state flags
171  */
172 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
173 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
174 #define PERF_HES_ARCH		0x04
175 
176 struct perf_event;
177 
178 /*
179  * Common implementation detail of pmu::{start,commit,cancel}_txn
180  */
181 #define PERF_EVENT_TXN 0x1
182 
183 /**
184  * struct pmu - generic performance monitoring unit
185  */
186 struct pmu {
187 	struct list_head		entry;
188 
189 	struct device			*dev;
190 	const struct attribute_group	**attr_groups;
191 	char				*name;
192 	int				type;
193 
194 	int * __percpu			pmu_disable_count;
195 	struct perf_cpu_context * __percpu pmu_cpu_context;
196 	int				task_ctx_nr;
197 
198 	/*
199 	 * Fully disable/enable this PMU, can be used to protect from the PMI
200 	 * as well as for lazy/batch writing of the MSRs.
201 	 */
202 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
203 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
204 
205 	/*
206 	 * Try and initialize the event for this PMU.
207 	 * Should return -ENOENT when the @event doesn't match this PMU.
208 	 */
209 	int (*event_init)		(struct perf_event *event);
210 
211 #define PERF_EF_START	0x01		/* start the counter when adding    */
212 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
213 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
214 
215 	/*
216 	 * Adds/Removes a counter to/from the PMU, can be done inside
217 	 * a transaction, see the ->*_txn() methods.
218 	 */
219 	int  (*add)			(struct perf_event *event, int flags);
220 	void (*del)			(struct perf_event *event, int flags);
221 
222 	/*
223 	 * Starts/Stops a counter present on the PMU. The PMI handler
224 	 * should stop the counter when perf_event_overflow() returns
225 	 * !0. ->start() will be used to continue.
226 	 */
227 	void (*start)			(struct perf_event *event, int flags);
228 	void (*stop)			(struct perf_event *event, int flags);
229 
230 	/*
231 	 * Updates the counter value of the event.
232 	 */
233 	void (*read)			(struct perf_event *event);
234 
235 	/*
236 	 * Group events scheduling is treated as a transaction, add
237 	 * group events as a whole and perform one schedulability test.
238 	 * If the test fails, roll back the whole group
239 	 *
240 	 * Start the transaction, after this ->add() doesn't need to
241 	 * do schedulability tests.
242 	 */
243 	void (*start_txn)		(struct pmu *pmu); /* optional */
244 	/*
245 	 * If ->start_txn() disabled the ->add() schedulability test
246 	 * then ->commit_txn() is required to perform one. On success
247 	 * the transaction is closed. On error the transaction is kept
248 	 * open until ->cancel_txn() is called.
249 	 */
250 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
251 	/*
252 	 * Will cancel the transaction, assumes ->del() is called
253 	 * for each successful ->add() during the transaction.
254 	 */
255 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
256 
257 	/*
258 	 * Will return the value for perf_event_mmap_page::index for this event,
259 	 * if no implementation is provided it will default to: event->hw.idx + 1.
260 	 */
261 	int (*event_idx)		(struct perf_event *event); /*optional */
262 
263 	/*
264 	 * flush branch stack on context-switches (needed in cpu-wide mode)
265 	 */
266 	void (*flush_branch_stack)	(void);
267 };
268 
269 /**
270  * enum perf_event_active_state - the states of a event
271  */
272 enum perf_event_active_state {
273 	PERF_EVENT_STATE_ERROR		= -2,
274 	PERF_EVENT_STATE_OFF		= -1,
275 	PERF_EVENT_STATE_INACTIVE	=  0,
276 	PERF_EVENT_STATE_ACTIVE		=  1,
277 };
278 
279 struct file;
280 struct perf_sample_data;
281 
282 typedef void (*perf_overflow_handler_t)(struct perf_event *,
283 					struct perf_sample_data *,
284 					struct pt_regs *regs);
285 
286 enum perf_group_flag {
287 	PERF_GROUP_SOFTWARE		= 0x1,
288 };
289 
290 #define SWEVENT_HLIST_BITS		8
291 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
292 
293 struct swevent_hlist {
294 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
295 	struct rcu_head			rcu_head;
296 };
297 
298 #define PERF_ATTACH_CONTEXT	0x01
299 #define PERF_ATTACH_GROUP	0x02
300 #define PERF_ATTACH_TASK	0x04
301 
302 #ifdef CONFIG_CGROUP_PERF
303 /*
304  * perf_cgroup_info keeps track of time_enabled for a cgroup.
305  * This is a per-cpu dynamically allocated data structure.
306  */
307 struct perf_cgroup_info {
308 	u64				time;
309 	u64				timestamp;
310 };
311 
312 struct perf_cgroup {
313 	struct				cgroup_subsys_state css;
314 	struct				perf_cgroup_info *info;	/* timing info, one per cpu */
315 };
316 #endif
317 
318 struct ring_buffer;
319 
320 /**
321  * struct perf_event - performance event kernel representation:
322  */
323 struct perf_event {
324 #ifdef CONFIG_PERF_EVENTS
325 	struct list_head		group_entry;
326 	struct list_head		event_entry;
327 	struct list_head		sibling_list;
328 	struct hlist_node		hlist_entry;
329 	int				nr_siblings;
330 	int				group_flags;
331 	struct perf_event		*group_leader;
332 	struct pmu			*pmu;
333 
334 	enum perf_event_active_state	state;
335 	unsigned int			attach_state;
336 	local64_t			count;
337 	atomic64_t			child_count;
338 
339 	/*
340 	 * These are the total time in nanoseconds that the event
341 	 * has been enabled (i.e. eligible to run, and the task has
342 	 * been scheduled in, if this is a per-task event)
343 	 * and running (scheduled onto the CPU), respectively.
344 	 *
345 	 * They are computed from tstamp_enabled, tstamp_running and
346 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
347 	 */
348 	u64				total_time_enabled;
349 	u64				total_time_running;
350 
351 	/*
352 	 * These are timestamps used for computing total_time_enabled
353 	 * and total_time_running when the event is in INACTIVE or
354 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
355 	 * in time.
356 	 * tstamp_enabled: the notional time when the event was enabled
357 	 * tstamp_running: the notional time when the event was scheduled on
358 	 * tstamp_stopped: in INACTIVE state, the notional time when the
359 	 *	event was scheduled off.
360 	 */
361 	u64				tstamp_enabled;
362 	u64				tstamp_running;
363 	u64				tstamp_stopped;
364 
365 	/*
366 	 * timestamp shadows the actual context timing but it can
367 	 * be safely used in NMI interrupt context. It reflects the
368 	 * context time as it was when the event was last scheduled in.
369 	 *
370 	 * ctx_time already accounts for ctx->timestamp. Therefore to
371 	 * compute ctx_time for a sample, simply add perf_clock().
372 	 */
373 	u64				shadow_ctx_time;
374 
375 	struct perf_event_attr		attr;
376 	u16				header_size;
377 	u16				id_header_size;
378 	u16				read_size;
379 	struct hw_perf_event		hw;
380 
381 	struct perf_event_context	*ctx;
382 	atomic_long_t			refcount;
383 
384 	/*
385 	 * These accumulate total time (in nanoseconds) that children
386 	 * events have been enabled and running, respectively.
387 	 */
388 	atomic64_t			child_total_time_enabled;
389 	atomic64_t			child_total_time_running;
390 
391 	/*
392 	 * Protect attach/detach and child_list:
393 	 */
394 	struct mutex			child_mutex;
395 	struct list_head		child_list;
396 	struct perf_event		*parent;
397 
398 	int				oncpu;
399 	int				cpu;
400 
401 	struct list_head		owner_entry;
402 	struct task_struct		*owner;
403 
404 	/* mmap bits */
405 	struct mutex			mmap_mutex;
406 	atomic_t			mmap_count;
407 	int				mmap_locked;
408 	struct user_struct		*mmap_user;
409 	struct ring_buffer		*rb;
410 	struct list_head		rb_entry;
411 
412 	/* poll related */
413 	wait_queue_head_t		waitq;
414 	struct fasync_struct		*fasync;
415 
416 	/* delayed work for NMIs and such */
417 	int				pending_wakeup;
418 	int				pending_kill;
419 	int				pending_disable;
420 	struct irq_work			pending;
421 
422 	atomic_t			event_limit;
423 
424 	void (*destroy)(struct perf_event *);
425 	struct rcu_head			rcu_head;
426 
427 	struct pid_namespace		*ns;
428 	u64				id;
429 
430 	perf_overflow_handler_t		overflow_handler;
431 	void				*overflow_handler_context;
432 
433 #ifdef CONFIG_EVENT_TRACING
434 	struct ftrace_event_call	*tp_event;
435 	struct event_filter		*filter;
436 #ifdef CONFIG_FUNCTION_TRACER
437 	struct ftrace_ops               ftrace_ops;
438 #endif
439 #endif
440 
441 #ifdef CONFIG_CGROUP_PERF
442 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
443 	int				cgrp_defer_enabled;
444 #endif
445 
446 #endif /* CONFIG_PERF_EVENTS */
447 };
448 
449 enum perf_event_context_type {
450 	task_context,
451 	cpu_context,
452 };
453 
454 /**
455  * struct perf_event_context - event context structure
456  *
457  * Used as a container for task events and CPU events as well:
458  */
459 struct perf_event_context {
460 	struct pmu			*pmu;
461 	enum perf_event_context_type	type;
462 	/*
463 	 * Protect the states of the events in the list,
464 	 * nr_active, and the list:
465 	 */
466 	raw_spinlock_t			lock;
467 	/*
468 	 * Protect the list of events.  Locking either mutex or lock
469 	 * is sufficient to ensure the list doesn't change; to change
470 	 * the list you need to lock both the mutex and the spinlock.
471 	 */
472 	struct mutex			mutex;
473 
474 	struct list_head		pinned_groups;
475 	struct list_head		flexible_groups;
476 	struct list_head		event_list;
477 	int				nr_events;
478 	int				nr_active;
479 	int				is_active;
480 	int				nr_stat;
481 	int				nr_freq;
482 	int				rotate_disable;
483 	atomic_t			refcount;
484 	struct task_struct		*task;
485 
486 	/*
487 	 * Context clock, runs when context enabled.
488 	 */
489 	u64				time;
490 	u64				timestamp;
491 
492 	/*
493 	 * These fields let us detect when two contexts have both
494 	 * been cloned (inherited) from a common ancestor.
495 	 */
496 	struct perf_event_context	*parent_ctx;
497 	u64				parent_gen;
498 	u64				generation;
499 	int				pin_count;
500 	int				nr_cgroups;	 /* cgroup evts */
501 	int				nr_branch_stack; /* branch_stack evt */
502 	struct rcu_head			rcu_head;
503 };
504 
505 /*
506  * Number of contexts where an event can trigger:
507  *	task, softirq, hardirq, nmi.
508  */
509 #define PERF_NR_CONTEXTS	4
510 
511 /**
512  * struct perf_event_cpu_context - per cpu event context structure
513  */
514 struct perf_cpu_context {
515 	struct perf_event_context	ctx;
516 	struct perf_event_context	*task_ctx;
517 	int				active_oncpu;
518 	int				exclusive;
519 	struct list_head		rotation_list;
520 	int				jiffies_interval;
521 	struct pmu			*unique_pmu;
522 	struct perf_cgroup		*cgrp;
523 };
524 
525 struct perf_output_handle {
526 	struct perf_event		*event;
527 	struct ring_buffer		*rb;
528 	unsigned long			wakeup;
529 	unsigned long			size;
530 	void				*addr;
531 	int				page;
532 };
533 
534 #ifdef CONFIG_PERF_EVENTS
535 
536 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
537 extern void perf_pmu_unregister(struct pmu *pmu);
538 
539 extern int perf_num_counters(void);
540 extern const char *perf_pmu_name(void);
541 extern void __perf_event_task_sched_in(struct task_struct *prev,
542 				       struct task_struct *task);
543 extern void __perf_event_task_sched_out(struct task_struct *prev,
544 					struct task_struct *next);
545 extern int perf_event_init_task(struct task_struct *child);
546 extern void perf_event_exit_task(struct task_struct *child);
547 extern void perf_event_free_task(struct task_struct *task);
548 extern void perf_event_delayed_put(struct task_struct *task);
549 extern void perf_event_print_debug(void);
550 extern void perf_pmu_disable(struct pmu *pmu);
551 extern void perf_pmu_enable(struct pmu *pmu);
552 extern int perf_event_task_disable(void);
553 extern int perf_event_task_enable(void);
554 extern int perf_event_refresh(struct perf_event *event, int refresh);
555 extern void perf_event_update_userpage(struct perf_event *event);
556 extern int perf_event_release_kernel(struct perf_event *event);
557 extern struct perf_event *
558 perf_event_create_kernel_counter(struct perf_event_attr *attr,
559 				int cpu,
560 				struct task_struct *task,
561 				perf_overflow_handler_t callback,
562 				void *context);
563 extern void perf_pmu_migrate_context(struct pmu *pmu,
564 				int src_cpu, int dst_cpu);
565 extern u64 perf_event_read_value(struct perf_event *event,
566 				 u64 *enabled, u64 *running);
567 
568 
569 struct perf_sample_data {
570 	u64				type;
571 
572 	u64				ip;
573 	struct {
574 		u32	pid;
575 		u32	tid;
576 	}				tid_entry;
577 	u64				time;
578 	u64				addr;
579 	u64				id;
580 	u64				stream_id;
581 	struct {
582 		u32	cpu;
583 		u32	reserved;
584 	}				cpu_entry;
585 	u64				period;
586 	struct perf_callchain_entry	*callchain;
587 	struct perf_raw_record		*raw;
588 	struct perf_branch_stack	*br_stack;
589 	struct perf_regs_user		regs_user;
590 	u64				stack_user_size;
591 };
592 
593 static inline void perf_sample_data_init(struct perf_sample_data *data,
594 					 u64 addr, u64 period)
595 {
596 	/* remaining struct members initialized in perf_prepare_sample() */
597 	data->addr = addr;
598 	data->raw  = NULL;
599 	data->br_stack = NULL;
600 	data->period = period;
601 	data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
602 	data->regs_user.regs = NULL;
603 	data->stack_user_size = 0;
604 }
605 
606 extern void perf_output_sample(struct perf_output_handle *handle,
607 			       struct perf_event_header *header,
608 			       struct perf_sample_data *data,
609 			       struct perf_event *event);
610 extern void perf_prepare_sample(struct perf_event_header *header,
611 				struct perf_sample_data *data,
612 				struct perf_event *event,
613 				struct pt_regs *regs);
614 
615 extern int perf_event_overflow(struct perf_event *event,
616 				 struct perf_sample_data *data,
617 				 struct pt_regs *regs);
618 
619 static inline bool is_sampling_event(struct perf_event *event)
620 {
621 	return event->attr.sample_period != 0;
622 }
623 
624 /*
625  * Return 1 for a software event, 0 for a hardware event
626  */
627 static inline int is_software_event(struct perf_event *event)
628 {
629 	return event->pmu->task_ctx_nr == perf_sw_context;
630 }
631 
632 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
633 
634 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
635 
636 #ifndef perf_arch_fetch_caller_regs
637 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
638 #endif
639 
640 /*
641  * Take a snapshot of the regs. Skip ip and frame pointer to
642  * the nth caller. We only need a few of the regs:
643  * - ip for PERF_SAMPLE_IP
644  * - cs for user_mode() tests
645  * - bp for callchains
646  * - eflags, for future purposes, just in case
647  */
648 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
649 {
650 	memset(regs, 0, sizeof(*regs));
651 
652 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
653 }
654 
655 static __always_inline void
656 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
657 {
658 	struct pt_regs hot_regs;
659 
660 	if (static_key_false(&perf_swevent_enabled[event_id])) {
661 		if (!regs) {
662 			perf_fetch_caller_regs(&hot_regs);
663 			regs = &hot_regs;
664 		}
665 		__perf_sw_event(event_id, nr, regs, addr);
666 	}
667 }
668 
669 extern struct static_key_deferred perf_sched_events;
670 
671 static inline void perf_event_task_sched_in(struct task_struct *prev,
672 					    struct task_struct *task)
673 {
674 	if (static_key_false(&perf_sched_events.key))
675 		__perf_event_task_sched_in(prev, task);
676 }
677 
678 static inline void perf_event_task_sched_out(struct task_struct *prev,
679 					     struct task_struct *next)
680 {
681 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
682 
683 	if (static_key_false(&perf_sched_events.key))
684 		__perf_event_task_sched_out(prev, next);
685 }
686 
687 extern void perf_event_mmap(struct vm_area_struct *vma);
688 extern struct perf_guest_info_callbacks *perf_guest_cbs;
689 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
690 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
691 
692 extern void perf_event_comm(struct task_struct *tsk);
693 extern void perf_event_fork(struct task_struct *tsk);
694 
695 /* Callchains */
696 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
697 
698 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
699 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
700 
701 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
702 {
703 	if (entry->nr < PERF_MAX_STACK_DEPTH)
704 		entry->ip[entry->nr++] = ip;
705 }
706 
707 extern int sysctl_perf_event_paranoid;
708 extern int sysctl_perf_event_mlock;
709 extern int sysctl_perf_event_sample_rate;
710 
711 extern int perf_proc_update_handler(struct ctl_table *table, int write,
712 		void __user *buffer, size_t *lenp,
713 		loff_t *ppos);
714 
715 static inline bool perf_paranoid_tracepoint_raw(void)
716 {
717 	return sysctl_perf_event_paranoid > -1;
718 }
719 
720 static inline bool perf_paranoid_cpu(void)
721 {
722 	return sysctl_perf_event_paranoid > 0;
723 }
724 
725 static inline bool perf_paranoid_kernel(void)
726 {
727 	return sysctl_perf_event_paranoid > 1;
728 }
729 
730 extern void perf_event_init(void);
731 extern void perf_tp_event(u64 addr, u64 count, void *record,
732 			  int entry_size, struct pt_regs *regs,
733 			  struct hlist_head *head, int rctx,
734 			  struct task_struct *task);
735 extern void perf_bp_event(struct perf_event *event, void *data);
736 
737 #ifndef perf_misc_flags
738 # define perf_misc_flags(regs) \
739 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
740 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
741 #endif
742 
743 static inline bool has_branch_stack(struct perf_event *event)
744 {
745 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
746 }
747 
748 extern int perf_output_begin(struct perf_output_handle *handle,
749 			     struct perf_event *event, unsigned int size);
750 extern void perf_output_end(struct perf_output_handle *handle);
751 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
752 			     const void *buf, unsigned int len);
753 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
754 				     unsigned int len);
755 extern int perf_swevent_get_recursion_context(void);
756 extern void perf_swevent_put_recursion_context(int rctx);
757 extern void perf_event_enable(struct perf_event *event);
758 extern void perf_event_disable(struct perf_event *event);
759 extern int __perf_event_disable(void *info);
760 extern void perf_event_task_tick(void);
761 #else
762 static inline void
763 perf_event_task_sched_in(struct task_struct *prev,
764 			 struct task_struct *task)			{ }
765 static inline void
766 perf_event_task_sched_out(struct task_struct *prev,
767 			  struct task_struct *next)			{ }
768 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
769 static inline void perf_event_exit_task(struct task_struct *child)	{ }
770 static inline void perf_event_free_task(struct task_struct *task)	{ }
771 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
772 static inline void perf_event_print_debug(void)				{ }
773 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
774 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
775 static inline int perf_event_refresh(struct perf_event *event, int refresh)
776 {
777 	return -EINVAL;
778 }
779 
780 static inline void
781 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
782 static inline void
783 perf_bp_event(struct perf_event *event, void *data)			{ }
784 
785 static inline int perf_register_guest_info_callbacks
786 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
787 static inline int perf_unregister_guest_info_callbacks
788 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
789 
790 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
791 static inline void perf_event_comm(struct task_struct *tsk)		{ }
792 static inline void perf_event_fork(struct task_struct *tsk)		{ }
793 static inline void perf_event_init(void)				{ }
794 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
795 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
796 static inline void perf_event_enable(struct perf_event *event)		{ }
797 static inline void perf_event_disable(struct perf_event *event)		{ }
798 static inline int __perf_event_disable(void *info)			{ return -1; }
799 static inline void perf_event_task_tick(void)				{ }
800 #endif
801 
802 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
803 
804 /*
805  * This has to have a higher priority than migration_notifier in sched.c.
806  */
807 #define perf_cpu_notifier(fn)						\
808 do {									\
809 	static struct notifier_block fn##_nb __cpuinitdata =		\
810 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
811 	unsigned long cpu = smp_processor_id();				\
812 	unsigned long flags;						\
813 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
814 		(void *)(unsigned long)cpu);				\
815 	local_irq_save(flags);						\
816 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
817 		(void *)(unsigned long)cpu);				\
818 	local_irq_restore(flags);					\
819 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
820 		(void *)(unsigned long)cpu);				\
821 	register_cpu_notifier(&fn##_nb);				\
822 } while (0)
823 
824 
825 struct perf_pmu_events_attr {
826 	struct device_attribute attr;
827 	u64 id;
828 };
829 
830 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
831 static struct perf_pmu_events_attr _var = {				\
832 	.attr = __ATTR(_name, 0444, _show, NULL),			\
833 	.id   =  _id,							\
834 };
835 
836 #define PMU_FORMAT_ATTR(_name, _format)					\
837 static ssize_t								\
838 _name##_show(struct device *dev,					\
839 			       struct device_attribute *attr,		\
840 			       char *page)				\
841 {									\
842 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
843 	return sprintf(page, _format "\n");				\
844 }									\
845 									\
846 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
847 
848 #endif /* _LINUX_PERF_EVENT_H */
849