xref: /linux-6.15/include/linux/perf_event.h (revision 623b4ac4)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 
56 	PERF_COUNT_HW_MAX,			/* non-ABI */
57 };
58 
59 /*
60  * Generalized hardware cache events:
61  *
62  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63  *       { read, write, prefetch } x
64  *       { accesses, misses }
65  */
66 enum perf_hw_cache_id {
67 	PERF_COUNT_HW_CACHE_L1D			= 0,
68 	PERF_COUNT_HW_CACHE_L1I			= 1,
69 	PERF_COUNT_HW_CACHE_LL			= 2,
70 	PERF_COUNT_HW_CACHE_DTLB		= 3,
71 	PERF_COUNT_HW_CACHE_ITLB		= 4,
72 	PERF_COUNT_HW_CACHE_BPU			= 5,
73 
74 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
75 };
76 
77 enum perf_hw_cache_op_id {
78 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
79 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
80 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
81 
82 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
83 };
84 
85 enum perf_hw_cache_op_result_id {
86 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
87 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
88 
89 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
90 };
91 
92 /*
93  * Special "software" events provided by the kernel, even if the hardware
94  * does not support performance events. These events measure various
95  * physical and sw events of the kernel (and allow the profiling of them as
96  * well):
97  */
98 enum perf_sw_ids {
99 	PERF_COUNT_SW_CPU_CLOCK			= 0,
100 	PERF_COUNT_SW_TASK_CLOCK		= 1,
101 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
102 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
103 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
104 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
105 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
106 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
107 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
108 
109 	PERF_COUNT_SW_MAX,			/* non-ABI */
110 };
111 
112 /*
113  * Bits that can be set in attr.sample_type to request information
114  * in the overflow packets.
115  */
116 enum perf_event_sample_format {
117 	PERF_SAMPLE_IP				= 1U << 0,
118 	PERF_SAMPLE_TID				= 1U << 1,
119 	PERF_SAMPLE_TIME			= 1U << 2,
120 	PERF_SAMPLE_ADDR			= 1U << 3,
121 	PERF_SAMPLE_READ			= 1U << 4,
122 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
123 	PERF_SAMPLE_ID				= 1U << 6,
124 	PERF_SAMPLE_CPU				= 1U << 7,
125 	PERF_SAMPLE_PERIOD			= 1U << 8,
126 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
127 	PERF_SAMPLE_RAW				= 1U << 10,
128 
129 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
130 };
131 
132 /*
133  * The format of the data returned by read() on a perf event fd,
134  * as specified by attr.read_format:
135  *
136  * struct read_format {
137  *	{ u64		value;
138  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
139  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
140  *	  { u64		id;           } && PERF_FORMAT_ID
141  *	} && !PERF_FORMAT_GROUP
142  *
143  *	{ u64		nr;
144  *	  { u64		time_enabled; } && PERF_FORMAT_ENABLED
145  *	  { u64		time_running; } && PERF_FORMAT_RUNNING
146  *	  { u64		value;
147  *	    { u64	id;           } && PERF_FORMAT_ID
148  *	  }		cntr[nr];
149  *	} && PERF_FORMAT_GROUP
150  * };
151  */
152 enum perf_event_read_format {
153 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
154 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
155 	PERF_FORMAT_ID				= 1U << 2,
156 	PERF_FORMAT_GROUP			= 1U << 3,
157 
158 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
159 };
160 
161 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
162 
163 /*
164  * Hardware event_id to monitor via a performance monitoring event:
165  */
166 struct perf_event_attr {
167 
168 	/*
169 	 * Major type: hardware/software/tracepoint/etc.
170 	 */
171 	__u32			type;
172 
173 	/*
174 	 * Size of the attr structure, for fwd/bwd compat.
175 	 */
176 	__u32			size;
177 
178 	/*
179 	 * Type specific configuration information.
180 	 */
181 	__u64			config;
182 
183 	union {
184 		__u64		sample_period;
185 		__u64		sample_freq;
186 	};
187 
188 	__u64			sample_type;
189 	__u64			read_format;
190 
191 	__u64			disabled       :  1, /* off by default        */
192 				inherit	       :  1, /* children inherit it   */
193 				pinned	       :  1, /* must always be on PMU */
194 				exclusive      :  1, /* only group on PMU     */
195 				exclude_user   :  1, /* don't count user      */
196 				exclude_kernel :  1, /* ditto kernel          */
197 				exclude_hv     :  1, /* ditto hypervisor      */
198 				exclude_idle   :  1, /* don't count when idle */
199 				mmap           :  1, /* include mmap data     */
200 				comm	       :  1, /* include comm data     */
201 				freq           :  1, /* use freq, not period  */
202 				inherit_stat   :  1, /* per task counts       */
203 				enable_on_exec :  1, /* next exec enables     */
204 				task           :  1, /* trace fork/exit       */
205 				watermark      :  1, /* wakeup_watermark      */
206 
207 				__reserved_1   : 49;
208 
209 	union {
210 		__u32		wakeup_events;	  /* wakeup every n events */
211 		__u32		wakeup_watermark; /* bytes before wakeup   */
212 	};
213 
214 	__u32			__reserved_2;
215 
216 	__u64			bp_addr;
217 	__u32			bp_type;
218 	__u32			bp_len;
219 };
220 
221 /*
222  * Ioctls that can be done on a perf event fd:
223  */
224 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
225 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
226 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
227 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
228 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
229 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
230 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
231 
232 enum perf_event_ioc_flags {
233 	PERF_IOC_FLAG_GROUP		= 1U << 0,
234 };
235 
236 /*
237  * Structure of the page that can be mapped via mmap
238  */
239 struct perf_event_mmap_page {
240 	__u32	version;		/* version number of this structure */
241 	__u32	compat_version;		/* lowest version this is compat with */
242 
243 	/*
244 	 * Bits needed to read the hw events in user-space.
245 	 *
246 	 *   u32 seq;
247 	 *   s64 count;
248 	 *
249 	 *   do {
250 	 *     seq = pc->lock;
251 	 *
252 	 *     barrier()
253 	 *     if (pc->index) {
254 	 *       count = pmc_read(pc->index - 1);
255 	 *       count += pc->offset;
256 	 *     } else
257 	 *       goto regular_read;
258 	 *
259 	 *     barrier();
260 	 *   } while (pc->lock != seq);
261 	 *
262 	 * NOTE: for obvious reason this only works on self-monitoring
263 	 *       processes.
264 	 */
265 	__u32	lock;			/* seqlock for synchronization */
266 	__u32	index;			/* hardware event identifier */
267 	__s64	offset;			/* add to hardware event value */
268 	__u64	time_enabled;		/* time event active */
269 	__u64	time_running;		/* time event on cpu */
270 
271 		/*
272 		 * Hole for extension of the self monitor capabilities
273 		 */
274 
275 	__u64	__reserved[123];	/* align to 1k */
276 
277 	/*
278 	 * Control data for the mmap() data buffer.
279 	 *
280 	 * User-space reading the @data_head value should issue an rmb(), on
281 	 * SMP capable platforms, after reading this value -- see
282 	 * perf_event_wakeup().
283 	 *
284 	 * When the mapping is PROT_WRITE the @data_tail value should be
285 	 * written by userspace to reflect the last read data. In this case
286 	 * the kernel will not over-write unread data.
287 	 */
288 	__u64   data_head;		/* head in the data section */
289 	__u64	data_tail;		/* user-space written tail */
290 };
291 
292 #define PERF_RECORD_MISC_CPUMODE_MASK		(3 << 0)
293 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN		(0 << 0)
294 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
295 #define PERF_RECORD_MISC_USER			(2 << 0)
296 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
297 
298 struct perf_event_header {
299 	__u32	type;
300 	__u16	misc;
301 	__u16	size;
302 };
303 
304 enum perf_event_type {
305 
306 	/*
307 	 * The MMAP events record the PROT_EXEC mappings so that we can
308 	 * correlate userspace IPs to code. They have the following structure:
309 	 *
310 	 * struct {
311 	 *	struct perf_event_header	header;
312 	 *
313 	 *	u32				pid, tid;
314 	 *	u64				addr;
315 	 *	u64				len;
316 	 *	u64				pgoff;
317 	 *	char				filename[];
318 	 * };
319 	 */
320 	PERF_RECORD_MMAP			= 1,
321 
322 	/*
323 	 * struct {
324 	 *	struct perf_event_header	header;
325 	 *	u64				id;
326 	 *	u64				lost;
327 	 * };
328 	 */
329 	PERF_RECORD_LOST			= 2,
330 
331 	/*
332 	 * struct {
333 	 *	struct perf_event_header	header;
334 	 *
335 	 *	u32				pid, tid;
336 	 *	char				comm[];
337 	 * };
338 	 */
339 	PERF_RECORD_COMM			= 3,
340 
341 	/*
342 	 * struct {
343 	 *	struct perf_event_header	header;
344 	 *	u32				pid, ppid;
345 	 *	u32				tid, ptid;
346 	 *	u64				time;
347 	 * };
348 	 */
349 	PERF_RECORD_EXIT			= 4,
350 
351 	/*
352 	 * struct {
353 	 *	struct perf_event_header	header;
354 	 *	u64				time;
355 	 *	u64				id;
356 	 *	u64				stream_id;
357 	 * };
358 	 */
359 	PERF_RECORD_THROTTLE		= 5,
360 	PERF_RECORD_UNTHROTTLE		= 6,
361 
362 	/*
363 	 * struct {
364 	 *	struct perf_event_header	header;
365 	 *	u32				pid, ppid;
366 	 *	u32				tid, ptid;
367 	 *	u64				time;
368 	 * };
369 	 */
370 	PERF_RECORD_FORK			= 7,
371 
372 	/*
373 	 * struct {
374 	 * 	struct perf_event_header	header;
375 	 * 	u32				pid, tid;
376 	 *
377 	 * 	struct read_format		values;
378 	 * };
379 	 */
380 	PERF_RECORD_READ			= 8,
381 
382 	/*
383 	 * struct {
384 	 *	struct perf_event_header	header;
385 	 *
386 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
387 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
388 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
389 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
390 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
391 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
392 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
393 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
394 	 *
395 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
396 	 *
397 	 *	{ u64			nr,
398 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
399 	 *
400 	 *	#
401 	 *	# The RAW record below is opaque data wrt the ABI
402 	 *	#
403 	 *	# That is, the ABI doesn't make any promises wrt to
404 	 *	# the stability of its content, it may vary depending
405 	 *	# on event, hardware, kernel version and phase of
406 	 *	# the moon.
407 	 *	#
408 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
409 	 *	#
410 	 *
411 	 *	{ u32			size;
412 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
413 	 * };
414 	 */
415 	PERF_RECORD_SAMPLE		= 9,
416 
417 	PERF_RECORD_MAX,			/* non-ABI */
418 };
419 
420 enum perf_callchain_context {
421 	PERF_CONTEXT_HV			= (__u64)-32,
422 	PERF_CONTEXT_KERNEL		= (__u64)-128,
423 	PERF_CONTEXT_USER		= (__u64)-512,
424 
425 	PERF_CONTEXT_GUEST		= (__u64)-2048,
426 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
427 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
428 
429 	PERF_CONTEXT_MAX		= (__u64)-4095,
430 };
431 
432 #define PERF_FLAG_FD_NO_GROUP	(1U << 0)
433 #define PERF_FLAG_FD_OUTPUT	(1U << 1)
434 
435 #ifdef __KERNEL__
436 /*
437  * Kernel-internal data types and definitions:
438  */
439 
440 #ifdef CONFIG_PERF_EVENTS
441 # include <asm/perf_event.h>
442 #endif
443 
444 #ifdef CONFIG_HAVE_HW_BREAKPOINT
445 #include <asm/hw_breakpoint.h>
446 #endif
447 
448 #include <linux/list.h>
449 #include <linux/mutex.h>
450 #include <linux/rculist.h>
451 #include <linux/rcupdate.h>
452 #include <linux/spinlock.h>
453 #include <linux/hrtimer.h>
454 #include <linux/fs.h>
455 #include <linux/pid_namespace.h>
456 #include <linux/workqueue.h>
457 #include <asm/atomic.h>
458 
459 #define PERF_MAX_STACK_DEPTH		255
460 
461 struct perf_callchain_entry {
462 	__u64				nr;
463 	__u64				ip[PERF_MAX_STACK_DEPTH];
464 };
465 
466 struct perf_raw_record {
467 	u32				size;
468 	void				*data;
469 };
470 
471 struct task_struct;
472 
473 /**
474  * struct hw_perf_event - performance event hardware details:
475  */
476 struct hw_perf_event {
477 #ifdef CONFIG_PERF_EVENTS
478 	union {
479 		struct { /* hardware */
480 			u64		config;
481 			unsigned long	config_base;
482 			unsigned long	event_base;
483 			int		idx;
484 		};
485 		struct { /* software */
486 			s64		remaining;
487 			struct hrtimer	hrtimer;
488 		};
489 #ifdef CONFIG_HAVE_HW_BREAKPOINT
490 		union { /* breakpoint */
491 			struct arch_hw_breakpoint	info;
492 		};
493 #endif
494 	};
495 	atomic64_t			prev_count;
496 	u64				sample_period;
497 	u64				last_period;
498 	atomic64_t			period_left;
499 	u64				interrupts;
500 
501 	u64				freq_count;
502 	u64				freq_interrupts;
503 	u64				freq_stamp;
504 #endif
505 };
506 
507 struct perf_event;
508 
509 /**
510  * struct pmu - generic performance monitoring unit
511  */
512 struct pmu {
513 	int (*enable)			(struct perf_event *event);
514 	void (*disable)			(struct perf_event *event);
515 	void (*read)			(struct perf_event *event);
516 	void (*unthrottle)		(struct perf_event *event);
517 };
518 
519 /**
520  * enum perf_event_active_state - the states of a event
521  */
522 enum perf_event_active_state {
523 	PERF_EVENT_STATE_ERROR		= -2,
524 	PERF_EVENT_STATE_OFF		= -1,
525 	PERF_EVENT_STATE_INACTIVE	=  0,
526 	PERF_EVENT_STATE_ACTIVE		=  1,
527 };
528 
529 struct file;
530 
531 struct perf_mmap_data {
532 	struct rcu_head			rcu_head;
533 #ifdef CONFIG_PERF_USE_VMALLOC
534 	struct work_struct		work;
535 #endif
536 	int				data_order;
537 	int				nr_pages;	/* nr of data pages  */
538 	int				writable;	/* are we writable   */
539 	int				nr_locked;	/* nr pages mlocked  */
540 
541 	atomic_t			poll;		/* POLL_ for wakeups */
542 	atomic_t			events;		/* event_id limit       */
543 
544 	atomic_long_t			head;		/* write position    */
545 	atomic_long_t			done_head;	/* completed head    */
546 
547 	atomic_t			lock;		/* concurrent writes */
548 	atomic_t			wakeup;		/* needs a wakeup    */
549 	atomic_t			lost;		/* nr records lost   */
550 
551 	long				watermark;	/* wakeup watermark  */
552 
553 	struct perf_event_mmap_page	*user_page;
554 	void				*data_pages[0];
555 };
556 
557 struct perf_pending_entry {
558 	struct perf_pending_entry *next;
559 	void (*func)(struct perf_pending_entry *);
560 };
561 
562 struct perf_sample_data;
563 
564 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
565 					struct perf_sample_data *,
566 					struct pt_regs *regs);
567 
568 /**
569  * struct perf_event - performance event kernel representation:
570  */
571 struct perf_event {
572 #ifdef CONFIG_PERF_EVENTS
573 	struct list_head		group_entry;
574 	struct list_head		event_entry;
575 	struct list_head		sibling_list;
576 	int				nr_siblings;
577 	struct perf_event		*group_leader;
578 	struct perf_event		*output;
579 	const struct pmu		*pmu;
580 
581 	enum perf_event_active_state	state;
582 	atomic64_t			count;
583 
584 	/*
585 	 * These are the total time in nanoseconds that the event
586 	 * has been enabled (i.e. eligible to run, and the task has
587 	 * been scheduled in, if this is a per-task event)
588 	 * and running (scheduled onto the CPU), respectively.
589 	 *
590 	 * They are computed from tstamp_enabled, tstamp_running and
591 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
592 	 */
593 	u64				total_time_enabled;
594 	u64				total_time_running;
595 
596 	/*
597 	 * These are timestamps used for computing total_time_enabled
598 	 * and total_time_running when the event is in INACTIVE or
599 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
600 	 * in time.
601 	 * tstamp_enabled: the notional time when the event was enabled
602 	 * tstamp_running: the notional time when the event was scheduled on
603 	 * tstamp_stopped: in INACTIVE state, the notional time when the
604 	 *	event was scheduled off.
605 	 */
606 	u64				tstamp_enabled;
607 	u64				tstamp_running;
608 	u64				tstamp_stopped;
609 
610 	struct perf_event_attr		attr;
611 	struct hw_perf_event		hw;
612 
613 	struct perf_event_context	*ctx;
614 	struct file			*filp;
615 
616 	/*
617 	 * These accumulate total time (in nanoseconds) that children
618 	 * events have been enabled and running, respectively.
619 	 */
620 	atomic64_t			child_total_time_enabled;
621 	atomic64_t			child_total_time_running;
622 
623 	/*
624 	 * Protect attach/detach and child_list:
625 	 */
626 	struct mutex			child_mutex;
627 	struct list_head		child_list;
628 	struct perf_event		*parent;
629 
630 	int				oncpu;
631 	int				cpu;
632 
633 	struct list_head		owner_entry;
634 	struct task_struct		*owner;
635 
636 	/* mmap bits */
637 	struct mutex			mmap_mutex;
638 	atomic_t			mmap_count;
639 	struct perf_mmap_data		*data;
640 
641 	/* poll related */
642 	wait_queue_head_t		waitq;
643 	struct fasync_struct		*fasync;
644 
645 	/* delayed work for NMIs and such */
646 	int				pending_wakeup;
647 	int				pending_kill;
648 	int				pending_disable;
649 	struct perf_pending_entry	pending;
650 
651 	atomic_t			event_limit;
652 
653 	void (*destroy)(struct perf_event *);
654 	struct rcu_head			rcu_head;
655 
656 	struct pid_namespace		*ns;
657 	u64				id;
658 
659 	perf_overflow_handler_t		overflow_handler;
660 
661 #ifdef CONFIG_EVENT_PROFILE
662 	struct event_filter		*filter;
663 #endif
664 
665 #endif /* CONFIG_PERF_EVENTS */
666 };
667 
668 /**
669  * struct perf_event_context - event context structure
670  *
671  * Used as a container for task events and CPU events as well:
672  */
673 struct perf_event_context {
674 	/*
675 	 * Protect the states of the events in the list,
676 	 * nr_active, and the list:
677 	 */
678 	raw_spinlock_t			lock;
679 	/*
680 	 * Protect the list of events.  Locking either mutex or lock
681 	 * is sufficient to ensure the list doesn't change; to change
682 	 * the list you need to lock both the mutex and the spinlock.
683 	 */
684 	struct mutex			mutex;
685 
686 	struct list_head		group_list;
687 	struct list_head		event_list;
688 	int				nr_events;
689 	int				nr_active;
690 	int				is_active;
691 	int				nr_stat;
692 	atomic_t			refcount;
693 	struct task_struct		*task;
694 
695 	/*
696 	 * Context clock, runs when context enabled.
697 	 */
698 	u64				time;
699 	u64				timestamp;
700 
701 	/*
702 	 * These fields let us detect when two contexts have both
703 	 * been cloned (inherited) from a common ancestor.
704 	 */
705 	struct perf_event_context	*parent_ctx;
706 	u64				parent_gen;
707 	u64				generation;
708 	int				pin_count;
709 	struct rcu_head			rcu_head;
710 };
711 
712 /**
713  * struct perf_event_cpu_context - per cpu event context structure
714  */
715 struct perf_cpu_context {
716 	struct perf_event_context	ctx;
717 	struct perf_event_context	*task_ctx;
718 	int				active_oncpu;
719 	int				max_pertask;
720 	int				exclusive;
721 
722 	/*
723 	 * Recursion avoidance:
724 	 *
725 	 * task, softirq, irq, nmi context
726 	 */
727 	int				recursion[4];
728 };
729 
730 struct perf_output_handle {
731 	struct perf_event		*event;
732 	struct perf_mmap_data		*data;
733 	unsigned long			head;
734 	unsigned long			offset;
735 	int				nmi;
736 	int				sample;
737 	int				locked;
738 };
739 
740 #ifdef CONFIG_PERF_EVENTS
741 
742 /*
743  * Set by architecture code:
744  */
745 extern int perf_max_events;
746 
747 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
748 
749 extern void perf_event_task_sched_in(struct task_struct *task, int cpu);
750 extern void perf_event_task_sched_out(struct task_struct *task,
751 					struct task_struct *next, int cpu);
752 extern void perf_event_task_tick(struct task_struct *task, int cpu);
753 extern int perf_event_init_task(struct task_struct *child);
754 extern void perf_event_exit_task(struct task_struct *child);
755 extern void perf_event_free_task(struct task_struct *task);
756 extern void set_perf_event_pending(void);
757 extern void perf_event_do_pending(void);
758 extern void perf_event_print_debug(void);
759 extern void __perf_disable(void);
760 extern bool __perf_enable(void);
761 extern void perf_disable(void);
762 extern void perf_enable(void);
763 extern int perf_event_task_disable(void);
764 extern int perf_event_task_enable(void);
765 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
766 	       struct perf_cpu_context *cpuctx,
767 	       struct perf_event_context *ctx, int cpu);
768 extern void perf_event_update_userpage(struct perf_event *event);
769 extern int perf_event_release_kernel(struct perf_event *event);
770 extern struct perf_event *
771 perf_event_create_kernel_counter(struct perf_event_attr *attr,
772 				int cpu,
773 				pid_t pid,
774 				perf_overflow_handler_t callback);
775 extern u64 perf_event_read_value(struct perf_event *event,
776 				 u64 *enabled, u64 *running);
777 
778 struct perf_sample_data {
779 	u64				type;
780 
781 	u64				ip;
782 	struct {
783 		u32	pid;
784 		u32	tid;
785 	}				tid_entry;
786 	u64				time;
787 	u64				addr;
788 	u64				id;
789 	u64				stream_id;
790 	struct {
791 		u32	cpu;
792 		u32	reserved;
793 	}				cpu_entry;
794 	u64				period;
795 	struct perf_callchain_entry	*callchain;
796 	struct perf_raw_record		*raw;
797 };
798 
799 extern void perf_output_sample(struct perf_output_handle *handle,
800 			       struct perf_event_header *header,
801 			       struct perf_sample_data *data,
802 			       struct perf_event *event);
803 extern void perf_prepare_sample(struct perf_event_header *header,
804 				struct perf_sample_data *data,
805 				struct perf_event *event,
806 				struct pt_regs *regs);
807 
808 extern int perf_event_overflow(struct perf_event *event, int nmi,
809 				 struct perf_sample_data *data,
810 				 struct pt_regs *regs);
811 
812 /*
813  * Return 1 for a software event, 0 for a hardware event
814  */
815 static inline int is_software_event(struct perf_event *event)
816 {
817 	switch (event->attr.type) {
818 	case PERF_TYPE_SOFTWARE:
819 	case PERF_TYPE_TRACEPOINT:
820 	/* for now the breakpoint stuff also works as software event */
821 	case PERF_TYPE_BREAKPOINT:
822 		return 1;
823 	}
824 	return 0;
825 }
826 
827 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
828 
829 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
830 
831 static inline void
832 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
833 {
834 	if (atomic_read(&perf_swevent_enabled[event_id]))
835 		__perf_sw_event(event_id, nr, nmi, regs, addr);
836 }
837 
838 extern void __perf_event_mmap(struct vm_area_struct *vma);
839 
840 static inline void perf_event_mmap(struct vm_area_struct *vma)
841 {
842 	if (vma->vm_flags & VM_EXEC)
843 		__perf_event_mmap(vma);
844 }
845 
846 extern void perf_event_comm(struct task_struct *tsk);
847 extern void perf_event_fork(struct task_struct *tsk);
848 
849 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
850 
851 extern int sysctl_perf_event_paranoid;
852 extern int sysctl_perf_event_mlock;
853 extern int sysctl_perf_event_sample_rate;
854 
855 extern void perf_event_init(void);
856 extern void perf_tp_event(int event_id, u64 addr, u64 count,
857 				 void *record, int entry_size);
858 extern void perf_bp_event(struct perf_event *event, void *data);
859 
860 #ifndef perf_misc_flags
861 #define perf_misc_flags(regs)	(user_mode(regs) ? PERF_RECORD_MISC_USER : \
862 				 PERF_RECORD_MISC_KERNEL)
863 #define perf_instruction_pointer(regs)	instruction_pointer(regs)
864 #endif
865 
866 extern int perf_output_begin(struct perf_output_handle *handle,
867 			     struct perf_event *event, unsigned int size,
868 			     int nmi, int sample);
869 extern void perf_output_end(struct perf_output_handle *handle);
870 extern void perf_output_copy(struct perf_output_handle *handle,
871 			     const void *buf, unsigned int len);
872 extern int perf_swevent_get_recursion_context(void);
873 extern void perf_swevent_put_recursion_context(int rctx);
874 extern void perf_event_enable(struct perf_event *event);
875 extern void perf_event_disable(struct perf_event *event);
876 #else
877 static inline void
878 perf_event_task_sched_in(struct task_struct *task, int cpu)		{ }
879 static inline void
880 perf_event_task_sched_out(struct task_struct *task,
881 			    struct task_struct *next, int cpu)		{ }
882 static inline void
883 perf_event_task_tick(struct task_struct *task, int cpu)			{ }
884 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
885 static inline void perf_event_exit_task(struct task_struct *child)	{ }
886 static inline void perf_event_free_task(struct task_struct *task)	{ }
887 static inline void perf_event_do_pending(void)				{ }
888 static inline void perf_event_print_debug(void)				{ }
889 static inline void perf_disable(void)					{ }
890 static inline void perf_enable(void)					{ }
891 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
892 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
893 
894 static inline void
895 perf_sw_event(u32 event_id, u64 nr, int nmi,
896 		     struct pt_regs *regs, u64 addr)			{ }
897 static inline void
898 perf_bp_event(struct perf_event *event, void *data)		{ }
899 
900 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
901 static inline void perf_event_comm(struct task_struct *tsk)		{ }
902 static inline void perf_event_fork(struct task_struct *tsk)		{ }
903 static inline void perf_event_init(void)				{ }
904 static inline int  perf_swevent_get_recursion_context(void)  { return -1; }
905 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
906 static inline void perf_event_enable(struct perf_event *event)		{ }
907 static inline void perf_event_disable(struct perf_event *event)		{ }
908 #endif
909 
910 #define perf_output_put(handle, x) \
911 	perf_output_copy((handle), &(x), sizeof(x))
912 
913 #endif /* __KERNEL__ */
914 #endif /* _LINUX_PERF_EVENT_H */
915