xref: /linux-6.15/include/linux/perf_event.h (revision 53ddcc68)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 struct perf_raw_record {
73 	u32				size;
74 	void				*data;
75 };
76 
77 /*
78  * branch stack layout:
79  *  nr: number of taken branches stored in entries[]
80  *
81  * Note that nr can vary from sample to sample
82  * branches (to, from) are stored from most recent
83  * to least recent, i.e., entries[0] contains the most
84  * recent branch.
85  */
86 struct perf_branch_stack {
87 	__u64				nr;
88 	struct perf_branch_entry	entries[0];
89 };
90 
91 struct task_struct;
92 
93 /*
94  * extra PMU register associated with an event
95  */
96 struct hw_perf_event_extra {
97 	u64		config;	/* register value */
98 	unsigned int	reg;	/* register address or index */
99 	int		alloc;	/* extra register already allocated */
100 	int		idx;	/* index in shared_regs->regs[] */
101 };
102 
103 /**
104  * struct hw_perf_event - performance event hardware details:
105  */
106 struct hw_perf_event {
107 #ifdef CONFIG_PERF_EVENTS
108 	union {
109 		struct { /* hardware */
110 			u64		config;
111 			u64		last_tag;
112 			unsigned long	config_base;
113 			unsigned long	event_base;
114 			int		event_base_rdpmc;
115 			int		idx;
116 			int		last_cpu;
117 			int		flags;
118 
119 			struct hw_perf_event_extra extra_reg;
120 			struct hw_perf_event_extra branch_reg;
121 		};
122 		struct { /* software */
123 			struct hrtimer	hrtimer;
124 		};
125 		struct { /* tracepoint */
126 			/* for tp_event->class */
127 			struct list_head	tp_list;
128 		};
129 		struct { /* intel_cqm */
130 			int			cqm_state;
131 			u32			cqm_rmid;
132 			int			is_group_event;
133 			struct list_head	cqm_events_entry;
134 			struct list_head	cqm_groups_entry;
135 			struct list_head	cqm_group_entry;
136 		};
137 		struct { /* itrace */
138 			int			itrace_started;
139 		};
140 		struct { /* amd_power */
141 			u64	pwr_acc;
142 			u64	ptsc;
143 		};
144 #ifdef CONFIG_HAVE_HW_BREAKPOINT
145 		struct { /* breakpoint */
146 			/*
147 			 * Crufty hack to avoid the chicken and egg
148 			 * problem hw_breakpoint has with context
149 			 * creation and event initalization.
150 			 */
151 			struct arch_hw_breakpoint	info;
152 			struct list_head		bp_list;
153 		};
154 #endif
155 	};
156 	/*
157 	 * If the event is a per task event, this will point to the task in
158 	 * question. See the comment in perf_event_alloc().
159 	 */
160 	struct task_struct		*target;
161 
162 	/*
163 	 * PMU would store hardware filter configuration
164 	 * here.
165 	 */
166 	void				*addr_filters;
167 
168 	/* Last sync'ed generation of filters */
169 	unsigned long			addr_filters_gen;
170 
171 /*
172  * hw_perf_event::state flags; used to track the PERF_EF_* state.
173  */
174 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
175 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
176 #define PERF_HES_ARCH		0x04
177 
178 	int				state;
179 
180 	/*
181 	 * The last observed hardware counter value, updated with a
182 	 * local64_cmpxchg() such that pmu::read() can be called nested.
183 	 */
184 	local64_t			prev_count;
185 
186 	/*
187 	 * The period to start the next sample with.
188 	 */
189 	u64				sample_period;
190 
191 	/*
192 	 * The period we started this sample with.
193 	 */
194 	u64				last_period;
195 
196 	/*
197 	 * However much is left of the current period; note that this is
198 	 * a full 64bit value and allows for generation of periods longer
199 	 * than hardware might allow.
200 	 */
201 	local64_t			period_left;
202 
203 	/*
204 	 * State for throttling the event, see __perf_event_overflow() and
205 	 * perf_adjust_freq_unthr_context().
206 	 */
207 	u64                             interrupts_seq;
208 	u64				interrupts;
209 
210 	/*
211 	 * State for freq target events, see __perf_event_overflow() and
212 	 * perf_adjust_freq_unthr_context().
213 	 */
214 	u64				freq_time_stamp;
215 	u64				freq_count_stamp;
216 #endif
217 };
218 
219 struct perf_event;
220 
221 /*
222  * Common implementation detail of pmu::{start,commit,cancel}_txn
223  */
224 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
225 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
226 
227 /**
228  * pmu::capabilities flags
229  */
230 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
231 #define PERF_PMU_CAP_NO_NMI			0x02
232 #define PERF_PMU_CAP_AUX_NO_SG			0x04
233 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
234 #define PERF_PMU_CAP_EXCLUSIVE			0x10
235 #define PERF_PMU_CAP_ITRACE			0x20
236 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
237 
238 /**
239  * struct pmu - generic performance monitoring unit
240  */
241 struct pmu {
242 	struct list_head		entry;
243 
244 	struct module			*module;
245 	struct device			*dev;
246 	const struct attribute_group	**attr_groups;
247 	const char			*name;
248 	int				type;
249 
250 	/*
251 	 * various common per-pmu feature flags
252 	 */
253 	int				capabilities;
254 
255 	int * __percpu			pmu_disable_count;
256 	struct perf_cpu_context * __percpu pmu_cpu_context;
257 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
258 	int				task_ctx_nr;
259 	int				hrtimer_interval_ms;
260 
261 	/* number of address filters this PMU can do */
262 	unsigned int			nr_addr_filters;
263 
264 	/*
265 	 * Fully disable/enable this PMU, can be used to protect from the PMI
266 	 * as well as for lazy/batch writing of the MSRs.
267 	 */
268 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
269 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
270 
271 	/*
272 	 * Try and initialize the event for this PMU.
273 	 *
274 	 * Returns:
275 	 *  -ENOENT	-- @event is not for this PMU
276 	 *
277 	 *  -ENODEV	-- @event is for this PMU but PMU not present
278 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
279 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
280 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
281 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
282 	 *
283 	 *  0		-- @event is for this PMU and valid
284 	 *
285 	 * Other error return values are allowed.
286 	 */
287 	int (*event_init)		(struct perf_event *event);
288 
289 	/*
290 	 * Notification that the event was mapped or unmapped.  Called
291 	 * in the context of the mapping task.
292 	 */
293 	void (*event_mapped)		(struct perf_event *event); /*optional*/
294 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
295 
296 	/*
297 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
298 	 * matching hw_perf_event::state flags.
299 	 */
300 #define PERF_EF_START	0x01		/* start the counter when adding    */
301 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
302 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
303 
304 	/*
305 	 * Adds/Removes a counter to/from the PMU, can be done inside a
306 	 * transaction, see the ->*_txn() methods.
307 	 *
308 	 * The add/del callbacks will reserve all hardware resources required
309 	 * to service the event, this includes any counter constraint
310 	 * scheduling etc.
311 	 *
312 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
313 	 * is on.
314 	 *
315 	 * ->add() called without PERF_EF_START should result in the same state
316 	 *  as ->add() followed by ->stop().
317 	 *
318 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
319 	 *  ->stop() that must deal with already being stopped without
320 	 *  PERF_EF_UPDATE.
321 	 */
322 	int  (*add)			(struct perf_event *event, int flags);
323 	void (*del)			(struct perf_event *event, int flags);
324 
325 	/*
326 	 * Starts/Stops a counter present on the PMU.
327 	 *
328 	 * The PMI handler should stop the counter when perf_event_overflow()
329 	 * returns !0. ->start() will be used to continue.
330 	 *
331 	 * Also used to change the sample period.
332 	 *
333 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
334 	 * is on -- will be called from NMI context with the PMU generates
335 	 * NMIs.
336 	 *
337 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
338 	 *  period/count values like ->read() would.
339 	 *
340 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
341 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
342 	 */
343 	void (*start)			(struct perf_event *event, int flags);
344 	void (*stop)			(struct perf_event *event, int flags);
345 
346 	/*
347 	 * Updates the counter value of the event.
348 	 *
349 	 * For sampling capable PMUs this will also update the software period
350 	 * hw_perf_event::period_left field.
351 	 */
352 	void (*read)			(struct perf_event *event);
353 
354 	/*
355 	 * Group events scheduling is treated as a transaction, add
356 	 * group events as a whole and perform one schedulability test.
357 	 * If the test fails, roll back the whole group
358 	 *
359 	 * Start the transaction, after this ->add() doesn't need to
360 	 * do schedulability tests.
361 	 *
362 	 * Optional.
363 	 */
364 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
365 	/*
366 	 * If ->start_txn() disabled the ->add() schedulability test
367 	 * then ->commit_txn() is required to perform one. On success
368 	 * the transaction is closed. On error the transaction is kept
369 	 * open until ->cancel_txn() is called.
370 	 *
371 	 * Optional.
372 	 */
373 	int  (*commit_txn)		(struct pmu *pmu);
374 	/*
375 	 * Will cancel the transaction, assumes ->del() is called
376 	 * for each successful ->add() during the transaction.
377 	 *
378 	 * Optional.
379 	 */
380 	void (*cancel_txn)		(struct pmu *pmu);
381 
382 	/*
383 	 * Will return the value for perf_event_mmap_page::index for this event,
384 	 * if no implementation is provided it will default to: event->hw.idx + 1.
385 	 */
386 	int (*event_idx)		(struct perf_event *event); /*optional */
387 
388 	/*
389 	 * context-switches callback
390 	 */
391 	void (*sched_task)		(struct perf_event_context *ctx,
392 					bool sched_in);
393 	/*
394 	 * PMU specific data size
395 	 */
396 	size_t				task_ctx_size;
397 
398 
399 	/*
400 	 * Return the count value for a counter.
401 	 */
402 	u64 (*count)			(struct perf_event *event); /*optional*/
403 
404 	/*
405 	 * Set up pmu-private data structures for an AUX area
406 	 */
407 	void *(*setup_aux)		(int cpu, void **pages,
408 					 int nr_pages, bool overwrite);
409 					/* optional */
410 
411 	/*
412 	 * Free pmu-private AUX data structures
413 	 */
414 	void (*free_aux)		(void *aux); /* optional */
415 
416 	/*
417 	 * Validate address range filters: make sure the HW supports the
418 	 * requested configuration and number of filters; return 0 if the
419 	 * supplied filters are valid, -errno otherwise.
420 	 *
421 	 * Runs in the context of the ioctl()ing process and is not serialized
422 	 * with the rest of the PMU callbacks.
423 	 */
424 	int (*addr_filters_validate)	(struct list_head *filters);
425 					/* optional */
426 
427 	/*
428 	 * Synchronize address range filter configuration:
429 	 * translate hw-agnostic filters into hardware configuration in
430 	 * event::hw::addr_filters.
431 	 *
432 	 * Runs as a part of filter sync sequence that is done in ->start()
433 	 * callback by calling perf_event_addr_filters_sync().
434 	 *
435 	 * May (and should) traverse event::addr_filters::list, for which its
436 	 * caller provides necessary serialization.
437 	 */
438 	void (*addr_filters_sync)	(struct perf_event *event);
439 					/* optional */
440 
441 	/*
442 	 * Filter events for PMU-specific reasons.
443 	 */
444 	int (*filter_match)		(struct perf_event *event); /* optional */
445 };
446 
447 /**
448  * struct perf_addr_filter - address range filter definition
449  * @entry:	event's filter list linkage
450  * @inode:	object file's inode for file-based filters
451  * @offset:	filter range offset
452  * @size:	filter range size
453  * @range:	1: range, 0: address
454  * @filter:	1: filter/start, 0: stop
455  *
456  * This is a hardware-agnostic filter configuration as specified by the user.
457  */
458 struct perf_addr_filter {
459 	struct list_head	entry;
460 	struct inode		*inode;
461 	unsigned long		offset;
462 	unsigned long		size;
463 	unsigned int		range	: 1,
464 				filter	: 1;
465 };
466 
467 /**
468  * struct perf_addr_filters_head - container for address range filters
469  * @list:	list of filters for this event
470  * @lock:	spinlock that serializes accesses to the @list and event's
471  *		(and its children's) filter generations.
472  *
473  * A child event will use parent's @list (and therefore @lock), so they are
474  * bundled together; see perf_event_addr_filters().
475  */
476 struct perf_addr_filters_head {
477 	struct list_head	list;
478 	raw_spinlock_t		lock;
479 };
480 
481 /**
482  * enum perf_event_active_state - the states of a event
483  */
484 enum perf_event_active_state {
485 	PERF_EVENT_STATE_DEAD		= -4,
486 	PERF_EVENT_STATE_EXIT		= -3,
487 	PERF_EVENT_STATE_ERROR		= -2,
488 	PERF_EVENT_STATE_OFF		= -1,
489 	PERF_EVENT_STATE_INACTIVE	=  0,
490 	PERF_EVENT_STATE_ACTIVE		=  1,
491 };
492 
493 struct file;
494 struct perf_sample_data;
495 
496 typedef void (*perf_overflow_handler_t)(struct perf_event *,
497 					struct perf_sample_data *,
498 					struct pt_regs *regs);
499 
500 enum perf_group_flag {
501 	PERF_GROUP_SOFTWARE		= 0x1,
502 };
503 
504 #define SWEVENT_HLIST_BITS		8
505 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
506 
507 struct swevent_hlist {
508 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
509 	struct rcu_head			rcu_head;
510 };
511 
512 #define PERF_ATTACH_CONTEXT	0x01
513 #define PERF_ATTACH_GROUP	0x02
514 #define PERF_ATTACH_TASK	0x04
515 #define PERF_ATTACH_TASK_DATA	0x08
516 
517 struct perf_cgroup;
518 struct ring_buffer;
519 
520 /**
521  * struct perf_event - performance event kernel representation:
522  */
523 struct perf_event {
524 #ifdef CONFIG_PERF_EVENTS
525 	/*
526 	 * entry onto perf_event_context::event_list;
527 	 *   modifications require ctx->lock
528 	 *   RCU safe iterations.
529 	 */
530 	struct list_head		event_entry;
531 
532 	/*
533 	 * XXX: group_entry and sibling_list should be mutually exclusive;
534 	 * either you're a sibling on a group, or you're the group leader.
535 	 * Rework the code to always use the same list element.
536 	 *
537 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
538 	 * either sufficies for read.
539 	 */
540 	struct list_head		group_entry;
541 	struct list_head		sibling_list;
542 
543 	/*
544 	 * We need storage to track the entries in perf_pmu_migrate_context; we
545 	 * cannot use the event_entry because of RCU and we want to keep the
546 	 * group in tact which avoids us using the other two entries.
547 	 */
548 	struct list_head		migrate_entry;
549 
550 	struct hlist_node		hlist_entry;
551 	struct list_head		active_entry;
552 	int				nr_siblings;
553 	int				group_flags;
554 	struct perf_event		*group_leader;
555 	struct pmu			*pmu;
556 	void				*pmu_private;
557 
558 	enum perf_event_active_state	state;
559 	unsigned int			attach_state;
560 	local64_t			count;
561 	atomic64_t			child_count;
562 
563 	/*
564 	 * These are the total time in nanoseconds that the event
565 	 * has been enabled (i.e. eligible to run, and the task has
566 	 * been scheduled in, if this is a per-task event)
567 	 * and running (scheduled onto the CPU), respectively.
568 	 *
569 	 * They are computed from tstamp_enabled, tstamp_running and
570 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
571 	 */
572 	u64				total_time_enabled;
573 	u64				total_time_running;
574 
575 	/*
576 	 * These are timestamps used for computing total_time_enabled
577 	 * and total_time_running when the event is in INACTIVE or
578 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
579 	 * in time.
580 	 * tstamp_enabled: the notional time when the event was enabled
581 	 * tstamp_running: the notional time when the event was scheduled on
582 	 * tstamp_stopped: in INACTIVE state, the notional time when the
583 	 *	event was scheduled off.
584 	 */
585 	u64				tstamp_enabled;
586 	u64				tstamp_running;
587 	u64				tstamp_stopped;
588 
589 	/*
590 	 * timestamp shadows the actual context timing but it can
591 	 * be safely used in NMI interrupt context. It reflects the
592 	 * context time as it was when the event was last scheduled in.
593 	 *
594 	 * ctx_time already accounts for ctx->timestamp. Therefore to
595 	 * compute ctx_time for a sample, simply add perf_clock().
596 	 */
597 	u64				shadow_ctx_time;
598 
599 	struct perf_event_attr		attr;
600 	u16				header_size;
601 	u16				id_header_size;
602 	u16				read_size;
603 	struct hw_perf_event		hw;
604 
605 	struct perf_event_context	*ctx;
606 	atomic_long_t			refcount;
607 
608 	/*
609 	 * These accumulate total time (in nanoseconds) that children
610 	 * events have been enabled and running, respectively.
611 	 */
612 	atomic64_t			child_total_time_enabled;
613 	atomic64_t			child_total_time_running;
614 
615 	/*
616 	 * Protect attach/detach and child_list:
617 	 */
618 	struct mutex			child_mutex;
619 	struct list_head		child_list;
620 	struct perf_event		*parent;
621 
622 	int				oncpu;
623 	int				cpu;
624 
625 	struct list_head		owner_entry;
626 	struct task_struct		*owner;
627 
628 	/* mmap bits */
629 	struct mutex			mmap_mutex;
630 	atomic_t			mmap_count;
631 
632 	struct ring_buffer		*rb;
633 	struct list_head		rb_entry;
634 	unsigned long			rcu_batches;
635 	int				rcu_pending;
636 
637 	/* poll related */
638 	wait_queue_head_t		waitq;
639 	struct fasync_struct		*fasync;
640 
641 	/* delayed work for NMIs and such */
642 	int				pending_wakeup;
643 	int				pending_kill;
644 	int				pending_disable;
645 	struct irq_work			pending;
646 
647 	atomic_t			event_limit;
648 
649 	/* address range filters */
650 	struct perf_addr_filters_head	addr_filters;
651 	/* vma address array for file-based filders */
652 	unsigned long			*addr_filters_offs;
653 	unsigned long			addr_filters_gen;
654 
655 	void (*destroy)(struct perf_event *);
656 	struct rcu_head			rcu_head;
657 
658 	struct pid_namespace		*ns;
659 	u64				id;
660 
661 	u64				(*clock)(void);
662 	perf_overflow_handler_t		overflow_handler;
663 	void				*overflow_handler_context;
664 
665 #ifdef CONFIG_EVENT_TRACING
666 	struct trace_event_call		*tp_event;
667 	struct event_filter		*filter;
668 #ifdef CONFIG_FUNCTION_TRACER
669 	struct ftrace_ops               ftrace_ops;
670 #endif
671 #endif
672 
673 #ifdef CONFIG_CGROUP_PERF
674 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
675 	int				cgrp_defer_enabled;
676 #endif
677 
678 #endif /* CONFIG_PERF_EVENTS */
679 };
680 
681 /**
682  * struct perf_event_context - event context structure
683  *
684  * Used as a container for task events and CPU events as well:
685  */
686 struct perf_event_context {
687 	struct pmu			*pmu;
688 	/*
689 	 * Protect the states of the events in the list,
690 	 * nr_active, and the list:
691 	 */
692 	raw_spinlock_t			lock;
693 	/*
694 	 * Protect the list of events.  Locking either mutex or lock
695 	 * is sufficient to ensure the list doesn't change; to change
696 	 * the list you need to lock both the mutex and the spinlock.
697 	 */
698 	struct mutex			mutex;
699 
700 	struct list_head		active_ctx_list;
701 	struct list_head		pinned_groups;
702 	struct list_head		flexible_groups;
703 	struct list_head		event_list;
704 	int				nr_events;
705 	int				nr_active;
706 	int				is_active;
707 	int				nr_stat;
708 	int				nr_freq;
709 	int				rotate_disable;
710 	atomic_t			refcount;
711 	struct task_struct		*task;
712 
713 	/*
714 	 * Context clock, runs when context enabled.
715 	 */
716 	u64				time;
717 	u64				timestamp;
718 
719 	/*
720 	 * These fields let us detect when two contexts have both
721 	 * been cloned (inherited) from a common ancestor.
722 	 */
723 	struct perf_event_context	*parent_ctx;
724 	u64				parent_gen;
725 	u64				generation;
726 	int				pin_count;
727 	int				nr_cgroups;	 /* cgroup evts */
728 	void				*task_ctx_data; /* pmu specific data */
729 	struct rcu_head			rcu_head;
730 };
731 
732 /*
733  * Number of contexts where an event can trigger:
734  *	task, softirq, hardirq, nmi.
735  */
736 #define PERF_NR_CONTEXTS	4
737 
738 /**
739  * struct perf_event_cpu_context - per cpu event context structure
740  */
741 struct perf_cpu_context {
742 	struct perf_event_context	ctx;
743 	struct perf_event_context	*task_ctx;
744 	int				active_oncpu;
745 	int				exclusive;
746 
747 	raw_spinlock_t			hrtimer_lock;
748 	struct hrtimer			hrtimer;
749 	ktime_t				hrtimer_interval;
750 	unsigned int			hrtimer_active;
751 
752 	struct pmu			*unique_pmu;
753 	struct perf_cgroup		*cgrp;
754 };
755 
756 struct perf_output_handle {
757 	struct perf_event		*event;
758 	struct ring_buffer		*rb;
759 	unsigned long			wakeup;
760 	unsigned long			size;
761 	union {
762 		void			*addr;
763 		unsigned long		head;
764 	};
765 	int				page;
766 };
767 
768 #ifdef CONFIG_CGROUP_PERF
769 
770 /*
771  * perf_cgroup_info keeps track of time_enabled for a cgroup.
772  * This is a per-cpu dynamically allocated data structure.
773  */
774 struct perf_cgroup_info {
775 	u64				time;
776 	u64				timestamp;
777 };
778 
779 struct perf_cgroup {
780 	struct cgroup_subsys_state	css;
781 	struct perf_cgroup_info	__percpu *info;
782 };
783 
784 /*
785  * Must ensure cgroup is pinned (css_get) before calling
786  * this function. In other words, we cannot call this function
787  * if there is no cgroup event for the current CPU context.
788  */
789 static inline struct perf_cgroup *
790 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
791 {
792 	return container_of(task_css_check(task, perf_event_cgrp_id,
793 					   ctx ? lockdep_is_held(&ctx->lock)
794 					       : true),
795 			    struct perf_cgroup, css);
796 }
797 #endif /* CONFIG_CGROUP_PERF */
798 
799 #ifdef CONFIG_PERF_EVENTS
800 
801 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
802 				   struct perf_event *event);
803 extern void perf_aux_output_end(struct perf_output_handle *handle,
804 				unsigned long size, bool truncated);
805 extern int perf_aux_output_skip(struct perf_output_handle *handle,
806 				unsigned long size);
807 extern void *perf_get_aux(struct perf_output_handle *handle);
808 
809 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
810 extern void perf_pmu_unregister(struct pmu *pmu);
811 
812 extern int perf_num_counters(void);
813 extern const char *perf_pmu_name(void);
814 extern void __perf_event_task_sched_in(struct task_struct *prev,
815 				       struct task_struct *task);
816 extern void __perf_event_task_sched_out(struct task_struct *prev,
817 					struct task_struct *next);
818 extern int perf_event_init_task(struct task_struct *child);
819 extern void perf_event_exit_task(struct task_struct *child);
820 extern void perf_event_free_task(struct task_struct *task);
821 extern void perf_event_delayed_put(struct task_struct *task);
822 extern struct file *perf_event_get(unsigned int fd);
823 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
824 extern void perf_event_print_debug(void);
825 extern void perf_pmu_disable(struct pmu *pmu);
826 extern void perf_pmu_enable(struct pmu *pmu);
827 extern void perf_sched_cb_dec(struct pmu *pmu);
828 extern void perf_sched_cb_inc(struct pmu *pmu);
829 extern int perf_event_task_disable(void);
830 extern int perf_event_task_enable(void);
831 extern int perf_event_refresh(struct perf_event *event, int refresh);
832 extern void perf_event_update_userpage(struct perf_event *event);
833 extern int perf_event_release_kernel(struct perf_event *event);
834 extern struct perf_event *
835 perf_event_create_kernel_counter(struct perf_event_attr *attr,
836 				int cpu,
837 				struct task_struct *task,
838 				perf_overflow_handler_t callback,
839 				void *context);
840 extern void perf_pmu_migrate_context(struct pmu *pmu,
841 				int src_cpu, int dst_cpu);
842 extern u64 perf_event_read_local(struct perf_event *event);
843 extern u64 perf_event_read_value(struct perf_event *event,
844 				 u64 *enabled, u64 *running);
845 
846 
847 struct perf_sample_data {
848 	/*
849 	 * Fields set by perf_sample_data_init(), group so as to
850 	 * minimize the cachelines touched.
851 	 */
852 	u64				addr;
853 	struct perf_raw_record		*raw;
854 	struct perf_branch_stack	*br_stack;
855 	u64				period;
856 	u64				weight;
857 	u64				txn;
858 	union  perf_mem_data_src	data_src;
859 
860 	/*
861 	 * The other fields, optionally {set,used} by
862 	 * perf_{prepare,output}_sample().
863 	 */
864 	u64				type;
865 	u64				ip;
866 	struct {
867 		u32	pid;
868 		u32	tid;
869 	}				tid_entry;
870 	u64				time;
871 	u64				id;
872 	u64				stream_id;
873 	struct {
874 		u32	cpu;
875 		u32	reserved;
876 	}				cpu_entry;
877 	struct perf_callchain_entry	*callchain;
878 
879 	/*
880 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
881 	 * on arch details.
882 	 */
883 	struct perf_regs		regs_user;
884 	struct pt_regs			regs_user_copy;
885 
886 	struct perf_regs		regs_intr;
887 	u64				stack_user_size;
888 } ____cacheline_aligned;
889 
890 /* default value for data source */
891 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
892 		    PERF_MEM_S(LVL, NA)   |\
893 		    PERF_MEM_S(SNOOP, NA) |\
894 		    PERF_MEM_S(LOCK, NA)  |\
895 		    PERF_MEM_S(TLB, NA))
896 
897 static inline void perf_sample_data_init(struct perf_sample_data *data,
898 					 u64 addr, u64 period)
899 {
900 	/* remaining struct members initialized in perf_prepare_sample() */
901 	data->addr = addr;
902 	data->raw  = NULL;
903 	data->br_stack = NULL;
904 	data->period = period;
905 	data->weight = 0;
906 	data->data_src.val = PERF_MEM_NA;
907 	data->txn = 0;
908 }
909 
910 extern void perf_output_sample(struct perf_output_handle *handle,
911 			       struct perf_event_header *header,
912 			       struct perf_sample_data *data,
913 			       struct perf_event *event);
914 extern void perf_prepare_sample(struct perf_event_header *header,
915 				struct perf_sample_data *data,
916 				struct perf_event *event,
917 				struct pt_regs *regs);
918 
919 extern int perf_event_overflow(struct perf_event *event,
920 				 struct perf_sample_data *data,
921 				 struct pt_regs *regs);
922 
923 extern void perf_event_output_forward(struct perf_event *event,
924 				     struct perf_sample_data *data,
925 				     struct pt_regs *regs);
926 extern void perf_event_output_backward(struct perf_event *event,
927 				       struct perf_sample_data *data,
928 				       struct pt_regs *regs);
929 extern void perf_event_output(struct perf_event *event,
930 			      struct perf_sample_data *data,
931 			      struct pt_regs *regs);
932 
933 static inline bool
934 is_default_overflow_handler(struct perf_event *event)
935 {
936 	if (likely(event->overflow_handler == perf_event_output_forward))
937 		return true;
938 	if (unlikely(event->overflow_handler == perf_event_output_backward))
939 		return true;
940 	return false;
941 }
942 
943 extern void
944 perf_event_header__init_id(struct perf_event_header *header,
945 			   struct perf_sample_data *data,
946 			   struct perf_event *event);
947 extern void
948 perf_event__output_id_sample(struct perf_event *event,
949 			     struct perf_output_handle *handle,
950 			     struct perf_sample_data *sample);
951 
952 extern void
953 perf_log_lost_samples(struct perf_event *event, u64 lost);
954 
955 static inline bool is_sampling_event(struct perf_event *event)
956 {
957 	return event->attr.sample_period != 0;
958 }
959 
960 /*
961  * Return 1 for a software event, 0 for a hardware event
962  */
963 static inline int is_software_event(struct perf_event *event)
964 {
965 	return event->pmu->task_ctx_nr == perf_sw_context;
966 }
967 
968 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
969 
970 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
971 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
972 
973 #ifndef perf_arch_fetch_caller_regs
974 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
975 #endif
976 
977 /*
978  * Take a snapshot of the regs. Skip ip and frame pointer to
979  * the nth caller. We only need a few of the regs:
980  * - ip for PERF_SAMPLE_IP
981  * - cs for user_mode() tests
982  * - bp for callchains
983  * - eflags, for future purposes, just in case
984  */
985 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
986 {
987 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
988 }
989 
990 static __always_inline void
991 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
992 {
993 	if (static_key_false(&perf_swevent_enabled[event_id]))
994 		__perf_sw_event(event_id, nr, regs, addr);
995 }
996 
997 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
998 
999 /*
1000  * 'Special' version for the scheduler, it hard assumes no recursion,
1001  * which is guaranteed by us not actually scheduling inside other swevents
1002  * because those disable preemption.
1003  */
1004 static __always_inline void
1005 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1006 {
1007 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1008 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1009 
1010 		perf_fetch_caller_regs(regs);
1011 		___perf_sw_event(event_id, nr, regs, addr);
1012 	}
1013 }
1014 
1015 extern struct static_key_false perf_sched_events;
1016 
1017 static __always_inline bool
1018 perf_sw_migrate_enabled(void)
1019 {
1020 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1021 		return true;
1022 	return false;
1023 }
1024 
1025 static inline void perf_event_task_migrate(struct task_struct *task)
1026 {
1027 	if (perf_sw_migrate_enabled())
1028 		task->sched_migrated = 1;
1029 }
1030 
1031 static inline void perf_event_task_sched_in(struct task_struct *prev,
1032 					    struct task_struct *task)
1033 {
1034 	if (static_branch_unlikely(&perf_sched_events))
1035 		__perf_event_task_sched_in(prev, task);
1036 
1037 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1038 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1039 
1040 		perf_fetch_caller_regs(regs);
1041 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1042 		task->sched_migrated = 0;
1043 	}
1044 }
1045 
1046 static inline void perf_event_task_sched_out(struct task_struct *prev,
1047 					     struct task_struct *next)
1048 {
1049 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1050 
1051 	if (static_branch_unlikely(&perf_sched_events))
1052 		__perf_event_task_sched_out(prev, next);
1053 }
1054 
1055 static inline u64 __perf_event_count(struct perf_event *event)
1056 {
1057 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1058 }
1059 
1060 extern void perf_event_mmap(struct vm_area_struct *vma);
1061 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1062 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1063 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1064 
1065 extern void perf_event_exec(void);
1066 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1067 extern void perf_event_fork(struct task_struct *tsk);
1068 
1069 /* Callchains */
1070 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1071 
1072 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1073 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1074 extern struct perf_callchain_entry *
1075 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1076 		   u32 max_stack, bool crosstask, bool add_mark);
1077 extern int get_callchain_buffers(void);
1078 extern void put_callchain_buffers(void);
1079 
1080 extern int sysctl_perf_event_max_stack;
1081 extern int sysctl_perf_event_max_contexts_per_stack;
1082 
1083 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1084 {
1085 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1086 		struct perf_callchain_entry *entry = ctx->entry;
1087 		entry->ip[entry->nr++] = ip;
1088 		++ctx->contexts;
1089 		return 0;
1090 	} else {
1091 		ctx->contexts_maxed = true;
1092 		return -1; /* no more room, stop walking the stack */
1093 	}
1094 }
1095 
1096 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1097 {
1098 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1099 		struct perf_callchain_entry *entry = ctx->entry;
1100 		entry->ip[entry->nr++] = ip;
1101 		++ctx->nr;
1102 		return 0;
1103 	} else {
1104 		return -1; /* no more room, stop walking the stack */
1105 	}
1106 }
1107 
1108 extern int sysctl_perf_event_paranoid;
1109 extern int sysctl_perf_event_mlock;
1110 extern int sysctl_perf_event_sample_rate;
1111 extern int sysctl_perf_cpu_time_max_percent;
1112 
1113 extern void perf_sample_event_took(u64 sample_len_ns);
1114 
1115 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1116 		void __user *buffer, size_t *lenp,
1117 		loff_t *ppos);
1118 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1119 		void __user *buffer, size_t *lenp,
1120 		loff_t *ppos);
1121 
1122 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1123 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1124 
1125 static inline bool perf_paranoid_tracepoint_raw(void)
1126 {
1127 	return sysctl_perf_event_paranoid > -1;
1128 }
1129 
1130 static inline bool perf_paranoid_cpu(void)
1131 {
1132 	return sysctl_perf_event_paranoid > 0;
1133 }
1134 
1135 static inline bool perf_paranoid_kernel(void)
1136 {
1137 	return sysctl_perf_event_paranoid > 1;
1138 }
1139 
1140 extern void perf_event_init(void);
1141 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1142 			  int entry_size, struct pt_regs *regs,
1143 			  struct hlist_head *head, int rctx,
1144 			  struct task_struct *task);
1145 extern void perf_bp_event(struct perf_event *event, void *data);
1146 
1147 #ifndef perf_misc_flags
1148 # define perf_misc_flags(regs) \
1149 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1150 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1151 #endif
1152 
1153 static inline bool has_branch_stack(struct perf_event *event)
1154 {
1155 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1156 }
1157 
1158 static inline bool needs_branch_stack(struct perf_event *event)
1159 {
1160 	return event->attr.branch_sample_type != 0;
1161 }
1162 
1163 static inline bool has_aux(struct perf_event *event)
1164 {
1165 	return event->pmu->setup_aux;
1166 }
1167 
1168 static inline bool is_write_backward(struct perf_event *event)
1169 {
1170 	return !!event->attr.write_backward;
1171 }
1172 
1173 static inline bool has_addr_filter(struct perf_event *event)
1174 {
1175 	return event->pmu->nr_addr_filters;
1176 }
1177 
1178 /*
1179  * An inherited event uses parent's filters
1180  */
1181 static inline struct perf_addr_filters_head *
1182 perf_event_addr_filters(struct perf_event *event)
1183 {
1184 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1185 
1186 	if (event->parent)
1187 		ifh = &event->parent->addr_filters;
1188 
1189 	return ifh;
1190 }
1191 
1192 extern void perf_event_addr_filters_sync(struct perf_event *event);
1193 
1194 extern int perf_output_begin(struct perf_output_handle *handle,
1195 			     struct perf_event *event, unsigned int size);
1196 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1197 				    struct perf_event *event,
1198 				    unsigned int size);
1199 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1200 				      struct perf_event *event,
1201 				      unsigned int size);
1202 
1203 extern void perf_output_end(struct perf_output_handle *handle);
1204 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1205 			     const void *buf, unsigned int len);
1206 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1207 				     unsigned int len);
1208 extern int perf_swevent_get_recursion_context(void);
1209 extern void perf_swevent_put_recursion_context(int rctx);
1210 extern u64 perf_swevent_set_period(struct perf_event *event);
1211 extern void perf_event_enable(struct perf_event *event);
1212 extern void perf_event_disable(struct perf_event *event);
1213 extern void perf_event_disable_local(struct perf_event *event);
1214 extern void perf_event_task_tick(void);
1215 #else /* !CONFIG_PERF_EVENTS: */
1216 static inline void *
1217 perf_aux_output_begin(struct perf_output_handle *handle,
1218 		      struct perf_event *event)				{ return NULL; }
1219 static inline void
1220 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1221 		    bool truncated)					{ }
1222 static inline int
1223 perf_aux_output_skip(struct perf_output_handle *handle,
1224 		     unsigned long size)				{ return -EINVAL; }
1225 static inline void *
1226 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1227 static inline void
1228 perf_event_task_migrate(struct task_struct *task)			{ }
1229 static inline void
1230 perf_event_task_sched_in(struct task_struct *prev,
1231 			 struct task_struct *task)			{ }
1232 static inline void
1233 perf_event_task_sched_out(struct task_struct *prev,
1234 			  struct task_struct *next)			{ }
1235 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1236 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1237 static inline void perf_event_free_task(struct task_struct *task)	{ }
1238 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1239 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1240 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1241 {
1242 	return ERR_PTR(-EINVAL);
1243 }
1244 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1245 static inline void perf_event_print_debug(void)				{ }
1246 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1247 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1248 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1249 {
1250 	return -EINVAL;
1251 }
1252 
1253 static inline void
1254 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1255 static inline void
1256 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1257 static inline void
1258 perf_bp_event(struct perf_event *event, void *data)			{ }
1259 
1260 static inline int perf_register_guest_info_callbacks
1261 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1262 static inline int perf_unregister_guest_info_callbacks
1263 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1264 
1265 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1266 static inline void perf_event_exec(void)				{ }
1267 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1268 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1269 static inline void perf_event_init(void)				{ }
1270 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1271 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1272 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1273 static inline void perf_event_enable(struct perf_event *event)		{ }
1274 static inline void perf_event_disable(struct perf_event *event)		{ }
1275 static inline int __perf_event_disable(void *info)			{ return -1; }
1276 static inline void perf_event_task_tick(void)				{ }
1277 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1278 #endif
1279 
1280 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1281 extern void perf_restore_debug_store(void);
1282 #else
1283 static inline void perf_restore_debug_store(void)			{ }
1284 #endif
1285 
1286 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1287 
1288 /*
1289  * This has to have a higher priority than migration_notifier in sched/core.c.
1290  */
1291 #define perf_cpu_notifier(fn)						\
1292 do {									\
1293 	static struct notifier_block fn##_nb =				\
1294 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1295 	unsigned long cpu = smp_processor_id();				\
1296 	unsigned long flags;						\
1297 									\
1298 	cpu_notifier_register_begin();					\
1299 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1300 		(void *)(unsigned long)cpu);				\
1301 	local_irq_save(flags);						\
1302 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1303 		(void *)(unsigned long)cpu);				\
1304 	local_irq_restore(flags);					\
1305 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1306 		(void *)(unsigned long)cpu);				\
1307 	__register_cpu_notifier(&fn##_nb);				\
1308 	cpu_notifier_register_done();					\
1309 } while (0)
1310 
1311 /*
1312  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1313  * callback for already online CPUs.
1314  */
1315 #define __perf_cpu_notifier(fn)						\
1316 do {									\
1317 	static struct notifier_block fn##_nb =				\
1318 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1319 									\
1320 	__register_cpu_notifier(&fn##_nb);				\
1321 } while (0)
1322 
1323 struct perf_pmu_events_attr {
1324 	struct device_attribute attr;
1325 	u64 id;
1326 	const char *event_str;
1327 };
1328 
1329 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1330 			      char *page);
1331 
1332 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1333 static struct perf_pmu_events_attr _var = {				\
1334 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1335 	.id   =  _id,							\
1336 };
1337 
1338 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1339 static struct perf_pmu_events_attr _var = {				    \
1340 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1341 	.id		= 0,						    \
1342 	.event_str	= _str,						    \
1343 };
1344 
1345 #define PMU_FORMAT_ATTR(_name, _format)					\
1346 static ssize_t								\
1347 _name##_show(struct device *dev,					\
1348 			       struct device_attribute *attr,		\
1349 			       char *page)				\
1350 {									\
1351 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1352 	return sprintf(page, _format "\n");				\
1353 }									\
1354 									\
1355 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1356 
1357 #endif /* _LINUX_PERF_EVENT_H */
1358