1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 #define PERF_GUEST_ACTIVE 0x01 30 #define PERF_GUEST_USER 0x02 31 32 struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36 }; 37 38 #ifdef CONFIG_HAVE_HW_BREAKPOINT 39 #include <linux/rhashtable-types.h> 40 #include <asm/hw_breakpoint.h> 41 #endif 42 43 #include <linux/list.h> 44 #include <linux/mutex.h> 45 #include <linux/rculist.h> 46 #include <linux/rcupdate.h> 47 #include <linux/spinlock.h> 48 #include <linux/hrtimer.h> 49 #include <linux/fs.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/workqueue.h> 52 #include <linux/ftrace.h> 53 #include <linux/cpu.h> 54 #include <linux/irq_work.h> 55 #include <linux/static_key.h> 56 #include <linux/jump_label_ratelimit.h> 57 #include <linux/atomic.h> 58 #include <linux/sysfs.h> 59 #include <linux/perf_regs.h> 60 #include <linux/cgroup.h> 61 #include <linux/refcount.h> 62 #include <linux/security.h> 63 #include <linux/static_call.h> 64 #include <linux/lockdep.h> 65 #include <asm/local.h> 66 67 struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70 }; 71 72 struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78 }; 79 80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83 struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91 } __packed; 92 93 struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96 }; 97 98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 99 { 100 return frag->pad < sizeof(u64); 101 } 102 103 /* 104 * branch stack layout: 105 * nr: number of taken branches stored in entries[] 106 * hw_idx: The low level index of raw branch records 107 * for the most recent branch. 108 * -1ULL means invalid/unknown. 109 * 110 * Note that nr can vary from sample to sample 111 * branches (to, from) are stored from most recent 112 * to least recent, i.e., entries[0] contains the most 113 * recent branch. 114 * The entries[] is an abstraction of raw branch records, 115 * which may not be stored in age order in HW, e.g. Intel LBR. 116 * The hw_idx is to expose the low level index of raw 117 * branch record for the most recent branch aka entries[0]. 118 * The hw_idx index is between -1 (unknown) and max depth, 119 * which can be retrieved in /sys/devices/cpu/caps/branches. 120 * For the architectures whose raw branch records are 121 * already stored in age order, the hw_idx should be 0. 122 */ 123 struct perf_branch_stack { 124 __u64 nr; 125 __u64 hw_idx; 126 struct perf_branch_entry entries[]; 127 }; 128 129 struct task_struct; 130 131 /* 132 * extra PMU register associated with an event 133 */ 134 struct hw_perf_event_extra { 135 u64 config; /* register value */ 136 unsigned int reg; /* register address or index */ 137 int alloc; /* extra register already allocated */ 138 int idx; /* index in shared_regs->regs[] */ 139 }; 140 141 /** 142 * hw_perf_event::flag values 143 * 144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 145 * usage. 146 */ 147 #define PERF_EVENT_FLAG_ARCH 0x000fffff 148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 149 150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 151 152 /** 153 * struct hw_perf_event - performance event hardware details: 154 */ 155 struct hw_perf_event { 156 #ifdef CONFIG_PERF_EVENTS 157 union { 158 struct { /* hardware */ 159 u64 config; 160 u64 last_tag; 161 unsigned long config_base; 162 unsigned long event_base; 163 int event_base_rdpmc; 164 int idx; 165 int last_cpu; 166 int flags; 167 168 struct hw_perf_event_extra extra_reg; 169 struct hw_perf_event_extra branch_reg; 170 }; 171 struct { /* aux / Intel-PT */ 172 u64 aux_config; 173 /* 174 * For AUX area events, aux_paused cannot be a state 175 * flag because it can be updated asynchronously to 176 * state. 177 */ 178 unsigned int aux_paused; 179 }; 180 struct { /* software */ 181 struct hrtimer hrtimer; 182 }; 183 struct { /* tracepoint */ 184 /* for tp_event->class */ 185 struct list_head tp_list; 186 }; 187 struct { /* amd_power */ 188 u64 pwr_acc; 189 u64 ptsc; 190 }; 191 #ifdef CONFIG_HAVE_HW_BREAKPOINT 192 struct { /* breakpoint */ 193 /* 194 * Crufty hack to avoid the chicken and egg 195 * problem hw_breakpoint has with context 196 * creation and event initalization. 197 */ 198 struct arch_hw_breakpoint info; 199 struct rhlist_head bp_list; 200 }; 201 #endif 202 struct { /* amd_iommu */ 203 u8 iommu_bank; 204 u8 iommu_cntr; 205 u16 padding; 206 u64 conf; 207 u64 conf1; 208 }; 209 }; 210 /* 211 * If the event is a per task event, this will point to the task in 212 * question. See the comment in perf_event_alloc(). 213 */ 214 struct task_struct *target; 215 216 /* 217 * PMU would store hardware filter configuration 218 * here. 219 */ 220 void *addr_filters; 221 222 /* Last sync'ed generation of filters */ 223 unsigned long addr_filters_gen; 224 225 /* 226 * hw_perf_event::state flags; used to track the PERF_EF_* state. 227 */ 228 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 229 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 230 #define PERF_HES_ARCH 0x04 231 232 int state; 233 234 /* 235 * The last observed hardware counter value, updated with a 236 * local64_cmpxchg() such that pmu::read() can be called nested. 237 */ 238 local64_t prev_count; 239 240 /* 241 * The period to start the next sample with. 242 */ 243 u64 sample_period; 244 245 union { 246 struct { /* Sampling */ 247 /* 248 * The period we started this sample with. 249 */ 250 u64 last_period; 251 252 /* 253 * However much is left of the current period; 254 * note that this is a full 64bit value and 255 * allows for generation of periods longer 256 * than hardware might allow. 257 */ 258 local64_t period_left; 259 }; 260 struct { /* Topdown events counting for context switch */ 261 u64 saved_metric; 262 u64 saved_slots; 263 }; 264 }; 265 266 /* 267 * State for throttling the event, see __perf_event_overflow() and 268 * perf_adjust_freq_unthr_context(). 269 */ 270 u64 interrupts_seq; 271 u64 interrupts; 272 273 /* 274 * State for freq target events, see __perf_event_overflow() and 275 * perf_adjust_freq_unthr_context(). 276 */ 277 u64 freq_time_stamp; 278 u64 freq_count_stamp; 279 #endif 280 }; 281 282 struct perf_event; 283 struct perf_event_pmu_context; 284 285 /* 286 * Common implementation detail of pmu::{start,commit,cancel}_txn 287 */ 288 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 289 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 290 291 /** 292 * pmu::capabilities flags 293 */ 294 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 295 #define PERF_PMU_CAP_NO_NMI 0x0002 296 #define PERF_PMU_CAP_AUX_NO_SG 0x0004 297 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 298 #define PERF_PMU_CAP_EXCLUSIVE 0x0010 299 #define PERF_PMU_CAP_ITRACE 0x0020 300 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040 301 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080 302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 303 #define PERF_PMU_CAP_AUX_PAUSE 0x0200 304 305 /** 306 * pmu::scope 307 */ 308 enum perf_pmu_scope { 309 PERF_PMU_SCOPE_NONE = 0, 310 PERF_PMU_SCOPE_CORE, 311 PERF_PMU_SCOPE_DIE, 312 PERF_PMU_SCOPE_CLUSTER, 313 PERF_PMU_SCOPE_PKG, 314 PERF_PMU_SCOPE_SYS_WIDE, 315 PERF_PMU_MAX_SCOPE, 316 }; 317 318 struct perf_output_handle; 319 320 #define PMU_NULL_DEV ((void *)(~0UL)) 321 322 /** 323 * struct pmu - generic performance monitoring unit 324 */ 325 struct pmu { 326 struct list_head entry; 327 328 struct module *module; 329 struct device *dev; 330 struct device *parent; 331 const struct attribute_group **attr_groups; 332 const struct attribute_group **attr_update; 333 const char *name; 334 int type; 335 336 /* 337 * various common per-pmu feature flags 338 */ 339 int capabilities; 340 341 /* 342 * PMU scope 343 */ 344 unsigned int scope; 345 346 struct perf_cpu_pmu_context __percpu **cpu_pmu_context; 347 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 348 int task_ctx_nr; 349 int hrtimer_interval_ms; 350 351 /* number of address filters this PMU can do */ 352 unsigned int nr_addr_filters; 353 354 /* 355 * Fully disable/enable this PMU, can be used to protect from the PMI 356 * as well as for lazy/batch writing of the MSRs. 357 */ 358 void (*pmu_enable) (struct pmu *pmu); /* optional */ 359 void (*pmu_disable) (struct pmu *pmu); /* optional */ 360 361 /* 362 * Try and initialize the event for this PMU. 363 * 364 * Returns: 365 * -ENOENT -- @event is not for this PMU 366 * 367 * -ENODEV -- @event is for this PMU but PMU not present 368 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 369 * -EINVAL -- @event is for this PMU but @event is not valid 370 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 371 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 372 * 373 * 0 -- @event is for this PMU and valid 374 * 375 * Other error return values are allowed. 376 */ 377 int (*event_init) (struct perf_event *event); 378 379 /* 380 * Notification that the event was mapped or unmapped. Called 381 * in the context of the mapping task. 382 */ 383 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 384 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 385 386 /* 387 * Flags for ->add()/->del()/ ->start()/->stop(). There are 388 * matching hw_perf_event::state flags. 389 */ 390 #define PERF_EF_START 0x01 /* start the counter when adding */ 391 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 392 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 393 #define PERF_EF_PAUSE 0x08 /* AUX area event, pause tracing */ 394 #define PERF_EF_RESUME 0x10 /* AUX area event, resume tracing */ 395 396 /* 397 * Adds/Removes a counter to/from the PMU, can be done inside a 398 * transaction, see the ->*_txn() methods. 399 * 400 * The add/del callbacks will reserve all hardware resources required 401 * to service the event, this includes any counter constraint 402 * scheduling etc. 403 * 404 * Called with IRQs disabled and the PMU disabled on the CPU the event 405 * is on. 406 * 407 * ->add() called without PERF_EF_START should result in the same state 408 * as ->add() followed by ->stop(). 409 * 410 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 411 * ->stop() that must deal with already being stopped without 412 * PERF_EF_UPDATE. 413 */ 414 int (*add) (struct perf_event *event, int flags); 415 void (*del) (struct perf_event *event, int flags); 416 417 /* 418 * Starts/Stops a counter present on the PMU. 419 * 420 * The PMI handler should stop the counter when perf_event_overflow() 421 * returns !0. ->start() will be used to continue. 422 * 423 * Also used to change the sample period. 424 * 425 * Called with IRQs disabled and the PMU disabled on the CPU the event 426 * is on -- will be called from NMI context with the PMU generates 427 * NMIs. 428 * 429 * ->stop() with PERF_EF_UPDATE will read the counter and update 430 * period/count values like ->read() would. 431 * 432 * ->start() with PERF_EF_RELOAD will reprogram the counter 433 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 434 * 435 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not 436 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with 437 * PERF_EF_RESUME. 438 * 439 * ->start() with PERF_EF_RESUME will start as simply as possible but 440 * only if the counter is not otherwise stopped. Will not overlap 441 * another ->start() with PERF_EF_RESUME nor ->stop() with 442 * PERF_EF_PAUSE. 443 * 444 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other 445 * ->stop()/->start() invocations, just not itself. 446 */ 447 void (*start) (struct perf_event *event, int flags); 448 void (*stop) (struct perf_event *event, int flags); 449 450 /* 451 * Updates the counter value of the event. 452 * 453 * For sampling capable PMUs this will also update the software period 454 * hw_perf_event::period_left field. 455 */ 456 void (*read) (struct perf_event *event); 457 458 /* 459 * Group events scheduling is treated as a transaction, add 460 * group events as a whole and perform one schedulability test. 461 * If the test fails, roll back the whole group 462 * 463 * Start the transaction, after this ->add() doesn't need to 464 * do schedulability tests. 465 * 466 * Optional. 467 */ 468 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 469 /* 470 * If ->start_txn() disabled the ->add() schedulability test 471 * then ->commit_txn() is required to perform one. On success 472 * the transaction is closed. On error the transaction is kept 473 * open until ->cancel_txn() is called. 474 * 475 * Optional. 476 */ 477 int (*commit_txn) (struct pmu *pmu); 478 /* 479 * Will cancel the transaction, assumes ->del() is called 480 * for each successful ->add() during the transaction. 481 * 482 * Optional. 483 */ 484 void (*cancel_txn) (struct pmu *pmu); 485 486 /* 487 * Will return the value for perf_event_mmap_page::index for this event, 488 * if no implementation is provided it will default to 0 (see 489 * perf_event_idx_default). 490 */ 491 int (*event_idx) (struct perf_event *event); /*optional */ 492 493 /* 494 * context-switches callback 495 */ 496 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, 497 bool sched_in); 498 499 /* 500 * Kmem cache of PMU specific data 501 */ 502 struct kmem_cache *task_ctx_cache; 503 504 /* 505 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 506 * can be synchronized using this function. See Intel LBR callstack support 507 * implementation and Perf core context switch handling callbacks for usage 508 * examples. 509 */ 510 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc, 511 struct perf_event_pmu_context *next_epc); 512 /* optional */ 513 514 /* 515 * Set up pmu-private data structures for an AUX area 516 */ 517 void *(*setup_aux) (struct perf_event *event, void **pages, 518 int nr_pages, bool overwrite); 519 /* optional */ 520 521 /* 522 * Free pmu-private AUX data structures 523 */ 524 void (*free_aux) (void *aux); /* optional */ 525 526 /* 527 * Take a snapshot of the AUX buffer without touching the event 528 * state, so that preempting ->start()/->stop() callbacks does 529 * not interfere with their logic. Called in PMI context. 530 * 531 * Returns the size of AUX data copied to the output handle. 532 * 533 * Optional. 534 */ 535 long (*snapshot_aux) (struct perf_event *event, 536 struct perf_output_handle *handle, 537 unsigned long size); 538 539 /* 540 * Validate address range filters: make sure the HW supports the 541 * requested configuration and number of filters; return 0 if the 542 * supplied filters are valid, -errno otherwise. 543 * 544 * Runs in the context of the ioctl()ing process and is not serialized 545 * with the rest of the PMU callbacks. 546 */ 547 int (*addr_filters_validate) (struct list_head *filters); 548 /* optional */ 549 550 /* 551 * Synchronize address range filter configuration: 552 * translate hw-agnostic filters into hardware configuration in 553 * event::hw::addr_filters. 554 * 555 * Runs as a part of filter sync sequence that is done in ->start() 556 * callback by calling perf_event_addr_filters_sync(). 557 * 558 * May (and should) traverse event::addr_filters::list, for which its 559 * caller provides necessary serialization. 560 */ 561 void (*addr_filters_sync) (struct perf_event *event); 562 /* optional */ 563 564 /* 565 * Check if event can be used for aux_output purposes for 566 * events of this PMU. 567 * 568 * Runs from perf_event_open(). Should return 0 for "no match" 569 * or non-zero for "match". 570 */ 571 int (*aux_output_match) (struct perf_event *event); 572 /* optional */ 573 574 /* 575 * Skip programming this PMU on the given CPU. Typically needed for 576 * big.LITTLE things. 577 */ 578 bool (*filter) (struct pmu *pmu, int cpu); /* optional */ 579 580 /* 581 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 582 */ 583 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 584 }; 585 586 enum perf_addr_filter_action_t { 587 PERF_ADDR_FILTER_ACTION_STOP = 0, 588 PERF_ADDR_FILTER_ACTION_START, 589 PERF_ADDR_FILTER_ACTION_FILTER, 590 }; 591 592 /** 593 * struct perf_addr_filter - address range filter definition 594 * @entry: event's filter list linkage 595 * @path: object file's path for file-based filters 596 * @offset: filter range offset 597 * @size: filter range size (size==0 means single address trigger) 598 * @action: filter/start/stop 599 * 600 * This is a hardware-agnostic filter configuration as specified by the user. 601 */ 602 struct perf_addr_filter { 603 struct list_head entry; 604 struct path path; 605 unsigned long offset; 606 unsigned long size; 607 enum perf_addr_filter_action_t action; 608 }; 609 610 /** 611 * struct perf_addr_filters_head - container for address range filters 612 * @list: list of filters for this event 613 * @lock: spinlock that serializes accesses to the @list and event's 614 * (and its children's) filter generations. 615 * @nr_file_filters: number of file-based filters 616 * 617 * A child event will use parent's @list (and therefore @lock), so they are 618 * bundled together; see perf_event_addr_filters(). 619 */ 620 struct perf_addr_filters_head { 621 struct list_head list; 622 raw_spinlock_t lock; 623 unsigned int nr_file_filters; 624 }; 625 626 struct perf_addr_filter_range { 627 unsigned long start; 628 unsigned long size; 629 }; 630 631 /** 632 * enum perf_event_state - the states of an event: 633 */ 634 enum perf_event_state { 635 PERF_EVENT_STATE_DEAD = -4, 636 PERF_EVENT_STATE_EXIT = -3, 637 PERF_EVENT_STATE_ERROR = -2, 638 PERF_EVENT_STATE_OFF = -1, 639 PERF_EVENT_STATE_INACTIVE = 0, 640 PERF_EVENT_STATE_ACTIVE = 1, 641 }; 642 643 struct file; 644 struct perf_sample_data; 645 646 typedef void (*perf_overflow_handler_t)(struct perf_event *, 647 struct perf_sample_data *, 648 struct pt_regs *regs); 649 650 /* 651 * Event capabilities. For event_caps and groups caps. 652 * 653 * PERF_EV_CAP_SOFTWARE: Is a software event. 654 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 655 * from any CPU in the package where it is active. 656 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 657 * cannot be a group leader. If an event with this flag is detached from the 658 * group it is scheduled out and moved into an unrecoverable ERROR state. 659 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the 660 * PMU scope where it is active. 661 */ 662 #define PERF_EV_CAP_SOFTWARE BIT(0) 663 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 664 #define PERF_EV_CAP_SIBLING BIT(2) 665 #define PERF_EV_CAP_READ_SCOPE BIT(3) 666 667 #define SWEVENT_HLIST_BITS 8 668 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 669 670 struct swevent_hlist { 671 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 672 struct rcu_head rcu_head; 673 }; 674 675 #define PERF_ATTACH_CONTEXT 0x0001 676 #define PERF_ATTACH_GROUP 0x0002 677 #define PERF_ATTACH_TASK 0x0004 678 #define PERF_ATTACH_TASK_DATA 0x0008 679 #define PERF_ATTACH_ITRACE 0x0010 680 #define PERF_ATTACH_SCHED_CB 0x0020 681 #define PERF_ATTACH_CHILD 0x0040 682 #define PERF_ATTACH_EXCLUSIVE 0x0080 683 #define PERF_ATTACH_CALLCHAIN 0x0100 684 685 struct bpf_prog; 686 struct perf_cgroup; 687 struct perf_buffer; 688 689 struct pmu_event_list { 690 raw_spinlock_t lock; 691 struct list_head list; 692 }; 693 694 /* 695 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 696 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 697 * safe lock, and is only held by the CPU doing the modification, having IRQs 698 * disabled is sufficient since it will hold-off the IPIs. 699 */ 700 #ifdef CONFIG_PROVE_LOCKING 701 #define lockdep_assert_event_ctx(event) \ 702 WARN_ON_ONCE(__lockdep_enabled && \ 703 (this_cpu_read(hardirqs_enabled) && \ 704 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 705 #else 706 #define lockdep_assert_event_ctx(event) 707 #endif 708 709 #define for_each_sibling_event(sibling, event) \ 710 lockdep_assert_event_ctx(event); \ 711 if ((event)->group_leader == (event)) \ 712 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 713 714 /** 715 * struct perf_event - performance event kernel representation: 716 */ 717 struct perf_event { 718 #ifdef CONFIG_PERF_EVENTS 719 /* 720 * entry onto perf_event_context::event_list; 721 * modifications require ctx->lock 722 * RCU safe iterations. 723 */ 724 struct list_head event_entry; 725 726 /* 727 * Locked for modification by both ctx->mutex and ctx->lock; holding 728 * either sufficies for read. 729 */ 730 struct list_head sibling_list; 731 struct list_head active_list; 732 /* 733 * Node on the pinned or flexible tree located at the event context; 734 */ 735 struct rb_node group_node; 736 u64 group_index; 737 /* 738 * We need storage to track the entries in perf_pmu_migrate_context; we 739 * cannot use the event_entry because of RCU and we want to keep the 740 * group in tact which avoids us using the other two entries. 741 */ 742 struct list_head migrate_entry; 743 744 struct hlist_node hlist_entry; 745 struct list_head active_entry; 746 int nr_siblings; 747 748 /* Not serialized. Only written during event initialization. */ 749 int event_caps; 750 /* The cumulative AND of all event_caps for events in this group. */ 751 int group_caps; 752 753 unsigned int group_generation; 754 struct perf_event *group_leader; 755 /* 756 * event->pmu will always point to pmu in which this event belongs. 757 * Whereas event->pmu_ctx->pmu may point to other pmu when group of 758 * different pmu events is created. 759 */ 760 struct pmu *pmu; 761 void *pmu_private; 762 763 enum perf_event_state state; 764 unsigned int attach_state; 765 local64_t count; 766 atomic64_t child_count; 767 768 /* 769 * These are the total time in nanoseconds that the event 770 * has been enabled (i.e. eligible to run, and the task has 771 * been scheduled in, if this is a per-task event) 772 * and running (scheduled onto the CPU), respectively. 773 */ 774 u64 total_time_enabled; 775 u64 total_time_running; 776 u64 tstamp; 777 778 struct perf_event_attr attr; 779 u16 header_size; 780 u16 id_header_size; 781 u16 read_size; 782 struct hw_perf_event hw; 783 784 struct perf_event_context *ctx; 785 /* 786 * event->pmu_ctx points to perf_event_pmu_context in which the event 787 * is added. This pmu_ctx can be of other pmu for sw event when that 788 * sw event is part of a group which also contains non-sw events. 789 */ 790 struct perf_event_pmu_context *pmu_ctx; 791 atomic_long_t refcount; 792 793 /* 794 * These accumulate total time (in nanoseconds) that children 795 * events have been enabled and running, respectively. 796 */ 797 atomic64_t child_total_time_enabled; 798 atomic64_t child_total_time_running; 799 800 /* 801 * Protect attach/detach and child_list: 802 */ 803 struct mutex child_mutex; 804 struct list_head child_list; 805 struct perf_event *parent; 806 807 int oncpu; 808 int cpu; 809 810 struct list_head owner_entry; 811 struct task_struct *owner; 812 813 /* mmap bits */ 814 struct mutex mmap_mutex; 815 atomic_t mmap_count; 816 817 struct perf_buffer *rb; 818 struct list_head rb_entry; 819 unsigned long rcu_batches; 820 int rcu_pending; 821 822 /* poll related */ 823 wait_queue_head_t waitq; 824 struct fasync_struct *fasync; 825 826 /* delayed work for NMIs and such */ 827 unsigned int pending_wakeup; 828 unsigned int pending_kill; 829 unsigned int pending_disable; 830 unsigned long pending_addr; /* SIGTRAP */ 831 struct irq_work pending_irq; 832 struct irq_work pending_disable_irq; 833 struct callback_head pending_task; 834 unsigned int pending_work; 835 struct rcuwait pending_work_wait; 836 837 atomic_t event_limit; 838 839 /* address range filters */ 840 struct perf_addr_filters_head addr_filters; 841 /* vma address array for file-based filders */ 842 struct perf_addr_filter_range *addr_filter_ranges; 843 unsigned long addr_filters_gen; 844 845 /* for aux_output events */ 846 struct perf_event *aux_event; 847 848 void (*destroy)(struct perf_event *); 849 struct rcu_head rcu_head; 850 851 struct pid_namespace *ns; 852 u64 id; 853 854 atomic64_t lost_samples; 855 856 u64 (*clock)(void); 857 perf_overflow_handler_t overflow_handler; 858 void *overflow_handler_context; 859 struct bpf_prog *prog; 860 u64 bpf_cookie; 861 862 #ifdef CONFIG_EVENT_TRACING 863 struct trace_event_call *tp_event; 864 struct event_filter *filter; 865 #ifdef CONFIG_FUNCTION_TRACER 866 struct ftrace_ops ftrace_ops; 867 #endif 868 #endif 869 870 #ifdef CONFIG_CGROUP_PERF 871 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 872 #endif 873 874 #ifdef CONFIG_SECURITY 875 void *security; 876 #endif 877 struct list_head sb_list; 878 879 /* 880 * Certain events gets forwarded to another pmu internally by over- 881 * writing kernel copy of event->attr.type without user being aware 882 * of it. event->orig_type contains original 'type' requested by 883 * user. 884 */ 885 __u32 orig_type; 886 #endif /* CONFIG_PERF_EVENTS */ 887 }; 888 889 /* 890 * ,-----------------------[1:n]------------------------. 891 * V V 892 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event 893 * | | 894 * `--[n:1]-> pmu <-[1:n]--' 895 * 896 * 897 * struct perf_event_pmu_context lifetime is refcount based and RCU freed 898 * (similar to perf_event_context). Locking is as if it were a member of 899 * perf_event_context; specifically: 900 * 901 * modification, both: ctx->mutex && ctx->lock 902 * reading, either: ctx->mutex || ctx->lock 903 * 904 * There is one exception to this; namely put_pmu_ctx() isn't always called 905 * with ctx->mutex held; this means that as long as we can guarantee the epc 906 * has events the above rules hold. 907 * 908 * Specificially, sys_perf_event_open()'s group_leader case depends on 909 * ctx->mutex pinning the configuration. Since we hold a reference on 910 * group_leader (through the filedesc) it can't go away, therefore it's 911 * associated pmu_ctx must exist and cannot change due to ctx->mutex. 912 * 913 * perf_event holds a refcount on perf_event_context 914 * perf_event holds a refcount on perf_event_pmu_context 915 */ 916 struct perf_event_pmu_context { 917 struct pmu *pmu; 918 struct perf_event_context *ctx; 919 920 struct list_head pmu_ctx_entry; 921 922 struct list_head pinned_active; 923 struct list_head flexible_active; 924 925 /* Used to identify the per-cpu perf_event_pmu_context */ 926 unsigned int embedded : 1; 927 928 unsigned int nr_events; 929 unsigned int nr_cgroups; 930 unsigned int nr_freq; 931 932 atomic_t refcount; /* event <-> epc */ 933 struct rcu_head rcu_head; 934 935 void *task_ctx_data; /* pmu specific data */ 936 /* 937 * Set when one or more (plausibly active) event can't be scheduled 938 * due to pmu overcommit or pmu constraints, except tolerant to 939 * events not necessary to be active due to scheduling constraints, 940 * such as cgroups. 941 */ 942 int rotate_necessary; 943 }; 944 945 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) 946 { 947 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active); 948 } 949 950 struct perf_event_groups { 951 struct rb_root tree; 952 u64 index; 953 }; 954 955 956 /** 957 * struct perf_event_context - event context structure 958 * 959 * Used as a container for task events and CPU events as well: 960 */ 961 struct perf_event_context { 962 /* 963 * Protect the states of the events in the list, 964 * nr_active, and the list: 965 */ 966 raw_spinlock_t lock; 967 /* 968 * Protect the list of events. Locking either mutex or lock 969 * is sufficient to ensure the list doesn't change; to change 970 * the list you need to lock both the mutex and the spinlock. 971 */ 972 struct mutex mutex; 973 974 struct list_head pmu_ctx_list; 975 struct perf_event_groups pinned_groups; 976 struct perf_event_groups flexible_groups; 977 struct list_head event_list; 978 979 int nr_events; 980 int nr_user; 981 int is_active; 982 983 int nr_task_data; 984 int nr_stat; 985 int nr_freq; 986 int rotate_disable; 987 988 refcount_t refcount; /* event <-> ctx */ 989 struct task_struct *task; 990 991 /* 992 * Context clock, runs when context enabled. 993 */ 994 u64 time; 995 u64 timestamp; 996 u64 timeoffset; 997 998 /* 999 * These fields let us detect when two contexts have both 1000 * been cloned (inherited) from a common ancestor. 1001 */ 1002 struct perf_event_context *parent_ctx; 1003 u64 parent_gen; 1004 u64 generation; 1005 int pin_count; 1006 #ifdef CONFIG_CGROUP_PERF 1007 int nr_cgroups; /* cgroup evts */ 1008 #endif 1009 struct rcu_head rcu_head; 1010 1011 /* 1012 * The count of events for which using the switch-out fast path 1013 * should be avoided. 1014 * 1015 * Sum (event->pending_work + events with 1016 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) 1017 * 1018 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 1019 * that until the signal is delivered. 1020 */ 1021 local_t nr_no_switch_fast; 1022 }; 1023 1024 struct perf_cpu_pmu_context { 1025 struct perf_event_pmu_context epc; 1026 struct perf_event_pmu_context *task_epc; 1027 1028 struct list_head sched_cb_entry; 1029 int sched_cb_usage; 1030 1031 int active_oncpu; 1032 int exclusive; 1033 int pmu_disable_count; 1034 1035 raw_spinlock_t hrtimer_lock; 1036 struct hrtimer hrtimer; 1037 ktime_t hrtimer_interval; 1038 unsigned int hrtimer_active; 1039 }; 1040 1041 /** 1042 * struct perf_event_cpu_context - per cpu event context structure 1043 */ 1044 struct perf_cpu_context { 1045 struct perf_event_context ctx; 1046 struct perf_event_context *task_ctx; 1047 int online; 1048 1049 #ifdef CONFIG_CGROUP_PERF 1050 struct perf_cgroup *cgrp; 1051 #endif 1052 1053 /* 1054 * Per-CPU storage for iterators used in visit_groups_merge. The default 1055 * storage is of size 2 to hold the CPU and any CPU event iterators. 1056 */ 1057 int heap_size; 1058 struct perf_event **heap; 1059 struct perf_event *heap_default[2]; 1060 }; 1061 1062 struct perf_output_handle { 1063 struct perf_event *event; 1064 struct perf_buffer *rb; 1065 unsigned long wakeup; 1066 unsigned long size; 1067 union { 1068 u64 flags; /* perf_output*() */ 1069 u64 aux_flags; /* perf_aux_output*() */ 1070 struct { 1071 u64 skip_read : 1; 1072 }; 1073 }; 1074 union { 1075 void *addr; 1076 unsigned long head; 1077 }; 1078 int page; 1079 }; 1080 1081 struct bpf_perf_event_data_kern { 1082 bpf_user_pt_regs_t *regs; 1083 struct perf_sample_data *data; 1084 struct perf_event *event; 1085 }; 1086 1087 #ifdef CONFIG_CGROUP_PERF 1088 1089 /* 1090 * perf_cgroup_info keeps track of time_enabled for a cgroup. 1091 * This is a per-cpu dynamically allocated data structure. 1092 */ 1093 struct perf_cgroup_info { 1094 u64 time; 1095 u64 timestamp; 1096 u64 timeoffset; 1097 int active; 1098 }; 1099 1100 struct perf_cgroup { 1101 struct cgroup_subsys_state css; 1102 struct perf_cgroup_info __percpu *info; 1103 }; 1104 1105 /* 1106 * Must ensure cgroup is pinned (css_get) before calling 1107 * this function. In other words, we cannot call this function 1108 * if there is no cgroup event for the current CPU context. 1109 */ 1110 static inline struct perf_cgroup * 1111 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 1112 { 1113 return container_of(task_css_check(task, perf_event_cgrp_id, 1114 ctx ? lockdep_is_held(&ctx->lock) 1115 : true), 1116 struct perf_cgroup, css); 1117 } 1118 #endif /* CONFIG_CGROUP_PERF */ 1119 1120 #ifdef CONFIG_PERF_EVENTS 1121 1122 extern struct perf_event_context *perf_cpu_task_ctx(void); 1123 1124 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 1125 struct perf_event *event); 1126 extern void perf_aux_output_end(struct perf_output_handle *handle, 1127 unsigned long size); 1128 extern int perf_aux_output_skip(struct perf_output_handle *handle, 1129 unsigned long size); 1130 extern void *perf_get_aux(struct perf_output_handle *handle); 1131 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 1132 extern void perf_event_itrace_started(struct perf_event *event); 1133 1134 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 1135 extern void perf_pmu_unregister(struct pmu *pmu); 1136 1137 extern void __perf_event_task_sched_in(struct task_struct *prev, 1138 struct task_struct *task); 1139 extern void __perf_event_task_sched_out(struct task_struct *prev, 1140 struct task_struct *next); 1141 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1142 extern void perf_event_exit_task(struct task_struct *child); 1143 extern void perf_event_free_task(struct task_struct *task); 1144 extern void perf_event_delayed_put(struct task_struct *task); 1145 extern struct file *perf_event_get(unsigned int fd); 1146 extern const struct perf_event *perf_get_event(struct file *file); 1147 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1148 extern void perf_event_print_debug(void); 1149 extern void perf_pmu_disable(struct pmu *pmu); 1150 extern void perf_pmu_enable(struct pmu *pmu); 1151 extern void perf_sched_cb_dec(struct pmu *pmu); 1152 extern void perf_sched_cb_inc(struct pmu *pmu); 1153 extern int perf_event_task_disable(void); 1154 extern int perf_event_task_enable(void); 1155 1156 extern void perf_pmu_resched(struct pmu *pmu); 1157 1158 extern int perf_event_refresh(struct perf_event *event, int refresh); 1159 extern void perf_event_update_userpage(struct perf_event *event); 1160 extern int perf_event_release_kernel(struct perf_event *event); 1161 extern struct perf_event * 1162 perf_event_create_kernel_counter(struct perf_event_attr *attr, 1163 int cpu, 1164 struct task_struct *task, 1165 perf_overflow_handler_t callback, 1166 void *context); 1167 extern void perf_pmu_migrate_context(struct pmu *pmu, 1168 int src_cpu, int dst_cpu); 1169 int perf_event_read_local(struct perf_event *event, u64 *value, 1170 u64 *enabled, u64 *running); 1171 extern u64 perf_event_read_value(struct perf_event *event, 1172 u64 *enabled, u64 *running); 1173 1174 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1175 1176 static inline bool branch_sample_no_flags(const struct perf_event *event) 1177 { 1178 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1179 } 1180 1181 static inline bool branch_sample_no_cycles(const struct perf_event *event) 1182 { 1183 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1184 } 1185 1186 static inline bool branch_sample_type(const struct perf_event *event) 1187 { 1188 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1189 } 1190 1191 static inline bool branch_sample_hw_index(const struct perf_event *event) 1192 { 1193 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1194 } 1195 1196 static inline bool branch_sample_priv(const struct perf_event *event) 1197 { 1198 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1199 } 1200 1201 static inline bool branch_sample_counters(const struct perf_event *event) 1202 { 1203 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; 1204 } 1205 1206 static inline bool branch_sample_call_stack(const struct perf_event *event) 1207 { 1208 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; 1209 } 1210 1211 struct perf_sample_data { 1212 /* 1213 * Fields set by perf_sample_data_init() unconditionally, 1214 * group so as to minimize the cachelines touched. 1215 */ 1216 u64 sample_flags; 1217 u64 period; 1218 u64 dyn_size; 1219 1220 /* 1221 * Fields commonly set by __perf_event_header__init_id(), 1222 * group so as to minimize the cachelines touched. 1223 */ 1224 u64 type; 1225 struct { 1226 u32 pid; 1227 u32 tid; 1228 } tid_entry; 1229 u64 time; 1230 u64 id; 1231 struct { 1232 u32 cpu; 1233 u32 reserved; 1234 } cpu_entry; 1235 1236 /* 1237 * The other fields, optionally {set,used} by 1238 * perf_{prepare,output}_sample(). 1239 */ 1240 u64 ip; 1241 struct perf_callchain_entry *callchain; 1242 struct perf_raw_record *raw; 1243 struct perf_branch_stack *br_stack; 1244 u64 *br_stack_cntr; 1245 union perf_sample_weight weight; 1246 union perf_mem_data_src data_src; 1247 u64 txn; 1248 1249 struct perf_regs regs_user; 1250 struct perf_regs regs_intr; 1251 u64 stack_user_size; 1252 1253 u64 stream_id; 1254 u64 cgroup; 1255 u64 addr; 1256 u64 phys_addr; 1257 u64 data_page_size; 1258 u64 code_page_size; 1259 u64 aux_size; 1260 } ____cacheline_aligned; 1261 1262 /* default value for data source */ 1263 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1264 PERF_MEM_S(LVL, NA) |\ 1265 PERF_MEM_S(SNOOP, NA) |\ 1266 PERF_MEM_S(LOCK, NA) |\ 1267 PERF_MEM_S(TLB, NA) |\ 1268 PERF_MEM_S(LVLNUM, NA)) 1269 1270 static inline void perf_sample_data_init(struct perf_sample_data *data, 1271 u64 addr, u64 period) 1272 { 1273 /* remaining struct members initialized in perf_prepare_sample() */ 1274 data->sample_flags = PERF_SAMPLE_PERIOD; 1275 data->period = period; 1276 data->dyn_size = 0; 1277 1278 if (addr) { 1279 data->addr = addr; 1280 data->sample_flags |= PERF_SAMPLE_ADDR; 1281 } 1282 } 1283 1284 static inline void perf_sample_save_callchain(struct perf_sample_data *data, 1285 struct perf_event *event, 1286 struct pt_regs *regs) 1287 { 1288 int size = 1; 1289 1290 if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1291 return; 1292 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) 1293 return; 1294 1295 data->callchain = perf_callchain(event, regs); 1296 size += data->callchain->nr; 1297 1298 data->dyn_size += size * sizeof(u64); 1299 data->sample_flags |= PERF_SAMPLE_CALLCHAIN; 1300 } 1301 1302 static inline void perf_sample_save_raw_data(struct perf_sample_data *data, 1303 struct perf_event *event, 1304 struct perf_raw_record *raw) 1305 { 1306 struct perf_raw_frag *frag = &raw->frag; 1307 u32 sum = 0; 1308 int size; 1309 1310 if (!(event->attr.sample_type & PERF_SAMPLE_RAW)) 1311 return; 1312 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW)) 1313 return; 1314 1315 do { 1316 sum += frag->size; 1317 if (perf_raw_frag_last(frag)) 1318 break; 1319 frag = frag->next; 1320 } while (1); 1321 1322 size = round_up(sum + sizeof(u32), sizeof(u64)); 1323 raw->size = size - sizeof(u32); 1324 frag->pad = raw->size - sum; 1325 1326 data->raw = raw; 1327 data->dyn_size += size; 1328 data->sample_flags |= PERF_SAMPLE_RAW; 1329 } 1330 1331 static inline bool has_branch_stack(struct perf_event *event) 1332 { 1333 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1334 } 1335 1336 static inline void perf_sample_save_brstack(struct perf_sample_data *data, 1337 struct perf_event *event, 1338 struct perf_branch_stack *brs, 1339 u64 *brs_cntr) 1340 { 1341 int size = sizeof(u64); /* nr */ 1342 1343 if (!has_branch_stack(event)) 1344 return; 1345 if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK)) 1346 return; 1347 1348 if (branch_sample_hw_index(event)) 1349 size += sizeof(u64); 1350 size += brs->nr * sizeof(struct perf_branch_entry); 1351 1352 /* 1353 * The extension space for counters is appended after the 1354 * struct perf_branch_stack. It is used to store the occurrences 1355 * of events of each branch. 1356 */ 1357 if (brs_cntr) 1358 size += brs->nr * sizeof(u64); 1359 1360 data->br_stack = brs; 1361 data->br_stack_cntr = brs_cntr; 1362 data->dyn_size += size; 1363 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 1364 } 1365 1366 static inline u32 perf_sample_data_size(struct perf_sample_data *data, 1367 struct perf_event *event) 1368 { 1369 u32 size = sizeof(struct perf_event_header); 1370 1371 size += event->header_size + event->id_header_size; 1372 size += data->dyn_size; 1373 1374 return size; 1375 } 1376 1377 /* 1378 * Clear all bitfields in the perf_branch_entry. 1379 * The to and from fields are not cleared because they are 1380 * systematically modified by caller. 1381 */ 1382 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1383 { 1384 br->mispred = 0; 1385 br->predicted = 0; 1386 br->in_tx = 0; 1387 br->abort = 0; 1388 br->cycles = 0; 1389 br->type = 0; 1390 br->spec = PERF_BR_SPEC_NA; 1391 br->reserved = 0; 1392 } 1393 1394 extern void perf_output_sample(struct perf_output_handle *handle, 1395 struct perf_event_header *header, 1396 struct perf_sample_data *data, 1397 struct perf_event *event); 1398 extern void perf_prepare_sample(struct perf_sample_data *data, 1399 struct perf_event *event, 1400 struct pt_regs *regs); 1401 extern void perf_prepare_header(struct perf_event_header *header, 1402 struct perf_sample_data *data, 1403 struct perf_event *event, 1404 struct pt_regs *regs); 1405 1406 extern int perf_event_overflow(struct perf_event *event, 1407 struct perf_sample_data *data, 1408 struct pt_regs *regs); 1409 1410 extern void perf_event_output_forward(struct perf_event *event, 1411 struct perf_sample_data *data, 1412 struct pt_regs *regs); 1413 extern void perf_event_output_backward(struct perf_event *event, 1414 struct perf_sample_data *data, 1415 struct pt_regs *regs); 1416 extern int perf_event_output(struct perf_event *event, 1417 struct perf_sample_data *data, 1418 struct pt_regs *regs); 1419 1420 static inline bool 1421 is_default_overflow_handler(struct perf_event *event) 1422 { 1423 perf_overflow_handler_t overflow_handler = event->overflow_handler; 1424 1425 if (likely(overflow_handler == perf_event_output_forward)) 1426 return true; 1427 if (unlikely(overflow_handler == perf_event_output_backward)) 1428 return true; 1429 return false; 1430 } 1431 1432 extern void 1433 perf_event_header__init_id(struct perf_event_header *header, 1434 struct perf_sample_data *data, 1435 struct perf_event *event); 1436 extern void 1437 perf_event__output_id_sample(struct perf_event *event, 1438 struct perf_output_handle *handle, 1439 struct perf_sample_data *sample); 1440 1441 extern void 1442 perf_log_lost_samples(struct perf_event *event, u64 lost); 1443 1444 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1445 { 1446 struct perf_event_attr *attr = &event->attr; 1447 1448 return attr->exclude_idle || attr->exclude_user || 1449 attr->exclude_kernel || attr->exclude_hv || 1450 attr->exclude_guest || attr->exclude_host; 1451 } 1452 1453 static inline bool is_sampling_event(struct perf_event *event) 1454 { 1455 return event->attr.sample_period != 0; 1456 } 1457 1458 /* 1459 * Return 1 for a software event, 0 for a hardware event 1460 */ 1461 static inline int is_software_event(struct perf_event *event) 1462 { 1463 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1464 } 1465 1466 /* 1467 * Return 1 for event in sw context, 0 for event in hw context 1468 */ 1469 static inline int in_software_context(struct perf_event *event) 1470 { 1471 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; 1472 } 1473 1474 static inline int is_exclusive_pmu(struct pmu *pmu) 1475 { 1476 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1477 } 1478 1479 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1480 1481 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1482 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1483 1484 #ifndef perf_arch_fetch_caller_regs 1485 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1486 #endif 1487 1488 /* 1489 * When generating a perf sample in-line, instead of from an interrupt / 1490 * exception, we lack a pt_regs. This is typically used from software events 1491 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1492 * 1493 * We typically don't need a full set, but (for x86) do require: 1494 * - ip for PERF_SAMPLE_IP 1495 * - cs for user_mode() tests 1496 * - sp for PERF_SAMPLE_CALLCHAIN 1497 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1498 * 1499 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1500 * things like PERF_SAMPLE_REGS_INTR. 1501 */ 1502 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1503 { 1504 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1505 } 1506 1507 static __always_inline void 1508 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1509 { 1510 if (static_key_false(&perf_swevent_enabled[event_id])) 1511 __perf_sw_event(event_id, nr, regs, addr); 1512 } 1513 1514 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1515 1516 /* 1517 * 'Special' version for the scheduler, it hard assumes no recursion, 1518 * which is guaranteed by us not actually scheduling inside other swevents 1519 * because those disable preemption. 1520 */ 1521 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1522 { 1523 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1524 1525 perf_fetch_caller_regs(regs); 1526 ___perf_sw_event(event_id, nr, regs, addr); 1527 } 1528 1529 extern struct static_key_false perf_sched_events; 1530 1531 static __always_inline bool __perf_sw_enabled(int swevt) 1532 { 1533 return static_key_false(&perf_swevent_enabled[swevt]); 1534 } 1535 1536 static inline void perf_event_task_migrate(struct task_struct *task) 1537 { 1538 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1539 task->sched_migrated = 1; 1540 } 1541 1542 static inline void perf_event_task_sched_in(struct task_struct *prev, 1543 struct task_struct *task) 1544 { 1545 if (static_branch_unlikely(&perf_sched_events)) 1546 __perf_event_task_sched_in(prev, task); 1547 1548 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1549 task->sched_migrated) { 1550 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1551 task->sched_migrated = 0; 1552 } 1553 } 1554 1555 static inline void perf_event_task_sched_out(struct task_struct *prev, 1556 struct task_struct *next) 1557 { 1558 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1559 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1560 1561 #ifdef CONFIG_CGROUP_PERF 1562 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1563 perf_cgroup_from_task(prev, NULL) != 1564 perf_cgroup_from_task(next, NULL)) 1565 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1566 #endif 1567 1568 if (static_branch_unlikely(&perf_sched_events)) 1569 __perf_event_task_sched_out(prev, next); 1570 } 1571 1572 extern void perf_event_mmap(struct vm_area_struct *vma); 1573 1574 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1575 bool unregister, const char *sym); 1576 extern void perf_event_bpf_event(struct bpf_prog *prog, 1577 enum perf_bpf_event_type type, 1578 u16 flags); 1579 1580 #ifdef CONFIG_GUEST_PERF_EVENTS 1581 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1582 1583 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1584 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1585 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1586 1587 static inline unsigned int perf_guest_state(void) 1588 { 1589 return static_call(__perf_guest_state)(); 1590 } 1591 static inline unsigned long perf_guest_get_ip(void) 1592 { 1593 return static_call(__perf_guest_get_ip)(); 1594 } 1595 static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1596 { 1597 return static_call(__perf_guest_handle_intel_pt_intr)(); 1598 } 1599 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1600 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1601 #else 1602 static inline unsigned int perf_guest_state(void) { return 0; } 1603 static inline unsigned long perf_guest_get_ip(void) { return 0; } 1604 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1605 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1606 1607 extern void perf_event_exec(void); 1608 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1609 extern void perf_event_namespaces(struct task_struct *tsk); 1610 extern void perf_event_fork(struct task_struct *tsk); 1611 extern void perf_event_text_poke(const void *addr, 1612 const void *old_bytes, size_t old_len, 1613 const void *new_bytes, size_t new_len); 1614 1615 /* Callchains */ 1616 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1617 1618 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1619 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1620 extern struct perf_callchain_entry * 1621 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1622 u32 max_stack, bool crosstask, bool add_mark); 1623 extern int get_callchain_buffers(int max_stack); 1624 extern void put_callchain_buffers(void); 1625 extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1626 extern void put_callchain_entry(int rctx); 1627 1628 extern int sysctl_perf_event_max_stack; 1629 extern int sysctl_perf_event_max_contexts_per_stack; 1630 1631 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1632 { 1633 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1634 struct perf_callchain_entry *entry = ctx->entry; 1635 entry->ip[entry->nr++] = ip; 1636 ++ctx->contexts; 1637 return 0; 1638 } else { 1639 ctx->contexts_maxed = true; 1640 return -1; /* no more room, stop walking the stack */ 1641 } 1642 } 1643 1644 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1645 { 1646 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1647 struct perf_callchain_entry *entry = ctx->entry; 1648 entry->ip[entry->nr++] = ip; 1649 ++ctx->nr; 1650 return 0; 1651 } else { 1652 return -1; /* no more room, stop walking the stack */ 1653 } 1654 } 1655 1656 extern int sysctl_perf_event_paranoid; 1657 extern int sysctl_perf_event_sample_rate; 1658 1659 extern void perf_sample_event_took(u64 sample_len_ns); 1660 1661 /* Access to perf_event_open(2) syscall. */ 1662 #define PERF_SECURITY_OPEN 0 1663 1664 /* Finer grained perf_event_open(2) access control. */ 1665 #define PERF_SECURITY_CPU 1 1666 #define PERF_SECURITY_KERNEL 2 1667 #define PERF_SECURITY_TRACEPOINT 3 1668 1669 static inline int perf_is_paranoid(void) 1670 { 1671 return sysctl_perf_event_paranoid > -1; 1672 } 1673 1674 int perf_allow_kernel(struct perf_event_attr *attr); 1675 1676 static inline int perf_allow_cpu(struct perf_event_attr *attr) 1677 { 1678 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1679 return -EACCES; 1680 1681 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1682 } 1683 1684 static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1685 { 1686 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1687 return -EPERM; 1688 1689 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1690 } 1691 1692 extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs); 1693 1694 extern void perf_event_init(void); 1695 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1696 int entry_size, struct pt_regs *regs, 1697 struct hlist_head *head, int rctx, 1698 struct task_struct *task); 1699 extern void perf_bp_event(struct perf_event *event, void *data); 1700 1701 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs); 1702 extern unsigned long perf_instruction_pointer(struct perf_event *event, 1703 struct pt_regs *regs); 1704 1705 #ifndef perf_arch_misc_flags 1706 # define perf_arch_misc_flags(regs) \ 1707 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1708 # define perf_arch_instruction_pointer(regs) instruction_pointer(regs) 1709 #endif 1710 #ifndef perf_arch_bpf_user_pt_regs 1711 # define perf_arch_bpf_user_pt_regs(regs) regs 1712 #endif 1713 1714 #ifndef perf_arch_guest_misc_flags 1715 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) 1716 { 1717 unsigned long guest_state = perf_guest_state(); 1718 1719 if (!(guest_state & PERF_GUEST_ACTIVE)) 1720 return 0; 1721 1722 if (guest_state & PERF_GUEST_USER) 1723 return PERF_RECORD_MISC_GUEST_USER; 1724 else 1725 return PERF_RECORD_MISC_GUEST_KERNEL; 1726 } 1727 # define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs) 1728 #endif 1729 1730 static inline bool needs_branch_stack(struct perf_event *event) 1731 { 1732 return event->attr.branch_sample_type != 0; 1733 } 1734 1735 static inline bool has_aux(struct perf_event *event) 1736 { 1737 return event->pmu->setup_aux; 1738 } 1739 1740 static inline bool has_aux_action(struct perf_event *event) 1741 { 1742 return event->attr.aux_sample_size || 1743 event->attr.aux_pause || 1744 event->attr.aux_resume; 1745 } 1746 1747 static inline bool is_write_backward(struct perf_event *event) 1748 { 1749 return !!event->attr.write_backward; 1750 } 1751 1752 static inline bool has_addr_filter(struct perf_event *event) 1753 { 1754 return event->pmu->nr_addr_filters; 1755 } 1756 1757 /* 1758 * An inherited event uses parent's filters 1759 */ 1760 static inline struct perf_addr_filters_head * 1761 perf_event_addr_filters(struct perf_event *event) 1762 { 1763 struct perf_addr_filters_head *ifh = &event->addr_filters; 1764 1765 if (event->parent) 1766 ifh = &event->parent->addr_filters; 1767 1768 return ifh; 1769 } 1770 1771 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 1772 { 1773 /* Only the parent has fasync state */ 1774 if (event->parent) 1775 event = event->parent; 1776 return &event->fasync; 1777 } 1778 1779 extern void perf_event_addr_filters_sync(struct perf_event *event); 1780 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1781 1782 extern int perf_output_begin(struct perf_output_handle *handle, 1783 struct perf_sample_data *data, 1784 struct perf_event *event, unsigned int size); 1785 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1786 struct perf_sample_data *data, 1787 struct perf_event *event, 1788 unsigned int size); 1789 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1790 struct perf_sample_data *data, 1791 struct perf_event *event, 1792 unsigned int size); 1793 1794 extern void perf_output_end(struct perf_output_handle *handle); 1795 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1796 const void *buf, unsigned int len); 1797 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1798 unsigned int len); 1799 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1800 struct perf_output_handle *handle, 1801 unsigned long from, unsigned long to); 1802 extern int perf_swevent_get_recursion_context(void); 1803 extern void perf_swevent_put_recursion_context(int rctx); 1804 extern u64 perf_swevent_set_period(struct perf_event *event); 1805 extern void perf_event_enable(struct perf_event *event); 1806 extern void perf_event_disable(struct perf_event *event); 1807 extern void perf_event_disable_local(struct perf_event *event); 1808 extern void perf_event_disable_inatomic(struct perf_event *event); 1809 extern void perf_event_task_tick(void); 1810 extern int perf_event_account_interrupt(struct perf_event *event); 1811 extern int perf_event_period(struct perf_event *event, u64 value); 1812 extern u64 perf_event_pause(struct perf_event *event, bool reset); 1813 #else /* !CONFIG_PERF_EVENTS: */ 1814 static inline void * 1815 perf_aux_output_begin(struct perf_output_handle *handle, 1816 struct perf_event *event) { return NULL; } 1817 static inline void 1818 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1819 { } 1820 static inline int 1821 perf_aux_output_skip(struct perf_output_handle *handle, 1822 unsigned long size) { return -EINVAL; } 1823 static inline void * 1824 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1825 static inline void 1826 perf_event_task_migrate(struct task_struct *task) { } 1827 static inline void 1828 perf_event_task_sched_in(struct task_struct *prev, 1829 struct task_struct *task) { } 1830 static inline void 1831 perf_event_task_sched_out(struct task_struct *prev, 1832 struct task_struct *next) { } 1833 static inline int perf_event_init_task(struct task_struct *child, 1834 u64 clone_flags) { return 0; } 1835 static inline void perf_event_exit_task(struct task_struct *child) { } 1836 static inline void perf_event_free_task(struct task_struct *task) { } 1837 static inline void perf_event_delayed_put(struct task_struct *task) { } 1838 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1839 static inline const struct perf_event *perf_get_event(struct file *file) 1840 { 1841 return ERR_PTR(-EINVAL); 1842 } 1843 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1844 { 1845 return ERR_PTR(-EINVAL); 1846 } 1847 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1848 u64 *enabled, u64 *running) 1849 { 1850 return -EINVAL; 1851 } 1852 static inline void perf_event_print_debug(void) { } 1853 static inline int perf_event_task_disable(void) { return -EINVAL; } 1854 static inline int perf_event_task_enable(void) { return -EINVAL; } 1855 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1856 { 1857 return -EINVAL; 1858 } 1859 1860 static inline void 1861 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1862 static inline void 1863 perf_bp_event(struct perf_event *event, void *data) { } 1864 1865 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1866 1867 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1868 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1869 bool unregister, const char *sym) { } 1870 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1871 enum perf_bpf_event_type type, 1872 u16 flags) { } 1873 static inline void perf_event_exec(void) { } 1874 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1875 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1876 static inline void perf_event_fork(struct task_struct *tsk) { } 1877 static inline void perf_event_text_poke(const void *addr, 1878 const void *old_bytes, 1879 size_t old_len, 1880 const void *new_bytes, 1881 size_t new_len) { } 1882 static inline void perf_event_init(void) { } 1883 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1884 static inline void perf_swevent_put_recursion_context(int rctx) { } 1885 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1886 static inline void perf_event_enable(struct perf_event *event) { } 1887 static inline void perf_event_disable(struct perf_event *event) { } 1888 static inline int __perf_event_disable(void *info) { return -1; } 1889 static inline void perf_event_task_tick(void) { } 1890 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1891 static inline int perf_event_period(struct perf_event *event, u64 value) 1892 { 1893 return -EINVAL; 1894 } 1895 static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1896 { 1897 return 0; 1898 } 1899 static inline int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) 1900 { 1901 return 0; 1902 } 1903 #endif 1904 1905 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1906 extern void perf_restore_debug_store(void); 1907 #else 1908 static inline void perf_restore_debug_store(void) { } 1909 #endif 1910 1911 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1912 1913 struct perf_pmu_events_attr { 1914 struct device_attribute attr; 1915 u64 id; 1916 const char *event_str; 1917 }; 1918 1919 struct perf_pmu_events_ht_attr { 1920 struct device_attribute attr; 1921 u64 id; 1922 const char *event_str_ht; 1923 const char *event_str_noht; 1924 }; 1925 1926 struct perf_pmu_events_hybrid_attr { 1927 struct device_attribute attr; 1928 u64 id; 1929 const char *event_str; 1930 u64 pmu_type; 1931 }; 1932 1933 struct perf_pmu_format_hybrid_attr { 1934 struct device_attribute attr; 1935 u64 pmu_type; 1936 }; 1937 1938 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1939 char *page); 1940 1941 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1942 static struct perf_pmu_events_attr _var = { \ 1943 .attr = __ATTR(_name, 0444, _show, NULL), \ 1944 .id = _id, \ 1945 }; 1946 1947 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1948 static struct perf_pmu_events_attr _var = { \ 1949 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1950 .id = 0, \ 1951 .event_str = _str, \ 1952 }; 1953 1954 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1955 (&((struct perf_pmu_events_attr[]) { \ 1956 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1957 .id = _id, } \ 1958 })[0].attr.attr) 1959 1960 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1961 static ssize_t \ 1962 _name##_show(struct device *dev, \ 1963 struct device_attribute *attr, \ 1964 char *page) \ 1965 { \ 1966 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1967 return sprintf(page, _format "\n"); \ 1968 } \ 1969 1970 #define PMU_FORMAT_ATTR(_name, _format) \ 1971 PMU_FORMAT_ATTR_SHOW(_name, _format) \ 1972 \ 1973 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1974 1975 /* Performance counter hotplug functions */ 1976 #ifdef CONFIG_PERF_EVENTS 1977 int perf_event_init_cpu(unsigned int cpu); 1978 int perf_event_exit_cpu(unsigned int cpu); 1979 #else 1980 #define perf_event_init_cpu NULL 1981 #define perf_event_exit_cpu NULL 1982 #endif 1983 1984 extern void arch_perf_update_userpage(struct perf_event *event, 1985 struct perf_event_mmap_page *userpg, 1986 u64 now); 1987 1988 /* 1989 * Snapshot branch stack on software events. 1990 * 1991 * Branch stack can be very useful in understanding software events. For 1992 * example, when a long function, e.g. sys_perf_event_open, returns an 1993 * errno, it is not obvious why the function failed. Branch stack could 1994 * provide very helpful information in this type of scenarios. 1995 * 1996 * On software event, it is necessary to stop the hardware branch recorder 1997 * fast. Otherwise, the hardware register/buffer will be flushed with 1998 * entries of the triggering event. Therefore, static call is used to 1999 * stop the hardware recorder. 2000 */ 2001 2002 /* 2003 * cnt is the number of entries allocated for entries. 2004 * Return number of entries copied to . 2005 */ 2006 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 2007 unsigned int cnt); 2008 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 2009 2010 #ifndef PERF_NEEDS_LOPWR_CB 2011 static inline void perf_lopwr_cb(bool mode) 2012 { 2013 } 2014 #endif 2015 2016 #endif /* _LINUX_PERF_EVENT_H */ 2017