xref: /linux-6.15/include/linux/perf_event.h (revision 4eabf533)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42 
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66 
67 struct perf_callchain_entry {
68 	__u64				nr;
69 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71 
72 struct perf_callchain_entry_ctx {
73 	struct perf_callchain_entry *entry;
74 	u32			    max_stack;
75 	u32			    nr;
76 	short			    contexts;
77 	bool			    contexts_maxed;
78 };
79 
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 				     unsigned long off, unsigned long len);
82 
83 struct perf_raw_frag {
84 	union {
85 		struct perf_raw_frag	*next;
86 		unsigned long		pad;
87 	};
88 	perf_copy_f			copy;
89 	void				*data;
90 	u32				size;
91 } __packed;
92 
93 struct perf_raw_record {
94 	struct perf_raw_frag		frag;
95 	u32				size;
96 };
97 
98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 	return frag->pad < sizeof(u64);
101 }
102 
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124 	__u64				nr;
125 	__u64				hw_idx;
126 	struct perf_branch_entry	entries[];
127 };
128 
129 struct task_struct;
130 
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135 	u64		config;	/* register value */
136 	unsigned int	reg;	/* register address or index */
137 	int		alloc;	/* extra register already allocated */
138 	int		idx;	/* index in shared_regs->regs[] */
139 };
140 
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH			0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149 
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 	union {
158 		struct { /* hardware */
159 			u64		config;
160 			u64		last_tag;
161 			unsigned long	config_base;
162 			unsigned long	event_base;
163 			int		event_base_rdpmc;
164 			int		idx;
165 			int		last_cpu;
166 			int		flags;
167 
168 			struct hw_perf_event_extra extra_reg;
169 			struct hw_perf_event_extra branch_reg;
170 		};
171 		struct { /* aux / Intel-PT */
172 			u64		aux_config;
173 			/*
174 			 * For AUX area events, aux_paused cannot be a state
175 			 * flag because it can be updated asynchronously to
176 			 * state.
177 			 */
178 			unsigned int	aux_paused;
179 		};
180 		struct { /* software */
181 			struct hrtimer	hrtimer;
182 		};
183 		struct { /* tracepoint */
184 			/* for tp_event->class */
185 			struct list_head	tp_list;
186 		};
187 		struct { /* amd_power */
188 			u64	pwr_acc;
189 			u64	ptsc;
190 		};
191 #ifdef CONFIG_HAVE_HW_BREAKPOINT
192 		struct { /* breakpoint */
193 			/*
194 			 * Crufty hack to avoid the chicken and egg
195 			 * problem hw_breakpoint has with context
196 			 * creation and event initalization.
197 			 */
198 			struct arch_hw_breakpoint	info;
199 			struct rhlist_head		bp_list;
200 		};
201 #endif
202 		struct { /* amd_iommu */
203 			u8	iommu_bank;
204 			u8	iommu_cntr;
205 			u16	padding;
206 			u64	conf;
207 			u64	conf1;
208 		};
209 	};
210 	/*
211 	 * If the event is a per task event, this will point to the task in
212 	 * question. See the comment in perf_event_alloc().
213 	 */
214 	struct task_struct		*target;
215 
216 	/*
217 	 * PMU would store hardware filter configuration
218 	 * here.
219 	 */
220 	void				*addr_filters;
221 
222 	/* Last sync'ed generation of filters */
223 	unsigned long			addr_filters_gen;
224 
225 /*
226  * hw_perf_event::state flags; used to track the PERF_EF_* state.
227  */
228 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
229 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
230 #define PERF_HES_ARCH		0x04
231 
232 	int				state;
233 
234 	/*
235 	 * The last observed hardware counter value, updated with a
236 	 * local64_cmpxchg() such that pmu::read() can be called nested.
237 	 */
238 	local64_t			prev_count;
239 
240 	/*
241 	 * The period to start the next sample with.
242 	 */
243 	u64				sample_period;
244 
245 	union {
246 		struct { /* Sampling */
247 			/*
248 			 * The period we started this sample with.
249 			 */
250 			u64				last_period;
251 
252 			/*
253 			 * However much is left of the current period;
254 			 * note that this is a full 64bit value and
255 			 * allows for generation of periods longer
256 			 * than hardware might allow.
257 			 */
258 			local64_t			period_left;
259 		};
260 		struct { /* Topdown events counting for context switch */
261 			u64				saved_metric;
262 			u64				saved_slots;
263 		};
264 	};
265 
266 	/*
267 	 * State for throttling the event, see __perf_event_overflow() and
268 	 * perf_adjust_freq_unthr_context().
269 	 */
270 	u64                             interrupts_seq;
271 	u64				interrupts;
272 
273 	/*
274 	 * State for freq target events, see __perf_event_overflow() and
275 	 * perf_adjust_freq_unthr_context().
276 	 */
277 	u64				freq_time_stamp;
278 	u64				freq_count_stamp;
279 #endif
280 };
281 
282 struct perf_event;
283 struct perf_event_pmu_context;
284 
285 /*
286  * Common implementation detail of pmu::{start,commit,cancel}_txn
287  */
288 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
289 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
290 
291 /**
292  * pmu::capabilities flags
293  */
294 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
295 #define PERF_PMU_CAP_NO_NMI			0x0002
296 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
297 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
298 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
299 #define PERF_PMU_CAP_ITRACE			0x0020
300 #define PERF_PMU_CAP_NO_EXCLUDE			0x0040
301 #define PERF_PMU_CAP_AUX_OUTPUT			0x0080
302 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0100
303 #define PERF_PMU_CAP_AUX_PAUSE			0x0200
304 
305 /**
306  * pmu::scope
307  */
308 enum perf_pmu_scope {
309 	PERF_PMU_SCOPE_NONE	= 0,
310 	PERF_PMU_SCOPE_CORE,
311 	PERF_PMU_SCOPE_DIE,
312 	PERF_PMU_SCOPE_CLUSTER,
313 	PERF_PMU_SCOPE_PKG,
314 	PERF_PMU_SCOPE_SYS_WIDE,
315 	PERF_PMU_MAX_SCOPE,
316 };
317 
318 struct perf_output_handle;
319 
320 #define PMU_NULL_DEV	((void *)(~0UL))
321 
322 /**
323  * struct pmu - generic performance monitoring unit
324  */
325 struct pmu {
326 	struct list_head		entry;
327 
328 	struct module			*module;
329 	struct device			*dev;
330 	struct device			*parent;
331 	const struct attribute_group	**attr_groups;
332 	const struct attribute_group	**attr_update;
333 	const char			*name;
334 	int				type;
335 
336 	/*
337 	 * various common per-pmu feature flags
338 	 */
339 	int				capabilities;
340 
341 	/*
342 	 * PMU scope
343 	 */
344 	unsigned int			scope;
345 
346 	struct perf_cpu_pmu_context __percpu **cpu_pmu_context;
347 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
348 	int				task_ctx_nr;
349 	int				hrtimer_interval_ms;
350 
351 	/* number of address filters this PMU can do */
352 	unsigned int			nr_addr_filters;
353 
354 	/*
355 	 * Fully disable/enable this PMU, can be used to protect from the PMI
356 	 * as well as for lazy/batch writing of the MSRs.
357 	 */
358 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
359 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
360 
361 	/*
362 	 * Try and initialize the event for this PMU.
363 	 *
364 	 * Returns:
365 	 *  -ENOENT	-- @event is not for this PMU
366 	 *
367 	 *  -ENODEV	-- @event is for this PMU but PMU not present
368 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
369 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
370 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
371 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
372 	 *
373 	 *  0		-- @event is for this PMU and valid
374 	 *
375 	 * Other error return values are allowed.
376 	 */
377 	int (*event_init)		(struct perf_event *event);
378 
379 	/*
380 	 * Notification that the event was mapped or unmapped.  Called
381 	 * in the context of the mapping task.
382 	 */
383 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
384 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
385 
386 	/*
387 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
388 	 * matching hw_perf_event::state flags.
389 	 */
390 #define PERF_EF_START	0x01		/* start the counter when adding    */
391 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
392 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
393 #define PERF_EF_PAUSE	0x08		/* AUX area event, pause tracing */
394 #define PERF_EF_RESUME	0x10		/* AUX area event, resume tracing */
395 
396 	/*
397 	 * Adds/Removes a counter to/from the PMU, can be done inside a
398 	 * transaction, see the ->*_txn() methods.
399 	 *
400 	 * The add/del callbacks will reserve all hardware resources required
401 	 * to service the event, this includes any counter constraint
402 	 * scheduling etc.
403 	 *
404 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
405 	 * is on.
406 	 *
407 	 * ->add() called without PERF_EF_START should result in the same state
408 	 *  as ->add() followed by ->stop().
409 	 *
410 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
411 	 *  ->stop() that must deal with already being stopped without
412 	 *  PERF_EF_UPDATE.
413 	 */
414 	int  (*add)			(struct perf_event *event, int flags);
415 	void (*del)			(struct perf_event *event, int flags);
416 
417 	/*
418 	 * Starts/Stops a counter present on the PMU.
419 	 *
420 	 * The PMI handler should stop the counter when perf_event_overflow()
421 	 * returns !0. ->start() will be used to continue.
422 	 *
423 	 * Also used to change the sample period.
424 	 *
425 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
426 	 * is on -- will be called from NMI context with the PMU generates
427 	 * NMIs.
428 	 *
429 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
430 	 *  period/count values like ->read() would.
431 	 *
432 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
433 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
434 	 *
435 	 * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not
436 	 * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with
437 	 * PERF_EF_RESUME.
438 	 *
439 	 * ->start() with PERF_EF_RESUME will start as simply as possible but
440 	 * only if the counter is not otherwise stopped. Will not overlap
441 	 * another ->start() with PERF_EF_RESUME nor ->stop() with
442 	 * PERF_EF_PAUSE.
443 	 *
444 	 * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other
445 	 * ->stop()/->start() invocations, just not itself.
446 	 */
447 	void (*start)			(struct perf_event *event, int flags);
448 	void (*stop)			(struct perf_event *event, int flags);
449 
450 	/*
451 	 * Updates the counter value of the event.
452 	 *
453 	 * For sampling capable PMUs this will also update the software period
454 	 * hw_perf_event::period_left field.
455 	 */
456 	void (*read)			(struct perf_event *event);
457 
458 	/*
459 	 * Group events scheduling is treated as a transaction, add
460 	 * group events as a whole and perform one schedulability test.
461 	 * If the test fails, roll back the whole group
462 	 *
463 	 * Start the transaction, after this ->add() doesn't need to
464 	 * do schedulability tests.
465 	 *
466 	 * Optional.
467 	 */
468 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
469 	/*
470 	 * If ->start_txn() disabled the ->add() schedulability test
471 	 * then ->commit_txn() is required to perform one. On success
472 	 * the transaction is closed. On error the transaction is kept
473 	 * open until ->cancel_txn() is called.
474 	 *
475 	 * Optional.
476 	 */
477 	int  (*commit_txn)		(struct pmu *pmu);
478 	/*
479 	 * Will cancel the transaction, assumes ->del() is called
480 	 * for each successful ->add() during the transaction.
481 	 *
482 	 * Optional.
483 	 */
484 	void (*cancel_txn)		(struct pmu *pmu);
485 
486 	/*
487 	 * Will return the value for perf_event_mmap_page::index for this event,
488 	 * if no implementation is provided it will default to 0 (see
489 	 * perf_event_idx_default).
490 	 */
491 	int (*event_idx)		(struct perf_event *event); /*optional */
492 
493 	/*
494 	 * context-switches callback
495 	 */
496 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
497 					bool sched_in);
498 
499 	/*
500 	 * Kmem cache of PMU specific data
501 	 */
502 	struct kmem_cache		*task_ctx_cache;
503 
504 	/*
505 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
506 	 * can be synchronized using this function. See Intel LBR callstack support
507 	 * implementation and Perf core context switch handling callbacks for usage
508 	 * examples.
509 	 */
510 	void (*swap_task_ctx)		(struct perf_event_pmu_context *prev_epc,
511 					 struct perf_event_pmu_context *next_epc);
512 					/* optional */
513 
514 	/*
515 	 * Set up pmu-private data structures for an AUX area
516 	 */
517 	void *(*setup_aux)		(struct perf_event *event, void **pages,
518 					 int nr_pages, bool overwrite);
519 					/* optional */
520 
521 	/*
522 	 * Free pmu-private AUX data structures
523 	 */
524 	void (*free_aux)		(void *aux); /* optional */
525 
526 	/*
527 	 * Take a snapshot of the AUX buffer without touching the event
528 	 * state, so that preempting ->start()/->stop() callbacks does
529 	 * not interfere with their logic. Called in PMI context.
530 	 *
531 	 * Returns the size of AUX data copied to the output handle.
532 	 *
533 	 * Optional.
534 	 */
535 	long (*snapshot_aux)		(struct perf_event *event,
536 					 struct perf_output_handle *handle,
537 					 unsigned long size);
538 
539 	/*
540 	 * Validate address range filters: make sure the HW supports the
541 	 * requested configuration and number of filters; return 0 if the
542 	 * supplied filters are valid, -errno otherwise.
543 	 *
544 	 * Runs in the context of the ioctl()ing process and is not serialized
545 	 * with the rest of the PMU callbacks.
546 	 */
547 	int (*addr_filters_validate)	(struct list_head *filters);
548 					/* optional */
549 
550 	/*
551 	 * Synchronize address range filter configuration:
552 	 * translate hw-agnostic filters into hardware configuration in
553 	 * event::hw::addr_filters.
554 	 *
555 	 * Runs as a part of filter sync sequence that is done in ->start()
556 	 * callback by calling perf_event_addr_filters_sync().
557 	 *
558 	 * May (and should) traverse event::addr_filters::list, for which its
559 	 * caller provides necessary serialization.
560 	 */
561 	void (*addr_filters_sync)	(struct perf_event *event);
562 					/* optional */
563 
564 	/*
565 	 * Check if event can be used for aux_output purposes for
566 	 * events of this PMU.
567 	 *
568 	 * Runs from perf_event_open(). Should return 0 for "no match"
569 	 * or non-zero for "match".
570 	 */
571 	int (*aux_output_match)		(struct perf_event *event);
572 					/* optional */
573 
574 	/*
575 	 * Skip programming this PMU on the given CPU. Typically needed for
576 	 * big.LITTLE things.
577 	 */
578 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
579 
580 	/*
581 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
582 	 */
583 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
584 };
585 
586 enum perf_addr_filter_action_t {
587 	PERF_ADDR_FILTER_ACTION_STOP = 0,
588 	PERF_ADDR_FILTER_ACTION_START,
589 	PERF_ADDR_FILTER_ACTION_FILTER,
590 };
591 
592 /**
593  * struct perf_addr_filter - address range filter definition
594  * @entry:	event's filter list linkage
595  * @path:	object file's path for file-based filters
596  * @offset:	filter range offset
597  * @size:	filter range size (size==0 means single address trigger)
598  * @action:	filter/start/stop
599  *
600  * This is a hardware-agnostic filter configuration as specified by the user.
601  */
602 struct perf_addr_filter {
603 	struct list_head	entry;
604 	struct path		path;
605 	unsigned long		offset;
606 	unsigned long		size;
607 	enum perf_addr_filter_action_t	action;
608 };
609 
610 /**
611  * struct perf_addr_filters_head - container for address range filters
612  * @list:	list of filters for this event
613  * @lock:	spinlock that serializes accesses to the @list and event's
614  *		(and its children's) filter generations.
615  * @nr_file_filters:	number of file-based filters
616  *
617  * A child event will use parent's @list (and therefore @lock), so they are
618  * bundled together; see perf_event_addr_filters().
619  */
620 struct perf_addr_filters_head {
621 	struct list_head	list;
622 	raw_spinlock_t		lock;
623 	unsigned int		nr_file_filters;
624 };
625 
626 struct perf_addr_filter_range {
627 	unsigned long		start;
628 	unsigned long		size;
629 };
630 
631 /**
632  * enum perf_event_state - the states of an event:
633  */
634 enum perf_event_state {
635 	PERF_EVENT_STATE_DEAD		= -4,
636 	PERF_EVENT_STATE_EXIT		= -3,
637 	PERF_EVENT_STATE_ERROR		= -2,
638 	PERF_EVENT_STATE_OFF		= -1,
639 	PERF_EVENT_STATE_INACTIVE	=  0,
640 	PERF_EVENT_STATE_ACTIVE		=  1,
641 };
642 
643 struct file;
644 struct perf_sample_data;
645 
646 typedef void (*perf_overflow_handler_t)(struct perf_event *,
647 					struct perf_sample_data *,
648 					struct pt_regs *regs);
649 
650 /*
651  * Event capabilities. For event_caps and groups caps.
652  *
653  * PERF_EV_CAP_SOFTWARE: Is a software event.
654  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
655  * from any CPU in the package where it is active.
656  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
657  * cannot be a group leader. If an event with this flag is detached from the
658  * group it is scheduled out and moved into an unrecoverable ERROR state.
659  * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
660  * PMU scope where it is active.
661  */
662 #define PERF_EV_CAP_SOFTWARE		BIT(0)
663 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
664 #define PERF_EV_CAP_SIBLING		BIT(2)
665 #define PERF_EV_CAP_READ_SCOPE		BIT(3)
666 
667 #define SWEVENT_HLIST_BITS		8
668 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
669 
670 struct swevent_hlist {
671 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
672 	struct rcu_head			rcu_head;
673 };
674 
675 #define PERF_ATTACH_CONTEXT	0x0001
676 #define PERF_ATTACH_GROUP	0x0002
677 #define PERF_ATTACH_TASK	0x0004
678 #define PERF_ATTACH_TASK_DATA	0x0008
679 #define PERF_ATTACH_ITRACE	0x0010
680 #define PERF_ATTACH_SCHED_CB	0x0020
681 #define PERF_ATTACH_CHILD	0x0040
682 #define PERF_ATTACH_EXCLUSIVE	0x0080
683 #define PERF_ATTACH_CALLCHAIN	0x0100
684 
685 struct bpf_prog;
686 struct perf_cgroup;
687 struct perf_buffer;
688 
689 struct pmu_event_list {
690 	raw_spinlock_t		lock;
691 	struct list_head	list;
692 };
693 
694 /*
695  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
696  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
697  * safe lock, and is only held by the CPU doing the modification, having IRQs
698  * disabled is sufficient since it will hold-off the IPIs.
699  */
700 #ifdef CONFIG_PROVE_LOCKING
701 #define lockdep_assert_event_ctx(event)				\
702 	WARN_ON_ONCE(__lockdep_enabled &&			\
703 		     (this_cpu_read(hardirqs_enabled) &&	\
704 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
705 #else
706 #define lockdep_assert_event_ctx(event)
707 #endif
708 
709 #define for_each_sibling_event(sibling, event)			\
710 	lockdep_assert_event_ctx(event);			\
711 	if ((event)->group_leader == (event))			\
712 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
713 
714 /**
715  * struct perf_event - performance event kernel representation:
716  */
717 struct perf_event {
718 #ifdef CONFIG_PERF_EVENTS
719 	/*
720 	 * entry onto perf_event_context::event_list;
721 	 *   modifications require ctx->lock
722 	 *   RCU safe iterations.
723 	 */
724 	struct list_head		event_entry;
725 
726 	/*
727 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
728 	 * either sufficies for read.
729 	 */
730 	struct list_head		sibling_list;
731 	struct list_head		active_list;
732 	/*
733 	 * Node on the pinned or flexible tree located at the event context;
734 	 */
735 	struct rb_node			group_node;
736 	u64				group_index;
737 	/*
738 	 * We need storage to track the entries in perf_pmu_migrate_context; we
739 	 * cannot use the event_entry because of RCU and we want to keep the
740 	 * group in tact which avoids us using the other two entries.
741 	 */
742 	struct list_head		migrate_entry;
743 
744 	struct hlist_node		hlist_entry;
745 	struct list_head		active_entry;
746 	int				nr_siblings;
747 
748 	/* Not serialized. Only written during event initialization. */
749 	int				event_caps;
750 	/* The cumulative AND of all event_caps for events in this group. */
751 	int				group_caps;
752 
753 	unsigned int			group_generation;
754 	struct perf_event		*group_leader;
755 	/*
756 	 * event->pmu will always point to pmu in which this event belongs.
757 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
758 	 * different pmu events is created.
759 	 */
760 	struct pmu			*pmu;
761 	void				*pmu_private;
762 
763 	enum perf_event_state		state;
764 	unsigned int			attach_state;
765 	local64_t			count;
766 	atomic64_t			child_count;
767 
768 	/*
769 	 * These are the total time in nanoseconds that the event
770 	 * has been enabled (i.e. eligible to run, and the task has
771 	 * been scheduled in, if this is a per-task event)
772 	 * and running (scheduled onto the CPU), respectively.
773 	 */
774 	u64				total_time_enabled;
775 	u64				total_time_running;
776 	u64				tstamp;
777 
778 	struct perf_event_attr		attr;
779 	u16				header_size;
780 	u16				id_header_size;
781 	u16				read_size;
782 	struct hw_perf_event		hw;
783 
784 	struct perf_event_context	*ctx;
785 	/*
786 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
787 	 * is added. This pmu_ctx can be of other pmu for sw event when that
788 	 * sw event is part of a group which also contains non-sw events.
789 	 */
790 	struct perf_event_pmu_context	*pmu_ctx;
791 	atomic_long_t			refcount;
792 
793 	/*
794 	 * These accumulate total time (in nanoseconds) that children
795 	 * events have been enabled and running, respectively.
796 	 */
797 	atomic64_t			child_total_time_enabled;
798 	atomic64_t			child_total_time_running;
799 
800 	/*
801 	 * Protect attach/detach and child_list:
802 	 */
803 	struct mutex			child_mutex;
804 	struct list_head		child_list;
805 	struct perf_event		*parent;
806 
807 	int				oncpu;
808 	int				cpu;
809 
810 	struct list_head		owner_entry;
811 	struct task_struct		*owner;
812 
813 	/* mmap bits */
814 	struct mutex			mmap_mutex;
815 	atomic_t			mmap_count;
816 
817 	struct perf_buffer		*rb;
818 	struct list_head		rb_entry;
819 	unsigned long			rcu_batches;
820 	int				rcu_pending;
821 
822 	/* poll related */
823 	wait_queue_head_t		waitq;
824 	struct fasync_struct		*fasync;
825 
826 	/* delayed work for NMIs and such */
827 	unsigned int			pending_wakeup;
828 	unsigned int			pending_kill;
829 	unsigned int			pending_disable;
830 	unsigned long			pending_addr;	/* SIGTRAP */
831 	struct irq_work			pending_irq;
832 	struct irq_work			pending_disable_irq;
833 	struct callback_head		pending_task;
834 	unsigned int			pending_work;
835 	struct rcuwait			pending_work_wait;
836 
837 	atomic_t			event_limit;
838 
839 	/* address range filters */
840 	struct perf_addr_filters_head	addr_filters;
841 	/* vma address array for file-based filders */
842 	struct perf_addr_filter_range	*addr_filter_ranges;
843 	unsigned long			addr_filters_gen;
844 
845 	/* for aux_output events */
846 	struct perf_event		*aux_event;
847 
848 	void (*destroy)(struct perf_event *);
849 	struct rcu_head			rcu_head;
850 
851 	struct pid_namespace		*ns;
852 	u64				id;
853 
854 	atomic64_t			lost_samples;
855 
856 	u64				(*clock)(void);
857 	perf_overflow_handler_t		overflow_handler;
858 	void				*overflow_handler_context;
859 	struct bpf_prog			*prog;
860 	u64				bpf_cookie;
861 
862 #ifdef CONFIG_EVENT_TRACING
863 	struct trace_event_call		*tp_event;
864 	struct event_filter		*filter;
865 #ifdef CONFIG_FUNCTION_TRACER
866 	struct ftrace_ops               ftrace_ops;
867 #endif
868 #endif
869 
870 #ifdef CONFIG_CGROUP_PERF
871 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
872 #endif
873 
874 #ifdef CONFIG_SECURITY
875 	void *security;
876 #endif
877 	struct list_head		sb_list;
878 
879 	/*
880 	 * Certain events gets forwarded to another pmu internally by over-
881 	 * writing kernel copy of event->attr.type without user being aware
882 	 * of it. event->orig_type contains original 'type' requested by
883 	 * user.
884 	 */
885 	__u32				orig_type;
886 #endif /* CONFIG_PERF_EVENTS */
887 };
888 
889 /*
890  *           ,-----------------------[1:n]------------------------.
891  *           V                                                    V
892  * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
893  *                                        |                       |
894  *                                        `--[n:1]-> pmu <-[1:n]--'
895  *
896  *
897  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
898  * (similar to perf_event_context). Locking is as if it were a member of
899  * perf_event_context; specifically:
900  *
901  *   modification, both: ctx->mutex && ctx->lock
902  *   reading, either:    ctx->mutex || ctx->lock
903  *
904  * There is one exception to this; namely put_pmu_ctx() isn't always called
905  * with ctx->mutex held; this means that as long as we can guarantee the epc
906  * has events the above rules hold.
907  *
908  * Specificially, sys_perf_event_open()'s group_leader case depends on
909  * ctx->mutex pinning the configuration. Since we hold a reference on
910  * group_leader (through the filedesc) it can't go away, therefore it's
911  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
912  *
913  * perf_event holds a refcount on perf_event_context
914  * perf_event holds a refcount on perf_event_pmu_context
915  */
916 struct perf_event_pmu_context {
917 	struct pmu			*pmu;
918 	struct perf_event_context       *ctx;
919 
920 	struct list_head		pmu_ctx_entry;
921 
922 	struct list_head		pinned_active;
923 	struct list_head		flexible_active;
924 
925 	/* Used to identify the per-cpu perf_event_pmu_context */
926 	unsigned int			embedded : 1;
927 
928 	unsigned int			nr_events;
929 	unsigned int			nr_cgroups;
930 	unsigned int			nr_freq;
931 
932 	atomic_t			refcount; /* event <-> epc */
933 	struct rcu_head			rcu_head;
934 
935 	void				*task_ctx_data; /* pmu specific data */
936 	/*
937 	 * Set when one or more (plausibly active) event can't be scheduled
938 	 * due to pmu overcommit or pmu constraints, except tolerant to
939 	 * events not necessary to be active due to scheduling constraints,
940 	 * such as cgroups.
941 	 */
942 	int				rotate_necessary;
943 };
944 
945 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
946 {
947 	return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
948 }
949 
950 struct perf_event_groups {
951 	struct rb_root	tree;
952 	u64		index;
953 };
954 
955 
956 /**
957  * struct perf_event_context - event context structure
958  *
959  * Used as a container for task events and CPU events as well:
960  */
961 struct perf_event_context {
962 	/*
963 	 * Protect the states of the events in the list,
964 	 * nr_active, and the list:
965 	 */
966 	raw_spinlock_t			lock;
967 	/*
968 	 * Protect the list of events.  Locking either mutex or lock
969 	 * is sufficient to ensure the list doesn't change; to change
970 	 * the list you need to lock both the mutex and the spinlock.
971 	 */
972 	struct mutex			mutex;
973 
974 	struct list_head		pmu_ctx_list;
975 	struct perf_event_groups	pinned_groups;
976 	struct perf_event_groups	flexible_groups;
977 	struct list_head		event_list;
978 
979 	int				nr_events;
980 	int				nr_user;
981 	int				is_active;
982 
983 	int				nr_task_data;
984 	int				nr_stat;
985 	int				nr_freq;
986 	int				rotate_disable;
987 
988 	refcount_t			refcount; /* event <-> ctx */
989 	struct task_struct		*task;
990 
991 	/*
992 	 * Context clock, runs when context enabled.
993 	 */
994 	u64				time;
995 	u64				timestamp;
996 	u64				timeoffset;
997 
998 	/*
999 	 * These fields let us detect when two contexts have both
1000 	 * been cloned (inherited) from a common ancestor.
1001 	 */
1002 	struct perf_event_context	*parent_ctx;
1003 	u64				parent_gen;
1004 	u64				generation;
1005 	int				pin_count;
1006 #ifdef CONFIG_CGROUP_PERF
1007 	int				nr_cgroups;	 /* cgroup evts */
1008 #endif
1009 	struct rcu_head			rcu_head;
1010 
1011 	/*
1012 	 * The count of events for which using the switch-out fast path
1013 	 * should be avoided.
1014 	 *
1015 	 * Sum (event->pending_work + events with
1016 	 *    (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
1017 	 *
1018 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
1019 	 * that until the signal is delivered.
1020 	 */
1021 	local_t				nr_no_switch_fast;
1022 };
1023 
1024 struct perf_cpu_pmu_context {
1025 	struct perf_event_pmu_context	epc;
1026 	struct perf_event_pmu_context	*task_epc;
1027 
1028 	struct list_head		sched_cb_entry;
1029 	int				sched_cb_usage;
1030 
1031 	int				active_oncpu;
1032 	int				exclusive;
1033 	int				pmu_disable_count;
1034 
1035 	raw_spinlock_t			hrtimer_lock;
1036 	struct hrtimer			hrtimer;
1037 	ktime_t				hrtimer_interval;
1038 	unsigned int			hrtimer_active;
1039 };
1040 
1041 /**
1042  * struct perf_event_cpu_context - per cpu event context structure
1043  */
1044 struct perf_cpu_context {
1045 	struct perf_event_context	ctx;
1046 	struct perf_event_context	*task_ctx;
1047 	int				online;
1048 
1049 #ifdef CONFIG_CGROUP_PERF
1050 	struct perf_cgroup		*cgrp;
1051 #endif
1052 
1053 	/*
1054 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1055 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1056 	 */
1057 	int				heap_size;
1058 	struct perf_event		**heap;
1059 	struct perf_event		*heap_default[2];
1060 };
1061 
1062 struct perf_output_handle {
1063 	struct perf_event		*event;
1064 	struct perf_buffer		*rb;
1065 	unsigned long			wakeup;
1066 	unsigned long			size;
1067 	union {
1068 		u64			flags;		/* perf_output*() */
1069 		u64			aux_flags;	/* perf_aux_output*() */
1070 		struct {
1071 			u64		skip_read : 1;
1072 		};
1073 	};
1074 	union {
1075 		void			*addr;
1076 		unsigned long		head;
1077 	};
1078 	int				page;
1079 };
1080 
1081 struct bpf_perf_event_data_kern {
1082 	bpf_user_pt_regs_t *regs;
1083 	struct perf_sample_data *data;
1084 	struct perf_event *event;
1085 };
1086 
1087 #ifdef CONFIG_CGROUP_PERF
1088 
1089 /*
1090  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1091  * This is a per-cpu dynamically allocated data structure.
1092  */
1093 struct perf_cgroup_info {
1094 	u64				time;
1095 	u64				timestamp;
1096 	u64				timeoffset;
1097 	int				active;
1098 };
1099 
1100 struct perf_cgroup {
1101 	struct cgroup_subsys_state	css;
1102 	struct perf_cgroup_info	__percpu *info;
1103 };
1104 
1105 /*
1106  * Must ensure cgroup is pinned (css_get) before calling
1107  * this function. In other words, we cannot call this function
1108  * if there is no cgroup event for the current CPU context.
1109  */
1110 static inline struct perf_cgroup *
1111 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1112 {
1113 	return container_of(task_css_check(task, perf_event_cgrp_id,
1114 					   ctx ? lockdep_is_held(&ctx->lock)
1115 					       : true),
1116 			    struct perf_cgroup, css);
1117 }
1118 #endif /* CONFIG_CGROUP_PERF */
1119 
1120 #ifdef CONFIG_PERF_EVENTS
1121 
1122 extern struct perf_event_context *perf_cpu_task_ctx(void);
1123 
1124 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1125 				   struct perf_event *event);
1126 extern void perf_aux_output_end(struct perf_output_handle *handle,
1127 				unsigned long size);
1128 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1129 				unsigned long size);
1130 extern void *perf_get_aux(struct perf_output_handle *handle);
1131 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1132 extern void perf_event_itrace_started(struct perf_event *event);
1133 
1134 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1135 extern void perf_pmu_unregister(struct pmu *pmu);
1136 
1137 extern void __perf_event_task_sched_in(struct task_struct *prev,
1138 				       struct task_struct *task);
1139 extern void __perf_event_task_sched_out(struct task_struct *prev,
1140 					struct task_struct *next);
1141 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1142 extern void perf_event_exit_task(struct task_struct *child);
1143 extern void perf_event_free_task(struct task_struct *task);
1144 extern void perf_event_delayed_put(struct task_struct *task);
1145 extern struct file *perf_event_get(unsigned int fd);
1146 extern const struct perf_event *perf_get_event(struct file *file);
1147 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1148 extern void perf_event_print_debug(void);
1149 extern void perf_pmu_disable(struct pmu *pmu);
1150 extern void perf_pmu_enable(struct pmu *pmu);
1151 extern void perf_sched_cb_dec(struct pmu *pmu);
1152 extern void perf_sched_cb_inc(struct pmu *pmu);
1153 extern int perf_event_task_disable(void);
1154 extern int perf_event_task_enable(void);
1155 
1156 extern void perf_pmu_resched(struct pmu *pmu);
1157 
1158 extern int perf_event_refresh(struct perf_event *event, int refresh);
1159 extern void perf_event_update_userpage(struct perf_event *event);
1160 extern int perf_event_release_kernel(struct perf_event *event);
1161 extern struct perf_event *
1162 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1163 				int cpu,
1164 				struct task_struct *task,
1165 				perf_overflow_handler_t callback,
1166 				void *context);
1167 extern void perf_pmu_migrate_context(struct pmu *pmu,
1168 				int src_cpu, int dst_cpu);
1169 int perf_event_read_local(struct perf_event *event, u64 *value,
1170 			  u64 *enabled, u64 *running);
1171 extern u64 perf_event_read_value(struct perf_event *event,
1172 				 u64 *enabled, u64 *running);
1173 
1174 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1175 
1176 static inline bool branch_sample_no_flags(const struct perf_event *event)
1177 {
1178 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1179 }
1180 
1181 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1182 {
1183 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1184 }
1185 
1186 static inline bool branch_sample_type(const struct perf_event *event)
1187 {
1188 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1189 }
1190 
1191 static inline bool branch_sample_hw_index(const struct perf_event *event)
1192 {
1193 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1194 }
1195 
1196 static inline bool branch_sample_priv(const struct perf_event *event)
1197 {
1198 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1199 }
1200 
1201 static inline bool branch_sample_counters(const struct perf_event *event)
1202 {
1203 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1204 }
1205 
1206 static inline bool branch_sample_call_stack(const struct perf_event *event)
1207 {
1208 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1209 }
1210 
1211 struct perf_sample_data {
1212 	/*
1213 	 * Fields set by perf_sample_data_init() unconditionally,
1214 	 * group so as to minimize the cachelines touched.
1215 	 */
1216 	u64				sample_flags;
1217 	u64				period;
1218 	u64				dyn_size;
1219 
1220 	/*
1221 	 * Fields commonly set by __perf_event_header__init_id(),
1222 	 * group so as to minimize the cachelines touched.
1223 	 */
1224 	u64				type;
1225 	struct {
1226 		u32	pid;
1227 		u32	tid;
1228 	}				tid_entry;
1229 	u64				time;
1230 	u64				id;
1231 	struct {
1232 		u32	cpu;
1233 		u32	reserved;
1234 	}				cpu_entry;
1235 
1236 	/*
1237 	 * The other fields, optionally {set,used} by
1238 	 * perf_{prepare,output}_sample().
1239 	 */
1240 	u64				ip;
1241 	struct perf_callchain_entry	*callchain;
1242 	struct perf_raw_record		*raw;
1243 	struct perf_branch_stack	*br_stack;
1244 	u64				*br_stack_cntr;
1245 	union perf_sample_weight	weight;
1246 	union  perf_mem_data_src	data_src;
1247 	u64				txn;
1248 
1249 	struct perf_regs		regs_user;
1250 	struct perf_regs		regs_intr;
1251 	u64				stack_user_size;
1252 
1253 	u64				stream_id;
1254 	u64				cgroup;
1255 	u64				addr;
1256 	u64				phys_addr;
1257 	u64				data_page_size;
1258 	u64				code_page_size;
1259 	u64				aux_size;
1260 } ____cacheline_aligned;
1261 
1262 /* default value for data source */
1263 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1264 		    PERF_MEM_S(LVL, NA)   |\
1265 		    PERF_MEM_S(SNOOP, NA) |\
1266 		    PERF_MEM_S(LOCK, NA)  |\
1267 		    PERF_MEM_S(TLB, NA)   |\
1268 		    PERF_MEM_S(LVLNUM, NA))
1269 
1270 static inline void perf_sample_data_init(struct perf_sample_data *data,
1271 					 u64 addr, u64 period)
1272 {
1273 	/* remaining struct members initialized in perf_prepare_sample() */
1274 	data->sample_flags = PERF_SAMPLE_PERIOD;
1275 	data->period = period;
1276 	data->dyn_size = 0;
1277 
1278 	if (addr) {
1279 		data->addr = addr;
1280 		data->sample_flags |= PERF_SAMPLE_ADDR;
1281 	}
1282 }
1283 
1284 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1285 					      struct perf_event *event,
1286 					      struct pt_regs *regs)
1287 {
1288 	int size = 1;
1289 
1290 	if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1291 		return;
1292 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN))
1293 		return;
1294 
1295 	data->callchain = perf_callchain(event, regs);
1296 	size += data->callchain->nr;
1297 
1298 	data->dyn_size += size * sizeof(u64);
1299 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1300 }
1301 
1302 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1303 					     struct perf_event *event,
1304 					     struct perf_raw_record *raw)
1305 {
1306 	struct perf_raw_frag *frag = &raw->frag;
1307 	u32 sum = 0;
1308 	int size;
1309 
1310 	if (!(event->attr.sample_type & PERF_SAMPLE_RAW))
1311 		return;
1312 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW))
1313 		return;
1314 
1315 	do {
1316 		sum += frag->size;
1317 		if (perf_raw_frag_last(frag))
1318 			break;
1319 		frag = frag->next;
1320 	} while (1);
1321 
1322 	size = round_up(sum + sizeof(u32), sizeof(u64));
1323 	raw->size = size - sizeof(u32);
1324 	frag->pad = raw->size - sum;
1325 
1326 	data->raw = raw;
1327 	data->dyn_size += size;
1328 	data->sample_flags |= PERF_SAMPLE_RAW;
1329 }
1330 
1331 static inline bool has_branch_stack(struct perf_event *event)
1332 {
1333 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1334 }
1335 
1336 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1337 					    struct perf_event *event,
1338 					    struct perf_branch_stack *brs,
1339 					    u64 *brs_cntr)
1340 {
1341 	int size = sizeof(u64); /* nr */
1342 
1343 	if (!has_branch_stack(event))
1344 		return;
1345 	if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK))
1346 		return;
1347 
1348 	if (branch_sample_hw_index(event))
1349 		size += sizeof(u64);
1350 	size += brs->nr * sizeof(struct perf_branch_entry);
1351 
1352 	/*
1353 	 * The extension space for counters is appended after the
1354 	 * struct perf_branch_stack. It is used to store the occurrences
1355 	 * of events of each branch.
1356 	 */
1357 	if (brs_cntr)
1358 		size += brs->nr * sizeof(u64);
1359 
1360 	data->br_stack = brs;
1361 	data->br_stack_cntr = brs_cntr;
1362 	data->dyn_size += size;
1363 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1364 }
1365 
1366 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1367 					struct perf_event *event)
1368 {
1369 	u32 size = sizeof(struct perf_event_header);
1370 
1371 	size += event->header_size + event->id_header_size;
1372 	size += data->dyn_size;
1373 
1374 	return size;
1375 }
1376 
1377 /*
1378  * Clear all bitfields in the perf_branch_entry.
1379  * The to and from fields are not cleared because they are
1380  * systematically modified by caller.
1381  */
1382 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1383 {
1384 	br->mispred = 0;
1385 	br->predicted = 0;
1386 	br->in_tx = 0;
1387 	br->abort = 0;
1388 	br->cycles = 0;
1389 	br->type = 0;
1390 	br->spec = PERF_BR_SPEC_NA;
1391 	br->reserved = 0;
1392 }
1393 
1394 extern void perf_output_sample(struct perf_output_handle *handle,
1395 			       struct perf_event_header *header,
1396 			       struct perf_sample_data *data,
1397 			       struct perf_event *event);
1398 extern void perf_prepare_sample(struct perf_sample_data *data,
1399 				struct perf_event *event,
1400 				struct pt_regs *regs);
1401 extern void perf_prepare_header(struct perf_event_header *header,
1402 				struct perf_sample_data *data,
1403 				struct perf_event *event,
1404 				struct pt_regs *regs);
1405 
1406 extern int perf_event_overflow(struct perf_event *event,
1407 				 struct perf_sample_data *data,
1408 				 struct pt_regs *regs);
1409 
1410 extern void perf_event_output_forward(struct perf_event *event,
1411 				     struct perf_sample_data *data,
1412 				     struct pt_regs *regs);
1413 extern void perf_event_output_backward(struct perf_event *event,
1414 				       struct perf_sample_data *data,
1415 				       struct pt_regs *regs);
1416 extern int perf_event_output(struct perf_event *event,
1417 			     struct perf_sample_data *data,
1418 			     struct pt_regs *regs);
1419 
1420 static inline bool
1421 is_default_overflow_handler(struct perf_event *event)
1422 {
1423 	perf_overflow_handler_t overflow_handler = event->overflow_handler;
1424 
1425 	if (likely(overflow_handler == perf_event_output_forward))
1426 		return true;
1427 	if (unlikely(overflow_handler == perf_event_output_backward))
1428 		return true;
1429 	return false;
1430 }
1431 
1432 extern void
1433 perf_event_header__init_id(struct perf_event_header *header,
1434 			   struct perf_sample_data *data,
1435 			   struct perf_event *event);
1436 extern void
1437 perf_event__output_id_sample(struct perf_event *event,
1438 			     struct perf_output_handle *handle,
1439 			     struct perf_sample_data *sample);
1440 
1441 extern void
1442 perf_log_lost_samples(struct perf_event *event, u64 lost);
1443 
1444 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1445 {
1446 	struct perf_event_attr *attr = &event->attr;
1447 
1448 	return attr->exclude_idle || attr->exclude_user ||
1449 	       attr->exclude_kernel || attr->exclude_hv ||
1450 	       attr->exclude_guest || attr->exclude_host;
1451 }
1452 
1453 static inline bool is_sampling_event(struct perf_event *event)
1454 {
1455 	return event->attr.sample_period != 0;
1456 }
1457 
1458 /*
1459  * Return 1 for a software event, 0 for a hardware event
1460  */
1461 static inline int is_software_event(struct perf_event *event)
1462 {
1463 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1464 }
1465 
1466 /*
1467  * Return 1 for event in sw context, 0 for event in hw context
1468  */
1469 static inline int in_software_context(struct perf_event *event)
1470 {
1471 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1472 }
1473 
1474 static inline int is_exclusive_pmu(struct pmu *pmu)
1475 {
1476 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1477 }
1478 
1479 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1480 
1481 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1482 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1483 
1484 #ifndef perf_arch_fetch_caller_regs
1485 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1486 #endif
1487 
1488 /*
1489  * When generating a perf sample in-line, instead of from an interrupt /
1490  * exception, we lack a pt_regs. This is typically used from software events
1491  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1492  *
1493  * We typically don't need a full set, but (for x86) do require:
1494  * - ip for PERF_SAMPLE_IP
1495  * - cs for user_mode() tests
1496  * - sp for PERF_SAMPLE_CALLCHAIN
1497  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1498  *
1499  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1500  * things like PERF_SAMPLE_REGS_INTR.
1501  */
1502 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1503 {
1504 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1505 }
1506 
1507 static __always_inline void
1508 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1509 {
1510 	if (static_key_false(&perf_swevent_enabled[event_id]))
1511 		__perf_sw_event(event_id, nr, regs, addr);
1512 }
1513 
1514 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1515 
1516 /*
1517  * 'Special' version for the scheduler, it hard assumes no recursion,
1518  * which is guaranteed by us not actually scheduling inside other swevents
1519  * because those disable preemption.
1520  */
1521 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1522 {
1523 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1524 
1525 	perf_fetch_caller_regs(regs);
1526 	___perf_sw_event(event_id, nr, regs, addr);
1527 }
1528 
1529 extern struct static_key_false perf_sched_events;
1530 
1531 static __always_inline bool __perf_sw_enabled(int swevt)
1532 {
1533 	return static_key_false(&perf_swevent_enabled[swevt]);
1534 }
1535 
1536 static inline void perf_event_task_migrate(struct task_struct *task)
1537 {
1538 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1539 		task->sched_migrated = 1;
1540 }
1541 
1542 static inline void perf_event_task_sched_in(struct task_struct *prev,
1543 					    struct task_struct *task)
1544 {
1545 	if (static_branch_unlikely(&perf_sched_events))
1546 		__perf_event_task_sched_in(prev, task);
1547 
1548 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1549 	    task->sched_migrated) {
1550 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1551 		task->sched_migrated = 0;
1552 	}
1553 }
1554 
1555 static inline void perf_event_task_sched_out(struct task_struct *prev,
1556 					     struct task_struct *next)
1557 {
1558 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1559 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1560 
1561 #ifdef CONFIG_CGROUP_PERF
1562 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1563 	    perf_cgroup_from_task(prev, NULL) !=
1564 	    perf_cgroup_from_task(next, NULL))
1565 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1566 #endif
1567 
1568 	if (static_branch_unlikely(&perf_sched_events))
1569 		__perf_event_task_sched_out(prev, next);
1570 }
1571 
1572 extern void perf_event_mmap(struct vm_area_struct *vma);
1573 
1574 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1575 			       bool unregister, const char *sym);
1576 extern void perf_event_bpf_event(struct bpf_prog *prog,
1577 				 enum perf_bpf_event_type type,
1578 				 u16 flags);
1579 
1580 #ifdef CONFIG_GUEST_PERF_EVENTS
1581 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1582 
1583 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1584 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1585 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1586 
1587 static inline unsigned int perf_guest_state(void)
1588 {
1589 	return static_call(__perf_guest_state)();
1590 }
1591 static inline unsigned long perf_guest_get_ip(void)
1592 {
1593 	return static_call(__perf_guest_get_ip)();
1594 }
1595 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1596 {
1597 	return static_call(__perf_guest_handle_intel_pt_intr)();
1598 }
1599 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1600 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1601 #else
1602 static inline unsigned int perf_guest_state(void)		 { return 0; }
1603 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1604 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1605 #endif /* CONFIG_GUEST_PERF_EVENTS */
1606 
1607 extern void perf_event_exec(void);
1608 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1609 extern void perf_event_namespaces(struct task_struct *tsk);
1610 extern void perf_event_fork(struct task_struct *tsk);
1611 extern void perf_event_text_poke(const void *addr,
1612 				 const void *old_bytes, size_t old_len,
1613 				 const void *new_bytes, size_t new_len);
1614 
1615 /* Callchains */
1616 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1617 
1618 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1619 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1620 extern struct perf_callchain_entry *
1621 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1622 		   u32 max_stack, bool crosstask, bool add_mark);
1623 extern int get_callchain_buffers(int max_stack);
1624 extern void put_callchain_buffers(void);
1625 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1626 extern void put_callchain_entry(int rctx);
1627 
1628 extern int sysctl_perf_event_max_stack;
1629 extern int sysctl_perf_event_max_contexts_per_stack;
1630 
1631 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1632 {
1633 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1634 		struct perf_callchain_entry *entry = ctx->entry;
1635 		entry->ip[entry->nr++] = ip;
1636 		++ctx->contexts;
1637 		return 0;
1638 	} else {
1639 		ctx->contexts_maxed = true;
1640 		return -1; /* no more room, stop walking the stack */
1641 	}
1642 }
1643 
1644 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1645 {
1646 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1647 		struct perf_callchain_entry *entry = ctx->entry;
1648 		entry->ip[entry->nr++] = ip;
1649 		++ctx->nr;
1650 		return 0;
1651 	} else {
1652 		return -1; /* no more room, stop walking the stack */
1653 	}
1654 }
1655 
1656 extern int sysctl_perf_event_paranoid;
1657 extern int sysctl_perf_event_sample_rate;
1658 
1659 extern void perf_sample_event_took(u64 sample_len_ns);
1660 
1661 /* Access to perf_event_open(2) syscall. */
1662 #define PERF_SECURITY_OPEN		0
1663 
1664 /* Finer grained perf_event_open(2) access control. */
1665 #define PERF_SECURITY_CPU		1
1666 #define PERF_SECURITY_KERNEL		2
1667 #define PERF_SECURITY_TRACEPOINT	3
1668 
1669 static inline int perf_is_paranoid(void)
1670 {
1671 	return sysctl_perf_event_paranoid > -1;
1672 }
1673 
1674 int perf_allow_kernel(struct perf_event_attr *attr);
1675 
1676 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1677 {
1678 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1679 		return -EACCES;
1680 
1681 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1682 }
1683 
1684 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1685 {
1686 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1687 		return -EPERM;
1688 
1689 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1690 }
1691 
1692 extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs);
1693 
1694 extern void perf_event_init(void);
1695 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1696 			  int entry_size, struct pt_regs *regs,
1697 			  struct hlist_head *head, int rctx,
1698 			  struct task_struct *task);
1699 extern void perf_bp_event(struct perf_event *event, void *data);
1700 
1701 extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs);
1702 extern unsigned long perf_instruction_pointer(struct perf_event *event,
1703 					      struct pt_regs *regs);
1704 
1705 #ifndef perf_arch_misc_flags
1706 # define perf_arch_misc_flags(regs) \
1707 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1708 # define perf_arch_instruction_pointer(regs)	instruction_pointer(regs)
1709 #endif
1710 #ifndef perf_arch_bpf_user_pt_regs
1711 # define perf_arch_bpf_user_pt_regs(regs) regs
1712 #endif
1713 
1714 #ifndef perf_arch_guest_misc_flags
1715 static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs)
1716 {
1717 	unsigned long guest_state = perf_guest_state();
1718 
1719 	if (!(guest_state & PERF_GUEST_ACTIVE))
1720 		return 0;
1721 
1722 	if (guest_state & PERF_GUEST_USER)
1723 		return PERF_RECORD_MISC_GUEST_USER;
1724 	else
1725 		return PERF_RECORD_MISC_GUEST_KERNEL;
1726 }
1727 # define perf_arch_guest_misc_flags(regs)	perf_arch_guest_misc_flags(regs)
1728 #endif
1729 
1730 static inline bool needs_branch_stack(struct perf_event *event)
1731 {
1732 	return event->attr.branch_sample_type != 0;
1733 }
1734 
1735 static inline bool has_aux(struct perf_event *event)
1736 {
1737 	return event->pmu->setup_aux;
1738 }
1739 
1740 static inline bool has_aux_action(struct perf_event *event)
1741 {
1742 	return event->attr.aux_sample_size ||
1743 	       event->attr.aux_pause ||
1744 	       event->attr.aux_resume;
1745 }
1746 
1747 static inline bool is_write_backward(struct perf_event *event)
1748 {
1749 	return !!event->attr.write_backward;
1750 }
1751 
1752 static inline bool has_addr_filter(struct perf_event *event)
1753 {
1754 	return event->pmu->nr_addr_filters;
1755 }
1756 
1757 /*
1758  * An inherited event uses parent's filters
1759  */
1760 static inline struct perf_addr_filters_head *
1761 perf_event_addr_filters(struct perf_event *event)
1762 {
1763 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1764 
1765 	if (event->parent)
1766 		ifh = &event->parent->addr_filters;
1767 
1768 	return ifh;
1769 }
1770 
1771 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1772 {
1773 	/* Only the parent has fasync state */
1774 	if (event->parent)
1775 		event = event->parent;
1776 	return &event->fasync;
1777 }
1778 
1779 extern void perf_event_addr_filters_sync(struct perf_event *event);
1780 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1781 
1782 extern int perf_output_begin(struct perf_output_handle *handle,
1783 			     struct perf_sample_data *data,
1784 			     struct perf_event *event, unsigned int size);
1785 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1786 				     struct perf_sample_data *data,
1787 				     struct perf_event *event,
1788 				     unsigned int size);
1789 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1790 				      struct perf_sample_data *data,
1791 				      struct perf_event *event,
1792 				      unsigned int size);
1793 
1794 extern void perf_output_end(struct perf_output_handle *handle);
1795 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1796 			     const void *buf, unsigned int len);
1797 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1798 				     unsigned int len);
1799 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1800 				 struct perf_output_handle *handle,
1801 				 unsigned long from, unsigned long to);
1802 extern int perf_swevent_get_recursion_context(void);
1803 extern void perf_swevent_put_recursion_context(int rctx);
1804 extern u64 perf_swevent_set_period(struct perf_event *event);
1805 extern void perf_event_enable(struct perf_event *event);
1806 extern void perf_event_disable(struct perf_event *event);
1807 extern void perf_event_disable_local(struct perf_event *event);
1808 extern void perf_event_disable_inatomic(struct perf_event *event);
1809 extern void perf_event_task_tick(void);
1810 extern int perf_event_account_interrupt(struct perf_event *event);
1811 extern int perf_event_period(struct perf_event *event, u64 value);
1812 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1813 #else /* !CONFIG_PERF_EVENTS: */
1814 static inline void *
1815 perf_aux_output_begin(struct perf_output_handle *handle,
1816 		      struct perf_event *event)				{ return NULL; }
1817 static inline void
1818 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1819 									{ }
1820 static inline int
1821 perf_aux_output_skip(struct perf_output_handle *handle,
1822 		     unsigned long size)				{ return -EINVAL; }
1823 static inline void *
1824 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1825 static inline void
1826 perf_event_task_migrate(struct task_struct *task)			{ }
1827 static inline void
1828 perf_event_task_sched_in(struct task_struct *prev,
1829 			 struct task_struct *task)			{ }
1830 static inline void
1831 perf_event_task_sched_out(struct task_struct *prev,
1832 			  struct task_struct *next)			{ }
1833 static inline int perf_event_init_task(struct task_struct *child,
1834 				       u64 clone_flags)			{ return 0; }
1835 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1836 static inline void perf_event_free_task(struct task_struct *task)	{ }
1837 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1838 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1839 static inline const struct perf_event *perf_get_event(struct file *file)
1840 {
1841 	return ERR_PTR(-EINVAL);
1842 }
1843 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1844 {
1845 	return ERR_PTR(-EINVAL);
1846 }
1847 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1848 					u64 *enabled, u64 *running)
1849 {
1850 	return -EINVAL;
1851 }
1852 static inline void perf_event_print_debug(void)				{ }
1853 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1854 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1855 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1856 {
1857 	return -EINVAL;
1858 }
1859 
1860 static inline void
1861 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1862 static inline void
1863 perf_bp_event(struct perf_event *event, void *data)			{ }
1864 
1865 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1866 
1867 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1868 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1869 				      bool unregister, const char *sym)	{ }
1870 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1871 					enum perf_bpf_event_type type,
1872 					u16 flags)			{ }
1873 static inline void perf_event_exec(void)				{ }
1874 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1875 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1876 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1877 static inline void perf_event_text_poke(const void *addr,
1878 					const void *old_bytes,
1879 					size_t old_len,
1880 					const void *new_bytes,
1881 					size_t new_len)			{ }
1882 static inline void perf_event_init(void)				{ }
1883 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1884 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1885 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1886 static inline void perf_event_enable(struct perf_event *event)		{ }
1887 static inline void perf_event_disable(struct perf_event *event)		{ }
1888 static inline int __perf_event_disable(void *info)			{ return -1; }
1889 static inline void perf_event_task_tick(void)				{ }
1890 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1891 static inline int perf_event_period(struct perf_event *event, u64 value)
1892 {
1893 	return -EINVAL;
1894 }
1895 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1896 {
1897 	return 0;
1898 }
1899 static inline int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
1900 {
1901 	return 0;
1902 }
1903 #endif
1904 
1905 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1906 extern void perf_restore_debug_store(void);
1907 #else
1908 static inline void perf_restore_debug_store(void)			{ }
1909 #endif
1910 
1911 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1912 
1913 struct perf_pmu_events_attr {
1914 	struct device_attribute attr;
1915 	u64 id;
1916 	const char *event_str;
1917 };
1918 
1919 struct perf_pmu_events_ht_attr {
1920 	struct device_attribute			attr;
1921 	u64					id;
1922 	const char				*event_str_ht;
1923 	const char				*event_str_noht;
1924 };
1925 
1926 struct perf_pmu_events_hybrid_attr {
1927 	struct device_attribute			attr;
1928 	u64					id;
1929 	const char				*event_str;
1930 	u64					pmu_type;
1931 };
1932 
1933 struct perf_pmu_format_hybrid_attr {
1934 	struct device_attribute			attr;
1935 	u64					pmu_type;
1936 };
1937 
1938 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1939 			      char *page);
1940 
1941 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1942 static struct perf_pmu_events_attr _var = {				\
1943 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1944 	.id   =  _id,							\
1945 };
1946 
1947 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1948 static struct perf_pmu_events_attr _var = {				    \
1949 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1950 	.id		= 0,						    \
1951 	.event_str	= _str,						    \
1952 };
1953 
1954 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1955 	(&((struct perf_pmu_events_attr[]) {				\
1956 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1957 		  .id = _id, }						\
1958 	})[0].attr.attr)
1959 
1960 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1961 static ssize_t								\
1962 _name##_show(struct device *dev,					\
1963 			       struct device_attribute *attr,		\
1964 			       char *page)				\
1965 {									\
1966 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1967 	return sprintf(page, _format "\n");				\
1968 }									\
1969 
1970 #define PMU_FORMAT_ATTR(_name, _format)					\
1971 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1972 									\
1973 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1974 
1975 /* Performance counter hotplug functions */
1976 #ifdef CONFIG_PERF_EVENTS
1977 int perf_event_init_cpu(unsigned int cpu);
1978 int perf_event_exit_cpu(unsigned int cpu);
1979 #else
1980 #define perf_event_init_cpu	NULL
1981 #define perf_event_exit_cpu	NULL
1982 #endif
1983 
1984 extern void arch_perf_update_userpage(struct perf_event *event,
1985 				      struct perf_event_mmap_page *userpg,
1986 				      u64 now);
1987 
1988 /*
1989  * Snapshot branch stack on software events.
1990  *
1991  * Branch stack can be very useful in understanding software events. For
1992  * example, when a long function, e.g. sys_perf_event_open, returns an
1993  * errno, it is not obvious why the function failed. Branch stack could
1994  * provide very helpful information in this type of scenarios.
1995  *
1996  * On software event, it is necessary to stop the hardware branch recorder
1997  * fast. Otherwise, the hardware register/buffer will be flushed with
1998  * entries of the triggering event. Therefore, static call is used to
1999  * stop the hardware recorder.
2000  */
2001 
2002 /*
2003  * cnt is the number of entries allocated for entries.
2004  * Return number of entries copied to .
2005  */
2006 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
2007 					   unsigned int cnt);
2008 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
2009 
2010 #ifndef PERF_NEEDS_LOPWR_CB
2011 static inline void perf_lopwr_cb(bool mode)
2012 {
2013 }
2014 #endif
2015 
2016 #endif /* _LINUX_PERF_EVENT_H */
2017