xref: /linux-6.15/include/linux/perf_event.h (revision 4dc0da86)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 
58 	PERF_COUNT_HW_MAX,			/* non-ABI */
59 };
60 
61 /*
62  * Generalized hardware cache events:
63  *
64  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
65  *       { read, write, prefetch } x
66  *       { accesses, misses }
67  */
68 enum perf_hw_cache_id {
69 	PERF_COUNT_HW_CACHE_L1D			= 0,
70 	PERF_COUNT_HW_CACHE_L1I			= 1,
71 	PERF_COUNT_HW_CACHE_LL			= 2,
72 	PERF_COUNT_HW_CACHE_DTLB		= 3,
73 	PERF_COUNT_HW_CACHE_ITLB		= 4,
74 	PERF_COUNT_HW_CACHE_BPU			= 5,
75 	PERF_COUNT_HW_CACHE_NODE		= 6,
76 
77 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
78 };
79 
80 enum perf_hw_cache_op_id {
81 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
82 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
83 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
84 
85 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
86 };
87 
88 enum perf_hw_cache_op_result_id {
89 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
90 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
91 
92 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
93 };
94 
95 /*
96  * Special "software" events provided by the kernel, even if the hardware
97  * does not support performance events. These events measure various
98  * physical and sw events of the kernel (and allow the profiling of them as
99  * well):
100  */
101 enum perf_sw_ids {
102 	PERF_COUNT_SW_CPU_CLOCK			= 0,
103 	PERF_COUNT_SW_TASK_CLOCK		= 1,
104 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
105 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
106 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
107 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
108 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
109 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
110 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
111 
112 	PERF_COUNT_SW_MAX,			/* non-ABI */
113 };
114 
115 /*
116  * Bits that can be set in attr.sample_type to request information
117  * in the overflow packets.
118  */
119 enum perf_event_sample_format {
120 	PERF_SAMPLE_IP				= 1U << 0,
121 	PERF_SAMPLE_TID				= 1U << 1,
122 	PERF_SAMPLE_TIME			= 1U << 2,
123 	PERF_SAMPLE_ADDR			= 1U << 3,
124 	PERF_SAMPLE_READ			= 1U << 4,
125 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
126 	PERF_SAMPLE_ID				= 1U << 6,
127 	PERF_SAMPLE_CPU				= 1U << 7,
128 	PERF_SAMPLE_PERIOD			= 1U << 8,
129 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
130 	PERF_SAMPLE_RAW				= 1U << 10,
131 
132 	PERF_SAMPLE_MAX = 1U << 11,		/* non-ABI */
133 };
134 
135 /*
136  * The format of the data returned by read() on a perf event fd,
137  * as specified by attr.read_format:
138  *
139  * struct read_format {
140  *	{ u64		value;
141  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
142  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
143  *	  { u64		id;           } && PERF_FORMAT_ID
144  *	} && !PERF_FORMAT_GROUP
145  *
146  *	{ u64		nr;
147  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
148  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
149  *	  { u64		value;
150  *	    { u64	id;           } && PERF_FORMAT_ID
151  *	  }		cntr[nr];
152  *	} && PERF_FORMAT_GROUP
153  * };
154  */
155 enum perf_event_read_format {
156 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
157 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
158 	PERF_FORMAT_ID				= 1U << 2,
159 	PERF_FORMAT_GROUP			= 1U << 3,
160 
161 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
162 };
163 
164 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
165 
166 /*
167  * Hardware event_id to monitor via a performance monitoring event:
168  */
169 struct perf_event_attr {
170 
171 	/*
172 	 * Major type: hardware/software/tracepoint/etc.
173 	 */
174 	__u32			type;
175 
176 	/*
177 	 * Size of the attr structure, for fwd/bwd compat.
178 	 */
179 	__u32			size;
180 
181 	/*
182 	 * Type specific configuration information.
183 	 */
184 	__u64			config;
185 
186 	union {
187 		__u64		sample_period;
188 		__u64		sample_freq;
189 	};
190 
191 	__u64			sample_type;
192 	__u64			read_format;
193 
194 	__u64			disabled       :  1, /* off by default        */
195 				inherit	       :  1, /* children inherit it   */
196 				pinned	       :  1, /* must always be on PMU */
197 				exclusive      :  1, /* only group on PMU     */
198 				exclude_user   :  1, /* don't count user      */
199 				exclude_kernel :  1, /* ditto kernel          */
200 				exclude_hv     :  1, /* ditto hypervisor      */
201 				exclude_idle   :  1, /* don't count when idle */
202 				mmap           :  1, /* include mmap data     */
203 				comm	       :  1, /* include comm data     */
204 				freq           :  1, /* use freq, not period  */
205 				inherit_stat   :  1, /* per task counts       */
206 				enable_on_exec :  1, /* next exec enables     */
207 				task           :  1, /* trace fork/exit       */
208 				watermark      :  1, /* wakeup_watermark      */
209 				/*
210 				 * precise_ip:
211 				 *
212 				 *  0 - SAMPLE_IP can have arbitrary skid
213 				 *  1 - SAMPLE_IP must have constant skid
214 				 *  2 - SAMPLE_IP requested to have 0 skid
215 				 *  3 - SAMPLE_IP must have 0 skid
216 				 *
217 				 *  See also PERF_RECORD_MISC_EXACT_IP
218 				 */
219 				precise_ip     :  2, /* skid constraint       */
220 				mmap_data      :  1, /* non-exec mmap data    */
221 				sample_id_all  :  1, /* sample_type all events */
222 
223 				__reserved_1   : 45;
224 
225 	union {
226 		__u32		wakeup_events;	  /* wakeup every n events */
227 		__u32		wakeup_watermark; /* bytes before wakeup   */
228 	};
229 
230 	__u32			bp_type;
231 	union {
232 		__u64		bp_addr;
233 		__u64		config1; /* extension of config */
234 	};
235 	union {
236 		__u64		bp_len;
237 		__u64		config2; /* extension of config1 */
238 	};
239 };
240 
241 /*
242  * Ioctls that can be done on a perf event fd:
243  */
244 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
245 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
246 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
247 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
248 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
249 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
250 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
251 
252 enum perf_event_ioc_flags {
253 	PERF_IOC_FLAG_GROUP		= 1U << 0,
254 };
255 
256 /*
257  * Structure of the page that can be mapped via mmap
258  */
259 struct perf_event_mmap_page {
260 	__u32	version;		/* version number of this structure */
261 	__u32	compat_version;		/* lowest version this is compat with */
262 
263 	/*
264 	 * Bits needed to read the hw events in user-space.
265 	 *
266 	 *   u32 seq;
267 	 *   s64 count;
268 	 *
269 	 *   do {
270 	 *     seq = pc->lock;
271 	 *
272 	 *     barrier()
273 	 *     if (pc->index) {
274 	 *       count = pmc_read(pc->index - 1);
275 	 *       count += pc->offset;
276 	 *     } else
277 	 *       goto regular_read;
278 	 *
279 	 *     barrier();
280 	 *   } while (pc->lock != seq);
281 	 *
282 	 * NOTE: for obvious reason this only works on self-monitoring
283 	 *       processes.
284 	 */
285 	__u32	lock;			/* seqlock for synchronization */
286 	__u32	index;			/* hardware event identifier */
287 	__s64	offset;			/* add to hardware event value */
288 	__u64	time_enabled;		/* time event active */
289 	__u64	time_running;		/* time event on cpu */
290 
291 		/*
292 		 * Hole for extension of the self monitor capabilities
293 		 */
294 
295 	__u64	__reserved[123];	/* align to 1k */
296 
297 	/*
298 	 * Control data for the mmap() data buffer.
299 	 *
300 	 * User-space reading the @data_head value should issue an rmb(), on
301 	 * SMP capable platforms, after reading this value -- see
302 	 * perf_event_wakeup().
303 	 *
304 	 * When the mapping is PROT_WRITE the @data_tail value should be
305 	 * written by userspace to reflect the last read data. In this case
306 	 * the kernel will not over-write unread data.
307 	 */
308 	__u64   data_head;		/* head in the data section */
309 	__u64	data_tail;		/* user-space written tail */
310 };
311 
312 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
313 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
314 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
315 #define PERF_RECORD_MISC_USER			(2 << 0)
316 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
317 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
318 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
319 
320 /*
321  * Indicates that the content of PERF_SAMPLE_IP points to
322  * the actual instruction that triggered the event. See also
323  * perf_event_attr::precise_ip.
324  */
325 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
326 /*
327  * Reserve the last bit to indicate some extended misc field
328  */
329 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
330 
331 struct perf_event_header {
332 	__u32	type;
333 	__u16	misc;
334 	__u16	size;
335 };
336 
337 enum perf_event_type {
338 
339 	/*
340 	 * If perf_event_attr.sample_id_all is set then all event types will
341 	 * have the sample_type selected fields related to where/when
342 	 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
343 	 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
344 	 * the perf_event_header and the fields already present for the existing
345 	 * fields, i.e. at the end of the payload. That way a newer perf.data
346 	 * file will be supported by older perf tools, with these new optional
347 	 * fields being ignored.
348 	 *
349 	 * The MMAP events record the PROT_EXEC mappings so that we can
350 	 * correlate userspace IPs to code. They have the following structure:
351 	 *
352 	 * struct {
353 	 *	struct perf_event_header	header;
354 	 *
355 	 *	u32				pid, tid;
356 	 *	u64				addr;
357 	 *	u64				len;
358 	 *	u64				pgoff;
359 	 *	char				filename[];
360 	 * };
361 	 */
362 	PERF_RECORD_MMAP			= 1,
363 
364 	/*
365 	 * struct {
366 	 *	struct perf_event_header	header;
367 	 *	u64				id;
368 	 *	u64				lost;
369 	 * };
370 	 */
371 	PERF_RECORD_LOST			= 2,
372 
373 	/*
374 	 * struct {
375 	 *	struct perf_event_header	header;
376 	 *
377 	 *	u32				pid, tid;
378 	 *	char				comm[];
379 	 * };
380 	 */
381 	PERF_RECORD_COMM			= 3,
382 
383 	/*
384 	 * struct {
385 	 *	struct perf_event_header	header;
386 	 *	u32				pid, ppid;
387 	 *	u32				tid, ptid;
388 	 *	u64				time;
389 	 * };
390 	 */
391 	PERF_RECORD_EXIT			= 4,
392 
393 	/*
394 	 * struct {
395 	 *	struct perf_event_header	header;
396 	 *	u64				time;
397 	 *	u64				id;
398 	 *	u64				stream_id;
399 	 * };
400 	 */
401 	PERF_RECORD_THROTTLE			= 5,
402 	PERF_RECORD_UNTHROTTLE			= 6,
403 
404 	/*
405 	 * struct {
406 	 *	struct perf_event_header	header;
407 	 *	u32				pid, ppid;
408 	 *	u32				tid, ptid;
409 	 *	u64				time;
410 	 * };
411 	 */
412 	PERF_RECORD_FORK			= 7,
413 
414 	/*
415 	 * struct {
416 	 *	struct perf_event_header	header;
417 	 *	u32				pid, tid;
418 	 *
419 	 *	struct read_format		values;
420 	 * };
421 	 */
422 	PERF_RECORD_READ			= 8,
423 
424 	/*
425 	 * struct {
426 	 *	struct perf_event_header	header;
427 	 *
428 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
429 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
430 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
431 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
432 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
433 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
434 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
435 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
436 	 *
437 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
438 	 *
439 	 *	{ u64			nr,
440 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
441 	 *
442 	 *	#
443 	 *	# The RAW record below is opaque data wrt the ABI
444 	 *	#
445 	 *	# That is, the ABI doesn't make any promises wrt to
446 	 *	# the stability of its content, it may vary depending
447 	 *	# on event, hardware, kernel version and phase of
448 	 *	# the moon.
449 	 *	#
450 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
451 	 *	#
452 	 *
453 	 *	{ u32			size;
454 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
455 	 * };
456 	 */
457 	PERF_RECORD_SAMPLE			= 9,
458 
459 	PERF_RECORD_MAX,			/* non-ABI */
460 };
461 
462 enum perf_callchain_context {
463 	PERF_CONTEXT_HV			= (__u64)-32,
464 	PERF_CONTEXT_KERNEL		= (__u64)-128,
465 	PERF_CONTEXT_USER		= (__u64)-512,
466 
467 	PERF_CONTEXT_GUEST		= (__u64)-2048,
468 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
469 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
470 
471 	PERF_CONTEXT_MAX		= (__u64)-4095,
472 };
473 
474 #define PERF_FLAG_FD_NO_GROUP		(1U << 0)
475 #define PERF_FLAG_FD_OUTPUT		(1U << 1)
476 #define PERF_FLAG_PID_CGROUP		(1U << 2) /* pid=cgroup id, per-cpu mode only */
477 
478 #ifdef __KERNEL__
479 /*
480  * Kernel-internal data types and definitions:
481  */
482 
483 #ifdef CONFIG_PERF_EVENTS
484 # include <linux/cgroup.h>
485 # include <asm/perf_event.h>
486 # include <asm/local64.h>
487 #endif
488 
489 struct perf_guest_info_callbacks {
490 	int				(*is_in_guest)(void);
491 	int				(*is_user_mode)(void);
492 	unsigned long			(*get_guest_ip)(void);
493 };
494 
495 #ifdef CONFIG_HAVE_HW_BREAKPOINT
496 #include <asm/hw_breakpoint.h>
497 #endif
498 
499 #include <linux/list.h>
500 #include <linux/mutex.h>
501 #include <linux/rculist.h>
502 #include <linux/rcupdate.h>
503 #include <linux/spinlock.h>
504 #include <linux/hrtimer.h>
505 #include <linux/fs.h>
506 #include <linux/pid_namespace.h>
507 #include <linux/workqueue.h>
508 #include <linux/ftrace.h>
509 #include <linux/cpu.h>
510 #include <linux/irq_work.h>
511 #include <linux/jump_label.h>
512 #include <asm/atomic.h>
513 #include <asm/local.h>
514 
515 #define PERF_MAX_STACK_DEPTH		255
516 
517 struct perf_callchain_entry {
518 	__u64				nr;
519 	__u64				ip[PERF_MAX_STACK_DEPTH];
520 };
521 
522 struct perf_raw_record {
523 	u32				size;
524 	void				*data;
525 };
526 
527 struct perf_branch_entry {
528 	__u64				from;
529 	__u64				to;
530 	__u64				flags;
531 };
532 
533 struct perf_branch_stack {
534 	__u64				nr;
535 	struct perf_branch_entry	entries[0];
536 };
537 
538 struct task_struct;
539 
540 /*
541  * extra PMU register associated with an event
542  */
543 struct hw_perf_event_extra {
544 	u64		config;	/* register value */
545 	unsigned int	reg;	/* register address or index */
546 	int		alloc;	/* extra register already allocated */
547 	int		idx;	/* index in shared_regs->regs[] */
548 };
549 
550 /**
551  * struct hw_perf_event - performance event hardware details:
552  */
553 struct hw_perf_event {
554 #ifdef CONFIG_PERF_EVENTS
555 	union {
556 		struct { /* hardware */
557 			u64		config;
558 			u64		last_tag;
559 			unsigned long	config_base;
560 			unsigned long	event_base;
561 			int		idx;
562 			int		last_cpu;
563 			struct hw_perf_event_extra extra_reg;
564 		};
565 		struct { /* software */
566 			struct hrtimer	hrtimer;
567 		};
568 #ifdef CONFIG_HAVE_HW_BREAKPOINT
569 		struct { /* breakpoint */
570 			struct arch_hw_breakpoint	info;
571 			struct list_head		bp_list;
572 			/*
573 			 * Crufty hack to avoid the chicken and egg
574 			 * problem hw_breakpoint has with context
575 			 * creation and event initalization.
576 			 */
577 			struct task_struct		*bp_target;
578 		};
579 #endif
580 	};
581 	int				state;
582 	local64_t			prev_count;
583 	u64				sample_period;
584 	u64				last_period;
585 	local64_t			period_left;
586 	u64				interrupts;
587 
588 	u64				freq_time_stamp;
589 	u64				freq_count_stamp;
590 #endif
591 };
592 
593 /*
594  * hw_perf_event::state flags
595  */
596 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
597 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
598 #define PERF_HES_ARCH		0x04
599 
600 struct perf_event;
601 
602 /*
603  * Common implementation detail of pmu::{start,commit,cancel}_txn
604  */
605 #define PERF_EVENT_TXN 0x1
606 
607 /**
608  * struct pmu - generic performance monitoring unit
609  */
610 struct pmu {
611 	struct list_head		entry;
612 
613 	struct device			*dev;
614 	char				*name;
615 	int				type;
616 
617 	int * __percpu			pmu_disable_count;
618 	struct perf_cpu_context * __percpu pmu_cpu_context;
619 	int				task_ctx_nr;
620 
621 	/*
622 	 * Fully disable/enable this PMU, can be used to protect from the PMI
623 	 * as well as for lazy/batch writing of the MSRs.
624 	 */
625 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
626 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
627 
628 	/*
629 	 * Try and initialize the event for this PMU.
630 	 * Should return -ENOENT when the @event doesn't match this PMU.
631 	 */
632 	int (*event_init)		(struct perf_event *event);
633 
634 #define PERF_EF_START	0x01		/* start the counter when adding    */
635 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
636 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
637 
638 	/*
639 	 * Adds/Removes a counter to/from the PMU, can be done inside
640 	 * a transaction, see the ->*_txn() methods.
641 	 */
642 	int  (*add)			(struct perf_event *event, int flags);
643 	void (*del)			(struct perf_event *event, int flags);
644 
645 	/*
646 	 * Starts/Stops a counter present on the PMU. The PMI handler
647 	 * should stop the counter when perf_event_overflow() returns
648 	 * !0. ->start() will be used to continue.
649 	 */
650 	void (*start)			(struct perf_event *event, int flags);
651 	void (*stop)			(struct perf_event *event, int flags);
652 
653 	/*
654 	 * Updates the counter value of the event.
655 	 */
656 	void (*read)			(struct perf_event *event);
657 
658 	/*
659 	 * Group events scheduling is treated as a transaction, add
660 	 * group events as a whole and perform one schedulability test.
661 	 * If the test fails, roll back the whole group
662 	 *
663 	 * Start the transaction, after this ->add() doesn't need to
664 	 * do schedulability tests.
665 	 */
666 	void (*start_txn)		(struct pmu *pmu); /* optional */
667 	/*
668 	 * If ->start_txn() disabled the ->add() schedulability test
669 	 * then ->commit_txn() is required to perform one. On success
670 	 * the transaction is closed. On error the transaction is kept
671 	 * open until ->cancel_txn() is called.
672 	 */
673 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
674 	/*
675 	 * Will cancel the transaction, assumes ->del() is called
676 	 * for each successful ->add() during the transaction.
677 	 */
678 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
679 };
680 
681 /**
682  * enum perf_event_active_state - the states of a event
683  */
684 enum perf_event_active_state {
685 	PERF_EVENT_STATE_ERROR		= -2,
686 	PERF_EVENT_STATE_OFF		= -1,
687 	PERF_EVENT_STATE_INACTIVE	=  0,
688 	PERF_EVENT_STATE_ACTIVE		=  1,
689 };
690 
691 struct file;
692 struct perf_sample_data;
693 
694 typedef void (*perf_overflow_handler_t)(struct perf_event *,
695 					struct perf_sample_data *,
696 					struct pt_regs *regs);
697 
698 enum perf_group_flag {
699 	PERF_GROUP_SOFTWARE		= 0x1,
700 };
701 
702 #define SWEVENT_HLIST_BITS		8
703 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
704 
705 struct swevent_hlist {
706 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
707 	struct rcu_head			rcu_head;
708 };
709 
710 #define PERF_ATTACH_CONTEXT	0x01
711 #define PERF_ATTACH_GROUP	0x02
712 #define PERF_ATTACH_TASK	0x04
713 
714 #ifdef CONFIG_CGROUP_PERF
715 /*
716  * perf_cgroup_info keeps track of time_enabled for a cgroup.
717  * This is a per-cpu dynamically allocated data structure.
718  */
719 struct perf_cgroup_info {
720 	u64				time;
721 	u64				timestamp;
722 };
723 
724 struct perf_cgroup {
725 	struct				cgroup_subsys_state css;
726 	struct				perf_cgroup_info *info;	/* timing info, one per cpu */
727 };
728 #endif
729 
730 struct ring_buffer;
731 
732 /**
733  * struct perf_event - performance event kernel representation:
734  */
735 struct perf_event {
736 #ifdef CONFIG_PERF_EVENTS
737 	struct list_head		group_entry;
738 	struct list_head		event_entry;
739 	struct list_head		sibling_list;
740 	struct hlist_node		hlist_entry;
741 	int				nr_siblings;
742 	int				group_flags;
743 	struct perf_event		*group_leader;
744 	struct pmu			*pmu;
745 
746 	enum perf_event_active_state	state;
747 	unsigned int			attach_state;
748 	local64_t			count;
749 	atomic64_t			child_count;
750 
751 	/*
752 	 * These are the total time in nanoseconds that the event
753 	 * has been enabled (i.e. eligible to run, and the task has
754 	 * been scheduled in, if this is a per-task event)
755 	 * and running (scheduled onto the CPU), respectively.
756 	 *
757 	 * They are computed from tstamp_enabled, tstamp_running and
758 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
759 	 */
760 	u64				total_time_enabled;
761 	u64				total_time_running;
762 
763 	/*
764 	 * These are timestamps used for computing total_time_enabled
765 	 * and total_time_running when the event is in INACTIVE or
766 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
767 	 * in time.
768 	 * tstamp_enabled: the notional time when the event was enabled
769 	 * tstamp_running: the notional time when the event was scheduled on
770 	 * tstamp_stopped: in INACTIVE state, the notional time when the
771 	 *	event was scheduled off.
772 	 */
773 	u64				tstamp_enabled;
774 	u64				tstamp_running;
775 	u64				tstamp_stopped;
776 
777 	/*
778 	 * timestamp shadows the actual context timing but it can
779 	 * be safely used in NMI interrupt context. It reflects the
780 	 * context time as it was when the event was last scheduled in.
781 	 *
782 	 * ctx_time already accounts for ctx->timestamp. Therefore to
783 	 * compute ctx_time for a sample, simply add perf_clock().
784 	 */
785 	u64				shadow_ctx_time;
786 
787 	struct perf_event_attr		attr;
788 	u16				header_size;
789 	u16				id_header_size;
790 	u16				read_size;
791 	struct hw_perf_event		hw;
792 
793 	struct perf_event_context	*ctx;
794 	struct file			*filp;
795 
796 	/*
797 	 * These accumulate total time (in nanoseconds) that children
798 	 * events have been enabled and running, respectively.
799 	 */
800 	atomic64_t			child_total_time_enabled;
801 	atomic64_t			child_total_time_running;
802 
803 	/*
804 	 * Protect attach/detach and child_list:
805 	 */
806 	struct mutex			child_mutex;
807 	struct list_head		child_list;
808 	struct perf_event		*parent;
809 
810 	int				oncpu;
811 	int				cpu;
812 
813 	struct list_head		owner_entry;
814 	struct task_struct		*owner;
815 
816 	/* mmap bits */
817 	struct mutex			mmap_mutex;
818 	atomic_t			mmap_count;
819 	int				mmap_locked;
820 	struct user_struct		*mmap_user;
821 	struct ring_buffer		*rb;
822 
823 	/* poll related */
824 	wait_queue_head_t		waitq;
825 	struct fasync_struct		*fasync;
826 
827 	/* delayed work for NMIs and such */
828 	int				pending_wakeup;
829 	int				pending_kill;
830 	int				pending_disable;
831 	struct irq_work			pending;
832 
833 	atomic_t			event_limit;
834 
835 	void (*destroy)(struct perf_event *);
836 	struct rcu_head			rcu_head;
837 
838 	struct pid_namespace		*ns;
839 	u64				id;
840 
841 	perf_overflow_handler_t		overflow_handler;
842 	void				*overflow_handler_context;
843 
844 #ifdef CONFIG_EVENT_TRACING
845 	struct ftrace_event_call	*tp_event;
846 	struct event_filter		*filter;
847 #endif
848 
849 #ifdef CONFIG_CGROUP_PERF
850 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
851 	int				cgrp_defer_enabled;
852 #endif
853 
854 #endif /* CONFIG_PERF_EVENTS */
855 };
856 
857 enum perf_event_context_type {
858 	task_context,
859 	cpu_context,
860 };
861 
862 /**
863  * struct perf_event_context - event context structure
864  *
865  * Used as a container for task events and CPU events as well:
866  */
867 struct perf_event_context {
868 	struct pmu			*pmu;
869 	enum perf_event_context_type	type;
870 	/*
871 	 * Protect the states of the events in the list,
872 	 * nr_active, and the list:
873 	 */
874 	raw_spinlock_t			lock;
875 	/*
876 	 * Protect the list of events.  Locking either mutex or lock
877 	 * is sufficient to ensure the list doesn't change; to change
878 	 * the list you need to lock both the mutex and the spinlock.
879 	 */
880 	struct mutex			mutex;
881 
882 	struct list_head		pinned_groups;
883 	struct list_head		flexible_groups;
884 	struct list_head		event_list;
885 	int				nr_events;
886 	int				nr_active;
887 	int				is_active;
888 	int				nr_stat;
889 	int				rotate_disable;
890 	atomic_t			refcount;
891 	struct task_struct		*task;
892 
893 	/*
894 	 * Context clock, runs when context enabled.
895 	 */
896 	u64				time;
897 	u64				timestamp;
898 
899 	/*
900 	 * These fields let us detect when two contexts have both
901 	 * been cloned (inherited) from a common ancestor.
902 	 */
903 	struct perf_event_context	*parent_ctx;
904 	u64				parent_gen;
905 	u64				generation;
906 	int				pin_count;
907 	int				nr_cgroups; /* cgroup events present */
908 	struct rcu_head			rcu_head;
909 };
910 
911 /*
912  * Number of contexts where an event can trigger:
913  *	task, softirq, hardirq, nmi.
914  */
915 #define PERF_NR_CONTEXTS	4
916 
917 /**
918  * struct perf_event_cpu_context - per cpu event context structure
919  */
920 struct perf_cpu_context {
921 	struct perf_event_context	ctx;
922 	struct perf_event_context	*task_ctx;
923 	int				active_oncpu;
924 	int				exclusive;
925 	struct list_head		rotation_list;
926 	int				jiffies_interval;
927 	struct pmu			*active_pmu;
928 	struct perf_cgroup		*cgrp;
929 };
930 
931 struct perf_output_handle {
932 	struct perf_event		*event;
933 	struct ring_buffer		*rb;
934 	unsigned long			wakeup;
935 	unsigned long			size;
936 	void				*addr;
937 	int				page;
938 };
939 
940 #ifdef CONFIG_PERF_EVENTS
941 
942 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
943 extern void perf_pmu_unregister(struct pmu *pmu);
944 
945 extern int perf_num_counters(void);
946 extern const char *perf_pmu_name(void);
947 extern void __perf_event_task_sched_in(struct task_struct *task);
948 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
949 extern int perf_event_init_task(struct task_struct *child);
950 extern void perf_event_exit_task(struct task_struct *child);
951 extern void perf_event_free_task(struct task_struct *task);
952 extern void perf_event_delayed_put(struct task_struct *task);
953 extern void perf_event_print_debug(void);
954 extern void perf_pmu_disable(struct pmu *pmu);
955 extern void perf_pmu_enable(struct pmu *pmu);
956 extern int perf_event_task_disable(void);
957 extern int perf_event_task_enable(void);
958 extern void perf_event_update_userpage(struct perf_event *event);
959 extern int perf_event_release_kernel(struct perf_event *event);
960 extern struct perf_event *
961 perf_event_create_kernel_counter(struct perf_event_attr *attr,
962 				int cpu,
963 				struct task_struct *task,
964 				perf_overflow_handler_t callback,
965 				void *context);
966 extern u64 perf_event_read_value(struct perf_event *event,
967 				 u64 *enabled, u64 *running);
968 
969 struct perf_sample_data {
970 	u64				type;
971 
972 	u64				ip;
973 	struct {
974 		u32	pid;
975 		u32	tid;
976 	}				tid_entry;
977 	u64				time;
978 	u64				addr;
979 	u64				id;
980 	u64				stream_id;
981 	struct {
982 		u32	cpu;
983 		u32	reserved;
984 	}				cpu_entry;
985 	u64				period;
986 	struct perf_callchain_entry	*callchain;
987 	struct perf_raw_record		*raw;
988 };
989 
990 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
991 {
992 	data->addr = addr;
993 	data->raw  = NULL;
994 }
995 
996 extern void perf_output_sample(struct perf_output_handle *handle,
997 			       struct perf_event_header *header,
998 			       struct perf_sample_data *data,
999 			       struct perf_event *event);
1000 extern void perf_prepare_sample(struct perf_event_header *header,
1001 				struct perf_sample_data *data,
1002 				struct perf_event *event,
1003 				struct pt_regs *regs);
1004 
1005 extern int perf_event_overflow(struct perf_event *event,
1006 				 struct perf_sample_data *data,
1007 				 struct pt_regs *regs);
1008 
1009 static inline bool is_sampling_event(struct perf_event *event)
1010 {
1011 	return event->attr.sample_period != 0;
1012 }
1013 
1014 /*
1015  * Return 1 for a software event, 0 for a hardware event
1016  */
1017 static inline int is_software_event(struct perf_event *event)
1018 {
1019 	return event->pmu->task_ctx_nr == perf_sw_context;
1020 }
1021 
1022 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1023 
1024 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1025 
1026 #ifndef perf_arch_fetch_caller_regs
1027 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1028 #endif
1029 
1030 /*
1031  * Take a snapshot of the regs. Skip ip and frame pointer to
1032  * the nth caller. We only need a few of the regs:
1033  * - ip for PERF_SAMPLE_IP
1034  * - cs for user_mode() tests
1035  * - bp for callchains
1036  * - eflags, for future purposes, just in case
1037  */
1038 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1039 {
1040 	memset(regs, 0, sizeof(*regs));
1041 
1042 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1043 }
1044 
1045 static __always_inline void
1046 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1047 {
1048 	struct pt_regs hot_regs;
1049 
1050 	if (static_branch(&perf_swevent_enabled[event_id])) {
1051 		if (!regs) {
1052 			perf_fetch_caller_regs(&hot_regs);
1053 			regs = &hot_regs;
1054 		}
1055 		__perf_sw_event(event_id, nr, regs, addr);
1056 	}
1057 }
1058 
1059 extern struct jump_label_key perf_sched_events;
1060 
1061 static inline void perf_event_task_sched_in(struct task_struct *task)
1062 {
1063 	if (static_branch(&perf_sched_events))
1064 		__perf_event_task_sched_in(task);
1065 }
1066 
1067 static inline void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1068 {
1069 	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1070 
1071 	__perf_event_task_sched_out(task, next);
1072 }
1073 
1074 extern void perf_event_mmap(struct vm_area_struct *vma);
1075 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1076 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1077 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1078 
1079 extern void perf_event_comm(struct task_struct *tsk);
1080 extern void perf_event_fork(struct task_struct *tsk);
1081 
1082 /* Callchains */
1083 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1084 
1085 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1086 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1087 
1088 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1089 {
1090 	if (entry->nr < PERF_MAX_STACK_DEPTH)
1091 		entry->ip[entry->nr++] = ip;
1092 }
1093 
1094 extern int sysctl_perf_event_paranoid;
1095 extern int sysctl_perf_event_mlock;
1096 extern int sysctl_perf_event_sample_rate;
1097 
1098 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1099 		void __user *buffer, size_t *lenp,
1100 		loff_t *ppos);
1101 
1102 static inline bool perf_paranoid_tracepoint_raw(void)
1103 {
1104 	return sysctl_perf_event_paranoid > -1;
1105 }
1106 
1107 static inline bool perf_paranoid_cpu(void)
1108 {
1109 	return sysctl_perf_event_paranoid > 0;
1110 }
1111 
1112 static inline bool perf_paranoid_kernel(void)
1113 {
1114 	return sysctl_perf_event_paranoid > 1;
1115 }
1116 
1117 extern void perf_event_init(void);
1118 extern void perf_tp_event(u64 addr, u64 count, void *record,
1119 			  int entry_size, struct pt_regs *regs,
1120 			  struct hlist_head *head, int rctx);
1121 extern void perf_bp_event(struct perf_event *event, void *data);
1122 
1123 #ifndef perf_misc_flags
1124 # define perf_misc_flags(regs) \
1125 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1126 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1127 #endif
1128 
1129 extern int perf_output_begin(struct perf_output_handle *handle,
1130 			     struct perf_event *event, unsigned int size);
1131 extern void perf_output_end(struct perf_output_handle *handle);
1132 extern void perf_output_copy(struct perf_output_handle *handle,
1133 			     const void *buf, unsigned int len);
1134 extern int perf_swevent_get_recursion_context(void);
1135 extern void perf_swevent_put_recursion_context(int rctx);
1136 extern void perf_event_enable(struct perf_event *event);
1137 extern void perf_event_disable(struct perf_event *event);
1138 extern void perf_event_task_tick(void);
1139 #else
1140 static inline void
1141 perf_event_task_sched_in(struct task_struct *task)			{ }
1142 static inline void
1143 perf_event_task_sched_out(struct task_struct *task,
1144 			    struct task_struct *next)			{ }
1145 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1146 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1147 static inline void perf_event_free_task(struct task_struct *task)	{ }
1148 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1149 static inline void perf_event_print_debug(void)				{ }
1150 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1151 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1152 
1153 static inline void
1154 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1155 static inline void
1156 perf_bp_event(struct perf_event *event, void *data)			{ }
1157 
1158 static inline int perf_register_guest_info_callbacks
1159 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1160 static inline int perf_unregister_guest_info_callbacks
1161 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1162 
1163 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1164 static inline void perf_event_comm(struct task_struct *tsk)		{ }
1165 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1166 static inline void perf_event_init(void)				{ }
1167 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1168 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1169 static inline void perf_event_enable(struct perf_event *event)		{ }
1170 static inline void perf_event_disable(struct perf_event *event)		{ }
1171 static inline void perf_event_task_tick(void)				{ }
1172 #endif
1173 
1174 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1175 
1176 /*
1177  * This has to have a higher priority than migration_notifier in sched.c.
1178  */
1179 #define perf_cpu_notifier(fn)						\
1180 do {									\
1181 	static struct notifier_block fn##_nb __cpuinitdata =		\
1182 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1183 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1184 		(void *)(unsigned long)smp_processor_id());		\
1185 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1186 		(void *)(unsigned long)smp_processor_id());		\
1187 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1188 		(void *)(unsigned long)smp_processor_id());		\
1189 	register_cpu_notifier(&fn##_nb);				\
1190 } while (0)
1191 
1192 #endif /* __KERNEL__ */
1193 #endif /* _LINUX_PERF_EVENT_H */
1194