1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/types.h> 18 #include <linux/ioctl.h> 19 #include <asm/byteorder.h> 20 21 /* 22 * User-space ABI bits: 23 */ 24 25 /* 26 * attr.type 27 */ 28 enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37 }; 38 39 /* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44 enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 58 PERF_COUNT_HW_MAX, /* non-ABI */ 59 }; 60 61 /* 62 * Generalized hardware cache events: 63 * 64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 65 * { read, write, prefetch } x 66 * { accesses, misses } 67 */ 68 enum perf_hw_cache_id { 69 PERF_COUNT_HW_CACHE_L1D = 0, 70 PERF_COUNT_HW_CACHE_L1I = 1, 71 PERF_COUNT_HW_CACHE_LL = 2, 72 PERF_COUNT_HW_CACHE_DTLB = 3, 73 PERF_COUNT_HW_CACHE_ITLB = 4, 74 PERF_COUNT_HW_CACHE_BPU = 5, 75 76 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 77 }; 78 79 enum perf_hw_cache_op_id { 80 PERF_COUNT_HW_CACHE_OP_READ = 0, 81 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 82 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 83 84 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 85 }; 86 87 enum perf_hw_cache_op_result_id { 88 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 89 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 90 91 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 92 }; 93 94 /* 95 * Special "software" events provided by the kernel, even if the hardware 96 * does not support performance events. These events measure various 97 * physical and sw events of the kernel (and allow the profiling of them as 98 * well): 99 */ 100 enum perf_sw_ids { 101 PERF_COUNT_SW_CPU_CLOCK = 0, 102 PERF_COUNT_SW_TASK_CLOCK = 1, 103 PERF_COUNT_SW_PAGE_FAULTS = 2, 104 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 105 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 106 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 107 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 108 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 109 PERF_COUNT_SW_EMULATION_FAULTS = 8, 110 111 PERF_COUNT_SW_MAX, /* non-ABI */ 112 }; 113 114 /* 115 * Bits that can be set in attr.sample_type to request information 116 * in the overflow packets. 117 */ 118 enum perf_event_sample_format { 119 PERF_SAMPLE_IP = 1U << 0, 120 PERF_SAMPLE_TID = 1U << 1, 121 PERF_SAMPLE_TIME = 1U << 2, 122 PERF_SAMPLE_ADDR = 1U << 3, 123 PERF_SAMPLE_READ = 1U << 4, 124 PERF_SAMPLE_CALLCHAIN = 1U << 5, 125 PERF_SAMPLE_ID = 1U << 6, 126 PERF_SAMPLE_CPU = 1U << 7, 127 PERF_SAMPLE_PERIOD = 1U << 8, 128 PERF_SAMPLE_STREAM_ID = 1U << 9, 129 PERF_SAMPLE_RAW = 1U << 10, 130 131 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 132 }; 133 134 /* 135 * The format of the data returned by read() on a perf event fd, 136 * as specified by attr.read_format: 137 * 138 * struct read_format { 139 * { u64 value; 140 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 141 * { u64 time_running; } && PERF_FORMAT_RUNNING 142 * { u64 id; } && PERF_FORMAT_ID 143 * } && !PERF_FORMAT_GROUP 144 * 145 * { u64 nr; 146 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 147 * { u64 time_running; } && PERF_FORMAT_RUNNING 148 * { u64 value; 149 * { u64 id; } && PERF_FORMAT_ID 150 * } cntr[nr]; 151 * } && PERF_FORMAT_GROUP 152 * }; 153 */ 154 enum perf_event_read_format { 155 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 156 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 157 PERF_FORMAT_ID = 1U << 2, 158 PERF_FORMAT_GROUP = 1U << 3, 159 160 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 161 }; 162 163 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 164 165 /* 166 * Hardware event_id to monitor via a performance monitoring event: 167 */ 168 struct perf_event_attr { 169 170 /* 171 * Major type: hardware/software/tracepoint/etc. 172 */ 173 __u32 type; 174 175 /* 176 * Size of the attr structure, for fwd/bwd compat. 177 */ 178 __u32 size; 179 180 /* 181 * Type specific configuration information. 182 */ 183 __u64 config; 184 185 union { 186 __u64 sample_period; 187 __u64 sample_freq; 188 }; 189 190 __u64 sample_type; 191 __u64 read_format; 192 193 __u64 disabled : 1, /* off by default */ 194 inherit : 1, /* children inherit it */ 195 pinned : 1, /* must always be on PMU */ 196 exclusive : 1, /* only group on PMU */ 197 exclude_user : 1, /* don't count user */ 198 exclude_kernel : 1, /* ditto kernel */ 199 exclude_hv : 1, /* ditto hypervisor */ 200 exclude_idle : 1, /* don't count when idle */ 201 mmap : 1, /* include mmap data */ 202 comm : 1, /* include comm data */ 203 freq : 1, /* use freq, not period */ 204 inherit_stat : 1, /* per task counts */ 205 enable_on_exec : 1, /* next exec enables */ 206 task : 1, /* trace fork/exit */ 207 watermark : 1, /* wakeup_watermark */ 208 /* 209 * precise_ip: 210 * 211 * 0 - SAMPLE_IP can have arbitrary skid 212 * 1 - SAMPLE_IP must have constant skid 213 * 2 - SAMPLE_IP requested to have 0 skid 214 * 3 - SAMPLE_IP must have 0 skid 215 * 216 * See also PERF_RECORD_MISC_EXACT_IP 217 */ 218 precise_ip : 2, /* skid constraint */ 219 mmap_data : 1, /* non-exec mmap data */ 220 sample_id_all : 1, /* sample_type all events */ 221 222 __reserved_1 : 45; 223 224 union { 225 __u32 wakeup_events; /* wakeup every n events */ 226 __u32 wakeup_watermark; /* bytes before wakeup */ 227 }; 228 229 __u32 bp_type; 230 union { 231 __u64 bp_addr; 232 __u64 config1; /* extension of config */ 233 }; 234 union { 235 __u64 bp_len; 236 __u64 config2; /* extension of config1 */ 237 }; 238 }; 239 240 /* 241 * Ioctls that can be done on a perf event fd: 242 */ 243 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 244 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 245 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 246 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 247 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 248 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 249 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 250 251 enum perf_event_ioc_flags { 252 PERF_IOC_FLAG_GROUP = 1U << 0, 253 }; 254 255 /* 256 * Structure of the page that can be mapped via mmap 257 */ 258 struct perf_event_mmap_page { 259 __u32 version; /* version number of this structure */ 260 __u32 compat_version; /* lowest version this is compat with */ 261 262 /* 263 * Bits needed to read the hw events in user-space. 264 * 265 * u32 seq; 266 * s64 count; 267 * 268 * do { 269 * seq = pc->lock; 270 * 271 * barrier() 272 * if (pc->index) { 273 * count = pmc_read(pc->index - 1); 274 * count += pc->offset; 275 * } else 276 * goto regular_read; 277 * 278 * barrier(); 279 * } while (pc->lock != seq); 280 * 281 * NOTE: for obvious reason this only works on self-monitoring 282 * processes. 283 */ 284 __u32 lock; /* seqlock for synchronization */ 285 __u32 index; /* hardware event identifier */ 286 __s64 offset; /* add to hardware event value */ 287 __u64 time_enabled; /* time event active */ 288 __u64 time_running; /* time event on cpu */ 289 290 /* 291 * Hole for extension of the self monitor capabilities 292 */ 293 294 __u64 __reserved[123]; /* align to 1k */ 295 296 /* 297 * Control data for the mmap() data buffer. 298 * 299 * User-space reading the @data_head value should issue an rmb(), on 300 * SMP capable platforms, after reading this value -- see 301 * perf_event_wakeup(). 302 * 303 * When the mapping is PROT_WRITE the @data_tail value should be 304 * written by userspace to reflect the last read data. In this case 305 * the kernel will not over-write unread data. 306 */ 307 __u64 data_head; /* head in the data section */ 308 __u64 data_tail; /* user-space written tail */ 309 }; 310 311 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 312 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 313 #define PERF_RECORD_MISC_KERNEL (1 << 0) 314 #define PERF_RECORD_MISC_USER (2 << 0) 315 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 316 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 317 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 318 319 /* 320 * Indicates that the content of PERF_SAMPLE_IP points to 321 * the actual instruction that triggered the event. See also 322 * perf_event_attr::precise_ip. 323 */ 324 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 325 /* 326 * Reserve the last bit to indicate some extended misc field 327 */ 328 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 329 330 struct perf_event_header { 331 __u32 type; 332 __u16 misc; 333 __u16 size; 334 }; 335 336 enum perf_event_type { 337 338 /* 339 * If perf_event_attr.sample_id_all is set then all event types will 340 * have the sample_type selected fields related to where/when 341 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 342 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 343 * the perf_event_header and the fields already present for the existing 344 * fields, i.e. at the end of the payload. That way a newer perf.data 345 * file will be supported by older perf tools, with these new optional 346 * fields being ignored. 347 * 348 * The MMAP events record the PROT_EXEC mappings so that we can 349 * correlate userspace IPs to code. They have the following structure: 350 * 351 * struct { 352 * struct perf_event_header header; 353 * 354 * u32 pid, tid; 355 * u64 addr; 356 * u64 len; 357 * u64 pgoff; 358 * char filename[]; 359 * }; 360 */ 361 PERF_RECORD_MMAP = 1, 362 363 /* 364 * struct { 365 * struct perf_event_header header; 366 * u64 id; 367 * u64 lost; 368 * }; 369 */ 370 PERF_RECORD_LOST = 2, 371 372 /* 373 * struct { 374 * struct perf_event_header header; 375 * 376 * u32 pid, tid; 377 * char comm[]; 378 * }; 379 */ 380 PERF_RECORD_COMM = 3, 381 382 /* 383 * struct { 384 * struct perf_event_header header; 385 * u32 pid, ppid; 386 * u32 tid, ptid; 387 * u64 time; 388 * }; 389 */ 390 PERF_RECORD_EXIT = 4, 391 392 /* 393 * struct { 394 * struct perf_event_header header; 395 * u64 time; 396 * u64 id; 397 * u64 stream_id; 398 * }; 399 */ 400 PERF_RECORD_THROTTLE = 5, 401 PERF_RECORD_UNTHROTTLE = 6, 402 403 /* 404 * struct { 405 * struct perf_event_header header; 406 * u32 pid, ppid; 407 * u32 tid, ptid; 408 * u64 time; 409 * }; 410 */ 411 PERF_RECORD_FORK = 7, 412 413 /* 414 * struct { 415 * struct perf_event_header header; 416 * u32 pid, tid; 417 * 418 * struct read_format values; 419 * }; 420 */ 421 PERF_RECORD_READ = 8, 422 423 /* 424 * struct { 425 * struct perf_event_header header; 426 * 427 * { u64 ip; } && PERF_SAMPLE_IP 428 * { u32 pid, tid; } && PERF_SAMPLE_TID 429 * { u64 time; } && PERF_SAMPLE_TIME 430 * { u64 addr; } && PERF_SAMPLE_ADDR 431 * { u64 id; } && PERF_SAMPLE_ID 432 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 433 * { u32 cpu, res; } && PERF_SAMPLE_CPU 434 * { u64 period; } && PERF_SAMPLE_PERIOD 435 * 436 * { struct read_format values; } && PERF_SAMPLE_READ 437 * 438 * { u64 nr, 439 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 440 * 441 * # 442 * # The RAW record below is opaque data wrt the ABI 443 * # 444 * # That is, the ABI doesn't make any promises wrt to 445 * # the stability of its content, it may vary depending 446 * # on event, hardware, kernel version and phase of 447 * # the moon. 448 * # 449 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 450 * # 451 * 452 * { u32 size; 453 * char data[size];}&& PERF_SAMPLE_RAW 454 * }; 455 */ 456 PERF_RECORD_SAMPLE = 9, 457 458 PERF_RECORD_MAX, /* non-ABI */ 459 }; 460 461 enum perf_callchain_context { 462 PERF_CONTEXT_HV = (__u64)-32, 463 PERF_CONTEXT_KERNEL = (__u64)-128, 464 PERF_CONTEXT_USER = (__u64)-512, 465 466 PERF_CONTEXT_GUEST = (__u64)-2048, 467 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 468 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 469 470 PERF_CONTEXT_MAX = (__u64)-4095, 471 }; 472 473 #define PERF_FLAG_FD_NO_GROUP (1U << 0) 474 #define PERF_FLAG_FD_OUTPUT (1U << 1) 475 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 476 477 #ifdef __KERNEL__ 478 /* 479 * Kernel-internal data types and definitions: 480 */ 481 482 #ifdef CONFIG_PERF_EVENTS 483 # include <linux/cgroup.h> 484 # include <asm/perf_event.h> 485 # include <asm/local64.h> 486 #endif 487 488 struct perf_guest_info_callbacks { 489 int (*is_in_guest)(void); 490 int (*is_user_mode)(void); 491 unsigned long (*get_guest_ip)(void); 492 }; 493 494 #ifdef CONFIG_HAVE_HW_BREAKPOINT 495 #include <asm/hw_breakpoint.h> 496 #endif 497 498 #include <linux/list.h> 499 #include <linux/mutex.h> 500 #include <linux/rculist.h> 501 #include <linux/rcupdate.h> 502 #include <linux/spinlock.h> 503 #include <linux/hrtimer.h> 504 #include <linux/fs.h> 505 #include <linux/pid_namespace.h> 506 #include <linux/workqueue.h> 507 #include <linux/ftrace.h> 508 #include <linux/cpu.h> 509 #include <linux/irq_work.h> 510 #include <linux/jump_label.h> 511 #include <asm/atomic.h> 512 #include <asm/local.h> 513 514 #define PERF_MAX_STACK_DEPTH 255 515 516 struct perf_callchain_entry { 517 __u64 nr; 518 __u64 ip[PERF_MAX_STACK_DEPTH]; 519 }; 520 521 struct perf_raw_record { 522 u32 size; 523 void *data; 524 }; 525 526 struct perf_branch_entry { 527 __u64 from; 528 __u64 to; 529 __u64 flags; 530 }; 531 532 struct perf_branch_stack { 533 __u64 nr; 534 struct perf_branch_entry entries[0]; 535 }; 536 537 struct task_struct; 538 539 /** 540 * struct hw_perf_event - performance event hardware details: 541 */ 542 struct hw_perf_event { 543 #ifdef CONFIG_PERF_EVENTS 544 union { 545 struct { /* hardware */ 546 u64 config; 547 u64 last_tag; 548 unsigned long config_base; 549 unsigned long event_base; 550 int idx; 551 int last_cpu; 552 unsigned int extra_reg; 553 u64 extra_config; 554 int extra_alloc; 555 }; 556 struct { /* software */ 557 struct hrtimer hrtimer; 558 }; 559 #ifdef CONFIG_HAVE_HW_BREAKPOINT 560 struct { /* breakpoint */ 561 struct arch_hw_breakpoint info; 562 struct list_head bp_list; 563 /* 564 * Crufty hack to avoid the chicken and egg 565 * problem hw_breakpoint has with context 566 * creation and event initalization. 567 */ 568 struct task_struct *bp_target; 569 }; 570 #endif 571 }; 572 int state; 573 local64_t prev_count; 574 u64 sample_period; 575 u64 last_period; 576 local64_t period_left; 577 u64 interrupts; 578 579 u64 freq_time_stamp; 580 u64 freq_count_stamp; 581 #endif 582 }; 583 584 /* 585 * hw_perf_event::state flags 586 */ 587 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 588 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 589 #define PERF_HES_ARCH 0x04 590 591 struct perf_event; 592 593 /* 594 * Common implementation detail of pmu::{start,commit,cancel}_txn 595 */ 596 #define PERF_EVENT_TXN 0x1 597 598 /** 599 * struct pmu - generic performance monitoring unit 600 */ 601 struct pmu { 602 struct list_head entry; 603 604 struct device *dev; 605 char *name; 606 int type; 607 608 int * __percpu pmu_disable_count; 609 struct perf_cpu_context * __percpu pmu_cpu_context; 610 int task_ctx_nr; 611 612 /* 613 * Fully disable/enable this PMU, can be used to protect from the PMI 614 * as well as for lazy/batch writing of the MSRs. 615 */ 616 void (*pmu_enable) (struct pmu *pmu); /* optional */ 617 void (*pmu_disable) (struct pmu *pmu); /* optional */ 618 619 /* 620 * Try and initialize the event for this PMU. 621 * Should return -ENOENT when the @event doesn't match this PMU. 622 */ 623 int (*event_init) (struct perf_event *event); 624 625 #define PERF_EF_START 0x01 /* start the counter when adding */ 626 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 627 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 628 629 /* 630 * Adds/Removes a counter to/from the PMU, can be done inside 631 * a transaction, see the ->*_txn() methods. 632 */ 633 int (*add) (struct perf_event *event, int flags); 634 void (*del) (struct perf_event *event, int flags); 635 636 /* 637 * Starts/Stops a counter present on the PMU. The PMI handler 638 * should stop the counter when perf_event_overflow() returns 639 * !0. ->start() will be used to continue. 640 */ 641 void (*start) (struct perf_event *event, int flags); 642 void (*stop) (struct perf_event *event, int flags); 643 644 /* 645 * Updates the counter value of the event. 646 */ 647 void (*read) (struct perf_event *event); 648 649 /* 650 * Group events scheduling is treated as a transaction, add 651 * group events as a whole and perform one schedulability test. 652 * If the test fails, roll back the whole group 653 * 654 * Start the transaction, after this ->add() doesn't need to 655 * do schedulability tests. 656 */ 657 void (*start_txn) (struct pmu *pmu); /* optional */ 658 /* 659 * If ->start_txn() disabled the ->add() schedulability test 660 * then ->commit_txn() is required to perform one. On success 661 * the transaction is closed. On error the transaction is kept 662 * open until ->cancel_txn() is called. 663 */ 664 int (*commit_txn) (struct pmu *pmu); /* optional */ 665 /* 666 * Will cancel the transaction, assumes ->del() is called 667 * for each successful ->add() during the transaction. 668 */ 669 void (*cancel_txn) (struct pmu *pmu); /* optional */ 670 }; 671 672 /** 673 * enum perf_event_active_state - the states of a event 674 */ 675 enum perf_event_active_state { 676 PERF_EVENT_STATE_ERROR = -2, 677 PERF_EVENT_STATE_OFF = -1, 678 PERF_EVENT_STATE_INACTIVE = 0, 679 PERF_EVENT_STATE_ACTIVE = 1, 680 }; 681 682 struct file; 683 684 #define PERF_BUFFER_WRITABLE 0x01 685 686 struct perf_buffer { 687 atomic_t refcount; 688 struct rcu_head rcu_head; 689 #ifdef CONFIG_PERF_USE_VMALLOC 690 struct work_struct work; 691 int page_order; /* allocation order */ 692 #endif 693 int nr_pages; /* nr of data pages */ 694 int writable; /* are we writable */ 695 696 atomic_t poll; /* POLL_ for wakeups */ 697 698 local_t head; /* write position */ 699 local_t nest; /* nested writers */ 700 local_t events; /* event limit */ 701 local_t wakeup; /* wakeup stamp */ 702 local_t lost; /* nr records lost */ 703 704 long watermark; /* wakeup watermark */ 705 706 struct perf_event_mmap_page *user_page; 707 void *data_pages[0]; 708 }; 709 710 struct perf_sample_data; 711 712 typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 713 struct perf_sample_data *, 714 struct pt_regs *regs); 715 716 enum perf_group_flag { 717 PERF_GROUP_SOFTWARE = 0x1, 718 }; 719 720 #define SWEVENT_HLIST_BITS 8 721 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 722 723 struct swevent_hlist { 724 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 725 struct rcu_head rcu_head; 726 }; 727 728 #define PERF_ATTACH_CONTEXT 0x01 729 #define PERF_ATTACH_GROUP 0x02 730 #define PERF_ATTACH_TASK 0x04 731 732 #ifdef CONFIG_CGROUP_PERF 733 /* 734 * perf_cgroup_info keeps track of time_enabled for a cgroup. 735 * This is a per-cpu dynamically allocated data structure. 736 */ 737 struct perf_cgroup_info { 738 u64 time; 739 u64 timestamp; 740 }; 741 742 struct perf_cgroup { 743 struct cgroup_subsys_state css; 744 struct perf_cgroup_info *info; /* timing info, one per cpu */ 745 }; 746 #endif 747 748 /** 749 * struct perf_event - performance event kernel representation: 750 */ 751 struct perf_event { 752 #ifdef CONFIG_PERF_EVENTS 753 struct list_head group_entry; 754 struct list_head event_entry; 755 struct list_head sibling_list; 756 struct hlist_node hlist_entry; 757 int nr_siblings; 758 int group_flags; 759 struct perf_event *group_leader; 760 struct pmu *pmu; 761 762 enum perf_event_active_state state; 763 unsigned int attach_state; 764 local64_t count; 765 atomic64_t child_count; 766 767 /* 768 * These are the total time in nanoseconds that the event 769 * has been enabled (i.e. eligible to run, and the task has 770 * been scheduled in, if this is a per-task event) 771 * and running (scheduled onto the CPU), respectively. 772 * 773 * They are computed from tstamp_enabled, tstamp_running and 774 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 775 */ 776 u64 total_time_enabled; 777 u64 total_time_running; 778 779 /* 780 * These are timestamps used for computing total_time_enabled 781 * and total_time_running when the event is in INACTIVE or 782 * ACTIVE state, measured in nanoseconds from an arbitrary point 783 * in time. 784 * tstamp_enabled: the notional time when the event was enabled 785 * tstamp_running: the notional time when the event was scheduled on 786 * tstamp_stopped: in INACTIVE state, the notional time when the 787 * event was scheduled off. 788 */ 789 u64 tstamp_enabled; 790 u64 tstamp_running; 791 u64 tstamp_stopped; 792 793 /* 794 * timestamp shadows the actual context timing but it can 795 * be safely used in NMI interrupt context. It reflects the 796 * context time as it was when the event was last scheduled in. 797 * 798 * ctx_time already accounts for ctx->timestamp. Therefore to 799 * compute ctx_time for a sample, simply add perf_clock(). 800 */ 801 u64 shadow_ctx_time; 802 803 struct perf_event_attr attr; 804 u16 header_size; 805 u16 id_header_size; 806 u16 read_size; 807 struct hw_perf_event hw; 808 809 struct perf_event_context *ctx; 810 struct file *filp; 811 812 /* 813 * These accumulate total time (in nanoseconds) that children 814 * events have been enabled and running, respectively. 815 */ 816 atomic64_t child_total_time_enabled; 817 atomic64_t child_total_time_running; 818 819 /* 820 * Protect attach/detach and child_list: 821 */ 822 struct mutex child_mutex; 823 struct list_head child_list; 824 struct perf_event *parent; 825 826 int oncpu; 827 int cpu; 828 829 struct list_head owner_entry; 830 struct task_struct *owner; 831 832 /* mmap bits */ 833 struct mutex mmap_mutex; 834 atomic_t mmap_count; 835 int mmap_locked; 836 struct user_struct *mmap_user; 837 struct perf_buffer *buffer; 838 839 /* poll related */ 840 wait_queue_head_t waitq; 841 struct fasync_struct *fasync; 842 843 /* delayed work for NMIs and such */ 844 int pending_wakeup; 845 int pending_kill; 846 int pending_disable; 847 struct irq_work pending; 848 849 atomic_t event_limit; 850 851 void (*destroy)(struct perf_event *); 852 struct rcu_head rcu_head; 853 854 struct pid_namespace *ns; 855 u64 id; 856 857 perf_overflow_handler_t overflow_handler; 858 859 #ifdef CONFIG_EVENT_TRACING 860 struct ftrace_event_call *tp_event; 861 struct event_filter *filter; 862 #endif 863 864 #ifdef CONFIG_CGROUP_PERF 865 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 866 int cgrp_defer_enabled; 867 #endif 868 869 #endif /* CONFIG_PERF_EVENTS */ 870 }; 871 872 enum perf_event_context_type { 873 task_context, 874 cpu_context, 875 }; 876 877 /** 878 * struct perf_event_context - event context structure 879 * 880 * Used as a container for task events and CPU events as well: 881 */ 882 struct perf_event_context { 883 struct pmu *pmu; 884 enum perf_event_context_type type; 885 /* 886 * Protect the states of the events in the list, 887 * nr_active, and the list: 888 */ 889 raw_spinlock_t lock; 890 /* 891 * Protect the list of events. Locking either mutex or lock 892 * is sufficient to ensure the list doesn't change; to change 893 * the list you need to lock both the mutex and the spinlock. 894 */ 895 struct mutex mutex; 896 897 struct list_head pinned_groups; 898 struct list_head flexible_groups; 899 struct list_head event_list; 900 int nr_events; 901 int nr_active; 902 int is_active; 903 int nr_stat; 904 int rotate_disable; 905 atomic_t refcount; 906 struct task_struct *task; 907 908 /* 909 * Context clock, runs when context enabled. 910 */ 911 u64 time; 912 u64 timestamp; 913 914 /* 915 * These fields let us detect when two contexts have both 916 * been cloned (inherited) from a common ancestor. 917 */ 918 struct perf_event_context *parent_ctx; 919 u64 parent_gen; 920 u64 generation; 921 int pin_count; 922 struct rcu_head rcu_head; 923 int nr_cgroups; /* cgroup events present */ 924 }; 925 926 /* 927 * Number of contexts where an event can trigger: 928 * task, softirq, hardirq, nmi. 929 */ 930 #define PERF_NR_CONTEXTS 4 931 932 /** 933 * struct perf_event_cpu_context - per cpu event context structure 934 */ 935 struct perf_cpu_context { 936 struct perf_event_context ctx; 937 struct perf_event_context *task_ctx; 938 int active_oncpu; 939 int exclusive; 940 struct list_head rotation_list; 941 int jiffies_interval; 942 struct pmu *active_pmu; 943 struct perf_cgroup *cgrp; 944 }; 945 946 struct perf_output_handle { 947 struct perf_event *event; 948 struct perf_buffer *buffer; 949 unsigned long wakeup; 950 unsigned long size; 951 void *addr; 952 int page; 953 int nmi; 954 int sample; 955 }; 956 957 #ifdef CONFIG_PERF_EVENTS 958 959 extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 960 extern void perf_pmu_unregister(struct pmu *pmu); 961 962 extern int perf_num_counters(void); 963 extern const char *perf_pmu_name(void); 964 extern void __perf_event_task_sched_in(struct task_struct *task); 965 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 966 extern int perf_event_init_task(struct task_struct *child); 967 extern void perf_event_exit_task(struct task_struct *child); 968 extern void perf_event_free_task(struct task_struct *task); 969 extern void perf_event_delayed_put(struct task_struct *task); 970 extern void perf_event_print_debug(void); 971 extern void perf_pmu_disable(struct pmu *pmu); 972 extern void perf_pmu_enable(struct pmu *pmu); 973 extern int perf_event_task_disable(void); 974 extern int perf_event_task_enable(void); 975 extern void perf_event_update_userpage(struct perf_event *event); 976 extern int perf_event_release_kernel(struct perf_event *event); 977 extern struct perf_event * 978 perf_event_create_kernel_counter(struct perf_event_attr *attr, 979 int cpu, 980 struct task_struct *task, 981 perf_overflow_handler_t callback); 982 extern u64 perf_event_read_value(struct perf_event *event, 983 u64 *enabled, u64 *running); 984 985 struct perf_sample_data { 986 u64 type; 987 988 u64 ip; 989 struct { 990 u32 pid; 991 u32 tid; 992 } tid_entry; 993 u64 time; 994 u64 addr; 995 u64 id; 996 u64 stream_id; 997 struct { 998 u32 cpu; 999 u32 reserved; 1000 } cpu_entry; 1001 u64 period; 1002 struct perf_callchain_entry *callchain; 1003 struct perf_raw_record *raw; 1004 }; 1005 1006 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr) 1007 { 1008 data->addr = addr; 1009 data->raw = NULL; 1010 } 1011 1012 extern void perf_output_sample(struct perf_output_handle *handle, 1013 struct perf_event_header *header, 1014 struct perf_sample_data *data, 1015 struct perf_event *event); 1016 extern void perf_prepare_sample(struct perf_event_header *header, 1017 struct perf_sample_data *data, 1018 struct perf_event *event, 1019 struct pt_regs *regs); 1020 1021 extern int perf_event_overflow(struct perf_event *event, int nmi, 1022 struct perf_sample_data *data, 1023 struct pt_regs *regs); 1024 1025 static inline bool is_sampling_event(struct perf_event *event) 1026 { 1027 return event->attr.sample_period != 0; 1028 } 1029 1030 /* 1031 * Return 1 for a software event, 0 for a hardware event 1032 */ 1033 static inline int is_software_event(struct perf_event *event) 1034 { 1035 return event->pmu->task_ctx_nr == perf_sw_context; 1036 } 1037 1038 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1039 1040 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 1041 1042 #ifndef perf_arch_fetch_caller_regs 1043 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1044 #endif 1045 1046 /* 1047 * Take a snapshot of the regs. Skip ip and frame pointer to 1048 * the nth caller. We only need a few of the regs: 1049 * - ip for PERF_SAMPLE_IP 1050 * - cs for user_mode() tests 1051 * - bp for callchains 1052 * - eflags, for future purposes, just in case 1053 */ 1054 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1055 { 1056 memset(regs, 0, sizeof(*regs)); 1057 1058 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1059 } 1060 1061 static __always_inline void 1062 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 1063 { 1064 struct pt_regs hot_regs; 1065 1066 if (static_branch(&perf_swevent_enabled[event_id])) { 1067 if (!regs) { 1068 perf_fetch_caller_regs(&hot_regs); 1069 regs = &hot_regs; 1070 } 1071 __perf_sw_event(event_id, nr, nmi, regs, addr); 1072 } 1073 } 1074 1075 extern struct jump_label_key perf_sched_events; 1076 1077 static inline void perf_event_task_sched_in(struct task_struct *task) 1078 { 1079 if (static_branch(&perf_sched_events)) 1080 __perf_event_task_sched_in(task); 1081 } 1082 1083 static inline void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) 1084 { 1085 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0); 1086 1087 __perf_event_task_sched_out(task, next); 1088 } 1089 1090 extern void perf_event_mmap(struct vm_area_struct *vma); 1091 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1092 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1093 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1094 1095 extern void perf_event_comm(struct task_struct *tsk); 1096 extern void perf_event_fork(struct task_struct *tsk); 1097 1098 /* Callchains */ 1099 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1100 1101 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1102 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1103 1104 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1105 { 1106 if (entry->nr < PERF_MAX_STACK_DEPTH) 1107 entry->ip[entry->nr++] = ip; 1108 } 1109 1110 extern int sysctl_perf_event_paranoid; 1111 extern int sysctl_perf_event_mlock; 1112 extern int sysctl_perf_event_sample_rate; 1113 1114 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1115 void __user *buffer, size_t *lenp, 1116 loff_t *ppos); 1117 1118 static inline bool perf_paranoid_tracepoint_raw(void) 1119 { 1120 return sysctl_perf_event_paranoid > -1; 1121 } 1122 1123 static inline bool perf_paranoid_cpu(void) 1124 { 1125 return sysctl_perf_event_paranoid > 0; 1126 } 1127 1128 static inline bool perf_paranoid_kernel(void) 1129 { 1130 return sysctl_perf_event_paranoid > 1; 1131 } 1132 1133 extern void perf_event_init(void); 1134 extern void perf_tp_event(u64 addr, u64 count, void *record, 1135 int entry_size, struct pt_regs *regs, 1136 struct hlist_head *head, int rctx); 1137 extern void perf_bp_event(struct perf_event *event, void *data); 1138 1139 #ifndef perf_misc_flags 1140 # define perf_misc_flags(regs) \ 1141 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1142 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1143 #endif 1144 1145 extern int perf_output_begin(struct perf_output_handle *handle, 1146 struct perf_event *event, unsigned int size, 1147 int nmi, int sample); 1148 extern void perf_output_end(struct perf_output_handle *handle); 1149 extern void perf_output_copy(struct perf_output_handle *handle, 1150 const void *buf, unsigned int len); 1151 extern int perf_swevent_get_recursion_context(void); 1152 extern void perf_swevent_put_recursion_context(int rctx); 1153 extern void perf_event_enable(struct perf_event *event); 1154 extern void perf_event_disable(struct perf_event *event); 1155 extern void perf_event_task_tick(void); 1156 #else 1157 static inline void 1158 perf_event_task_sched_in(struct task_struct *task) { } 1159 static inline void 1160 perf_event_task_sched_out(struct task_struct *task, 1161 struct task_struct *next) { } 1162 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1163 static inline void perf_event_exit_task(struct task_struct *child) { } 1164 static inline void perf_event_free_task(struct task_struct *task) { } 1165 static inline void perf_event_delayed_put(struct task_struct *task) { } 1166 static inline void perf_event_print_debug(void) { } 1167 static inline int perf_event_task_disable(void) { return -EINVAL; } 1168 static inline int perf_event_task_enable(void) { return -EINVAL; } 1169 1170 static inline void 1171 perf_sw_event(u32 event_id, u64 nr, int nmi, 1172 struct pt_regs *regs, u64 addr) { } 1173 static inline void 1174 perf_bp_event(struct perf_event *event, void *data) { } 1175 1176 static inline int perf_register_guest_info_callbacks 1177 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1178 static inline int perf_unregister_guest_info_callbacks 1179 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1180 1181 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1182 static inline void perf_event_comm(struct task_struct *tsk) { } 1183 static inline void perf_event_fork(struct task_struct *tsk) { } 1184 static inline void perf_event_init(void) { } 1185 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1186 static inline void perf_swevent_put_recursion_context(int rctx) { } 1187 static inline void perf_event_enable(struct perf_event *event) { } 1188 static inline void perf_event_disable(struct perf_event *event) { } 1189 static inline void perf_event_task_tick(void) { } 1190 #endif 1191 1192 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1193 1194 /* 1195 * This has to have a higher priority than migration_notifier in sched.c. 1196 */ 1197 #define perf_cpu_notifier(fn) \ 1198 do { \ 1199 static struct notifier_block fn##_nb __cpuinitdata = \ 1200 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1201 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1202 (void *)(unsigned long)smp_processor_id()); \ 1203 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1204 (void *)(unsigned long)smp_processor_id()); \ 1205 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1206 (void *)(unsigned long)smp_processor_id()); \ 1207 register_cpu_notifier(&fn##_nb); \ 1208 } while (0) 1209 1210 #endif /* __KERNEL__ */ 1211 #endif /* _LINUX_PERF_EVENT_H */ 1212