1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62 }; 63 64 struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70 }; 71 72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75 struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83 } __packed; 84 85 struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88 }; 89 90 /* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99 struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102 }; 103 104 struct task_struct; 105 106 /* 107 * extra PMU register associated with an event 108 */ 109 struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114 }; 115 116 /** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119 struct hw_perf_event { 120 #ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* intel_cqm */ 143 int cqm_state; 144 u32 cqm_rmid; 145 int is_group_event; 146 struct list_head cqm_events_entry; 147 struct list_head cqm_groups_entry; 148 struct list_head cqm_group_entry; 149 }; 150 struct { /* itrace */ 151 int itrace_started; 152 }; 153 struct { /* amd_power */ 154 u64 pwr_acc; 155 u64 ptsc; 156 }; 157 #ifdef CONFIG_HAVE_HW_BREAKPOINT 158 struct { /* breakpoint */ 159 /* 160 * Crufty hack to avoid the chicken and egg 161 * problem hw_breakpoint has with context 162 * creation and event initalization. 163 */ 164 struct arch_hw_breakpoint info; 165 struct list_head bp_list; 166 }; 167 #endif 168 }; 169 /* 170 * If the event is a per task event, this will point to the task in 171 * question. See the comment in perf_event_alloc(). 172 */ 173 struct task_struct *target; 174 175 /* 176 * PMU would store hardware filter configuration 177 * here. 178 */ 179 void *addr_filters; 180 181 /* Last sync'ed generation of filters */ 182 unsigned long addr_filters_gen; 183 184 /* 185 * hw_perf_event::state flags; used to track the PERF_EF_* state. 186 */ 187 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 188 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 189 #define PERF_HES_ARCH 0x04 190 191 int state; 192 193 /* 194 * The last observed hardware counter value, updated with a 195 * local64_cmpxchg() such that pmu::read() can be called nested. 196 */ 197 local64_t prev_count; 198 199 /* 200 * The period to start the next sample with. 201 */ 202 u64 sample_period; 203 204 /* 205 * The period we started this sample with. 206 */ 207 u64 last_period; 208 209 /* 210 * However much is left of the current period; note that this is 211 * a full 64bit value and allows for generation of periods longer 212 * than hardware might allow. 213 */ 214 local64_t period_left; 215 216 /* 217 * State for throttling the event, see __perf_event_overflow() and 218 * perf_adjust_freq_unthr_context(). 219 */ 220 u64 interrupts_seq; 221 u64 interrupts; 222 223 /* 224 * State for freq target events, see __perf_event_overflow() and 225 * perf_adjust_freq_unthr_context(). 226 */ 227 u64 freq_time_stamp; 228 u64 freq_count_stamp; 229 #endif 230 }; 231 232 struct perf_event; 233 234 /* 235 * Common implementation detail of pmu::{start,commit,cancel}_txn 236 */ 237 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 238 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 239 240 /** 241 * pmu::capabilities flags 242 */ 243 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 244 #define PERF_PMU_CAP_NO_NMI 0x02 245 #define PERF_PMU_CAP_AUX_NO_SG 0x04 246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 247 #define PERF_PMU_CAP_EXCLUSIVE 0x10 248 #define PERF_PMU_CAP_ITRACE 0x20 249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 250 251 /** 252 * struct pmu - generic performance monitoring unit 253 */ 254 struct pmu { 255 struct list_head entry; 256 257 struct module *module; 258 struct device *dev; 259 const struct attribute_group **attr_groups; 260 const char *name; 261 int type; 262 263 /* 264 * various common per-pmu feature flags 265 */ 266 int capabilities; 267 268 int * __percpu pmu_disable_count; 269 struct perf_cpu_context * __percpu pmu_cpu_context; 270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 271 int task_ctx_nr; 272 int hrtimer_interval_ms; 273 274 /* number of address filters this PMU can do */ 275 unsigned int nr_addr_filters; 276 277 /* 278 * Fully disable/enable this PMU, can be used to protect from the PMI 279 * as well as for lazy/batch writing of the MSRs. 280 */ 281 void (*pmu_enable) (struct pmu *pmu); /* optional */ 282 void (*pmu_disable) (struct pmu *pmu); /* optional */ 283 284 /* 285 * Try and initialize the event for this PMU. 286 * 287 * Returns: 288 * -ENOENT -- @event is not for this PMU 289 * 290 * -ENODEV -- @event is for this PMU but PMU not present 291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 292 * -EINVAL -- @event is for this PMU but @event is not valid 293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 295 * 296 * 0 -- @event is for this PMU and valid 297 * 298 * Other error return values are allowed. 299 */ 300 int (*event_init) (struct perf_event *event); 301 302 /* 303 * Notification that the event was mapped or unmapped. Called 304 * in the context of the mapping task. 305 */ 306 void (*event_mapped) (struct perf_event *event); /*optional*/ 307 void (*event_unmapped) (struct perf_event *event); /*optional*/ 308 309 /* 310 * Flags for ->add()/->del()/ ->start()/->stop(). There are 311 * matching hw_perf_event::state flags. 312 */ 313 #define PERF_EF_START 0x01 /* start the counter when adding */ 314 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 315 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 316 317 /* 318 * Adds/Removes a counter to/from the PMU, can be done inside a 319 * transaction, see the ->*_txn() methods. 320 * 321 * The add/del callbacks will reserve all hardware resources required 322 * to service the event, this includes any counter constraint 323 * scheduling etc. 324 * 325 * Called with IRQs disabled and the PMU disabled on the CPU the event 326 * is on. 327 * 328 * ->add() called without PERF_EF_START should result in the same state 329 * as ->add() followed by ->stop(). 330 * 331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 332 * ->stop() that must deal with already being stopped without 333 * PERF_EF_UPDATE. 334 */ 335 int (*add) (struct perf_event *event, int flags); 336 void (*del) (struct perf_event *event, int flags); 337 338 /* 339 * Starts/Stops a counter present on the PMU. 340 * 341 * The PMI handler should stop the counter when perf_event_overflow() 342 * returns !0. ->start() will be used to continue. 343 * 344 * Also used to change the sample period. 345 * 346 * Called with IRQs disabled and the PMU disabled on the CPU the event 347 * is on -- will be called from NMI context with the PMU generates 348 * NMIs. 349 * 350 * ->stop() with PERF_EF_UPDATE will read the counter and update 351 * period/count values like ->read() would. 352 * 353 * ->start() with PERF_EF_RELOAD will reprogram the the counter 354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 355 */ 356 void (*start) (struct perf_event *event, int flags); 357 void (*stop) (struct perf_event *event, int flags); 358 359 /* 360 * Updates the counter value of the event. 361 * 362 * For sampling capable PMUs this will also update the software period 363 * hw_perf_event::period_left field. 364 */ 365 void (*read) (struct perf_event *event); 366 367 /* 368 * Group events scheduling is treated as a transaction, add 369 * group events as a whole and perform one schedulability test. 370 * If the test fails, roll back the whole group 371 * 372 * Start the transaction, after this ->add() doesn't need to 373 * do schedulability tests. 374 * 375 * Optional. 376 */ 377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 378 /* 379 * If ->start_txn() disabled the ->add() schedulability test 380 * then ->commit_txn() is required to perform one. On success 381 * the transaction is closed. On error the transaction is kept 382 * open until ->cancel_txn() is called. 383 * 384 * Optional. 385 */ 386 int (*commit_txn) (struct pmu *pmu); 387 /* 388 * Will cancel the transaction, assumes ->del() is called 389 * for each successful ->add() during the transaction. 390 * 391 * Optional. 392 */ 393 void (*cancel_txn) (struct pmu *pmu); 394 395 /* 396 * Will return the value for perf_event_mmap_page::index for this event, 397 * if no implementation is provided it will default to: event->hw.idx + 1. 398 */ 399 int (*event_idx) (struct perf_event *event); /*optional */ 400 401 /* 402 * context-switches callback 403 */ 404 void (*sched_task) (struct perf_event_context *ctx, 405 bool sched_in); 406 /* 407 * PMU specific data size 408 */ 409 size_t task_ctx_size; 410 411 412 /* 413 * Return the count value for a counter. 414 */ 415 u64 (*count) (struct perf_event *event); /*optional*/ 416 417 /* 418 * Set up pmu-private data structures for an AUX area 419 */ 420 void *(*setup_aux) (int cpu, void **pages, 421 int nr_pages, bool overwrite); 422 /* optional */ 423 424 /* 425 * Free pmu-private AUX data structures 426 */ 427 void (*free_aux) (void *aux); /* optional */ 428 429 /* 430 * Validate address range filters: make sure the HW supports the 431 * requested configuration and number of filters; return 0 if the 432 * supplied filters are valid, -errno otherwise. 433 * 434 * Runs in the context of the ioctl()ing process and is not serialized 435 * with the rest of the PMU callbacks. 436 */ 437 int (*addr_filters_validate) (struct list_head *filters); 438 /* optional */ 439 440 /* 441 * Synchronize address range filter configuration: 442 * translate hw-agnostic filters into hardware configuration in 443 * event::hw::addr_filters. 444 * 445 * Runs as a part of filter sync sequence that is done in ->start() 446 * callback by calling perf_event_addr_filters_sync(). 447 * 448 * May (and should) traverse event::addr_filters::list, for which its 449 * caller provides necessary serialization. 450 */ 451 void (*addr_filters_sync) (struct perf_event *event); 452 /* optional */ 453 454 /* 455 * Filter events for PMU-specific reasons. 456 */ 457 int (*filter_match) (struct perf_event *event); /* optional */ 458 }; 459 460 /** 461 * struct perf_addr_filter - address range filter definition 462 * @entry: event's filter list linkage 463 * @inode: object file's inode for file-based filters 464 * @offset: filter range offset 465 * @size: filter range size 466 * @range: 1: range, 0: address 467 * @filter: 1: filter/start, 0: stop 468 * 469 * This is a hardware-agnostic filter configuration as specified by the user. 470 */ 471 struct perf_addr_filter { 472 struct list_head entry; 473 struct inode *inode; 474 unsigned long offset; 475 unsigned long size; 476 unsigned int range : 1, 477 filter : 1; 478 }; 479 480 /** 481 * struct perf_addr_filters_head - container for address range filters 482 * @list: list of filters for this event 483 * @lock: spinlock that serializes accesses to the @list and event's 484 * (and its children's) filter generations. 485 * 486 * A child event will use parent's @list (and therefore @lock), so they are 487 * bundled together; see perf_event_addr_filters(). 488 */ 489 struct perf_addr_filters_head { 490 struct list_head list; 491 raw_spinlock_t lock; 492 }; 493 494 /** 495 * enum perf_event_active_state - the states of a event 496 */ 497 enum perf_event_active_state { 498 PERF_EVENT_STATE_DEAD = -4, 499 PERF_EVENT_STATE_EXIT = -3, 500 PERF_EVENT_STATE_ERROR = -2, 501 PERF_EVENT_STATE_OFF = -1, 502 PERF_EVENT_STATE_INACTIVE = 0, 503 PERF_EVENT_STATE_ACTIVE = 1, 504 }; 505 506 struct file; 507 struct perf_sample_data; 508 509 typedef void (*perf_overflow_handler_t)(struct perf_event *, 510 struct perf_sample_data *, 511 struct pt_regs *regs); 512 513 enum perf_group_flag { 514 PERF_GROUP_SOFTWARE = 0x1, 515 }; 516 517 #define SWEVENT_HLIST_BITS 8 518 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 519 520 struct swevent_hlist { 521 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 522 struct rcu_head rcu_head; 523 }; 524 525 #define PERF_ATTACH_CONTEXT 0x01 526 #define PERF_ATTACH_GROUP 0x02 527 #define PERF_ATTACH_TASK 0x04 528 #define PERF_ATTACH_TASK_DATA 0x08 529 530 struct perf_cgroup; 531 struct ring_buffer; 532 533 /** 534 * struct perf_event - performance event kernel representation: 535 */ 536 struct perf_event { 537 #ifdef CONFIG_PERF_EVENTS 538 /* 539 * entry onto perf_event_context::event_list; 540 * modifications require ctx->lock 541 * RCU safe iterations. 542 */ 543 struct list_head event_entry; 544 545 /* 546 * XXX: group_entry and sibling_list should be mutually exclusive; 547 * either you're a sibling on a group, or you're the group leader. 548 * Rework the code to always use the same list element. 549 * 550 * Locked for modification by both ctx->mutex and ctx->lock; holding 551 * either sufficies for read. 552 */ 553 struct list_head group_entry; 554 struct list_head sibling_list; 555 556 /* 557 * We need storage to track the entries in perf_pmu_migrate_context; we 558 * cannot use the event_entry because of RCU and we want to keep the 559 * group in tact which avoids us using the other two entries. 560 */ 561 struct list_head migrate_entry; 562 563 struct hlist_node hlist_entry; 564 struct list_head active_entry; 565 int nr_siblings; 566 int group_flags; 567 struct perf_event *group_leader; 568 struct pmu *pmu; 569 void *pmu_private; 570 571 enum perf_event_active_state state; 572 unsigned int attach_state; 573 local64_t count; 574 atomic64_t child_count; 575 576 /* 577 * These are the total time in nanoseconds that the event 578 * has been enabled (i.e. eligible to run, and the task has 579 * been scheduled in, if this is a per-task event) 580 * and running (scheduled onto the CPU), respectively. 581 * 582 * They are computed from tstamp_enabled, tstamp_running and 583 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 584 */ 585 u64 total_time_enabled; 586 u64 total_time_running; 587 588 /* 589 * These are timestamps used for computing total_time_enabled 590 * and total_time_running when the event is in INACTIVE or 591 * ACTIVE state, measured in nanoseconds from an arbitrary point 592 * in time. 593 * tstamp_enabled: the notional time when the event was enabled 594 * tstamp_running: the notional time when the event was scheduled on 595 * tstamp_stopped: in INACTIVE state, the notional time when the 596 * event was scheduled off. 597 */ 598 u64 tstamp_enabled; 599 u64 tstamp_running; 600 u64 tstamp_stopped; 601 602 /* 603 * timestamp shadows the actual context timing but it can 604 * be safely used in NMI interrupt context. It reflects the 605 * context time as it was when the event was last scheduled in. 606 * 607 * ctx_time already accounts for ctx->timestamp. Therefore to 608 * compute ctx_time for a sample, simply add perf_clock(). 609 */ 610 u64 shadow_ctx_time; 611 612 struct perf_event_attr attr; 613 u16 header_size; 614 u16 id_header_size; 615 u16 read_size; 616 struct hw_perf_event hw; 617 618 struct perf_event_context *ctx; 619 atomic_long_t refcount; 620 621 /* 622 * These accumulate total time (in nanoseconds) that children 623 * events have been enabled and running, respectively. 624 */ 625 atomic64_t child_total_time_enabled; 626 atomic64_t child_total_time_running; 627 628 /* 629 * Protect attach/detach and child_list: 630 */ 631 struct mutex child_mutex; 632 struct list_head child_list; 633 struct perf_event *parent; 634 635 int oncpu; 636 int cpu; 637 638 struct list_head owner_entry; 639 struct task_struct *owner; 640 641 /* mmap bits */ 642 struct mutex mmap_mutex; 643 atomic_t mmap_count; 644 645 struct ring_buffer *rb; 646 struct list_head rb_entry; 647 unsigned long rcu_batches; 648 int rcu_pending; 649 650 /* poll related */ 651 wait_queue_head_t waitq; 652 struct fasync_struct *fasync; 653 654 /* delayed work for NMIs and such */ 655 int pending_wakeup; 656 int pending_kill; 657 int pending_disable; 658 struct irq_work pending; 659 660 atomic_t event_limit; 661 662 /* address range filters */ 663 struct perf_addr_filters_head addr_filters; 664 /* vma address array for file-based filders */ 665 unsigned long *addr_filters_offs; 666 unsigned long addr_filters_gen; 667 668 void (*destroy)(struct perf_event *); 669 struct rcu_head rcu_head; 670 671 struct pid_namespace *ns; 672 u64 id; 673 674 u64 (*clock)(void); 675 perf_overflow_handler_t overflow_handler; 676 void *overflow_handler_context; 677 678 #ifdef CONFIG_EVENT_TRACING 679 struct trace_event_call *tp_event; 680 struct event_filter *filter; 681 #ifdef CONFIG_FUNCTION_TRACER 682 struct ftrace_ops ftrace_ops; 683 #endif 684 #endif 685 686 #ifdef CONFIG_CGROUP_PERF 687 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 688 int cgrp_defer_enabled; 689 #endif 690 691 #endif /* CONFIG_PERF_EVENTS */ 692 }; 693 694 /** 695 * struct perf_event_context - event context structure 696 * 697 * Used as a container for task events and CPU events as well: 698 */ 699 struct perf_event_context { 700 struct pmu *pmu; 701 /* 702 * Protect the states of the events in the list, 703 * nr_active, and the list: 704 */ 705 raw_spinlock_t lock; 706 /* 707 * Protect the list of events. Locking either mutex or lock 708 * is sufficient to ensure the list doesn't change; to change 709 * the list you need to lock both the mutex and the spinlock. 710 */ 711 struct mutex mutex; 712 713 struct list_head active_ctx_list; 714 struct list_head pinned_groups; 715 struct list_head flexible_groups; 716 struct list_head event_list; 717 int nr_events; 718 int nr_active; 719 int is_active; 720 int nr_stat; 721 int nr_freq; 722 int rotate_disable; 723 atomic_t refcount; 724 struct task_struct *task; 725 726 /* 727 * Context clock, runs when context enabled. 728 */ 729 u64 time; 730 u64 timestamp; 731 732 /* 733 * These fields let us detect when two contexts have both 734 * been cloned (inherited) from a common ancestor. 735 */ 736 struct perf_event_context *parent_ctx; 737 u64 parent_gen; 738 u64 generation; 739 int pin_count; 740 int nr_cgroups; /* cgroup evts */ 741 void *task_ctx_data; /* pmu specific data */ 742 struct rcu_head rcu_head; 743 }; 744 745 /* 746 * Number of contexts where an event can trigger: 747 * task, softirq, hardirq, nmi. 748 */ 749 #define PERF_NR_CONTEXTS 4 750 751 /** 752 * struct perf_event_cpu_context - per cpu event context structure 753 */ 754 struct perf_cpu_context { 755 struct perf_event_context ctx; 756 struct perf_event_context *task_ctx; 757 int active_oncpu; 758 int exclusive; 759 760 raw_spinlock_t hrtimer_lock; 761 struct hrtimer hrtimer; 762 ktime_t hrtimer_interval; 763 unsigned int hrtimer_active; 764 765 struct pmu *unique_pmu; 766 struct perf_cgroup *cgrp; 767 }; 768 769 struct perf_output_handle { 770 struct perf_event *event; 771 struct ring_buffer *rb; 772 unsigned long wakeup; 773 unsigned long size; 774 union { 775 void *addr; 776 unsigned long head; 777 }; 778 int page; 779 }; 780 781 #ifdef CONFIG_CGROUP_PERF 782 783 /* 784 * perf_cgroup_info keeps track of time_enabled for a cgroup. 785 * This is a per-cpu dynamically allocated data structure. 786 */ 787 struct perf_cgroup_info { 788 u64 time; 789 u64 timestamp; 790 }; 791 792 struct perf_cgroup { 793 struct cgroup_subsys_state css; 794 struct perf_cgroup_info __percpu *info; 795 }; 796 797 /* 798 * Must ensure cgroup is pinned (css_get) before calling 799 * this function. In other words, we cannot call this function 800 * if there is no cgroup event for the current CPU context. 801 */ 802 static inline struct perf_cgroup * 803 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 804 { 805 return container_of(task_css_check(task, perf_event_cgrp_id, 806 ctx ? lockdep_is_held(&ctx->lock) 807 : true), 808 struct perf_cgroup, css); 809 } 810 #endif /* CONFIG_CGROUP_PERF */ 811 812 #ifdef CONFIG_PERF_EVENTS 813 814 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 815 struct perf_event *event); 816 extern void perf_aux_output_end(struct perf_output_handle *handle, 817 unsigned long size, bool truncated); 818 extern int perf_aux_output_skip(struct perf_output_handle *handle, 819 unsigned long size); 820 extern void *perf_get_aux(struct perf_output_handle *handle); 821 822 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 823 extern void perf_pmu_unregister(struct pmu *pmu); 824 825 extern int perf_num_counters(void); 826 extern const char *perf_pmu_name(void); 827 extern void __perf_event_task_sched_in(struct task_struct *prev, 828 struct task_struct *task); 829 extern void __perf_event_task_sched_out(struct task_struct *prev, 830 struct task_struct *next); 831 extern int perf_event_init_task(struct task_struct *child); 832 extern void perf_event_exit_task(struct task_struct *child); 833 extern void perf_event_free_task(struct task_struct *task); 834 extern void perf_event_delayed_put(struct task_struct *task); 835 extern struct file *perf_event_get(unsigned int fd); 836 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 837 extern void perf_event_print_debug(void); 838 extern void perf_pmu_disable(struct pmu *pmu); 839 extern void perf_pmu_enable(struct pmu *pmu); 840 extern void perf_sched_cb_dec(struct pmu *pmu); 841 extern void perf_sched_cb_inc(struct pmu *pmu); 842 extern int perf_event_task_disable(void); 843 extern int perf_event_task_enable(void); 844 extern int perf_event_refresh(struct perf_event *event, int refresh); 845 extern void perf_event_update_userpage(struct perf_event *event); 846 extern int perf_event_release_kernel(struct perf_event *event); 847 extern struct perf_event * 848 perf_event_create_kernel_counter(struct perf_event_attr *attr, 849 int cpu, 850 struct task_struct *task, 851 perf_overflow_handler_t callback, 852 void *context); 853 extern void perf_pmu_migrate_context(struct pmu *pmu, 854 int src_cpu, int dst_cpu); 855 extern u64 perf_event_read_local(struct perf_event *event); 856 extern u64 perf_event_read_value(struct perf_event *event, 857 u64 *enabled, u64 *running); 858 859 860 struct perf_sample_data { 861 /* 862 * Fields set by perf_sample_data_init(), group so as to 863 * minimize the cachelines touched. 864 */ 865 u64 addr; 866 struct perf_raw_record *raw; 867 struct perf_branch_stack *br_stack; 868 u64 period; 869 u64 weight; 870 u64 txn; 871 union perf_mem_data_src data_src; 872 873 /* 874 * The other fields, optionally {set,used} by 875 * perf_{prepare,output}_sample(). 876 */ 877 u64 type; 878 u64 ip; 879 struct { 880 u32 pid; 881 u32 tid; 882 } tid_entry; 883 u64 time; 884 u64 id; 885 u64 stream_id; 886 struct { 887 u32 cpu; 888 u32 reserved; 889 } cpu_entry; 890 struct perf_callchain_entry *callchain; 891 892 /* 893 * regs_user may point to task_pt_regs or to regs_user_copy, depending 894 * on arch details. 895 */ 896 struct perf_regs regs_user; 897 struct pt_regs regs_user_copy; 898 899 struct perf_regs regs_intr; 900 u64 stack_user_size; 901 } ____cacheline_aligned; 902 903 /* default value for data source */ 904 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 905 PERF_MEM_S(LVL, NA) |\ 906 PERF_MEM_S(SNOOP, NA) |\ 907 PERF_MEM_S(LOCK, NA) |\ 908 PERF_MEM_S(TLB, NA)) 909 910 static inline void perf_sample_data_init(struct perf_sample_data *data, 911 u64 addr, u64 period) 912 { 913 /* remaining struct members initialized in perf_prepare_sample() */ 914 data->addr = addr; 915 data->raw = NULL; 916 data->br_stack = NULL; 917 data->period = period; 918 data->weight = 0; 919 data->data_src.val = PERF_MEM_NA; 920 data->txn = 0; 921 } 922 923 extern void perf_output_sample(struct perf_output_handle *handle, 924 struct perf_event_header *header, 925 struct perf_sample_data *data, 926 struct perf_event *event); 927 extern void perf_prepare_sample(struct perf_event_header *header, 928 struct perf_sample_data *data, 929 struct perf_event *event, 930 struct pt_regs *regs); 931 932 extern int perf_event_overflow(struct perf_event *event, 933 struct perf_sample_data *data, 934 struct pt_regs *regs); 935 936 extern void perf_event_output_forward(struct perf_event *event, 937 struct perf_sample_data *data, 938 struct pt_regs *regs); 939 extern void perf_event_output_backward(struct perf_event *event, 940 struct perf_sample_data *data, 941 struct pt_regs *regs); 942 extern void perf_event_output(struct perf_event *event, 943 struct perf_sample_data *data, 944 struct pt_regs *regs); 945 946 static inline bool 947 is_default_overflow_handler(struct perf_event *event) 948 { 949 if (likely(event->overflow_handler == perf_event_output_forward)) 950 return true; 951 if (unlikely(event->overflow_handler == perf_event_output_backward)) 952 return true; 953 return false; 954 } 955 956 extern void 957 perf_event_header__init_id(struct perf_event_header *header, 958 struct perf_sample_data *data, 959 struct perf_event *event); 960 extern void 961 perf_event__output_id_sample(struct perf_event *event, 962 struct perf_output_handle *handle, 963 struct perf_sample_data *sample); 964 965 extern void 966 perf_log_lost_samples(struct perf_event *event, u64 lost); 967 968 static inline bool is_sampling_event(struct perf_event *event) 969 { 970 return event->attr.sample_period != 0; 971 } 972 973 /* 974 * Return 1 for a software event, 0 for a hardware event 975 */ 976 static inline int is_software_event(struct perf_event *event) 977 { 978 return event->pmu->task_ctx_nr == perf_sw_context; 979 } 980 981 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 982 983 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 984 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 985 986 #ifndef perf_arch_fetch_caller_regs 987 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 988 #endif 989 990 /* 991 * Take a snapshot of the regs. Skip ip and frame pointer to 992 * the nth caller. We only need a few of the regs: 993 * - ip for PERF_SAMPLE_IP 994 * - cs for user_mode() tests 995 * - bp for callchains 996 * - eflags, for future purposes, just in case 997 */ 998 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 999 { 1000 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1001 } 1002 1003 static __always_inline void 1004 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1005 { 1006 if (static_key_false(&perf_swevent_enabled[event_id])) 1007 __perf_sw_event(event_id, nr, regs, addr); 1008 } 1009 1010 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1011 1012 /* 1013 * 'Special' version for the scheduler, it hard assumes no recursion, 1014 * which is guaranteed by us not actually scheduling inside other swevents 1015 * because those disable preemption. 1016 */ 1017 static __always_inline void 1018 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1019 { 1020 if (static_key_false(&perf_swevent_enabled[event_id])) { 1021 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1022 1023 perf_fetch_caller_regs(regs); 1024 ___perf_sw_event(event_id, nr, regs, addr); 1025 } 1026 } 1027 1028 extern struct static_key_false perf_sched_events; 1029 1030 static __always_inline bool 1031 perf_sw_migrate_enabled(void) 1032 { 1033 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1034 return true; 1035 return false; 1036 } 1037 1038 static inline void perf_event_task_migrate(struct task_struct *task) 1039 { 1040 if (perf_sw_migrate_enabled()) 1041 task->sched_migrated = 1; 1042 } 1043 1044 static inline void perf_event_task_sched_in(struct task_struct *prev, 1045 struct task_struct *task) 1046 { 1047 if (static_branch_unlikely(&perf_sched_events)) 1048 __perf_event_task_sched_in(prev, task); 1049 1050 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1051 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1052 1053 perf_fetch_caller_regs(regs); 1054 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1055 task->sched_migrated = 0; 1056 } 1057 } 1058 1059 static inline void perf_event_task_sched_out(struct task_struct *prev, 1060 struct task_struct *next) 1061 { 1062 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1063 1064 if (static_branch_unlikely(&perf_sched_events)) 1065 __perf_event_task_sched_out(prev, next); 1066 } 1067 1068 static inline u64 __perf_event_count(struct perf_event *event) 1069 { 1070 return local64_read(&event->count) + atomic64_read(&event->child_count); 1071 } 1072 1073 extern void perf_event_mmap(struct vm_area_struct *vma); 1074 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1075 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1076 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1077 1078 extern void perf_event_exec(void); 1079 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1080 extern void perf_event_fork(struct task_struct *tsk); 1081 1082 /* Callchains */ 1083 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1084 1085 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1086 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1087 extern struct perf_callchain_entry * 1088 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1089 u32 max_stack, bool crosstask, bool add_mark); 1090 extern int get_callchain_buffers(void); 1091 extern void put_callchain_buffers(void); 1092 1093 extern int sysctl_perf_event_max_stack; 1094 extern int sysctl_perf_event_max_contexts_per_stack; 1095 1096 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1097 { 1098 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1099 struct perf_callchain_entry *entry = ctx->entry; 1100 entry->ip[entry->nr++] = ip; 1101 ++ctx->contexts; 1102 return 0; 1103 } else { 1104 ctx->contexts_maxed = true; 1105 return -1; /* no more room, stop walking the stack */ 1106 } 1107 } 1108 1109 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1110 { 1111 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1112 struct perf_callchain_entry *entry = ctx->entry; 1113 entry->ip[entry->nr++] = ip; 1114 ++ctx->nr; 1115 return 0; 1116 } else { 1117 return -1; /* no more room, stop walking the stack */ 1118 } 1119 } 1120 1121 extern int sysctl_perf_event_paranoid; 1122 extern int sysctl_perf_event_mlock; 1123 extern int sysctl_perf_event_sample_rate; 1124 extern int sysctl_perf_cpu_time_max_percent; 1125 1126 extern void perf_sample_event_took(u64 sample_len_ns); 1127 1128 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1129 void __user *buffer, size_t *lenp, 1130 loff_t *ppos); 1131 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1132 void __user *buffer, size_t *lenp, 1133 loff_t *ppos); 1134 1135 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1136 void __user *buffer, size_t *lenp, loff_t *ppos); 1137 1138 static inline bool perf_paranoid_tracepoint_raw(void) 1139 { 1140 return sysctl_perf_event_paranoid > -1; 1141 } 1142 1143 static inline bool perf_paranoid_cpu(void) 1144 { 1145 return sysctl_perf_event_paranoid > 0; 1146 } 1147 1148 static inline bool perf_paranoid_kernel(void) 1149 { 1150 return sysctl_perf_event_paranoid > 1; 1151 } 1152 1153 extern void perf_event_init(void); 1154 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1155 int entry_size, struct pt_regs *regs, 1156 struct hlist_head *head, int rctx, 1157 struct task_struct *task); 1158 extern void perf_bp_event(struct perf_event *event, void *data); 1159 1160 #ifndef perf_misc_flags 1161 # define perf_misc_flags(regs) \ 1162 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1163 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1164 #endif 1165 1166 static inline bool has_branch_stack(struct perf_event *event) 1167 { 1168 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1169 } 1170 1171 static inline bool needs_branch_stack(struct perf_event *event) 1172 { 1173 return event->attr.branch_sample_type != 0; 1174 } 1175 1176 static inline bool has_aux(struct perf_event *event) 1177 { 1178 return event->pmu->setup_aux; 1179 } 1180 1181 static inline bool is_write_backward(struct perf_event *event) 1182 { 1183 return !!event->attr.write_backward; 1184 } 1185 1186 static inline bool has_addr_filter(struct perf_event *event) 1187 { 1188 return event->pmu->nr_addr_filters; 1189 } 1190 1191 /* 1192 * An inherited event uses parent's filters 1193 */ 1194 static inline struct perf_addr_filters_head * 1195 perf_event_addr_filters(struct perf_event *event) 1196 { 1197 struct perf_addr_filters_head *ifh = &event->addr_filters; 1198 1199 if (event->parent) 1200 ifh = &event->parent->addr_filters; 1201 1202 return ifh; 1203 } 1204 1205 extern void perf_event_addr_filters_sync(struct perf_event *event); 1206 1207 extern int perf_output_begin(struct perf_output_handle *handle, 1208 struct perf_event *event, unsigned int size); 1209 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1210 struct perf_event *event, 1211 unsigned int size); 1212 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1213 struct perf_event *event, 1214 unsigned int size); 1215 1216 extern void perf_output_end(struct perf_output_handle *handle); 1217 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1218 const void *buf, unsigned int len); 1219 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1220 unsigned int len); 1221 extern int perf_swevent_get_recursion_context(void); 1222 extern void perf_swevent_put_recursion_context(int rctx); 1223 extern u64 perf_swevent_set_period(struct perf_event *event); 1224 extern void perf_event_enable(struct perf_event *event); 1225 extern void perf_event_disable(struct perf_event *event); 1226 extern void perf_event_disable_local(struct perf_event *event); 1227 extern void perf_event_task_tick(void); 1228 #else /* !CONFIG_PERF_EVENTS: */ 1229 static inline void * 1230 perf_aux_output_begin(struct perf_output_handle *handle, 1231 struct perf_event *event) { return NULL; } 1232 static inline void 1233 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1234 bool truncated) { } 1235 static inline int 1236 perf_aux_output_skip(struct perf_output_handle *handle, 1237 unsigned long size) { return -EINVAL; } 1238 static inline void * 1239 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1240 static inline void 1241 perf_event_task_migrate(struct task_struct *task) { } 1242 static inline void 1243 perf_event_task_sched_in(struct task_struct *prev, 1244 struct task_struct *task) { } 1245 static inline void 1246 perf_event_task_sched_out(struct task_struct *prev, 1247 struct task_struct *next) { } 1248 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1249 static inline void perf_event_exit_task(struct task_struct *child) { } 1250 static inline void perf_event_free_task(struct task_struct *task) { } 1251 static inline void perf_event_delayed_put(struct task_struct *task) { } 1252 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1253 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1254 { 1255 return ERR_PTR(-EINVAL); 1256 } 1257 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1258 static inline void perf_event_print_debug(void) { } 1259 static inline int perf_event_task_disable(void) { return -EINVAL; } 1260 static inline int perf_event_task_enable(void) { return -EINVAL; } 1261 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1262 { 1263 return -EINVAL; 1264 } 1265 1266 static inline void 1267 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1268 static inline void 1269 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1270 static inline void 1271 perf_bp_event(struct perf_event *event, void *data) { } 1272 1273 static inline int perf_register_guest_info_callbacks 1274 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1275 static inline int perf_unregister_guest_info_callbacks 1276 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1277 1278 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1279 static inline void perf_event_exec(void) { } 1280 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1281 static inline void perf_event_fork(struct task_struct *tsk) { } 1282 static inline void perf_event_init(void) { } 1283 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1284 static inline void perf_swevent_put_recursion_context(int rctx) { } 1285 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1286 static inline void perf_event_enable(struct perf_event *event) { } 1287 static inline void perf_event_disable(struct perf_event *event) { } 1288 static inline int __perf_event_disable(void *info) { return -1; } 1289 static inline void perf_event_task_tick(void) { } 1290 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1291 #endif 1292 1293 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1294 extern void perf_restore_debug_store(void); 1295 #else 1296 static inline void perf_restore_debug_store(void) { } 1297 #endif 1298 1299 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1300 { 1301 return frag->pad < sizeof(u64); 1302 } 1303 1304 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1305 1306 /* 1307 * This has to have a higher priority than migration_notifier in sched/core.c. 1308 */ 1309 #define perf_cpu_notifier(fn) \ 1310 do { \ 1311 static struct notifier_block fn##_nb = \ 1312 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1313 unsigned long cpu = smp_processor_id(); \ 1314 unsigned long flags; \ 1315 \ 1316 cpu_notifier_register_begin(); \ 1317 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1318 (void *)(unsigned long)cpu); \ 1319 local_irq_save(flags); \ 1320 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1321 (void *)(unsigned long)cpu); \ 1322 local_irq_restore(flags); \ 1323 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1324 (void *)(unsigned long)cpu); \ 1325 __register_cpu_notifier(&fn##_nb); \ 1326 cpu_notifier_register_done(); \ 1327 } while (0) 1328 1329 /* 1330 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 1331 * callback for already online CPUs. 1332 */ 1333 #define __perf_cpu_notifier(fn) \ 1334 do { \ 1335 static struct notifier_block fn##_nb = \ 1336 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1337 \ 1338 __register_cpu_notifier(&fn##_nb); \ 1339 } while (0) 1340 1341 struct perf_pmu_events_attr { 1342 struct device_attribute attr; 1343 u64 id; 1344 const char *event_str; 1345 }; 1346 1347 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1348 char *page); 1349 1350 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1351 static struct perf_pmu_events_attr _var = { \ 1352 .attr = __ATTR(_name, 0444, _show, NULL), \ 1353 .id = _id, \ 1354 }; 1355 1356 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1357 static struct perf_pmu_events_attr _var = { \ 1358 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1359 .id = 0, \ 1360 .event_str = _str, \ 1361 }; 1362 1363 #define PMU_FORMAT_ATTR(_name, _format) \ 1364 static ssize_t \ 1365 _name##_show(struct device *dev, \ 1366 struct device_attribute *attr, \ 1367 char *page) \ 1368 { \ 1369 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1370 return sprintf(page, _format "\n"); \ 1371 } \ 1372 \ 1373 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1374 1375 #endif /* _LINUX_PERF_EVENT_H */ 1376