xref: /linux-6.15/include/linux/perf_event.h (revision 36232012)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63 
64 struct perf_callchain_entry_ctx {
65 	struct perf_callchain_entry *entry;
66 	u32			    max_stack;
67 	u32			    nr;
68 	short			    contexts;
69 	bool			    contexts_maxed;
70 };
71 
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 				     unsigned long off, unsigned long len);
74 
75 struct perf_raw_frag {
76 	union {
77 		struct perf_raw_frag	*next;
78 		unsigned long		pad;
79 	};
80 	perf_copy_f			copy;
81 	void				*data;
82 	u32				size;
83 } __packed;
84 
85 struct perf_raw_record {
86 	struct perf_raw_frag		frag;
87 	u32				size;
88 };
89 
90 /*
91  * branch stack layout:
92  *  nr: number of taken branches stored in entries[]
93  *
94  * Note that nr can vary from sample to sample
95  * branches (to, from) are stored from most recent
96  * to least recent, i.e., entries[0] contains the most
97  * recent branch.
98  */
99 struct perf_branch_stack {
100 	__u64				nr;
101 	struct perf_branch_entry	entries[0];
102 };
103 
104 struct task_struct;
105 
106 /*
107  * extra PMU register associated with an event
108  */
109 struct hw_perf_event_extra {
110 	u64		config;	/* register value */
111 	unsigned int	reg;	/* register address or index */
112 	int		alloc;	/* extra register already allocated */
113 	int		idx;	/* index in shared_regs->regs[] */
114 };
115 
116 /**
117  * struct hw_perf_event - performance event hardware details:
118  */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 	union {
122 		struct { /* hardware */
123 			u64		config;
124 			u64		last_tag;
125 			unsigned long	config_base;
126 			unsigned long	event_base;
127 			int		event_base_rdpmc;
128 			int		idx;
129 			int		last_cpu;
130 			int		flags;
131 
132 			struct hw_perf_event_extra extra_reg;
133 			struct hw_perf_event_extra branch_reg;
134 		};
135 		struct { /* software */
136 			struct hrtimer	hrtimer;
137 		};
138 		struct { /* tracepoint */
139 			/* for tp_event->class */
140 			struct list_head	tp_list;
141 		};
142 		struct { /* intel_cqm */
143 			int			cqm_state;
144 			u32			cqm_rmid;
145 			int			is_group_event;
146 			struct list_head	cqm_events_entry;
147 			struct list_head	cqm_groups_entry;
148 			struct list_head	cqm_group_entry;
149 		};
150 		struct { /* itrace */
151 			int			itrace_started;
152 		};
153 		struct { /* amd_power */
154 			u64	pwr_acc;
155 			u64	ptsc;
156 		};
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 		struct { /* breakpoint */
159 			/*
160 			 * Crufty hack to avoid the chicken and egg
161 			 * problem hw_breakpoint has with context
162 			 * creation and event initalization.
163 			 */
164 			struct arch_hw_breakpoint	info;
165 			struct list_head		bp_list;
166 		};
167 #endif
168 	};
169 	/*
170 	 * If the event is a per task event, this will point to the task in
171 	 * question. See the comment in perf_event_alloc().
172 	 */
173 	struct task_struct		*target;
174 
175 	/*
176 	 * PMU would store hardware filter configuration
177 	 * here.
178 	 */
179 	void				*addr_filters;
180 
181 	/* Last sync'ed generation of filters */
182 	unsigned long			addr_filters_gen;
183 
184 /*
185  * hw_perf_event::state flags; used to track the PERF_EF_* state.
186  */
187 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH		0x04
190 
191 	int				state;
192 
193 	/*
194 	 * The last observed hardware counter value, updated with a
195 	 * local64_cmpxchg() such that pmu::read() can be called nested.
196 	 */
197 	local64_t			prev_count;
198 
199 	/*
200 	 * The period to start the next sample with.
201 	 */
202 	u64				sample_period;
203 
204 	/*
205 	 * The period we started this sample with.
206 	 */
207 	u64				last_period;
208 
209 	/*
210 	 * However much is left of the current period; note that this is
211 	 * a full 64bit value and allows for generation of periods longer
212 	 * than hardware might allow.
213 	 */
214 	local64_t			period_left;
215 
216 	/*
217 	 * State for throttling the event, see __perf_event_overflow() and
218 	 * perf_adjust_freq_unthr_context().
219 	 */
220 	u64                             interrupts_seq;
221 	u64				interrupts;
222 
223 	/*
224 	 * State for freq target events, see __perf_event_overflow() and
225 	 * perf_adjust_freq_unthr_context().
226 	 */
227 	u64				freq_time_stamp;
228 	u64				freq_count_stamp;
229 #endif
230 };
231 
232 struct perf_event;
233 
234 /*
235  * Common implementation detail of pmu::{start,commit,cancel}_txn
236  */
237 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
239 
240 /**
241  * pmu::capabilities flags
242  */
243 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
244 #define PERF_PMU_CAP_NO_NMI			0x02
245 #define PERF_PMU_CAP_AUX_NO_SG			0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
247 #define PERF_PMU_CAP_EXCLUSIVE			0x10
248 #define PERF_PMU_CAP_ITRACE			0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
250 
251 /**
252  * struct pmu - generic performance monitoring unit
253  */
254 struct pmu {
255 	struct list_head		entry;
256 
257 	struct module			*module;
258 	struct device			*dev;
259 	const struct attribute_group	**attr_groups;
260 	const char			*name;
261 	int				type;
262 
263 	/*
264 	 * various common per-pmu feature flags
265 	 */
266 	int				capabilities;
267 
268 	int * __percpu			pmu_disable_count;
269 	struct perf_cpu_context * __percpu pmu_cpu_context;
270 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 	int				task_ctx_nr;
272 	int				hrtimer_interval_ms;
273 
274 	/* number of address filters this PMU can do */
275 	unsigned int			nr_addr_filters;
276 
277 	/*
278 	 * Fully disable/enable this PMU, can be used to protect from the PMI
279 	 * as well as for lazy/batch writing of the MSRs.
280 	 */
281 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
282 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
283 
284 	/*
285 	 * Try and initialize the event for this PMU.
286 	 *
287 	 * Returns:
288 	 *  -ENOENT	-- @event is not for this PMU
289 	 *
290 	 *  -ENODEV	-- @event is for this PMU but PMU not present
291 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
292 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
293 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
295 	 *
296 	 *  0		-- @event is for this PMU and valid
297 	 *
298 	 * Other error return values are allowed.
299 	 */
300 	int (*event_init)		(struct perf_event *event);
301 
302 	/*
303 	 * Notification that the event was mapped or unmapped.  Called
304 	 * in the context of the mapping task.
305 	 */
306 	void (*event_mapped)		(struct perf_event *event); /*optional*/
307 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
308 
309 	/*
310 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 	 * matching hw_perf_event::state flags.
312 	 */
313 #define PERF_EF_START	0x01		/* start the counter when adding    */
314 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
315 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
316 
317 	/*
318 	 * Adds/Removes a counter to/from the PMU, can be done inside a
319 	 * transaction, see the ->*_txn() methods.
320 	 *
321 	 * The add/del callbacks will reserve all hardware resources required
322 	 * to service the event, this includes any counter constraint
323 	 * scheduling etc.
324 	 *
325 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 	 * is on.
327 	 *
328 	 * ->add() called without PERF_EF_START should result in the same state
329 	 *  as ->add() followed by ->stop().
330 	 *
331 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 	 *  ->stop() that must deal with already being stopped without
333 	 *  PERF_EF_UPDATE.
334 	 */
335 	int  (*add)			(struct perf_event *event, int flags);
336 	void (*del)			(struct perf_event *event, int flags);
337 
338 	/*
339 	 * Starts/Stops a counter present on the PMU.
340 	 *
341 	 * The PMI handler should stop the counter when perf_event_overflow()
342 	 * returns !0. ->start() will be used to continue.
343 	 *
344 	 * Also used to change the sample period.
345 	 *
346 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 	 * is on -- will be called from NMI context with the PMU generates
348 	 * NMIs.
349 	 *
350 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 	 *  period/count values like ->read() would.
352 	 *
353 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 	 */
356 	void (*start)			(struct perf_event *event, int flags);
357 	void (*stop)			(struct perf_event *event, int flags);
358 
359 	/*
360 	 * Updates the counter value of the event.
361 	 *
362 	 * For sampling capable PMUs this will also update the software period
363 	 * hw_perf_event::period_left field.
364 	 */
365 	void (*read)			(struct perf_event *event);
366 
367 	/*
368 	 * Group events scheduling is treated as a transaction, add
369 	 * group events as a whole and perform one schedulability test.
370 	 * If the test fails, roll back the whole group
371 	 *
372 	 * Start the transaction, after this ->add() doesn't need to
373 	 * do schedulability tests.
374 	 *
375 	 * Optional.
376 	 */
377 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
378 	/*
379 	 * If ->start_txn() disabled the ->add() schedulability test
380 	 * then ->commit_txn() is required to perform one. On success
381 	 * the transaction is closed. On error the transaction is kept
382 	 * open until ->cancel_txn() is called.
383 	 *
384 	 * Optional.
385 	 */
386 	int  (*commit_txn)		(struct pmu *pmu);
387 	/*
388 	 * Will cancel the transaction, assumes ->del() is called
389 	 * for each successful ->add() during the transaction.
390 	 *
391 	 * Optional.
392 	 */
393 	void (*cancel_txn)		(struct pmu *pmu);
394 
395 	/*
396 	 * Will return the value for perf_event_mmap_page::index for this event,
397 	 * if no implementation is provided it will default to: event->hw.idx + 1.
398 	 */
399 	int (*event_idx)		(struct perf_event *event); /*optional */
400 
401 	/*
402 	 * context-switches callback
403 	 */
404 	void (*sched_task)		(struct perf_event_context *ctx,
405 					bool sched_in);
406 	/*
407 	 * PMU specific data size
408 	 */
409 	size_t				task_ctx_size;
410 
411 
412 	/*
413 	 * Return the count value for a counter.
414 	 */
415 	u64 (*count)			(struct perf_event *event); /*optional*/
416 
417 	/*
418 	 * Set up pmu-private data structures for an AUX area
419 	 */
420 	void *(*setup_aux)		(int cpu, void **pages,
421 					 int nr_pages, bool overwrite);
422 					/* optional */
423 
424 	/*
425 	 * Free pmu-private AUX data structures
426 	 */
427 	void (*free_aux)		(void *aux); /* optional */
428 
429 	/*
430 	 * Validate address range filters: make sure the HW supports the
431 	 * requested configuration and number of filters; return 0 if the
432 	 * supplied filters are valid, -errno otherwise.
433 	 *
434 	 * Runs in the context of the ioctl()ing process and is not serialized
435 	 * with the rest of the PMU callbacks.
436 	 */
437 	int (*addr_filters_validate)	(struct list_head *filters);
438 					/* optional */
439 
440 	/*
441 	 * Synchronize address range filter configuration:
442 	 * translate hw-agnostic filters into hardware configuration in
443 	 * event::hw::addr_filters.
444 	 *
445 	 * Runs as a part of filter sync sequence that is done in ->start()
446 	 * callback by calling perf_event_addr_filters_sync().
447 	 *
448 	 * May (and should) traverse event::addr_filters::list, for which its
449 	 * caller provides necessary serialization.
450 	 */
451 	void (*addr_filters_sync)	(struct perf_event *event);
452 					/* optional */
453 
454 	/*
455 	 * Filter events for PMU-specific reasons.
456 	 */
457 	int (*filter_match)		(struct perf_event *event); /* optional */
458 };
459 
460 /**
461  * struct perf_addr_filter - address range filter definition
462  * @entry:	event's filter list linkage
463  * @inode:	object file's inode for file-based filters
464  * @offset:	filter range offset
465  * @size:	filter range size
466  * @range:	1: range, 0: address
467  * @filter:	1: filter/start, 0: stop
468  *
469  * This is a hardware-agnostic filter configuration as specified by the user.
470  */
471 struct perf_addr_filter {
472 	struct list_head	entry;
473 	struct inode		*inode;
474 	unsigned long		offset;
475 	unsigned long		size;
476 	unsigned int		range	: 1,
477 				filter	: 1;
478 };
479 
480 /**
481  * struct perf_addr_filters_head - container for address range filters
482  * @list:	list of filters for this event
483  * @lock:	spinlock that serializes accesses to the @list and event's
484  *		(and its children's) filter generations.
485  *
486  * A child event will use parent's @list (and therefore @lock), so they are
487  * bundled together; see perf_event_addr_filters().
488  */
489 struct perf_addr_filters_head {
490 	struct list_head	list;
491 	raw_spinlock_t		lock;
492 };
493 
494 /**
495  * enum perf_event_active_state - the states of a event
496  */
497 enum perf_event_active_state {
498 	PERF_EVENT_STATE_DEAD		= -4,
499 	PERF_EVENT_STATE_EXIT		= -3,
500 	PERF_EVENT_STATE_ERROR		= -2,
501 	PERF_EVENT_STATE_OFF		= -1,
502 	PERF_EVENT_STATE_INACTIVE	=  0,
503 	PERF_EVENT_STATE_ACTIVE		=  1,
504 };
505 
506 struct file;
507 struct perf_sample_data;
508 
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510 					struct perf_sample_data *,
511 					struct pt_regs *regs);
512 
513 enum perf_group_flag {
514 	PERF_GROUP_SOFTWARE		= 0x1,
515 };
516 
517 #define SWEVENT_HLIST_BITS		8
518 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
519 
520 struct swevent_hlist {
521 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
522 	struct rcu_head			rcu_head;
523 };
524 
525 #define PERF_ATTACH_CONTEXT	0x01
526 #define PERF_ATTACH_GROUP	0x02
527 #define PERF_ATTACH_TASK	0x04
528 #define PERF_ATTACH_TASK_DATA	0x08
529 
530 struct perf_cgroup;
531 struct ring_buffer;
532 
533 /**
534  * struct perf_event - performance event kernel representation:
535  */
536 struct perf_event {
537 #ifdef CONFIG_PERF_EVENTS
538 	/*
539 	 * entry onto perf_event_context::event_list;
540 	 *   modifications require ctx->lock
541 	 *   RCU safe iterations.
542 	 */
543 	struct list_head		event_entry;
544 
545 	/*
546 	 * XXX: group_entry and sibling_list should be mutually exclusive;
547 	 * either you're a sibling on a group, or you're the group leader.
548 	 * Rework the code to always use the same list element.
549 	 *
550 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
551 	 * either sufficies for read.
552 	 */
553 	struct list_head		group_entry;
554 	struct list_head		sibling_list;
555 
556 	/*
557 	 * We need storage to track the entries in perf_pmu_migrate_context; we
558 	 * cannot use the event_entry because of RCU and we want to keep the
559 	 * group in tact which avoids us using the other two entries.
560 	 */
561 	struct list_head		migrate_entry;
562 
563 	struct hlist_node		hlist_entry;
564 	struct list_head		active_entry;
565 	int				nr_siblings;
566 	int				group_flags;
567 	struct perf_event		*group_leader;
568 	struct pmu			*pmu;
569 	void				*pmu_private;
570 
571 	enum perf_event_active_state	state;
572 	unsigned int			attach_state;
573 	local64_t			count;
574 	atomic64_t			child_count;
575 
576 	/*
577 	 * These are the total time in nanoseconds that the event
578 	 * has been enabled (i.e. eligible to run, and the task has
579 	 * been scheduled in, if this is a per-task event)
580 	 * and running (scheduled onto the CPU), respectively.
581 	 *
582 	 * They are computed from tstamp_enabled, tstamp_running and
583 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
584 	 */
585 	u64				total_time_enabled;
586 	u64				total_time_running;
587 
588 	/*
589 	 * These are timestamps used for computing total_time_enabled
590 	 * and total_time_running when the event is in INACTIVE or
591 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
592 	 * in time.
593 	 * tstamp_enabled: the notional time when the event was enabled
594 	 * tstamp_running: the notional time when the event was scheduled on
595 	 * tstamp_stopped: in INACTIVE state, the notional time when the
596 	 *	event was scheduled off.
597 	 */
598 	u64				tstamp_enabled;
599 	u64				tstamp_running;
600 	u64				tstamp_stopped;
601 
602 	/*
603 	 * timestamp shadows the actual context timing but it can
604 	 * be safely used in NMI interrupt context. It reflects the
605 	 * context time as it was when the event was last scheduled in.
606 	 *
607 	 * ctx_time already accounts for ctx->timestamp. Therefore to
608 	 * compute ctx_time for a sample, simply add perf_clock().
609 	 */
610 	u64				shadow_ctx_time;
611 
612 	struct perf_event_attr		attr;
613 	u16				header_size;
614 	u16				id_header_size;
615 	u16				read_size;
616 	struct hw_perf_event		hw;
617 
618 	struct perf_event_context	*ctx;
619 	atomic_long_t			refcount;
620 
621 	/*
622 	 * These accumulate total time (in nanoseconds) that children
623 	 * events have been enabled and running, respectively.
624 	 */
625 	atomic64_t			child_total_time_enabled;
626 	atomic64_t			child_total_time_running;
627 
628 	/*
629 	 * Protect attach/detach and child_list:
630 	 */
631 	struct mutex			child_mutex;
632 	struct list_head		child_list;
633 	struct perf_event		*parent;
634 
635 	int				oncpu;
636 	int				cpu;
637 
638 	struct list_head		owner_entry;
639 	struct task_struct		*owner;
640 
641 	/* mmap bits */
642 	struct mutex			mmap_mutex;
643 	atomic_t			mmap_count;
644 
645 	struct ring_buffer		*rb;
646 	struct list_head		rb_entry;
647 	unsigned long			rcu_batches;
648 	int				rcu_pending;
649 
650 	/* poll related */
651 	wait_queue_head_t		waitq;
652 	struct fasync_struct		*fasync;
653 
654 	/* delayed work for NMIs and such */
655 	int				pending_wakeup;
656 	int				pending_kill;
657 	int				pending_disable;
658 	struct irq_work			pending;
659 
660 	atomic_t			event_limit;
661 
662 	/* address range filters */
663 	struct perf_addr_filters_head	addr_filters;
664 	/* vma address array for file-based filders */
665 	unsigned long			*addr_filters_offs;
666 	unsigned long			addr_filters_gen;
667 
668 	void (*destroy)(struct perf_event *);
669 	struct rcu_head			rcu_head;
670 
671 	struct pid_namespace		*ns;
672 	u64				id;
673 
674 	u64				(*clock)(void);
675 	perf_overflow_handler_t		overflow_handler;
676 	void				*overflow_handler_context;
677 
678 #ifdef CONFIG_EVENT_TRACING
679 	struct trace_event_call		*tp_event;
680 	struct event_filter		*filter;
681 #ifdef CONFIG_FUNCTION_TRACER
682 	struct ftrace_ops               ftrace_ops;
683 #endif
684 #endif
685 
686 #ifdef CONFIG_CGROUP_PERF
687 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
688 	int				cgrp_defer_enabled;
689 #endif
690 
691 #endif /* CONFIG_PERF_EVENTS */
692 };
693 
694 /**
695  * struct perf_event_context - event context structure
696  *
697  * Used as a container for task events and CPU events as well:
698  */
699 struct perf_event_context {
700 	struct pmu			*pmu;
701 	/*
702 	 * Protect the states of the events in the list,
703 	 * nr_active, and the list:
704 	 */
705 	raw_spinlock_t			lock;
706 	/*
707 	 * Protect the list of events.  Locking either mutex or lock
708 	 * is sufficient to ensure the list doesn't change; to change
709 	 * the list you need to lock both the mutex and the spinlock.
710 	 */
711 	struct mutex			mutex;
712 
713 	struct list_head		active_ctx_list;
714 	struct list_head		pinned_groups;
715 	struct list_head		flexible_groups;
716 	struct list_head		event_list;
717 	int				nr_events;
718 	int				nr_active;
719 	int				is_active;
720 	int				nr_stat;
721 	int				nr_freq;
722 	int				rotate_disable;
723 	atomic_t			refcount;
724 	struct task_struct		*task;
725 
726 	/*
727 	 * Context clock, runs when context enabled.
728 	 */
729 	u64				time;
730 	u64				timestamp;
731 
732 	/*
733 	 * These fields let us detect when two contexts have both
734 	 * been cloned (inherited) from a common ancestor.
735 	 */
736 	struct perf_event_context	*parent_ctx;
737 	u64				parent_gen;
738 	u64				generation;
739 	int				pin_count;
740 	int				nr_cgroups;	 /* cgroup evts */
741 	void				*task_ctx_data; /* pmu specific data */
742 	struct rcu_head			rcu_head;
743 };
744 
745 /*
746  * Number of contexts where an event can trigger:
747  *	task, softirq, hardirq, nmi.
748  */
749 #define PERF_NR_CONTEXTS	4
750 
751 /**
752  * struct perf_event_cpu_context - per cpu event context structure
753  */
754 struct perf_cpu_context {
755 	struct perf_event_context	ctx;
756 	struct perf_event_context	*task_ctx;
757 	int				active_oncpu;
758 	int				exclusive;
759 
760 	raw_spinlock_t			hrtimer_lock;
761 	struct hrtimer			hrtimer;
762 	ktime_t				hrtimer_interval;
763 	unsigned int			hrtimer_active;
764 
765 	struct pmu			*unique_pmu;
766 	struct perf_cgroup		*cgrp;
767 };
768 
769 struct perf_output_handle {
770 	struct perf_event		*event;
771 	struct ring_buffer		*rb;
772 	unsigned long			wakeup;
773 	unsigned long			size;
774 	union {
775 		void			*addr;
776 		unsigned long		head;
777 	};
778 	int				page;
779 };
780 
781 #ifdef CONFIG_CGROUP_PERF
782 
783 /*
784  * perf_cgroup_info keeps track of time_enabled for a cgroup.
785  * This is a per-cpu dynamically allocated data structure.
786  */
787 struct perf_cgroup_info {
788 	u64				time;
789 	u64				timestamp;
790 };
791 
792 struct perf_cgroup {
793 	struct cgroup_subsys_state	css;
794 	struct perf_cgroup_info	__percpu *info;
795 };
796 
797 /*
798  * Must ensure cgroup is pinned (css_get) before calling
799  * this function. In other words, we cannot call this function
800  * if there is no cgroup event for the current CPU context.
801  */
802 static inline struct perf_cgroup *
803 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
804 {
805 	return container_of(task_css_check(task, perf_event_cgrp_id,
806 					   ctx ? lockdep_is_held(&ctx->lock)
807 					       : true),
808 			    struct perf_cgroup, css);
809 }
810 #endif /* CONFIG_CGROUP_PERF */
811 
812 #ifdef CONFIG_PERF_EVENTS
813 
814 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
815 				   struct perf_event *event);
816 extern void perf_aux_output_end(struct perf_output_handle *handle,
817 				unsigned long size, bool truncated);
818 extern int perf_aux_output_skip(struct perf_output_handle *handle,
819 				unsigned long size);
820 extern void *perf_get_aux(struct perf_output_handle *handle);
821 
822 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
823 extern void perf_pmu_unregister(struct pmu *pmu);
824 
825 extern int perf_num_counters(void);
826 extern const char *perf_pmu_name(void);
827 extern void __perf_event_task_sched_in(struct task_struct *prev,
828 				       struct task_struct *task);
829 extern void __perf_event_task_sched_out(struct task_struct *prev,
830 					struct task_struct *next);
831 extern int perf_event_init_task(struct task_struct *child);
832 extern void perf_event_exit_task(struct task_struct *child);
833 extern void perf_event_free_task(struct task_struct *task);
834 extern void perf_event_delayed_put(struct task_struct *task);
835 extern struct file *perf_event_get(unsigned int fd);
836 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
837 extern void perf_event_print_debug(void);
838 extern void perf_pmu_disable(struct pmu *pmu);
839 extern void perf_pmu_enable(struct pmu *pmu);
840 extern void perf_sched_cb_dec(struct pmu *pmu);
841 extern void perf_sched_cb_inc(struct pmu *pmu);
842 extern int perf_event_task_disable(void);
843 extern int perf_event_task_enable(void);
844 extern int perf_event_refresh(struct perf_event *event, int refresh);
845 extern void perf_event_update_userpage(struct perf_event *event);
846 extern int perf_event_release_kernel(struct perf_event *event);
847 extern struct perf_event *
848 perf_event_create_kernel_counter(struct perf_event_attr *attr,
849 				int cpu,
850 				struct task_struct *task,
851 				perf_overflow_handler_t callback,
852 				void *context);
853 extern void perf_pmu_migrate_context(struct pmu *pmu,
854 				int src_cpu, int dst_cpu);
855 extern u64 perf_event_read_local(struct perf_event *event);
856 extern u64 perf_event_read_value(struct perf_event *event,
857 				 u64 *enabled, u64 *running);
858 
859 
860 struct perf_sample_data {
861 	/*
862 	 * Fields set by perf_sample_data_init(), group so as to
863 	 * minimize the cachelines touched.
864 	 */
865 	u64				addr;
866 	struct perf_raw_record		*raw;
867 	struct perf_branch_stack	*br_stack;
868 	u64				period;
869 	u64				weight;
870 	u64				txn;
871 	union  perf_mem_data_src	data_src;
872 
873 	/*
874 	 * The other fields, optionally {set,used} by
875 	 * perf_{prepare,output}_sample().
876 	 */
877 	u64				type;
878 	u64				ip;
879 	struct {
880 		u32	pid;
881 		u32	tid;
882 	}				tid_entry;
883 	u64				time;
884 	u64				id;
885 	u64				stream_id;
886 	struct {
887 		u32	cpu;
888 		u32	reserved;
889 	}				cpu_entry;
890 	struct perf_callchain_entry	*callchain;
891 
892 	/*
893 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
894 	 * on arch details.
895 	 */
896 	struct perf_regs		regs_user;
897 	struct pt_regs			regs_user_copy;
898 
899 	struct perf_regs		regs_intr;
900 	u64				stack_user_size;
901 } ____cacheline_aligned;
902 
903 /* default value for data source */
904 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
905 		    PERF_MEM_S(LVL, NA)   |\
906 		    PERF_MEM_S(SNOOP, NA) |\
907 		    PERF_MEM_S(LOCK, NA)  |\
908 		    PERF_MEM_S(TLB, NA))
909 
910 static inline void perf_sample_data_init(struct perf_sample_data *data,
911 					 u64 addr, u64 period)
912 {
913 	/* remaining struct members initialized in perf_prepare_sample() */
914 	data->addr = addr;
915 	data->raw  = NULL;
916 	data->br_stack = NULL;
917 	data->period = period;
918 	data->weight = 0;
919 	data->data_src.val = PERF_MEM_NA;
920 	data->txn = 0;
921 }
922 
923 extern void perf_output_sample(struct perf_output_handle *handle,
924 			       struct perf_event_header *header,
925 			       struct perf_sample_data *data,
926 			       struct perf_event *event);
927 extern void perf_prepare_sample(struct perf_event_header *header,
928 				struct perf_sample_data *data,
929 				struct perf_event *event,
930 				struct pt_regs *regs);
931 
932 extern int perf_event_overflow(struct perf_event *event,
933 				 struct perf_sample_data *data,
934 				 struct pt_regs *regs);
935 
936 extern void perf_event_output_forward(struct perf_event *event,
937 				     struct perf_sample_data *data,
938 				     struct pt_regs *regs);
939 extern void perf_event_output_backward(struct perf_event *event,
940 				       struct perf_sample_data *data,
941 				       struct pt_regs *regs);
942 extern void perf_event_output(struct perf_event *event,
943 			      struct perf_sample_data *data,
944 			      struct pt_regs *regs);
945 
946 static inline bool
947 is_default_overflow_handler(struct perf_event *event)
948 {
949 	if (likely(event->overflow_handler == perf_event_output_forward))
950 		return true;
951 	if (unlikely(event->overflow_handler == perf_event_output_backward))
952 		return true;
953 	return false;
954 }
955 
956 extern void
957 perf_event_header__init_id(struct perf_event_header *header,
958 			   struct perf_sample_data *data,
959 			   struct perf_event *event);
960 extern void
961 perf_event__output_id_sample(struct perf_event *event,
962 			     struct perf_output_handle *handle,
963 			     struct perf_sample_data *sample);
964 
965 extern void
966 perf_log_lost_samples(struct perf_event *event, u64 lost);
967 
968 static inline bool is_sampling_event(struct perf_event *event)
969 {
970 	return event->attr.sample_period != 0;
971 }
972 
973 /*
974  * Return 1 for a software event, 0 for a hardware event
975  */
976 static inline int is_software_event(struct perf_event *event)
977 {
978 	return event->pmu->task_ctx_nr == perf_sw_context;
979 }
980 
981 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
982 
983 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
984 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
985 
986 #ifndef perf_arch_fetch_caller_regs
987 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
988 #endif
989 
990 /*
991  * Take a snapshot of the regs. Skip ip and frame pointer to
992  * the nth caller. We only need a few of the regs:
993  * - ip for PERF_SAMPLE_IP
994  * - cs for user_mode() tests
995  * - bp for callchains
996  * - eflags, for future purposes, just in case
997  */
998 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
999 {
1000 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1001 }
1002 
1003 static __always_inline void
1004 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1005 {
1006 	if (static_key_false(&perf_swevent_enabled[event_id]))
1007 		__perf_sw_event(event_id, nr, regs, addr);
1008 }
1009 
1010 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1011 
1012 /*
1013  * 'Special' version for the scheduler, it hard assumes no recursion,
1014  * which is guaranteed by us not actually scheduling inside other swevents
1015  * because those disable preemption.
1016  */
1017 static __always_inline void
1018 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1019 {
1020 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1021 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1022 
1023 		perf_fetch_caller_regs(regs);
1024 		___perf_sw_event(event_id, nr, regs, addr);
1025 	}
1026 }
1027 
1028 extern struct static_key_false perf_sched_events;
1029 
1030 static __always_inline bool
1031 perf_sw_migrate_enabled(void)
1032 {
1033 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1034 		return true;
1035 	return false;
1036 }
1037 
1038 static inline void perf_event_task_migrate(struct task_struct *task)
1039 {
1040 	if (perf_sw_migrate_enabled())
1041 		task->sched_migrated = 1;
1042 }
1043 
1044 static inline void perf_event_task_sched_in(struct task_struct *prev,
1045 					    struct task_struct *task)
1046 {
1047 	if (static_branch_unlikely(&perf_sched_events))
1048 		__perf_event_task_sched_in(prev, task);
1049 
1050 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1051 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1052 
1053 		perf_fetch_caller_regs(regs);
1054 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1055 		task->sched_migrated = 0;
1056 	}
1057 }
1058 
1059 static inline void perf_event_task_sched_out(struct task_struct *prev,
1060 					     struct task_struct *next)
1061 {
1062 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1063 
1064 	if (static_branch_unlikely(&perf_sched_events))
1065 		__perf_event_task_sched_out(prev, next);
1066 }
1067 
1068 static inline u64 __perf_event_count(struct perf_event *event)
1069 {
1070 	return local64_read(&event->count) + atomic64_read(&event->child_count);
1071 }
1072 
1073 extern void perf_event_mmap(struct vm_area_struct *vma);
1074 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1075 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1076 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1077 
1078 extern void perf_event_exec(void);
1079 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1080 extern void perf_event_fork(struct task_struct *tsk);
1081 
1082 /* Callchains */
1083 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1084 
1085 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1086 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1087 extern struct perf_callchain_entry *
1088 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1089 		   u32 max_stack, bool crosstask, bool add_mark);
1090 extern int get_callchain_buffers(void);
1091 extern void put_callchain_buffers(void);
1092 
1093 extern int sysctl_perf_event_max_stack;
1094 extern int sysctl_perf_event_max_contexts_per_stack;
1095 
1096 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1097 {
1098 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1099 		struct perf_callchain_entry *entry = ctx->entry;
1100 		entry->ip[entry->nr++] = ip;
1101 		++ctx->contexts;
1102 		return 0;
1103 	} else {
1104 		ctx->contexts_maxed = true;
1105 		return -1; /* no more room, stop walking the stack */
1106 	}
1107 }
1108 
1109 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1110 {
1111 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1112 		struct perf_callchain_entry *entry = ctx->entry;
1113 		entry->ip[entry->nr++] = ip;
1114 		++ctx->nr;
1115 		return 0;
1116 	} else {
1117 		return -1; /* no more room, stop walking the stack */
1118 	}
1119 }
1120 
1121 extern int sysctl_perf_event_paranoid;
1122 extern int sysctl_perf_event_mlock;
1123 extern int sysctl_perf_event_sample_rate;
1124 extern int sysctl_perf_cpu_time_max_percent;
1125 
1126 extern void perf_sample_event_took(u64 sample_len_ns);
1127 
1128 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1129 		void __user *buffer, size_t *lenp,
1130 		loff_t *ppos);
1131 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1132 		void __user *buffer, size_t *lenp,
1133 		loff_t *ppos);
1134 
1135 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1136 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1137 
1138 static inline bool perf_paranoid_tracepoint_raw(void)
1139 {
1140 	return sysctl_perf_event_paranoid > -1;
1141 }
1142 
1143 static inline bool perf_paranoid_cpu(void)
1144 {
1145 	return sysctl_perf_event_paranoid > 0;
1146 }
1147 
1148 static inline bool perf_paranoid_kernel(void)
1149 {
1150 	return sysctl_perf_event_paranoid > 1;
1151 }
1152 
1153 extern void perf_event_init(void);
1154 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1155 			  int entry_size, struct pt_regs *regs,
1156 			  struct hlist_head *head, int rctx,
1157 			  struct task_struct *task);
1158 extern void perf_bp_event(struct perf_event *event, void *data);
1159 
1160 #ifndef perf_misc_flags
1161 # define perf_misc_flags(regs) \
1162 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1163 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1164 #endif
1165 
1166 static inline bool has_branch_stack(struct perf_event *event)
1167 {
1168 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1169 }
1170 
1171 static inline bool needs_branch_stack(struct perf_event *event)
1172 {
1173 	return event->attr.branch_sample_type != 0;
1174 }
1175 
1176 static inline bool has_aux(struct perf_event *event)
1177 {
1178 	return event->pmu->setup_aux;
1179 }
1180 
1181 static inline bool is_write_backward(struct perf_event *event)
1182 {
1183 	return !!event->attr.write_backward;
1184 }
1185 
1186 static inline bool has_addr_filter(struct perf_event *event)
1187 {
1188 	return event->pmu->nr_addr_filters;
1189 }
1190 
1191 /*
1192  * An inherited event uses parent's filters
1193  */
1194 static inline struct perf_addr_filters_head *
1195 perf_event_addr_filters(struct perf_event *event)
1196 {
1197 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1198 
1199 	if (event->parent)
1200 		ifh = &event->parent->addr_filters;
1201 
1202 	return ifh;
1203 }
1204 
1205 extern void perf_event_addr_filters_sync(struct perf_event *event);
1206 
1207 extern int perf_output_begin(struct perf_output_handle *handle,
1208 			     struct perf_event *event, unsigned int size);
1209 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1210 				    struct perf_event *event,
1211 				    unsigned int size);
1212 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1213 				      struct perf_event *event,
1214 				      unsigned int size);
1215 
1216 extern void perf_output_end(struct perf_output_handle *handle);
1217 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1218 			     const void *buf, unsigned int len);
1219 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1220 				     unsigned int len);
1221 extern int perf_swevent_get_recursion_context(void);
1222 extern void perf_swevent_put_recursion_context(int rctx);
1223 extern u64 perf_swevent_set_period(struct perf_event *event);
1224 extern void perf_event_enable(struct perf_event *event);
1225 extern void perf_event_disable(struct perf_event *event);
1226 extern void perf_event_disable_local(struct perf_event *event);
1227 extern void perf_event_task_tick(void);
1228 #else /* !CONFIG_PERF_EVENTS: */
1229 static inline void *
1230 perf_aux_output_begin(struct perf_output_handle *handle,
1231 		      struct perf_event *event)				{ return NULL; }
1232 static inline void
1233 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1234 		    bool truncated)					{ }
1235 static inline int
1236 perf_aux_output_skip(struct perf_output_handle *handle,
1237 		     unsigned long size)				{ return -EINVAL; }
1238 static inline void *
1239 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1240 static inline void
1241 perf_event_task_migrate(struct task_struct *task)			{ }
1242 static inline void
1243 perf_event_task_sched_in(struct task_struct *prev,
1244 			 struct task_struct *task)			{ }
1245 static inline void
1246 perf_event_task_sched_out(struct task_struct *prev,
1247 			  struct task_struct *next)			{ }
1248 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1249 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1250 static inline void perf_event_free_task(struct task_struct *task)	{ }
1251 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1252 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1253 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1254 {
1255 	return ERR_PTR(-EINVAL);
1256 }
1257 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
1258 static inline void perf_event_print_debug(void)				{ }
1259 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1260 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1261 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1262 {
1263 	return -EINVAL;
1264 }
1265 
1266 static inline void
1267 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1268 static inline void
1269 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1270 static inline void
1271 perf_bp_event(struct perf_event *event, void *data)			{ }
1272 
1273 static inline int perf_register_guest_info_callbacks
1274 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1275 static inline int perf_unregister_guest_info_callbacks
1276 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1277 
1278 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1279 static inline void perf_event_exec(void)				{ }
1280 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1281 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1282 static inline void perf_event_init(void)				{ }
1283 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1284 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1285 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1286 static inline void perf_event_enable(struct perf_event *event)		{ }
1287 static inline void perf_event_disable(struct perf_event *event)		{ }
1288 static inline int __perf_event_disable(void *info)			{ return -1; }
1289 static inline void perf_event_task_tick(void)				{ }
1290 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1291 #endif
1292 
1293 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1294 extern void perf_restore_debug_store(void);
1295 #else
1296 static inline void perf_restore_debug_store(void)			{ }
1297 #endif
1298 
1299 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1300 {
1301 	return frag->pad < sizeof(u64);
1302 }
1303 
1304 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1305 
1306 /*
1307  * This has to have a higher priority than migration_notifier in sched/core.c.
1308  */
1309 #define perf_cpu_notifier(fn)						\
1310 do {									\
1311 	static struct notifier_block fn##_nb =				\
1312 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1313 	unsigned long cpu = smp_processor_id();				\
1314 	unsigned long flags;						\
1315 									\
1316 	cpu_notifier_register_begin();					\
1317 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1318 		(void *)(unsigned long)cpu);				\
1319 	local_irq_save(flags);						\
1320 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1321 		(void *)(unsigned long)cpu);				\
1322 	local_irq_restore(flags);					\
1323 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1324 		(void *)(unsigned long)cpu);				\
1325 	__register_cpu_notifier(&fn##_nb);				\
1326 	cpu_notifier_register_done();					\
1327 } while (0)
1328 
1329 /*
1330  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1331  * callback for already online CPUs.
1332  */
1333 #define __perf_cpu_notifier(fn)						\
1334 do {									\
1335 	static struct notifier_block fn##_nb =				\
1336 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1337 									\
1338 	__register_cpu_notifier(&fn##_nb);				\
1339 } while (0)
1340 
1341 struct perf_pmu_events_attr {
1342 	struct device_attribute attr;
1343 	u64 id;
1344 	const char *event_str;
1345 };
1346 
1347 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1348 			      char *page);
1349 
1350 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1351 static struct perf_pmu_events_attr _var = {				\
1352 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1353 	.id   =  _id,							\
1354 };
1355 
1356 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1357 static struct perf_pmu_events_attr _var = {				    \
1358 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1359 	.id		= 0,						    \
1360 	.event_str	= _str,						    \
1361 };
1362 
1363 #define PMU_FORMAT_ATTR(_name, _format)					\
1364 static ssize_t								\
1365 _name##_show(struct device *dev,					\
1366 			       struct device_attribute *attr,		\
1367 			       char *page)				\
1368 {									\
1369 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1370 	return sprintf(page, _format "\n");				\
1371 }									\
1372 									\
1373 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1374 
1375 #endif /* _LINUX_PERF_EVENT_H */
1376