1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 19 /* 20 * Kernel-internal data types and definitions: 21 */ 22 23 #ifdef CONFIG_PERF_EVENTS 24 # include <asm/perf_event.h> 25 # include <asm/local64.h> 26 #endif 27 28 struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32 }; 33 34 #ifdef CONFIG_HAVE_HW_BREAKPOINT 35 #include <asm/hw_breakpoint.h> 36 #endif 37 38 #include <linux/list.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/rcupdate.h> 42 #include <linux/spinlock.h> 43 #include <linux/hrtimer.h> 44 #include <linux/fs.h> 45 #include <linux/pid_namespace.h> 46 #include <linux/workqueue.h> 47 #include <linux/ftrace.h> 48 #include <linux/cpu.h> 49 #include <linux/irq_work.h> 50 #include <linux/static_key.h> 51 #include <linux/jump_label_ratelimit.h> 52 #include <linux/atomic.h> 53 #include <linux/sysfs.h> 54 #include <linux/perf_regs.h> 55 #include <linux/workqueue.h> 56 #include <linux/cgroup.h> 57 #include <asm/local.h> 58 59 struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[PERF_MAX_STACK_DEPTH]; 62 }; 63 64 struct perf_raw_record { 65 u32 size; 66 void *data; 67 }; 68 69 /* 70 * branch stack layout: 71 * nr: number of taken branches stored in entries[] 72 * 73 * Note that nr can vary from sample to sample 74 * branches (to, from) are stored from most recent 75 * to least recent, i.e., entries[0] contains the most 76 * recent branch. 77 */ 78 struct perf_branch_stack { 79 __u64 nr; 80 struct perf_branch_entry entries[0]; 81 }; 82 83 struct task_struct; 84 85 /* 86 * extra PMU register associated with an event 87 */ 88 struct hw_perf_event_extra { 89 u64 config; /* register value */ 90 unsigned int reg; /* register address or index */ 91 int alloc; /* extra register already allocated */ 92 int idx; /* index in shared_regs->regs[] */ 93 }; 94 95 /** 96 * struct hw_perf_event - performance event hardware details: 97 */ 98 struct hw_perf_event { 99 #ifdef CONFIG_PERF_EVENTS 100 union { 101 struct { /* hardware */ 102 u64 config; 103 u64 last_tag; 104 unsigned long config_base; 105 unsigned long event_base; 106 int event_base_rdpmc; 107 int idx; 108 int last_cpu; 109 int flags; 110 111 struct hw_perf_event_extra extra_reg; 112 struct hw_perf_event_extra branch_reg; 113 }; 114 struct { /* software */ 115 struct hrtimer hrtimer; 116 }; 117 struct { /* tracepoint */ 118 /* for tp_event->class */ 119 struct list_head tp_list; 120 }; 121 struct { /* intel_cqm */ 122 int cqm_state; 123 u32 cqm_rmid; 124 struct list_head cqm_events_entry; 125 struct list_head cqm_groups_entry; 126 struct list_head cqm_group_entry; 127 }; 128 struct { /* itrace */ 129 int itrace_started; 130 }; 131 #ifdef CONFIG_HAVE_HW_BREAKPOINT 132 struct { /* breakpoint */ 133 /* 134 * Crufty hack to avoid the chicken and egg 135 * problem hw_breakpoint has with context 136 * creation and event initalization. 137 */ 138 struct arch_hw_breakpoint info; 139 struct list_head bp_list; 140 }; 141 #endif 142 }; 143 struct task_struct *target; 144 int state; 145 local64_t prev_count; 146 u64 sample_period; 147 u64 last_period; 148 local64_t period_left; 149 u64 interrupts_seq; 150 u64 interrupts; 151 152 u64 freq_time_stamp; 153 u64 freq_count_stamp; 154 #endif 155 }; 156 157 /* 158 * hw_perf_event::state flags 159 */ 160 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 161 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 162 #define PERF_HES_ARCH 0x04 163 164 struct perf_event; 165 166 /* 167 * Common implementation detail of pmu::{start,commit,cancel}_txn 168 */ 169 #define PERF_EVENT_TXN 0x1 170 171 /** 172 * pmu::capabilities flags 173 */ 174 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 175 #define PERF_PMU_CAP_NO_NMI 0x02 176 #define PERF_PMU_CAP_AUX_NO_SG 0x04 177 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 178 #define PERF_PMU_CAP_EXCLUSIVE 0x10 179 #define PERF_PMU_CAP_ITRACE 0x20 180 181 /** 182 * struct pmu - generic performance monitoring unit 183 */ 184 struct pmu { 185 struct list_head entry; 186 187 struct module *module; 188 struct device *dev; 189 const struct attribute_group **attr_groups; 190 const char *name; 191 int type; 192 193 /* 194 * various common per-pmu feature flags 195 */ 196 int capabilities; 197 198 int * __percpu pmu_disable_count; 199 struct perf_cpu_context * __percpu pmu_cpu_context; 200 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 201 int task_ctx_nr; 202 int hrtimer_interval_ms; 203 204 /* 205 * Fully disable/enable this PMU, can be used to protect from the PMI 206 * as well as for lazy/batch writing of the MSRs. 207 */ 208 void (*pmu_enable) (struct pmu *pmu); /* optional */ 209 void (*pmu_disable) (struct pmu *pmu); /* optional */ 210 211 /* 212 * Try and initialize the event for this PMU. 213 * Should return -ENOENT when the @event doesn't match this PMU. 214 */ 215 int (*event_init) (struct perf_event *event); 216 217 /* 218 * Notification that the event was mapped or unmapped. Called 219 * in the context of the mapping task. 220 */ 221 void (*event_mapped) (struct perf_event *event); /*optional*/ 222 void (*event_unmapped) (struct perf_event *event); /*optional*/ 223 224 #define PERF_EF_START 0x01 /* start the counter when adding */ 225 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 226 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 227 228 /* 229 * Adds/Removes a counter to/from the PMU, can be done inside 230 * a transaction, see the ->*_txn() methods. 231 */ 232 int (*add) (struct perf_event *event, int flags); 233 void (*del) (struct perf_event *event, int flags); 234 235 /* 236 * Starts/Stops a counter present on the PMU. The PMI handler 237 * should stop the counter when perf_event_overflow() returns 238 * !0. ->start() will be used to continue. 239 */ 240 void (*start) (struct perf_event *event, int flags); 241 void (*stop) (struct perf_event *event, int flags); 242 243 /* 244 * Updates the counter value of the event. 245 */ 246 void (*read) (struct perf_event *event); 247 248 /* 249 * Group events scheduling is treated as a transaction, add 250 * group events as a whole and perform one schedulability test. 251 * If the test fails, roll back the whole group 252 * 253 * Start the transaction, after this ->add() doesn't need to 254 * do schedulability tests. 255 */ 256 void (*start_txn) (struct pmu *pmu); /* optional */ 257 /* 258 * If ->start_txn() disabled the ->add() schedulability test 259 * then ->commit_txn() is required to perform one. On success 260 * the transaction is closed. On error the transaction is kept 261 * open until ->cancel_txn() is called. 262 */ 263 int (*commit_txn) (struct pmu *pmu); /* optional */ 264 /* 265 * Will cancel the transaction, assumes ->del() is called 266 * for each successful ->add() during the transaction. 267 */ 268 void (*cancel_txn) (struct pmu *pmu); /* optional */ 269 270 /* 271 * Will return the value for perf_event_mmap_page::index for this event, 272 * if no implementation is provided it will default to: event->hw.idx + 1. 273 */ 274 int (*event_idx) (struct perf_event *event); /*optional */ 275 276 /* 277 * context-switches callback 278 */ 279 void (*sched_task) (struct perf_event_context *ctx, 280 bool sched_in); 281 /* 282 * PMU specific data size 283 */ 284 size_t task_ctx_size; 285 286 287 /* 288 * Return the count value for a counter. 289 */ 290 u64 (*count) (struct perf_event *event); /*optional*/ 291 292 /* 293 * Set up pmu-private data structures for an AUX area 294 */ 295 void *(*setup_aux) (int cpu, void **pages, 296 int nr_pages, bool overwrite); 297 /* optional */ 298 299 /* 300 * Free pmu-private AUX data structures 301 */ 302 void (*free_aux) (void *aux); /* optional */ 303 }; 304 305 /** 306 * enum perf_event_active_state - the states of a event 307 */ 308 enum perf_event_active_state { 309 PERF_EVENT_STATE_EXIT = -3, 310 PERF_EVENT_STATE_ERROR = -2, 311 PERF_EVENT_STATE_OFF = -1, 312 PERF_EVENT_STATE_INACTIVE = 0, 313 PERF_EVENT_STATE_ACTIVE = 1, 314 }; 315 316 struct file; 317 struct perf_sample_data; 318 319 typedef void (*perf_overflow_handler_t)(struct perf_event *, 320 struct perf_sample_data *, 321 struct pt_regs *regs); 322 323 enum perf_group_flag { 324 PERF_GROUP_SOFTWARE = 0x1, 325 }; 326 327 #define SWEVENT_HLIST_BITS 8 328 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 329 330 struct swevent_hlist { 331 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 332 struct rcu_head rcu_head; 333 }; 334 335 #define PERF_ATTACH_CONTEXT 0x01 336 #define PERF_ATTACH_GROUP 0x02 337 #define PERF_ATTACH_TASK 0x04 338 #define PERF_ATTACH_TASK_DATA 0x08 339 340 struct perf_cgroup; 341 struct ring_buffer; 342 343 /** 344 * struct perf_event - performance event kernel representation: 345 */ 346 struct perf_event { 347 #ifdef CONFIG_PERF_EVENTS 348 /* 349 * entry onto perf_event_context::event_list; 350 * modifications require ctx->lock 351 * RCU safe iterations. 352 */ 353 struct list_head event_entry; 354 355 /* 356 * XXX: group_entry and sibling_list should be mutually exclusive; 357 * either you're a sibling on a group, or you're the group leader. 358 * Rework the code to always use the same list element. 359 * 360 * Locked for modification by both ctx->mutex and ctx->lock; holding 361 * either sufficies for read. 362 */ 363 struct list_head group_entry; 364 struct list_head sibling_list; 365 366 /* 367 * We need storage to track the entries in perf_pmu_migrate_context; we 368 * cannot use the event_entry because of RCU and we want to keep the 369 * group in tact which avoids us using the other two entries. 370 */ 371 struct list_head migrate_entry; 372 373 struct hlist_node hlist_entry; 374 struct list_head active_entry; 375 int nr_siblings; 376 int group_flags; 377 struct perf_event *group_leader; 378 struct pmu *pmu; 379 380 enum perf_event_active_state state; 381 unsigned int attach_state; 382 local64_t count; 383 atomic64_t child_count; 384 385 /* 386 * These are the total time in nanoseconds that the event 387 * has been enabled (i.e. eligible to run, and the task has 388 * been scheduled in, if this is a per-task event) 389 * and running (scheduled onto the CPU), respectively. 390 * 391 * They are computed from tstamp_enabled, tstamp_running and 392 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 393 */ 394 u64 total_time_enabled; 395 u64 total_time_running; 396 397 /* 398 * These are timestamps used for computing total_time_enabled 399 * and total_time_running when the event is in INACTIVE or 400 * ACTIVE state, measured in nanoseconds from an arbitrary point 401 * in time. 402 * tstamp_enabled: the notional time when the event was enabled 403 * tstamp_running: the notional time when the event was scheduled on 404 * tstamp_stopped: in INACTIVE state, the notional time when the 405 * event was scheduled off. 406 */ 407 u64 tstamp_enabled; 408 u64 tstamp_running; 409 u64 tstamp_stopped; 410 411 /* 412 * timestamp shadows the actual context timing but it can 413 * be safely used in NMI interrupt context. It reflects the 414 * context time as it was when the event was last scheduled in. 415 * 416 * ctx_time already accounts for ctx->timestamp. Therefore to 417 * compute ctx_time for a sample, simply add perf_clock(). 418 */ 419 u64 shadow_ctx_time; 420 421 struct perf_event_attr attr; 422 u16 header_size; 423 u16 id_header_size; 424 u16 read_size; 425 struct hw_perf_event hw; 426 427 struct perf_event_context *ctx; 428 atomic_long_t refcount; 429 430 /* 431 * These accumulate total time (in nanoseconds) that children 432 * events have been enabled and running, respectively. 433 */ 434 atomic64_t child_total_time_enabled; 435 atomic64_t child_total_time_running; 436 437 /* 438 * Protect attach/detach and child_list: 439 */ 440 struct mutex child_mutex; 441 struct list_head child_list; 442 struct perf_event *parent; 443 444 int oncpu; 445 int cpu; 446 447 struct list_head owner_entry; 448 struct task_struct *owner; 449 450 /* mmap bits */ 451 struct mutex mmap_mutex; 452 atomic_t mmap_count; 453 454 struct ring_buffer *rb; 455 struct list_head rb_entry; 456 unsigned long rcu_batches; 457 int rcu_pending; 458 459 /* poll related */ 460 wait_queue_head_t waitq; 461 struct fasync_struct *fasync; 462 463 /* delayed work for NMIs and such */ 464 int pending_wakeup; 465 int pending_kill; 466 int pending_disable; 467 struct irq_work pending; 468 469 atomic_t event_limit; 470 471 void (*destroy)(struct perf_event *); 472 struct rcu_head rcu_head; 473 474 struct pid_namespace *ns; 475 u64 id; 476 477 u64 (*clock)(void); 478 perf_overflow_handler_t overflow_handler; 479 void *overflow_handler_context; 480 481 #ifdef CONFIG_EVENT_TRACING 482 struct ftrace_event_call *tp_event; 483 struct event_filter *filter; 484 #ifdef CONFIG_FUNCTION_TRACER 485 struct ftrace_ops ftrace_ops; 486 #endif 487 #endif 488 489 #ifdef CONFIG_CGROUP_PERF 490 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 491 int cgrp_defer_enabled; 492 #endif 493 494 #endif /* CONFIG_PERF_EVENTS */ 495 }; 496 497 /** 498 * struct perf_event_context - event context structure 499 * 500 * Used as a container for task events and CPU events as well: 501 */ 502 struct perf_event_context { 503 struct pmu *pmu; 504 /* 505 * Protect the states of the events in the list, 506 * nr_active, and the list: 507 */ 508 raw_spinlock_t lock; 509 /* 510 * Protect the list of events. Locking either mutex or lock 511 * is sufficient to ensure the list doesn't change; to change 512 * the list you need to lock both the mutex and the spinlock. 513 */ 514 struct mutex mutex; 515 516 struct list_head active_ctx_list; 517 struct list_head pinned_groups; 518 struct list_head flexible_groups; 519 struct list_head event_list; 520 int nr_events; 521 int nr_active; 522 int is_active; 523 int nr_stat; 524 int nr_freq; 525 int rotate_disable; 526 atomic_t refcount; 527 struct task_struct *task; 528 529 /* 530 * Context clock, runs when context enabled. 531 */ 532 u64 time; 533 u64 timestamp; 534 535 /* 536 * These fields let us detect when two contexts have both 537 * been cloned (inherited) from a common ancestor. 538 */ 539 struct perf_event_context *parent_ctx; 540 u64 parent_gen; 541 u64 generation; 542 int pin_count; 543 int nr_cgroups; /* cgroup evts */ 544 void *task_ctx_data; /* pmu specific data */ 545 struct rcu_head rcu_head; 546 547 struct delayed_work orphans_remove; 548 bool orphans_remove_sched; 549 }; 550 551 /* 552 * Number of contexts where an event can trigger: 553 * task, softirq, hardirq, nmi. 554 */ 555 #define PERF_NR_CONTEXTS 4 556 557 /** 558 * struct perf_event_cpu_context - per cpu event context structure 559 */ 560 struct perf_cpu_context { 561 struct perf_event_context ctx; 562 struct perf_event_context *task_ctx; 563 int active_oncpu; 564 int exclusive; 565 struct hrtimer hrtimer; 566 ktime_t hrtimer_interval; 567 struct pmu *unique_pmu; 568 struct perf_cgroup *cgrp; 569 }; 570 571 struct perf_output_handle { 572 struct perf_event *event; 573 struct ring_buffer *rb; 574 unsigned long wakeup; 575 unsigned long size; 576 union { 577 void *addr; 578 unsigned long head; 579 }; 580 int page; 581 }; 582 583 #ifdef CONFIG_CGROUP_PERF 584 585 /* 586 * perf_cgroup_info keeps track of time_enabled for a cgroup. 587 * This is a per-cpu dynamically allocated data structure. 588 */ 589 struct perf_cgroup_info { 590 u64 time; 591 u64 timestamp; 592 }; 593 594 struct perf_cgroup { 595 struct cgroup_subsys_state css; 596 struct perf_cgroup_info __percpu *info; 597 }; 598 599 /* 600 * Must ensure cgroup is pinned (css_get) before calling 601 * this function. In other words, we cannot call this function 602 * if there is no cgroup event for the current CPU context. 603 */ 604 static inline struct perf_cgroup * 605 perf_cgroup_from_task(struct task_struct *task) 606 { 607 return container_of(task_css(task, perf_event_cgrp_id), 608 struct perf_cgroup, css); 609 } 610 #endif /* CONFIG_CGROUP_PERF */ 611 612 #ifdef CONFIG_PERF_EVENTS 613 614 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 615 struct perf_event *event); 616 extern void perf_aux_output_end(struct perf_output_handle *handle, 617 unsigned long size, bool truncated); 618 extern int perf_aux_output_skip(struct perf_output_handle *handle, 619 unsigned long size); 620 extern void *perf_get_aux(struct perf_output_handle *handle); 621 622 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 623 extern void perf_pmu_unregister(struct pmu *pmu); 624 625 extern int perf_num_counters(void); 626 extern const char *perf_pmu_name(void); 627 extern void __perf_event_task_sched_in(struct task_struct *prev, 628 struct task_struct *task); 629 extern void __perf_event_task_sched_out(struct task_struct *prev, 630 struct task_struct *next); 631 extern int perf_event_init_task(struct task_struct *child); 632 extern void perf_event_exit_task(struct task_struct *child); 633 extern void perf_event_free_task(struct task_struct *task); 634 extern void perf_event_delayed_put(struct task_struct *task); 635 extern void perf_event_print_debug(void); 636 extern void perf_pmu_disable(struct pmu *pmu); 637 extern void perf_pmu_enable(struct pmu *pmu); 638 extern void perf_sched_cb_dec(struct pmu *pmu); 639 extern void perf_sched_cb_inc(struct pmu *pmu); 640 extern int perf_event_task_disable(void); 641 extern int perf_event_task_enable(void); 642 extern int perf_event_refresh(struct perf_event *event, int refresh); 643 extern void perf_event_update_userpage(struct perf_event *event); 644 extern int perf_event_release_kernel(struct perf_event *event); 645 extern struct perf_event * 646 perf_event_create_kernel_counter(struct perf_event_attr *attr, 647 int cpu, 648 struct task_struct *task, 649 perf_overflow_handler_t callback, 650 void *context); 651 extern void perf_pmu_migrate_context(struct pmu *pmu, 652 int src_cpu, int dst_cpu); 653 extern u64 perf_event_read_value(struct perf_event *event, 654 u64 *enabled, u64 *running); 655 656 657 struct perf_sample_data { 658 /* 659 * Fields set by perf_sample_data_init(), group so as to 660 * minimize the cachelines touched. 661 */ 662 u64 addr; 663 struct perf_raw_record *raw; 664 struct perf_branch_stack *br_stack; 665 u64 period; 666 u64 weight; 667 u64 txn; 668 union perf_mem_data_src data_src; 669 670 /* 671 * The other fields, optionally {set,used} by 672 * perf_{prepare,output}_sample(). 673 */ 674 u64 type; 675 u64 ip; 676 struct { 677 u32 pid; 678 u32 tid; 679 } tid_entry; 680 u64 time; 681 u64 id; 682 u64 stream_id; 683 struct { 684 u32 cpu; 685 u32 reserved; 686 } cpu_entry; 687 struct perf_callchain_entry *callchain; 688 689 /* 690 * regs_user may point to task_pt_regs or to regs_user_copy, depending 691 * on arch details. 692 */ 693 struct perf_regs regs_user; 694 struct pt_regs regs_user_copy; 695 696 struct perf_regs regs_intr; 697 u64 stack_user_size; 698 } ____cacheline_aligned; 699 700 /* default value for data source */ 701 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 702 PERF_MEM_S(LVL, NA) |\ 703 PERF_MEM_S(SNOOP, NA) |\ 704 PERF_MEM_S(LOCK, NA) |\ 705 PERF_MEM_S(TLB, NA)) 706 707 static inline void perf_sample_data_init(struct perf_sample_data *data, 708 u64 addr, u64 period) 709 { 710 /* remaining struct members initialized in perf_prepare_sample() */ 711 data->addr = addr; 712 data->raw = NULL; 713 data->br_stack = NULL; 714 data->period = period; 715 data->weight = 0; 716 data->data_src.val = PERF_MEM_NA; 717 data->txn = 0; 718 } 719 720 extern void perf_output_sample(struct perf_output_handle *handle, 721 struct perf_event_header *header, 722 struct perf_sample_data *data, 723 struct perf_event *event); 724 extern void perf_prepare_sample(struct perf_event_header *header, 725 struct perf_sample_data *data, 726 struct perf_event *event, 727 struct pt_regs *regs); 728 729 extern int perf_event_overflow(struct perf_event *event, 730 struct perf_sample_data *data, 731 struct pt_regs *regs); 732 733 static inline bool is_sampling_event(struct perf_event *event) 734 { 735 return event->attr.sample_period != 0; 736 } 737 738 /* 739 * Return 1 for a software event, 0 for a hardware event 740 */ 741 static inline int is_software_event(struct perf_event *event) 742 { 743 return event->pmu->task_ctx_nr == perf_sw_context; 744 } 745 746 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 747 748 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 749 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 750 751 #ifndef perf_arch_fetch_caller_regs 752 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 753 #endif 754 755 /* 756 * Take a snapshot of the regs. Skip ip and frame pointer to 757 * the nth caller. We only need a few of the regs: 758 * - ip for PERF_SAMPLE_IP 759 * - cs for user_mode() tests 760 * - bp for callchains 761 * - eflags, for future purposes, just in case 762 */ 763 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 764 { 765 memset(regs, 0, sizeof(*regs)); 766 767 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 768 } 769 770 static __always_inline void 771 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 772 { 773 if (static_key_false(&perf_swevent_enabled[event_id])) 774 __perf_sw_event(event_id, nr, regs, addr); 775 } 776 777 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 778 779 /* 780 * 'Special' version for the scheduler, it hard assumes no recursion, 781 * which is guaranteed by us not actually scheduling inside other swevents 782 * because those disable preemption. 783 */ 784 static __always_inline void 785 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 786 { 787 if (static_key_false(&perf_swevent_enabled[event_id])) { 788 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 789 790 perf_fetch_caller_regs(regs); 791 ___perf_sw_event(event_id, nr, regs, addr); 792 } 793 } 794 795 extern struct static_key_deferred perf_sched_events; 796 797 static __always_inline bool 798 perf_sw_migrate_enabled(void) 799 { 800 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 801 return true; 802 return false; 803 } 804 805 static inline void perf_event_task_migrate(struct task_struct *task) 806 { 807 if (perf_sw_migrate_enabled()) 808 task->sched_migrated = 1; 809 } 810 811 static inline void perf_event_task_sched_in(struct task_struct *prev, 812 struct task_struct *task) 813 { 814 if (static_key_false(&perf_sched_events.key)) 815 __perf_event_task_sched_in(prev, task); 816 817 if (perf_sw_migrate_enabled() && task->sched_migrated) { 818 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 819 820 perf_fetch_caller_regs(regs); 821 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 822 task->sched_migrated = 0; 823 } 824 } 825 826 static inline void perf_event_task_sched_out(struct task_struct *prev, 827 struct task_struct *next) 828 { 829 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 830 831 if (static_key_false(&perf_sched_events.key)) 832 __perf_event_task_sched_out(prev, next); 833 } 834 835 static inline u64 __perf_event_count(struct perf_event *event) 836 { 837 return local64_read(&event->count) + atomic64_read(&event->child_count); 838 } 839 840 extern void perf_event_mmap(struct vm_area_struct *vma); 841 extern struct perf_guest_info_callbacks *perf_guest_cbs; 842 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 843 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 844 845 extern void perf_event_exec(void); 846 extern void perf_event_comm(struct task_struct *tsk, bool exec); 847 extern void perf_event_fork(struct task_struct *tsk); 848 849 /* Callchains */ 850 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 851 852 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 853 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 854 855 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 856 { 857 if (entry->nr < PERF_MAX_STACK_DEPTH) 858 entry->ip[entry->nr++] = ip; 859 } 860 861 extern int sysctl_perf_event_paranoid; 862 extern int sysctl_perf_event_mlock; 863 extern int sysctl_perf_event_sample_rate; 864 extern int sysctl_perf_cpu_time_max_percent; 865 866 extern void perf_sample_event_took(u64 sample_len_ns); 867 868 extern int perf_proc_update_handler(struct ctl_table *table, int write, 869 void __user *buffer, size_t *lenp, 870 loff_t *ppos); 871 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 872 void __user *buffer, size_t *lenp, 873 loff_t *ppos); 874 875 876 static inline bool perf_paranoid_tracepoint_raw(void) 877 { 878 return sysctl_perf_event_paranoid > -1; 879 } 880 881 static inline bool perf_paranoid_cpu(void) 882 { 883 return sysctl_perf_event_paranoid > 0; 884 } 885 886 static inline bool perf_paranoid_kernel(void) 887 { 888 return sysctl_perf_event_paranoid > 1; 889 } 890 891 extern void perf_event_init(void); 892 extern void perf_tp_event(u64 addr, u64 count, void *record, 893 int entry_size, struct pt_regs *regs, 894 struct hlist_head *head, int rctx, 895 struct task_struct *task); 896 extern void perf_bp_event(struct perf_event *event, void *data); 897 898 #ifndef perf_misc_flags 899 # define perf_misc_flags(regs) \ 900 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 901 # define perf_instruction_pointer(regs) instruction_pointer(regs) 902 #endif 903 904 static inline bool has_branch_stack(struct perf_event *event) 905 { 906 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 907 } 908 909 static inline bool needs_branch_stack(struct perf_event *event) 910 { 911 return event->attr.branch_sample_type != 0; 912 } 913 914 static inline bool has_aux(struct perf_event *event) 915 { 916 return event->pmu->setup_aux; 917 } 918 919 extern int perf_output_begin(struct perf_output_handle *handle, 920 struct perf_event *event, unsigned int size); 921 extern void perf_output_end(struct perf_output_handle *handle); 922 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 923 const void *buf, unsigned int len); 924 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 925 unsigned int len); 926 extern int perf_swevent_get_recursion_context(void); 927 extern void perf_swevent_put_recursion_context(int rctx); 928 extern u64 perf_swevent_set_period(struct perf_event *event); 929 extern void perf_event_enable(struct perf_event *event); 930 extern void perf_event_disable(struct perf_event *event); 931 extern int __perf_event_disable(void *info); 932 extern void perf_event_task_tick(void); 933 #else /* !CONFIG_PERF_EVENTS: */ 934 static inline void * 935 perf_aux_output_begin(struct perf_output_handle *handle, 936 struct perf_event *event) { return NULL; } 937 static inline void 938 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 939 bool truncated) { } 940 static inline int 941 perf_aux_output_skip(struct perf_output_handle *handle, 942 unsigned long size) { return -EINVAL; } 943 static inline void * 944 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 945 static inline void 946 perf_event_task_migrate(struct task_struct *task) { } 947 static inline void 948 perf_event_task_sched_in(struct task_struct *prev, 949 struct task_struct *task) { } 950 static inline void 951 perf_event_task_sched_out(struct task_struct *prev, 952 struct task_struct *next) { } 953 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 954 static inline void perf_event_exit_task(struct task_struct *child) { } 955 static inline void perf_event_free_task(struct task_struct *task) { } 956 static inline void perf_event_delayed_put(struct task_struct *task) { } 957 static inline void perf_event_print_debug(void) { } 958 static inline int perf_event_task_disable(void) { return -EINVAL; } 959 static inline int perf_event_task_enable(void) { return -EINVAL; } 960 static inline int perf_event_refresh(struct perf_event *event, int refresh) 961 { 962 return -EINVAL; 963 } 964 965 static inline void 966 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 967 static inline void 968 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 969 static inline void 970 perf_bp_event(struct perf_event *event, void *data) { } 971 972 static inline int perf_register_guest_info_callbacks 973 (struct perf_guest_info_callbacks *callbacks) { return 0; } 974 static inline int perf_unregister_guest_info_callbacks 975 (struct perf_guest_info_callbacks *callbacks) { return 0; } 976 977 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 978 static inline void perf_event_exec(void) { } 979 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 980 static inline void perf_event_fork(struct task_struct *tsk) { } 981 static inline void perf_event_init(void) { } 982 static inline int perf_swevent_get_recursion_context(void) { return -1; } 983 static inline void perf_swevent_put_recursion_context(int rctx) { } 984 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 985 static inline void perf_event_enable(struct perf_event *event) { } 986 static inline void perf_event_disable(struct perf_event *event) { } 987 static inline int __perf_event_disable(void *info) { return -1; } 988 static inline void perf_event_task_tick(void) { } 989 #endif 990 991 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 992 extern bool perf_event_can_stop_tick(void); 993 #else 994 static inline bool perf_event_can_stop_tick(void) { return true; } 995 #endif 996 997 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 998 extern void perf_restore_debug_store(void); 999 #else 1000 static inline void perf_restore_debug_store(void) { } 1001 #endif 1002 1003 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1004 1005 /* 1006 * This has to have a higher priority than migration_notifier in sched/core.c. 1007 */ 1008 #define perf_cpu_notifier(fn) \ 1009 do { \ 1010 static struct notifier_block fn##_nb = \ 1011 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1012 unsigned long cpu = smp_processor_id(); \ 1013 unsigned long flags; \ 1014 \ 1015 cpu_notifier_register_begin(); \ 1016 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1017 (void *)(unsigned long)cpu); \ 1018 local_irq_save(flags); \ 1019 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1020 (void *)(unsigned long)cpu); \ 1021 local_irq_restore(flags); \ 1022 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1023 (void *)(unsigned long)cpu); \ 1024 __register_cpu_notifier(&fn##_nb); \ 1025 cpu_notifier_register_done(); \ 1026 } while (0) 1027 1028 /* 1029 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 1030 * callback for already online CPUs. 1031 */ 1032 #define __perf_cpu_notifier(fn) \ 1033 do { \ 1034 static struct notifier_block fn##_nb = \ 1035 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1036 \ 1037 __register_cpu_notifier(&fn##_nb); \ 1038 } while (0) 1039 1040 struct perf_pmu_events_attr { 1041 struct device_attribute attr; 1042 u64 id; 1043 const char *event_str; 1044 }; 1045 1046 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1047 char *page); 1048 1049 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1050 static struct perf_pmu_events_attr _var = { \ 1051 .attr = __ATTR(_name, 0444, _show, NULL), \ 1052 .id = _id, \ 1053 }; 1054 1055 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1056 static struct perf_pmu_events_attr _var = { \ 1057 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1058 .id = 0, \ 1059 .event_str = _str, \ 1060 }; 1061 1062 #define PMU_FORMAT_ATTR(_name, _format) \ 1063 static ssize_t \ 1064 _name##_show(struct device *dev, \ 1065 struct device_attribute *attr, \ 1066 char *page) \ 1067 { \ 1068 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1069 return sprintf(page, _format "\n"); \ 1070 } \ 1071 \ 1072 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1073 1074 #endif /* _LINUX_PERF_EVENT_H */ 1075