1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/jump_label_ratelimit.h> 53 #include <linux/atomic.h> 54 #include <linux/sysfs.h> 55 #include <linux/perf_regs.h> 56 #include <linux/cgroup.h> 57 #include <linux/refcount.h> 58 #include <asm/local.h> 59 60 struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63 }; 64 65 struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71 }; 72 73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76 struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84 } __packed; 85 86 struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89 }; 90 91 /* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100 struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147 #ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157 #endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181 /* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186 #define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226 #endif 227 }; 228 229 struct perf_event; 230 231 /* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237 /** 238 * pmu::capabilities flags 239 */ 240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 241 #define PERF_PMU_CAP_NO_NMI 0x02 242 #define PERF_PMU_CAP_AUX_NO_SG 0x04 243 #define PERF_PMU_CAP_EXCLUSIVE 0x10 244 #define PERF_PMU_CAP_ITRACE 0x20 245 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 246 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 247 248 /** 249 * struct pmu - generic performance monitoring unit 250 */ 251 struct pmu { 252 struct list_head entry; 253 254 struct module *module; 255 struct device *dev; 256 const struct attribute_group **attr_groups; 257 const char *name; 258 int type; 259 260 /* 261 * various common per-pmu feature flags 262 */ 263 int capabilities; 264 265 int __percpu *pmu_disable_count; 266 struct perf_cpu_context __percpu *pmu_cpu_context; 267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 268 int task_ctx_nr; 269 int hrtimer_interval_ms; 270 271 /* number of address filters this PMU can do */ 272 unsigned int nr_addr_filters; 273 274 /* 275 * Fully disable/enable this PMU, can be used to protect from the PMI 276 * as well as for lazy/batch writing of the MSRs. 277 */ 278 void (*pmu_enable) (struct pmu *pmu); /* optional */ 279 void (*pmu_disable) (struct pmu *pmu); /* optional */ 280 281 /* 282 * Try and initialize the event for this PMU. 283 * 284 * Returns: 285 * -ENOENT -- @event is not for this PMU 286 * 287 * -ENODEV -- @event is for this PMU but PMU not present 288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 289 * -EINVAL -- @event is for this PMU but @event is not valid 290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 292 * 293 * 0 -- @event is for this PMU and valid 294 * 295 * Other error return values are allowed. 296 */ 297 int (*event_init) (struct perf_event *event); 298 299 /* 300 * Notification that the event was mapped or unmapped. Called 301 * in the context of the mapping task. 302 */ 303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 306 /* 307 * Flags for ->add()/->del()/ ->start()/->stop(). There are 308 * matching hw_perf_event::state flags. 309 */ 310 #define PERF_EF_START 0x01 /* start the counter when adding */ 311 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 312 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 313 314 /* 315 * Adds/Removes a counter to/from the PMU, can be done inside a 316 * transaction, see the ->*_txn() methods. 317 * 318 * The add/del callbacks will reserve all hardware resources required 319 * to service the event, this includes any counter constraint 320 * scheduling etc. 321 * 322 * Called with IRQs disabled and the PMU disabled on the CPU the event 323 * is on. 324 * 325 * ->add() called without PERF_EF_START should result in the same state 326 * as ->add() followed by ->stop(). 327 * 328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 329 * ->stop() that must deal with already being stopped without 330 * PERF_EF_UPDATE. 331 */ 332 int (*add) (struct perf_event *event, int flags); 333 void (*del) (struct perf_event *event, int flags); 334 335 /* 336 * Starts/Stops a counter present on the PMU. 337 * 338 * The PMI handler should stop the counter when perf_event_overflow() 339 * returns !0. ->start() will be used to continue. 340 * 341 * Also used to change the sample period. 342 * 343 * Called with IRQs disabled and the PMU disabled on the CPU the event 344 * is on -- will be called from NMI context with the PMU generates 345 * NMIs. 346 * 347 * ->stop() with PERF_EF_UPDATE will read the counter and update 348 * period/count values like ->read() would. 349 * 350 * ->start() with PERF_EF_RELOAD will reprogram the the counter 351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 352 */ 353 void (*start) (struct perf_event *event, int flags); 354 void (*stop) (struct perf_event *event, int flags); 355 356 /* 357 * Updates the counter value of the event. 358 * 359 * For sampling capable PMUs this will also update the software period 360 * hw_perf_event::period_left field. 361 */ 362 void (*read) (struct perf_event *event); 363 364 /* 365 * Group events scheduling is treated as a transaction, add 366 * group events as a whole and perform one schedulability test. 367 * If the test fails, roll back the whole group 368 * 369 * Start the transaction, after this ->add() doesn't need to 370 * do schedulability tests. 371 * 372 * Optional. 373 */ 374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 375 /* 376 * If ->start_txn() disabled the ->add() schedulability test 377 * then ->commit_txn() is required to perform one. On success 378 * the transaction is closed. On error the transaction is kept 379 * open until ->cancel_txn() is called. 380 * 381 * Optional. 382 */ 383 int (*commit_txn) (struct pmu *pmu); 384 /* 385 * Will cancel the transaction, assumes ->del() is called 386 * for each successful ->add() during the transaction. 387 * 388 * Optional. 389 */ 390 void (*cancel_txn) (struct pmu *pmu); 391 392 /* 393 * Will return the value for perf_event_mmap_page::index for this event, 394 * if no implementation is provided it will default to: event->hw.idx + 1. 395 */ 396 int (*event_idx) (struct perf_event *event); /*optional */ 397 398 /* 399 * context-switches callback 400 */ 401 void (*sched_task) (struct perf_event_context *ctx, 402 bool sched_in); 403 /* 404 * PMU specific data size 405 */ 406 size_t task_ctx_size; 407 408 409 /* 410 * Set up pmu-private data structures for an AUX area 411 */ 412 void *(*setup_aux) (struct perf_event *event, void **pages, 413 int nr_pages, bool overwrite); 414 /* optional */ 415 416 /* 417 * Free pmu-private AUX data structures 418 */ 419 void (*free_aux) (void *aux); /* optional */ 420 421 /* 422 * Validate address range filters: make sure the HW supports the 423 * requested configuration and number of filters; return 0 if the 424 * supplied filters are valid, -errno otherwise. 425 * 426 * Runs in the context of the ioctl()ing process and is not serialized 427 * with the rest of the PMU callbacks. 428 */ 429 int (*addr_filters_validate) (struct list_head *filters); 430 /* optional */ 431 432 /* 433 * Synchronize address range filter configuration: 434 * translate hw-agnostic filters into hardware configuration in 435 * event::hw::addr_filters. 436 * 437 * Runs as a part of filter sync sequence that is done in ->start() 438 * callback by calling perf_event_addr_filters_sync(). 439 * 440 * May (and should) traverse event::addr_filters::list, for which its 441 * caller provides necessary serialization. 442 */ 443 void (*addr_filters_sync) (struct perf_event *event); 444 /* optional */ 445 446 /* 447 * Filter events for PMU-specific reasons. 448 */ 449 int (*filter_match) (struct perf_event *event); /* optional */ 450 451 /* 452 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 453 */ 454 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 455 }; 456 457 enum perf_addr_filter_action_t { 458 PERF_ADDR_FILTER_ACTION_STOP = 0, 459 PERF_ADDR_FILTER_ACTION_START, 460 PERF_ADDR_FILTER_ACTION_FILTER, 461 }; 462 463 /** 464 * struct perf_addr_filter - address range filter definition 465 * @entry: event's filter list linkage 466 * @path: object file's path for file-based filters 467 * @offset: filter range offset 468 * @size: filter range size (size==0 means single address trigger) 469 * @action: filter/start/stop 470 * 471 * This is a hardware-agnostic filter configuration as specified by the user. 472 */ 473 struct perf_addr_filter { 474 struct list_head entry; 475 struct path path; 476 unsigned long offset; 477 unsigned long size; 478 enum perf_addr_filter_action_t action; 479 }; 480 481 /** 482 * struct perf_addr_filters_head - container for address range filters 483 * @list: list of filters for this event 484 * @lock: spinlock that serializes accesses to the @list and event's 485 * (and its children's) filter generations. 486 * @nr_file_filters: number of file-based filters 487 * 488 * A child event will use parent's @list (and therefore @lock), so they are 489 * bundled together; see perf_event_addr_filters(). 490 */ 491 struct perf_addr_filters_head { 492 struct list_head list; 493 raw_spinlock_t lock; 494 unsigned int nr_file_filters; 495 }; 496 497 struct perf_addr_filter_range { 498 unsigned long start; 499 unsigned long size; 500 }; 501 502 /** 503 * enum perf_event_state - the states of an event: 504 */ 505 enum perf_event_state { 506 PERF_EVENT_STATE_DEAD = -4, 507 PERF_EVENT_STATE_EXIT = -3, 508 PERF_EVENT_STATE_ERROR = -2, 509 PERF_EVENT_STATE_OFF = -1, 510 PERF_EVENT_STATE_INACTIVE = 0, 511 PERF_EVENT_STATE_ACTIVE = 1, 512 }; 513 514 struct file; 515 struct perf_sample_data; 516 517 typedef void (*perf_overflow_handler_t)(struct perf_event *, 518 struct perf_sample_data *, 519 struct pt_regs *regs); 520 521 /* 522 * Event capabilities. For event_caps and groups caps. 523 * 524 * PERF_EV_CAP_SOFTWARE: Is a software event. 525 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 526 * from any CPU in the package where it is active. 527 */ 528 #define PERF_EV_CAP_SOFTWARE BIT(0) 529 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 530 531 #define SWEVENT_HLIST_BITS 8 532 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 533 534 struct swevent_hlist { 535 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 536 struct rcu_head rcu_head; 537 }; 538 539 #define PERF_ATTACH_CONTEXT 0x01 540 #define PERF_ATTACH_GROUP 0x02 541 #define PERF_ATTACH_TASK 0x04 542 #define PERF_ATTACH_TASK_DATA 0x08 543 #define PERF_ATTACH_ITRACE 0x10 544 545 struct perf_cgroup; 546 struct ring_buffer; 547 548 struct pmu_event_list { 549 raw_spinlock_t lock; 550 struct list_head list; 551 }; 552 553 #define for_each_sibling_event(sibling, event) \ 554 if ((event)->group_leader == (event)) \ 555 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 556 557 /** 558 * struct perf_event - performance event kernel representation: 559 */ 560 struct perf_event { 561 #ifdef CONFIG_PERF_EVENTS 562 /* 563 * entry onto perf_event_context::event_list; 564 * modifications require ctx->lock 565 * RCU safe iterations. 566 */ 567 struct list_head event_entry; 568 569 /* 570 * Locked for modification by both ctx->mutex and ctx->lock; holding 571 * either sufficies for read. 572 */ 573 struct list_head sibling_list; 574 struct list_head active_list; 575 /* 576 * Node on the pinned or flexible tree located at the event context; 577 */ 578 struct rb_node group_node; 579 u64 group_index; 580 /* 581 * We need storage to track the entries in perf_pmu_migrate_context; we 582 * cannot use the event_entry because of RCU and we want to keep the 583 * group in tact which avoids us using the other two entries. 584 */ 585 struct list_head migrate_entry; 586 587 struct hlist_node hlist_entry; 588 struct list_head active_entry; 589 int nr_siblings; 590 591 /* Not serialized. Only written during event initialization. */ 592 int event_caps; 593 /* The cumulative AND of all event_caps for events in this group. */ 594 int group_caps; 595 596 struct perf_event *group_leader; 597 struct pmu *pmu; 598 void *pmu_private; 599 600 enum perf_event_state state; 601 unsigned int attach_state; 602 local64_t count; 603 atomic64_t child_count; 604 605 /* 606 * These are the total time in nanoseconds that the event 607 * has been enabled (i.e. eligible to run, and the task has 608 * been scheduled in, if this is a per-task event) 609 * and running (scheduled onto the CPU), respectively. 610 */ 611 u64 total_time_enabled; 612 u64 total_time_running; 613 u64 tstamp; 614 615 /* 616 * timestamp shadows the actual context timing but it can 617 * be safely used in NMI interrupt context. It reflects the 618 * context time as it was when the event was last scheduled in. 619 * 620 * ctx_time already accounts for ctx->timestamp. Therefore to 621 * compute ctx_time for a sample, simply add perf_clock(). 622 */ 623 u64 shadow_ctx_time; 624 625 struct perf_event_attr attr; 626 u16 header_size; 627 u16 id_header_size; 628 u16 read_size; 629 struct hw_perf_event hw; 630 631 struct perf_event_context *ctx; 632 atomic_long_t refcount; 633 634 /* 635 * These accumulate total time (in nanoseconds) that children 636 * events have been enabled and running, respectively. 637 */ 638 atomic64_t child_total_time_enabled; 639 atomic64_t child_total_time_running; 640 641 /* 642 * Protect attach/detach and child_list: 643 */ 644 struct mutex child_mutex; 645 struct list_head child_list; 646 struct perf_event *parent; 647 648 int oncpu; 649 int cpu; 650 651 struct list_head owner_entry; 652 struct task_struct *owner; 653 654 /* mmap bits */ 655 struct mutex mmap_mutex; 656 atomic_t mmap_count; 657 658 struct ring_buffer *rb; 659 struct list_head rb_entry; 660 unsigned long rcu_batches; 661 int rcu_pending; 662 663 /* poll related */ 664 wait_queue_head_t waitq; 665 struct fasync_struct *fasync; 666 667 /* delayed work for NMIs and such */ 668 int pending_wakeup; 669 int pending_kill; 670 int pending_disable; 671 struct irq_work pending; 672 673 atomic_t event_limit; 674 675 /* address range filters */ 676 struct perf_addr_filters_head addr_filters; 677 /* vma address array for file-based filders */ 678 struct perf_addr_filter_range *addr_filter_ranges; 679 unsigned long addr_filters_gen; 680 681 void (*destroy)(struct perf_event *); 682 struct rcu_head rcu_head; 683 684 struct pid_namespace *ns; 685 u64 id; 686 687 u64 (*clock)(void); 688 perf_overflow_handler_t overflow_handler; 689 void *overflow_handler_context; 690 #ifdef CONFIG_BPF_SYSCALL 691 perf_overflow_handler_t orig_overflow_handler; 692 struct bpf_prog *prog; 693 #endif 694 695 #ifdef CONFIG_EVENT_TRACING 696 struct trace_event_call *tp_event; 697 struct event_filter *filter; 698 #ifdef CONFIG_FUNCTION_TRACER 699 struct ftrace_ops ftrace_ops; 700 #endif 701 #endif 702 703 #ifdef CONFIG_CGROUP_PERF 704 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 705 #endif 706 707 struct list_head sb_list; 708 #endif /* CONFIG_PERF_EVENTS */ 709 }; 710 711 712 struct perf_event_groups { 713 struct rb_root tree; 714 u64 index; 715 }; 716 717 /** 718 * struct perf_event_context - event context structure 719 * 720 * Used as a container for task events and CPU events as well: 721 */ 722 struct perf_event_context { 723 struct pmu *pmu; 724 /* 725 * Protect the states of the events in the list, 726 * nr_active, and the list: 727 */ 728 raw_spinlock_t lock; 729 /* 730 * Protect the list of events. Locking either mutex or lock 731 * is sufficient to ensure the list doesn't change; to change 732 * the list you need to lock both the mutex and the spinlock. 733 */ 734 struct mutex mutex; 735 736 struct list_head active_ctx_list; 737 struct perf_event_groups pinned_groups; 738 struct perf_event_groups flexible_groups; 739 struct list_head event_list; 740 741 struct list_head pinned_active; 742 struct list_head flexible_active; 743 744 int nr_events; 745 int nr_active; 746 int is_active; 747 int nr_stat; 748 int nr_freq; 749 int rotate_disable; 750 refcount_t refcount; 751 struct task_struct *task; 752 753 /* 754 * Context clock, runs when context enabled. 755 */ 756 u64 time; 757 u64 timestamp; 758 759 /* 760 * These fields let us detect when two contexts have both 761 * been cloned (inherited) from a common ancestor. 762 */ 763 struct perf_event_context *parent_ctx; 764 u64 parent_gen; 765 u64 generation; 766 int pin_count; 767 #ifdef CONFIG_CGROUP_PERF 768 int nr_cgroups; /* cgroup evts */ 769 #endif 770 void *task_ctx_data; /* pmu specific data */ 771 struct rcu_head rcu_head; 772 }; 773 774 /* 775 * Number of contexts where an event can trigger: 776 * task, softirq, hardirq, nmi. 777 */ 778 #define PERF_NR_CONTEXTS 4 779 780 /** 781 * struct perf_event_cpu_context - per cpu event context structure 782 */ 783 struct perf_cpu_context { 784 struct perf_event_context ctx; 785 struct perf_event_context *task_ctx; 786 int active_oncpu; 787 int exclusive; 788 789 raw_spinlock_t hrtimer_lock; 790 struct hrtimer hrtimer; 791 ktime_t hrtimer_interval; 792 unsigned int hrtimer_active; 793 794 #ifdef CONFIG_CGROUP_PERF 795 struct perf_cgroup *cgrp; 796 struct list_head cgrp_cpuctx_entry; 797 #endif 798 799 struct list_head sched_cb_entry; 800 int sched_cb_usage; 801 802 int online; 803 }; 804 805 struct perf_output_handle { 806 struct perf_event *event; 807 struct ring_buffer *rb; 808 unsigned long wakeup; 809 unsigned long size; 810 u64 aux_flags; 811 union { 812 void *addr; 813 unsigned long head; 814 }; 815 int page; 816 }; 817 818 struct bpf_perf_event_data_kern { 819 bpf_user_pt_regs_t *regs; 820 struct perf_sample_data *data; 821 struct perf_event *event; 822 }; 823 824 #ifdef CONFIG_CGROUP_PERF 825 826 /* 827 * perf_cgroup_info keeps track of time_enabled for a cgroup. 828 * This is a per-cpu dynamically allocated data structure. 829 */ 830 struct perf_cgroup_info { 831 u64 time; 832 u64 timestamp; 833 }; 834 835 struct perf_cgroup { 836 struct cgroup_subsys_state css; 837 struct perf_cgroup_info __percpu *info; 838 }; 839 840 /* 841 * Must ensure cgroup is pinned (css_get) before calling 842 * this function. In other words, we cannot call this function 843 * if there is no cgroup event for the current CPU context. 844 */ 845 static inline struct perf_cgroup * 846 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 847 { 848 return container_of(task_css_check(task, perf_event_cgrp_id, 849 ctx ? lockdep_is_held(&ctx->lock) 850 : true), 851 struct perf_cgroup, css); 852 } 853 #endif /* CONFIG_CGROUP_PERF */ 854 855 #ifdef CONFIG_PERF_EVENTS 856 857 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 858 struct perf_event *event); 859 extern void perf_aux_output_end(struct perf_output_handle *handle, 860 unsigned long size); 861 extern int perf_aux_output_skip(struct perf_output_handle *handle, 862 unsigned long size); 863 extern void *perf_get_aux(struct perf_output_handle *handle); 864 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 865 extern void perf_event_itrace_started(struct perf_event *event); 866 867 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 868 extern void perf_pmu_unregister(struct pmu *pmu); 869 870 extern int perf_num_counters(void); 871 extern const char *perf_pmu_name(void); 872 extern void __perf_event_task_sched_in(struct task_struct *prev, 873 struct task_struct *task); 874 extern void __perf_event_task_sched_out(struct task_struct *prev, 875 struct task_struct *next); 876 extern int perf_event_init_task(struct task_struct *child); 877 extern void perf_event_exit_task(struct task_struct *child); 878 extern void perf_event_free_task(struct task_struct *task); 879 extern void perf_event_delayed_put(struct task_struct *task); 880 extern struct file *perf_event_get(unsigned int fd); 881 extern const struct perf_event *perf_get_event(struct file *file); 882 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 883 extern void perf_event_print_debug(void); 884 extern void perf_pmu_disable(struct pmu *pmu); 885 extern void perf_pmu_enable(struct pmu *pmu); 886 extern void perf_sched_cb_dec(struct pmu *pmu); 887 extern void perf_sched_cb_inc(struct pmu *pmu); 888 extern int perf_event_task_disable(void); 889 extern int perf_event_task_enable(void); 890 891 extern void perf_pmu_resched(struct pmu *pmu); 892 893 extern int perf_event_refresh(struct perf_event *event, int refresh); 894 extern void perf_event_update_userpage(struct perf_event *event); 895 extern int perf_event_release_kernel(struct perf_event *event); 896 extern struct perf_event * 897 perf_event_create_kernel_counter(struct perf_event_attr *attr, 898 int cpu, 899 struct task_struct *task, 900 perf_overflow_handler_t callback, 901 void *context); 902 extern void perf_pmu_migrate_context(struct pmu *pmu, 903 int src_cpu, int dst_cpu); 904 int perf_event_read_local(struct perf_event *event, u64 *value, 905 u64 *enabled, u64 *running); 906 extern u64 perf_event_read_value(struct perf_event *event, 907 u64 *enabled, u64 *running); 908 909 910 struct perf_sample_data { 911 /* 912 * Fields set by perf_sample_data_init(), group so as to 913 * minimize the cachelines touched. 914 */ 915 u64 addr; 916 struct perf_raw_record *raw; 917 struct perf_branch_stack *br_stack; 918 u64 period; 919 u64 weight; 920 u64 txn; 921 union perf_mem_data_src data_src; 922 923 /* 924 * The other fields, optionally {set,used} by 925 * perf_{prepare,output}_sample(). 926 */ 927 u64 type; 928 u64 ip; 929 struct { 930 u32 pid; 931 u32 tid; 932 } tid_entry; 933 u64 time; 934 u64 id; 935 u64 stream_id; 936 struct { 937 u32 cpu; 938 u32 reserved; 939 } cpu_entry; 940 struct perf_callchain_entry *callchain; 941 942 /* 943 * regs_user may point to task_pt_regs or to regs_user_copy, depending 944 * on arch details. 945 */ 946 struct perf_regs regs_user; 947 struct pt_regs regs_user_copy; 948 949 struct perf_regs regs_intr; 950 u64 stack_user_size; 951 952 u64 phys_addr; 953 } ____cacheline_aligned; 954 955 /* default value for data source */ 956 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 957 PERF_MEM_S(LVL, NA) |\ 958 PERF_MEM_S(SNOOP, NA) |\ 959 PERF_MEM_S(LOCK, NA) |\ 960 PERF_MEM_S(TLB, NA)) 961 962 static inline void perf_sample_data_init(struct perf_sample_data *data, 963 u64 addr, u64 period) 964 { 965 /* remaining struct members initialized in perf_prepare_sample() */ 966 data->addr = addr; 967 data->raw = NULL; 968 data->br_stack = NULL; 969 data->period = period; 970 data->weight = 0; 971 data->data_src.val = PERF_MEM_NA; 972 data->txn = 0; 973 } 974 975 extern void perf_output_sample(struct perf_output_handle *handle, 976 struct perf_event_header *header, 977 struct perf_sample_data *data, 978 struct perf_event *event); 979 extern void perf_prepare_sample(struct perf_event_header *header, 980 struct perf_sample_data *data, 981 struct perf_event *event, 982 struct pt_regs *regs); 983 984 extern int perf_event_overflow(struct perf_event *event, 985 struct perf_sample_data *data, 986 struct pt_regs *regs); 987 988 extern void perf_event_output_forward(struct perf_event *event, 989 struct perf_sample_data *data, 990 struct pt_regs *regs); 991 extern void perf_event_output_backward(struct perf_event *event, 992 struct perf_sample_data *data, 993 struct pt_regs *regs); 994 extern int perf_event_output(struct perf_event *event, 995 struct perf_sample_data *data, 996 struct pt_regs *regs); 997 998 static inline bool 999 is_default_overflow_handler(struct perf_event *event) 1000 { 1001 if (likely(event->overflow_handler == perf_event_output_forward)) 1002 return true; 1003 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1004 return true; 1005 return false; 1006 } 1007 1008 extern void 1009 perf_event_header__init_id(struct perf_event_header *header, 1010 struct perf_sample_data *data, 1011 struct perf_event *event); 1012 extern void 1013 perf_event__output_id_sample(struct perf_event *event, 1014 struct perf_output_handle *handle, 1015 struct perf_sample_data *sample); 1016 1017 extern void 1018 perf_log_lost_samples(struct perf_event *event, u64 lost); 1019 1020 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1021 { 1022 struct perf_event_attr *attr = &event->attr; 1023 1024 return attr->exclude_idle || attr->exclude_user || 1025 attr->exclude_kernel || attr->exclude_hv || 1026 attr->exclude_guest || attr->exclude_host; 1027 } 1028 1029 static inline bool is_sampling_event(struct perf_event *event) 1030 { 1031 return event->attr.sample_period != 0; 1032 } 1033 1034 /* 1035 * Return 1 for a software event, 0 for a hardware event 1036 */ 1037 static inline int is_software_event(struct perf_event *event) 1038 { 1039 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1040 } 1041 1042 /* 1043 * Return 1 for event in sw context, 0 for event in hw context 1044 */ 1045 static inline int in_software_context(struct perf_event *event) 1046 { 1047 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1048 } 1049 1050 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1051 1052 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1053 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1054 1055 #ifndef perf_arch_fetch_caller_regs 1056 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1057 #endif 1058 1059 /* 1060 * When generating a perf sample in-line, instead of from an interrupt / 1061 * exception, we lack a pt_regs. This is typically used from software events 1062 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1063 * 1064 * We typically don't need a full set, but (for x86) do require: 1065 * - ip for PERF_SAMPLE_IP 1066 * - cs for user_mode() tests 1067 * - sp for PERF_SAMPLE_CALLCHAIN 1068 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1069 * 1070 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1071 * things like PERF_SAMPLE_REGS_INTR. 1072 */ 1073 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1074 { 1075 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1076 } 1077 1078 static __always_inline void 1079 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1080 { 1081 if (static_key_false(&perf_swevent_enabled[event_id])) 1082 __perf_sw_event(event_id, nr, regs, addr); 1083 } 1084 1085 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1086 1087 /* 1088 * 'Special' version for the scheduler, it hard assumes no recursion, 1089 * which is guaranteed by us not actually scheduling inside other swevents 1090 * because those disable preemption. 1091 */ 1092 static __always_inline void 1093 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1094 { 1095 if (static_key_false(&perf_swevent_enabled[event_id])) { 1096 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1097 1098 perf_fetch_caller_regs(regs); 1099 ___perf_sw_event(event_id, nr, regs, addr); 1100 } 1101 } 1102 1103 extern struct static_key_false perf_sched_events; 1104 1105 static __always_inline bool 1106 perf_sw_migrate_enabled(void) 1107 { 1108 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1109 return true; 1110 return false; 1111 } 1112 1113 static inline void perf_event_task_migrate(struct task_struct *task) 1114 { 1115 if (perf_sw_migrate_enabled()) 1116 task->sched_migrated = 1; 1117 } 1118 1119 static inline void perf_event_task_sched_in(struct task_struct *prev, 1120 struct task_struct *task) 1121 { 1122 if (static_branch_unlikely(&perf_sched_events)) 1123 __perf_event_task_sched_in(prev, task); 1124 1125 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1126 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1127 1128 perf_fetch_caller_regs(regs); 1129 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1130 task->sched_migrated = 0; 1131 } 1132 } 1133 1134 static inline void perf_event_task_sched_out(struct task_struct *prev, 1135 struct task_struct *next) 1136 { 1137 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1138 1139 if (static_branch_unlikely(&perf_sched_events)) 1140 __perf_event_task_sched_out(prev, next); 1141 } 1142 1143 extern void perf_event_mmap(struct vm_area_struct *vma); 1144 1145 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1146 bool unregister, const char *sym); 1147 extern void perf_event_bpf_event(struct bpf_prog *prog, 1148 enum perf_bpf_event_type type, 1149 u16 flags); 1150 1151 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1152 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1153 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1154 1155 extern void perf_event_exec(void); 1156 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1157 extern void perf_event_namespaces(struct task_struct *tsk); 1158 extern void perf_event_fork(struct task_struct *tsk); 1159 1160 /* Callchains */ 1161 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1162 1163 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1164 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1165 extern struct perf_callchain_entry * 1166 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1167 u32 max_stack, bool crosstask, bool add_mark); 1168 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1169 extern int get_callchain_buffers(int max_stack); 1170 extern void put_callchain_buffers(void); 1171 1172 extern int sysctl_perf_event_max_stack; 1173 extern int sysctl_perf_event_max_contexts_per_stack; 1174 1175 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1176 { 1177 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1178 struct perf_callchain_entry *entry = ctx->entry; 1179 entry->ip[entry->nr++] = ip; 1180 ++ctx->contexts; 1181 return 0; 1182 } else { 1183 ctx->contexts_maxed = true; 1184 return -1; /* no more room, stop walking the stack */ 1185 } 1186 } 1187 1188 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1189 { 1190 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1191 struct perf_callchain_entry *entry = ctx->entry; 1192 entry->ip[entry->nr++] = ip; 1193 ++ctx->nr; 1194 return 0; 1195 } else { 1196 return -1; /* no more room, stop walking the stack */ 1197 } 1198 } 1199 1200 extern int sysctl_perf_event_paranoid; 1201 extern int sysctl_perf_event_mlock; 1202 extern int sysctl_perf_event_sample_rate; 1203 extern int sysctl_perf_cpu_time_max_percent; 1204 1205 extern void perf_sample_event_took(u64 sample_len_ns); 1206 1207 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1208 void __user *buffer, size_t *lenp, 1209 loff_t *ppos); 1210 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1211 void __user *buffer, size_t *lenp, 1212 loff_t *ppos); 1213 1214 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1215 void __user *buffer, size_t *lenp, loff_t *ppos); 1216 1217 static inline bool perf_paranoid_tracepoint_raw(void) 1218 { 1219 return sysctl_perf_event_paranoid > -1; 1220 } 1221 1222 static inline bool perf_paranoid_cpu(void) 1223 { 1224 return sysctl_perf_event_paranoid > 0; 1225 } 1226 1227 static inline bool perf_paranoid_kernel(void) 1228 { 1229 return sysctl_perf_event_paranoid > 1; 1230 } 1231 1232 extern void perf_event_init(void); 1233 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1234 int entry_size, struct pt_regs *regs, 1235 struct hlist_head *head, int rctx, 1236 struct task_struct *task); 1237 extern void perf_bp_event(struct perf_event *event, void *data); 1238 1239 #ifndef perf_misc_flags 1240 # define perf_misc_flags(regs) \ 1241 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1242 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1243 #endif 1244 #ifndef perf_arch_bpf_user_pt_regs 1245 # define perf_arch_bpf_user_pt_regs(regs) regs 1246 #endif 1247 1248 static inline bool has_branch_stack(struct perf_event *event) 1249 { 1250 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1251 } 1252 1253 static inline bool needs_branch_stack(struct perf_event *event) 1254 { 1255 return event->attr.branch_sample_type != 0; 1256 } 1257 1258 static inline bool has_aux(struct perf_event *event) 1259 { 1260 return event->pmu->setup_aux; 1261 } 1262 1263 static inline bool is_write_backward(struct perf_event *event) 1264 { 1265 return !!event->attr.write_backward; 1266 } 1267 1268 static inline bool has_addr_filter(struct perf_event *event) 1269 { 1270 return event->pmu->nr_addr_filters; 1271 } 1272 1273 /* 1274 * An inherited event uses parent's filters 1275 */ 1276 static inline struct perf_addr_filters_head * 1277 perf_event_addr_filters(struct perf_event *event) 1278 { 1279 struct perf_addr_filters_head *ifh = &event->addr_filters; 1280 1281 if (event->parent) 1282 ifh = &event->parent->addr_filters; 1283 1284 return ifh; 1285 } 1286 1287 extern void perf_event_addr_filters_sync(struct perf_event *event); 1288 1289 extern int perf_output_begin(struct perf_output_handle *handle, 1290 struct perf_event *event, unsigned int size); 1291 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1292 struct perf_event *event, 1293 unsigned int size); 1294 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1295 struct perf_event *event, 1296 unsigned int size); 1297 1298 extern void perf_output_end(struct perf_output_handle *handle); 1299 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1300 const void *buf, unsigned int len); 1301 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1302 unsigned int len); 1303 extern int perf_swevent_get_recursion_context(void); 1304 extern void perf_swevent_put_recursion_context(int rctx); 1305 extern u64 perf_swevent_set_period(struct perf_event *event); 1306 extern void perf_event_enable(struct perf_event *event); 1307 extern void perf_event_disable(struct perf_event *event); 1308 extern void perf_event_disable_local(struct perf_event *event); 1309 extern void perf_event_disable_inatomic(struct perf_event *event); 1310 extern void perf_event_task_tick(void); 1311 extern int perf_event_account_interrupt(struct perf_event *event); 1312 #else /* !CONFIG_PERF_EVENTS: */ 1313 static inline void * 1314 perf_aux_output_begin(struct perf_output_handle *handle, 1315 struct perf_event *event) { return NULL; } 1316 static inline void 1317 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1318 { } 1319 static inline int 1320 perf_aux_output_skip(struct perf_output_handle *handle, 1321 unsigned long size) { return -EINVAL; } 1322 static inline void * 1323 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1324 static inline void 1325 perf_event_task_migrate(struct task_struct *task) { } 1326 static inline void 1327 perf_event_task_sched_in(struct task_struct *prev, 1328 struct task_struct *task) { } 1329 static inline void 1330 perf_event_task_sched_out(struct task_struct *prev, 1331 struct task_struct *next) { } 1332 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1333 static inline void perf_event_exit_task(struct task_struct *child) { } 1334 static inline void perf_event_free_task(struct task_struct *task) { } 1335 static inline void perf_event_delayed_put(struct task_struct *task) { } 1336 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1337 static inline const struct perf_event *perf_get_event(struct file *file) 1338 { 1339 return ERR_PTR(-EINVAL); 1340 } 1341 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1342 { 1343 return ERR_PTR(-EINVAL); 1344 } 1345 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1346 u64 *enabled, u64 *running) 1347 { 1348 return -EINVAL; 1349 } 1350 static inline void perf_event_print_debug(void) { } 1351 static inline int perf_event_task_disable(void) { return -EINVAL; } 1352 static inline int perf_event_task_enable(void) { return -EINVAL; } 1353 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1354 { 1355 return -EINVAL; 1356 } 1357 1358 static inline void 1359 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1360 static inline void 1361 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1362 static inline void 1363 perf_bp_event(struct perf_event *event, void *data) { } 1364 1365 static inline int perf_register_guest_info_callbacks 1366 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1367 static inline int perf_unregister_guest_info_callbacks 1368 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1369 1370 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1371 1372 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1373 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1374 bool unregister, const char *sym) { } 1375 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1376 enum perf_bpf_event_type type, 1377 u16 flags) { } 1378 static inline void perf_event_exec(void) { } 1379 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1380 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1381 static inline void perf_event_fork(struct task_struct *tsk) { } 1382 static inline void perf_event_init(void) { } 1383 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1384 static inline void perf_swevent_put_recursion_context(int rctx) { } 1385 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1386 static inline void perf_event_enable(struct perf_event *event) { } 1387 static inline void perf_event_disable(struct perf_event *event) { } 1388 static inline int __perf_event_disable(void *info) { return -1; } 1389 static inline void perf_event_task_tick(void) { } 1390 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1391 #endif 1392 1393 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1394 extern void perf_restore_debug_store(void); 1395 #else 1396 static inline void perf_restore_debug_store(void) { } 1397 #endif 1398 1399 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1400 { 1401 return frag->pad < sizeof(u64); 1402 } 1403 1404 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1405 1406 struct perf_pmu_events_attr { 1407 struct device_attribute attr; 1408 u64 id; 1409 const char *event_str; 1410 }; 1411 1412 struct perf_pmu_events_ht_attr { 1413 struct device_attribute attr; 1414 u64 id; 1415 const char *event_str_ht; 1416 const char *event_str_noht; 1417 }; 1418 1419 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1420 char *page); 1421 1422 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1423 static struct perf_pmu_events_attr _var = { \ 1424 .attr = __ATTR(_name, 0444, _show, NULL), \ 1425 .id = _id, \ 1426 }; 1427 1428 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1429 static struct perf_pmu_events_attr _var = { \ 1430 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1431 .id = 0, \ 1432 .event_str = _str, \ 1433 }; 1434 1435 #define PMU_FORMAT_ATTR(_name, _format) \ 1436 static ssize_t \ 1437 _name##_show(struct device *dev, \ 1438 struct device_attribute *attr, \ 1439 char *page) \ 1440 { \ 1441 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1442 return sprintf(page, _format "\n"); \ 1443 } \ 1444 \ 1445 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1446 1447 /* Performance counter hotplug functions */ 1448 #ifdef CONFIG_PERF_EVENTS 1449 int perf_event_init_cpu(unsigned int cpu); 1450 int perf_event_exit_cpu(unsigned int cpu); 1451 #else 1452 #define perf_event_init_cpu NULL 1453 #define perf_event_exit_cpu NULL 1454 #endif 1455 1456 #endif /* _LINUX_PERF_EVENT_H */ 1457