1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <linux/types.h> 18 #include <linux/ioctl.h> 19 #include <asm/byteorder.h> 20 21 /* 22 * User-space ABI bits: 23 */ 24 25 /* 26 * attr.type 27 */ 28 enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37 }; 38 39 /* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44 enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57 }; 58 59 /* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66 enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75 }; 76 77 enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83 }; 84 85 enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90 }; 91 92 /* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98 enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110 }; 111 112 /* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116 enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130 }; 131 132 /* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152 enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159 }; 160 161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163 /* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166 struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 207 __reserved_1 : 49; 208 209 union { 210 __u32 wakeup_events; /* wakeup every n events */ 211 __u32 wakeup_watermark; /* bytes before wakeup */ 212 }; 213 214 __u32 __reserved_2; 215 216 __u64 bp_addr; 217 __u32 bp_type; 218 __u32 bp_len; 219 }; 220 221 /* 222 * Ioctls that can be done on a perf event fd: 223 */ 224 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 225 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 226 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 227 #define PERF_EVENT_IOC_RESET _IO ('$', 3) 228 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 229 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 230 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 231 232 enum perf_event_ioc_flags { 233 PERF_IOC_FLAG_GROUP = 1U << 0, 234 }; 235 236 /* 237 * Structure of the page that can be mapped via mmap 238 */ 239 struct perf_event_mmap_page { 240 __u32 version; /* version number of this structure */ 241 __u32 compat_version; /* lowest version this is compat with */ 242 243 /* 244 * Bits needed to read the hw events in user-space. 245 * 246 * u32 seq; 247 * s64 count; 248 * 249 * do { 250 * seq = pc->lock; 251 * 252 * barrier() 253 * if (pc->index) { 254 * count = pmc_read(pc->index - 1); 255 * count += pc->offset; 256 * } else 257 * goto regular_read; 258 * 259 * barrier(); 260 * } while (pc->lock != seq); 261 * 262 * NOTE: for obvious reason this only works on self-monitoring 263 * processes. 264 */ 265 __u32 lock; /* seqlock for synchronization */ 266 __u32 index; /* hardware event identifier */ 267 __s64 offset; /* add to hardware event value */ 268 __u64 time_enabled; /* time event active */ 269 __u64 time_running; /* time event on cpu */ 270 271 /* 272 * Hole for extension of the self monitor capabilities 273 */ 274 275 __u64 __reserved[123]; /* align to 1k */ 276 277 /* 278 * Control data for the mmap() data buffer. 279 * 280 * User-space reading the @data_head value should issue an rmb(), on 281 * SMP capable platforms, after reading this value -- see 282 * perf_event_wakeup(). 283 * 284 * When the mapping is PROT_WRITE the @data_tail value should be 285 * written by userspace to reflect the last read data. In this case 286 * the kernel will not over-write unread data. 287 */ 288 __u64 data_head; /* head in the data section */ 289 __u64 data_tail; /* user-space written tail */ 290 }; 291 292 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0) 293 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 294 #define PERF_RECORD_MISC_KERNEL (1 << 0) 295 #define PERF_RECORD_MISC_USER (2 << 0) 296 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 297 298 struct perf_event_header { 299 __u32 type; 300 __u16 misc; 301 __u16 size; 302 }; 303 304 enum perf_event_type { 305 306 /* 307 * The MMAP events record the PROT_EXEC mappings so that we can 308 * correlate userspace IPs to code. They have the following structure: 309 * 310 * struct { 311 * struct perf_event_header header; 312 * 313 * u32 pid, tid; 314 * u64 addr; 315 * u64 len; 316 * u64 pgoff; 317 * char filename[]; 318 * }; 319 */ 320 PERF_RECORD_MMAP = 1, 321 322 /* 323 * struct { 324 * struct perf_event_header header; 325 * u64 id; 326 * u64 lost; 327 * }; 328 */ 329 PERF_RECORD_LOST = 2, 330 331 /* 332 * struct { 333 * struct perf_event_header header; 334 * 335 * u32 pid, tid; 336 * char comm[]; 337 * }; 338 */ 339 PERF_RECORD_COMM = 3, 340 341 /* 342 * struct { 343 * struct perf_event_header header; 344 * u32 pid, ppid; 345 * u32 tid, ptid; 346 * u64 time; 347 * }; 348 */ 349 PERF_RECORD_EXIT = 4, 350 351 /* 352 * struct { 353 * struct perf_event_header header; 354 * u64 time; 355 * u64 id; 356 * u64 stream_id; 357 * }; 358 */ 359 PERF_RECORD_THROTTLE = 5, 360 PERF_RECORD_UNTHROTTLE = 6, 361 362 /* 363 * struct { 364 * struct perf_event_header header; 365 * u32 pid, ppid; 366 * u32 tid, ptid; 367 * u64 time; 368 * }; 369 */ 370 PERF_RECORD_FORK = 7, 371 372 /* 373 * struct { 374 * struct perf_event_header header; 375 * u32 pid, tid; 376 * 377 * struct read_format values; 378 * }; 379 */ 380 PERF_RECORD_READ = 8, 381 382 /* 383 * struct { 384 * struct perf_event_header header; 385 * 386 * { u64 ip; } && PERF_SAMPLE_IP 387 * { u32 pid, tid; } && PERF_SAMPLE_TID 388 * { u64 time; } && PERF_SAMPLE_TIME 389 * { u64 addr; } && PERF_SAMPLE_ADDR 390 * { u64 id; } && PERF_SAMPLE_ID 391 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 392 * { u32 cpu, res; } && PERF_SAMPLE_CPU 393 * { u64 period; } && PERF_SAMPLE_PERIOD 394 * 395 * { struct read_format values; } && PERF_SAMPLE_READ 396 * 397 * { u64 nr, 398 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 399 * 400 * # 401 * # The RAW record below is opaque data wrt the ABI 402 * # 403 * # That is, the ABI doesn't make any promises wrt to 404 * # the stability of its content, it may vary depending 405 * # on event, hardware, kernel version and phase of 406 * # the moon. 407 * # 408 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 409 * # 410 * 411 * { u32 size; 412 * char data[size];}&& PERF_SAMPLE_RAW 413 * }; 414 */ 415 PERF_RECORD_SAMPLE = 9, 416 417 PERF_RECORD_MAX, /* non-ABI */ 418 }; 419 420 enum perf_callchain_context { 421 PERF_CONTEXT_HV = (__u64)-32, 422 PERF_CONTEXT_KERNEL = (__u64)-128, 423 PERF_CONTEXT_USER = (__u64)-512, 424 425 PERF_CONTEXT_GUEST = (__u64)-2048, 426 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 427 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 428 429 PERF_CONTEXT_MAX = (__u64)-4095, 430 }; 431 432 #define PERF_FLAG_FD_NO_GROUP (1U << 0) 433 #define PERF_FLAG_FD_OUTPUT (1U << 1) 434 435 #ifdef __KERNEL__ 436 /* 437 * Kernel-internal data types and definitions: 438 */ 439 440 #ifdef CONFIG_PERF_EVENTS 441 # include <asm/perf_event.h> 442 #endif 443 444 #ifdef CONFIG_HAVE_HW_BREAKPOINT 445 #include <asm/hw_breakpoint.h> 446 #endif 447 448 #include <linux/list.h> 449 #include <linux/mutex.h> 450 #include <linux/rculist.h> 451 #include <linux/rcupdate.h> 452 #include <linux/spinlock.h> 453 #include <linux/hrtimer.h> 454 #include <linux/fs.h> 455 #include <linux/pid_namespace.h> 456 #include <linux/workqueue.h> 457 #include <asm/atomic.h> 458 459 #define PERF_MAX_STACK_DEPTH 255 460 461 struct perf_callchain_entry { 462 __u64 nr; 463 __u64 ip[PERF_MAX_STACK_DEPTH]; 464 }; 465 466 struct perf_raw_record { 467 u32 size; 468 void *data; 469 }; 470 471 struct task_struct; 472 473 /** 474 * struct hw_perf_event - performance event hardware details: 475 */ 476 struct hw_perf_event { 477 #ifdef CONFIG_PERF_EVENTS 478 union { 479 struct { /* hardware */ 480 u64 config; 481 u64 last_tag; 482 unsigned long config_base; 483 unsigned long event_base; 484 int idx; 485 int last_cpu; 486 }; 487 struct { /* software */ 488 s64 remaining; 489 struct hrtimer hrtimer; 490 }; 491 #ifdef CONFIG_HAVE_HW_BREAKPOINT 492 union { /* breakpoint */ 493 struct arch_hw_breakpoint info; 494 }; 495 #endif 496 }; 497 atomic64_t prev_count; 498 u64 sample_period; 499 u64 last_period; 500 atomic64_t period_left; 501 u64 interrupts; 502 503 u64 freq_time_stamp; 504 u64 freq_count_stamp; 505 #endif 506 }; 507 508 struct perf_event; 509 510 /** 511 * struct pmu - generic performance monitoring unit 512 */ 513 struct pmu { 514 int (*enable) (struct perf_event *event); 515 void (*disable) (struct perf_event *event); 516 void (*read) (struct perf_event *event); 517 void (*unthrottle) (struct perf_event *event); 518 }; 519 520 /** 521 * enum perf_event_active_state - the states of a event 522 */ 523 enum perf_event_active_state { 524 PERF_EVENT_STATE_ERROR = -2, 525 PERF_EVENT_STATE_OFF = -1, 526 PERF_EVENT_STATE_INACTIVE = 0, 527 PERF_EVENT_STATE_ACTIVE = 1, 528 }; 529 530 struct file; 531 532 struct perf_mmap_data { 533 struct rcu_head rcu_head; 534 #ifdef CONFIG_PERF_USE_VMALLOC 535 struct work_struct work; 536 #endif 537 int data_order; 538 int nr_pages; /* nr of data pages */ 539 int writable; /* are we writable */ 540 int nr_locked; /* nr pages mlocked */ 541 542 atomic_t poll; /* POLL_ for wakeups */ 543 atomic_t events; /* event_id limit */ 544 545 atomic_long_t head; /* write position */ 546 atomic_long_t done_head; /* completed head */ 547 548 atomic_t lock; /* concurrent writes */ 549 atomic_t wakeup; /* needs a wakeup */ 550 atomic_t lost; /* nr records lost */ 551 552 long watermark; /* wakeup watermark */ 553 554 struct perf_event_mmap_page *user_page; 555 void *data_pages[0]; 556 }; 557 558 struct perf_pending_entry { 559 struct perf_pending_entry *next; 560 void (*func)(struct perf_pending_entry *); 561 }; 562 563 struct perf_sample_data; 564 565 typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 566 struct perf_sample_data *, 567 struct pt_regs *regs); 568 569 enum perf_group_flag { 570 PERF_GROUP_SOFTWARE = 0x1, 571 }; 572 573 /** 574 * struct perf_event - performance event kernel representation: 575 */ 576 struct perf_event { 577 #ifdef CONFIG_PERF_EVENTS 578 struct list_head group_entry; 579 struct list_head event_entry; 580 struct list_head sibling_list; 581 int nr_siblings; 582 int group_flags; 583 struct perf_event *group_leader; 584 struct perf_event *output; 585 const struct pmu *pmu; 586 587 enum perf_event_active_state state; 588 atomic64_t count; 589 590 /* 591 * These are the total time in nanoseconds that the event 592 * has been enabled (i.e. eligible to run, and the task has 593 * been scheduled in, if this is a per-task event) 594 * and running (scheduled onto the CPU), respectively. 595 * 596 * They are computed from tstamp_enabled, tstamp_running and 597 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 598 */ 599 u64 total_time_enabled; 600 u64 total_time_running; 601 602 /* 603 * These are timestamps used for computing total_time_enabled 604 * and total_time_running when the event is in INACTIVE or 605 * ACTIVE state, measured in nanoseconds from an arbitrary point 606 * in time. 607 * tstamp_enabled: the notional time when the event was enabled 608 * tstamp_running: the notional time when the event was scheduled on 609 * tstamp_stopped: in INACTIVE state, the notional time when the 610 * event was scheduled off. 611 */ 612 u64 tstamp_enabled; 613 u64 tstamp_running; 614 u64 tstamp_stopped; 615 616 struct perf_event_attr attr; 617 struct hw_perf_event hw; 618 619 struct perf_event_context *ctx; 620 struct file *filp; 621 622 /* 623 * These accumulate total time (in nanoseconds) that children 624 * events have been enabled and running, respectively. 625 */ 626 atomic64_t child_total_time_enabled; 627 atomic64_t child_total_time_running; 628 629 /* 630 * Protect attach/detach and child_list: 631 */ 632 struct mutex child_mutex; 633 struct list_head child_list; 634 struct perf_event *parent; 635 636 int oncpu; 637 int cpu; 638 639 struct list_head owner_entry; 640 struct task_struct *owner; 641 642 /* mmap bits */ 643 struct mutex mmap_mutex; 644 atomic_t mmap_count; 645 struct perf_mmap_data *data; 646 647 /* poll related */ 648 wait_queue_head_t waitq; 649 struct fasync_struct *fasync; 650 651 /* delayed work for NMIs and such */ 652 int pending_wakeup; 653 int pending_kill; 654 int pending_disable; 655 struct perf_pending_entry pending; 656 657 atomic_t event_limit; 658 659 void (*destroy)(struct perf_event *); 660 struct rcu_head rcu_head; 661 662 struct pid_namespace *ns; 663 u64 id; 664 665 perf_overflow_handler_t overflow_handler; 666 667 #ifdef CONFIG_EVENT_TRACING 668 struct event_filter *filter; 669 #endif 670 671 #endif /* CONFIG_PERF_EVENTS */ 672 }; 673 674 /** 675 * struct perf_event_context - event context structure 676 * 677 * Used as a container for task events and CPU events as well: 678 */ 679 struct perf_event_context { 680 /* 681 * Protect the states of the events in the list, 682 * nr_active, and the list: 683 */ 684 raw_spinlock_t lock; 685 /* 686 * Protect the list of events. Locking either mutex or lock 687 * is sufficient to ensure the list doesn't change; to change 688 * the list you need to lock both the mutex and the spinlock. 689 */ 690 struct mutex mutex; 691 692 struct list_head pinned_groups; 693 struct list_head flexible_groups; 694 struct list_head event_list; 695 int nr_events; 696 int nr_active; 697 int is_active; 698 int nr_stat; 699 atomic_t refcount; 700 struct task_struct *task; 701 702 /* 703 * Context clock, runs when context enabled. 704 */ 705 u64 time; 706 u64 timestamp; 707 708 /* 709 * These fields let us detect when two contexts have both 710 * been cloned (inherited) from a common ancestor. 711 */ 712 struct perf_event_context *parent_ctx; 713 u64 parent_gen; 714 u64 generation; 715 int pin_count; 716 struct rcu_head rcu_head; 717 }; 718 719 /** 720 * struct perf_event_cpu_context - per cpu event context structure 721 */ 722 struct perf_cpu_context { 723 struct perf_event_context ctx; 724 struct perf_event_context *task_ctx; 725 int active_oncpu; 726 int max_pertask; 727 int exclusive; 728 729 /* 730 * Recursion avoidance: 731 * 732 * task, softirq, irq, nmi context 733 */ 734 int recursion[4]; 735 }; 736 737 struct perf_output_handle { 738 struct perf_event *event; 739 struct perf_mmap_data *data; 740 unsigned long head; 741 unsigned long offset; 742 int nmi; 743 int sample; 744 int locked; 745 }; 746 747 #ifdef CONFIG_PERF_EVENTS 748 749 /* 750 * Set by architecture code: 751 */ 752 extern int perf_max_events; 753 754 extern const struct pmu *hw_perf_event_init(struct perf_event *event); 755 756 extern void perf_event_task_sched_in(struct task_struct *task); 757 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next); 758 extern void perf_event_task_tick(struct task_struct *task); 759 extern int perf_event_init_task(struct task_struct *child); 760 extern void perf_event_exit_task(struct task_struct *child); 761 extern void perf_event_free_task(struct task_struct *task); 762 extern void set_perf_event_pending(void); 763 extern void perf_event_do_pending(void); 764 extern void perf_event_print_debug(void); 765 extern void __perf_disable(void); 766 extern bool __perf_enable(void); 767 extern void perf_disable(void); 768 extern void perf_enable(void); 769 extern int perf_event_task_disable(void); 770 extern int perf_event_task_enable(void); 771 extern int hw_perf_group_sched_in(struct perf_event *group_leader, 772 struct perf_cpu_context *cpuctx, 773 struct perf_event_context *ctx, int cpu); 774 extern void perf_event_update_userpage(struct perf_event *event); 775 extern int perf_event_release_kernel(struct perf_event *event); 776 extern struct perf_event * 777 perf_event_create_kernel_counter(struct perf_event_attr *attr, 778 int cpu, 779 pid_t pid, 780 perf_overflow_handler_t callback); 781 extern u64 perf_event_read_value(struct perf_event *event, 782 u64 *enabled, u64 *running); 783 784 struct perf_sample_data { 785 u64 type; 786 787 u64 ip; 788 struct { 789 u32 pid; 790 u32 tid; 791 } tid_entry; 792 u64 time; 793 u64 addr; 794 u64 id; 795 u64 stream_id; 796 struct { 797 u32 cpu; 798 u32 reserved; 799 } cpu_entry; 800 u64 period; 801 struct perf_callchain_entry *callchain; 802 struct perf_raw_record *raw; 803 }; 804 805 extern void perf_output_sample(struct perf_output_handle *handle, 806 struct perf_event_header *header, 807 struct perf_sample_data *data, 808 struct perf_event *event); 809 extern void perf_prepare_sample(struct perf_event_header *header, 810 struct perf_sample_data *data, 811 struct perf_event *event, 812 struct pt_regs *regs); 813 814 extern int perf_event_overflow(struct perf_event *event, int nmi, 815 struct perf_sample_data *data, 816 struct pt_regs *regs); 817 818 /* 819 * Return 1 for a software event, 0 for a hardware event 820 */ 821 static inline int is_software_event(struct perf_event *event) 822 { 823 switch (event->attr.type) { 824 case PERF_TYPE_SOFTWARE: 825 case PERF_TYPE_TRACEPOINT: 826 /* for now the breakpoint stuff also works as software event */ 827 case PERF_TYPE_BREAKPOINT: 828 return 1; 829 } 830 return 0; 831 } 832 833 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 834 835 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 836 837 static inline void 838 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 839 { 840 if (atomic_read(&perf_swevent_enabled[event_id])) 841 __perf_sw_event(event_id, nr, nmi, regs, addr); 842 } 843 844 extern void __perf_event_mmap(struct vm_area_struct *vma); 845 846 static inline void perf_event_mmap(struct vm_area_struct *vma) 847 { 848 if (vma->vm_flags & VM_EXEC) 849 __perf_event_mmap(vma); 850 } 851 852 extern void perf_event_comm(struct task_struct *tsk); 853 extern void perf_event_fork(struct task_struct *tsk); 854 855 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); 856 857 extern int sysctl_perf_event_paranoid; 858 extern int sysctl_perf_event_mlock; 859 extern int sysctl_perf_event_sample_rate; 860 861 extern void perf_event_init(void); 862 extern void perf_tp_event(int event_id, u64 addr, u64 count, void *record, int entry_size); 863 extern void perf_bp_event(struct perf_event *event, void *data); 864 865 #ifndef perf_misc_flags 866 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 867 PERF_RECORD_MISC_KERNEL) 868 #define perf_instruction_pointer(regs) instruction_pointer(regs) 869 #endif 870 871 extern int perf_output_begin(struct perf_output_handle *handle, 872 struct perf_event *event, unsigned int size, 873 int nmi, int sample); 874 extern void perf_output_end(struct perf_output_handle *handle); 875 extern void perf_output_copy(struct perf_output_handle *handle, 876 const void *buf, unsigned int len); 877 extern int perf_swevent_get_recursion_context(void); 878 extern void perf_swevent_put_recursion_context(int rctx); 879 extern void perf_event_enable(struct perf_event *event); 880 extern void perf_event_disable(struct perf_event *event); 881 #else 882 static inline void 883 perf_event_task_sched_in(struct task_struct *task) { } 884 static inline void 885 perf_event_task_sched_out(struct task_struct *task, 886 struct task_struct *next) { } 887 static inline void 888 perf_event_task_tick(struct task_struct *task) { } 889 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 890 static inline void perf_event_exit_task(struct task_struct *child) { } 891 static inline void perf_event_free_task(struct task_struct *task) { } 892 static inline void perf_event_do_pending(void) { } 893 static inline void perf_event_print_debug(void) { } 894 static inline void perf_disable(void) { } 895 static inline void perf_enable(void) { } 896 static inline int perf_event_task_disable(void) { return -EINVAL; } 897 static inline int perf_event_task_enable(void) { return -EINVAL; } 898 899 static inline void 900 perf_sw_event(u32 event_id, u64 nr, int nmi, 901 struct pt_regs *regs, u64 addr) { } 902 static inline void 903 perf_bp_event(struct perf_event *event, void *data) { } 904 905 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 906 static inline void perf_event_comm(struct task_struct *tsk) { } 907 static inline void perf_event_fork(struct task_struct *tsk) { } 908 static inline void perf_event_init(void) { } 909 static inline int perf_swevent_get_recursion_context(void) { return -1; } 910 static inline void perf_swevent_put_recursion_context(int rctx) { } 911 static inline void perf_event_enable(struct perf_event *event) { } 912 static inline void perf_event_disable(struct perf_event *event) { } 913 #endif 914 915 #define perf_output_put(handle, x) \ 916 perf_output_copy((handle), &(x), sizeof(x)) 917 918 #endif /* __KERNEL__ */ 919 #endif /* _LINUX_PERF_EVENT_H */ 920