1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _LINUX_PERF_EVENT_H 15 #define _LINUX_PERF_EVENT_H 16 17 #include <uapi/linux/perf_event.h> 18 #include <uapi/linux/bpf_perf_event.h> 19 20 /* 21 * Kernel-internal data types and definitions: 22 */ 23 24 #ifdef CONFIG_PERF_EVENTS 25 # include <asm/perf_event.h> 26 # include <asm/local64.h> 27 #endif 28 29 struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 }; 34 35 #ifdef CONFIG_HAVE_HW_BREAKPOINT 36 #include <asm/hw_breakpoint.h> 37 #endif 38 39 #include <linux/list.h> 40 #include <linux/mutex.h> 41 #include <linux/rculist.h> 42 #include <linux/rcupdate.h> 43 #include <linux/spinlock.h> 44 #include <linux/hrtimer.h> 45 #include <linux/fs.h> 46 #include <linux/pid_namespace.h> 47 #include <linux/workqueue.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/irq_work.h> 51 #include <linux/static_key.h> 52 #include <linux/jump_label_ratelimit.h> 53 #include <linux/atomic.h> 54 #include <linux/sysfs.h> 55 #include <linux/perf_regs.h> 56 #include <linux/cgroup.h> 57 #include <linux/refcount.h> 58 #include <asm/local.h> 59 60 struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63 }; 64 65 struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71 }; 72 73 typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76 struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84 } __packed; 85 86 struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89 }; 90 91 /* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100 struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103 }; 104 105 struct task_struct; 106 107 /* 108 * extra PMU register associated with an event 109 */ 110 struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115 }; 116 117 /** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120 struct hw_perf_event { 121 #ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147 #ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157 #endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181 /* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186 #define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226 #endif 227 }; 228 229 struct perf_event; 230 231 /* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237 /** 238 * pmu::capabilities flags 239 */ 240 #define PERF_PMU_CAP_NO_INTERRUPT 0x01 241 #define PERF_PMU_CAP_NO_NMI 0x02 242 #define PERF_PMU_CAP_AUX_NO_SG 0x04 243 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 244 #define PERF_PMU_CAP_EXCLUSIVE 0x10 245 #define PERF_PMU_CAP_ITRACE 0x20 246 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 247 #define PERF_PMU_CAP_NO_EXCLUDE 0x80 248 249 /** 250 * struct pmu - generic performance monitoring unit 251 */ 252 struct pmu { 253 struct list_head entry; 254 255 struct module *module; 256 struct device *dev; 257 const struct attribute_group **attr_groups; 258 const char *name; 259 int type; 260 261 /* 262 * various common per-pmu feature flags 263 */ 264 int capabilities; 265 266 int __percpu *pmu_disable_count; 267 struct perf_cpu_context __percpu *pmu_cpu_context; 268 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 269 int task_ctx_nr; 270 int hrtimer_interval_ms; 271 272 /* number of address filters this PMU can do */ 273 unsigned int nr_addr_filters; 274 275 /* 276 * Fully disable/enable this PMU, can be used to protect from the PMI 277 * as well as for lazy/batch writing of the MSRs. 278 */ 279 void (*pmu_enable) (struct pmu *pmu); /* optional */ 280 void (*pmu_disable) (struct pmu *pmu); /* optional */ 281 282 /* 283 * Try and initialize the event for this PMU. 284 * 285 * Returns: 286 * -ENOENT -- @event is not for this PMU 287 * 288 * -ENODEV -- @event is for this PMU but PMU not present 289 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 290 * -EINVAL -- @event is for this PMU but @event is not valid 291 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 292 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 293 * 294 * 0 -- @event is for this PMU and valid 295 * 296 * Other error return values are allowed. 297 */ 298 int (*event_init) (struct perf_event *event); 299 300 /* 301 * Notification that the event was mapped or unmapped. Called 302 * in the context of the mapping task. 303 */ 304 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 306 307 /* 308 * Flags for ->add()/->del()/ ->start()/->stop(). There are 309 * matching hw_perf_event::state flags. 310 */ 311 #define PERF_EF_START 0x01 /* start the counter when adding */ 312 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 313 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 314 315 /* 316 * Adds/Removes a counter to/from the PMU, can be done inside a 317 * transaction, see the ->*_txn() methods. 318 * 319 * The add/del callbacks will reserve all hardware resources required 320 * to service the event, this includes any counter constraint 321 * scheduling etc. 322 * 323 * Called with IRQs disabled and the PMU disabled on the CPU the event 324 * is on. 325 * 326 * ->add() called without PERF_EF_START should result in the same state 327 * as ->add() followed by ->stop(). 328 * 329 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 330 * ->stop() that must deal with already being stopped without 331 * PERF_EF_UPDATE. 332 */ 333 int (*add) (struct perf_event *event, int flags); 334 void (*del) (struct perf_event *event, int flags); 335 336 /* 337 * Starts/Stops a counter present on the PMU. 338 * 339 * The PMI handler should stop the counter when perf_event_overflow() 340 * returns !0. ->start() will be used to continue. 341 * 342 * Also used to change the sample period. 343 * 344 * Called with IRQs disabled and the PMU disabled on the CPU the event 345 * is on -- will be called from NMI context with the PMU generates 346 * NMIs. 347 * 348 * ->stop() with PERF_EF_UPDATE will read the counter and update 349 * period/count values like ->read() would. 350 * 351 * ->start() with PERF_EF_RELOAD will reprogram the the counter 352 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 353 */ 354 void (*start) (struct perf_event *event, int flags); 355 void (*stop) (struct perf_event *event, int flags); 356 357 /* 358 * Updates the counter value of the event. 359 * 360 * For sampling capable PMUs this will also update the software period 361 * hw_perf_event::period_left field. 362 */ 363 void (*read) (struct perf_event *event); 364 365 /* 366 * Group events scheduling is treated as a transaction, add 367 * group events as a whole and perform one schedulability test. 368 * If the test fails, roll back the whole group 369 * 370 * Start the transaction, after this ->add() doesn't need to 371 * do schedulability tests. 372 * 373 * Optional. 374 */ 375 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 376 /* 377 * If ->start_txn() disabled the ->add() schedulability test 378 * then ->commit_txn() is required to perform one. On success 379 * the transaction is closed. On error the transaction is kept 380 * open until ->cancel_txn() is called. 381 * 382 * Optional. 383 */ 384 int (*commit_txn) (struct pmu *pmu); 385 /* 386 * Will cancel the transaction, assumes ->del() is called 387 * for each successful ->add() during the transaction. 388 * 389 * Optional. 390 */ 391 void (*cancel_txn) (struct pmu *pmu); 392 393 /* 394 * Will return the value for perf_event_mmap_page::index for this event, 395 * if no implementation is provided it will default to: event->hw.idx + 1. 396 */ 397 int (*event_idx) (struct perf_event *event); /*optional */ 398 399 /* 400 * context-switches callback 401 */ 402 void (*sched_task) (struct perf_event_context *ctx, 403 bool sched_in); 404 /* 405 * PMU specific data size 406 */ 407 size_t task_ctx_size; 408 409 410 /* 411 * Set up pmu-private data structures for an AUX area 412 */ 413 void *(*setup_aux) (struct perf_event *event, void **pages, 414 int nr_pages, bool overwrite); 415 /* optional */ 416 417 /* 418 * Free pmu-private AUX data structures 419 */ 420 void (*free_aux) (void *aux); /* optional */ 421 422 /* 423 * Validate address range filters: make sure the HW supports the 424 * requested configuration and number of filters; return 0 if the 425 * supplied filters are valid, -errno otherwise. 426 * 427 * Runs in the context of the ioctl()ing process and is not serialized 428 * with the rest of the PMU callbacks. 429 */ 430 int (*addr_filters_validate) (struct list_head *filters); 431 /* optional */ 432 433 /* 434 * Synchronize address range filter configuration: 435 * translate hw-agnostic filters into hardware configuration in 436 * event::hw::addr_filters. 437 * 438 * Runs as a part of filter sync sequence that is done in ->start() 439 * callback by calling perf_event_addr_filters_sync(). 440 * 441 * May (and should) traverse event::addr_filters::list, for which its 442 * caller provides necessary serialization. 443 */ 444 void (*addr_filters_sync) (struct perf_event *event); 445 /* optional */ 446 447 /* 448 * Filter events for PMU-specific reasons. 449 */ 450 int (*filter_match) (struct perf_event *event); /* optional */ 451 452 /* 453 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 454 */ 455 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 456 }; 457 458 enum perf_addr_filter_action_t { 459 PERF_ADDR_FILTER_ACTION_STOP = 0, 460 PERF_ADDR_FILTER_ACTION_START, 461 PERF_ADDR_FILTER_ACTION_FILTER, 462 }; 463 464 /** 465 * struct perf_addr_filter - address range filter definition 466 * @entry: event's filter list linkage 467 * @inode: object file's inode for file-based filters 468 * @offset: filter range offset 469 * @size: filter range size (size==0 means single address trigger) 470 * @action: filter/start/stop 471 * 472 * This is a hardware-agnostic filter configuration as specified by the user. 473 */ 474 struct perf_addr_filter { 475 struct list_head entry; 476 struct path path; 477 unsigned long offset; 478 unsigned long size; 479 enum perf_addr_filter_action_t action; 480 }; 481 482 /** 483 * struct perf_addr_filters_head - container for address range filters 484 * @list: list of filters for this event 485 * @lock: spinlock that serializes accesses to the @list and event's 486 * (and its children's) filter generations. 487 * @nr_file_filters: number of file-based filters 488 * 489 * A child event will use parent's @list (and therefore @lock), so they are 490 * bundled together; see perf_event_addr_filters(). 491 */ 492 struct perf_addr_filters_head { 493 struct list_head list; 494 raw_spinlock_t lock; 495 unsigned int nr_file_filters; 496 }; 497 498 struct perf_addr_filter_range { 499 unsigned long start; 500 unsigned long size; 501 }; 502 503 /** 504 * enum perf_event_state - the states of an event: 505 */ 506 enum perf_event_state { 507 PERF_EVENT_STATE_DEAD = -4, 508 PERF_EVENT_STATE_EXIT = -3, 509 PERF_EVENT_STATE_ERROR = -2, 510 PERF_EVENT_STATE_OFF = -1, 511 PERF_EVENT_STATE_INACTIVE = 0, 512 PERF_EVENT_STATE_ACTIVE = 1, 513 }; 514 515 struct file; 516 struct perf_sample_data; 517 518 typedef void (*perf_overflow_handler_t)(struct perf_event *, 519 struct perf_sample_data *, 520 struct pt_regs *regs); 521 522 /* 523 * Event capabilities. For event_caps and groups caps. 524 * 525 * PERF_EV_CAP_SOFTWARE: Is a software event. 526 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 527 * from any CPU in the package where it is active. 528 */ 529 #define PERF_EV_CAP_SOFTWARE BIT(0) 530 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 531 532 #define SWEVENT_HLIST_BITS 8 533 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 534 535 struct swevent_hlist { 536 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 537 struct rcu_head rcu_head; 538 }; 539 540 #define PERF_ATTACH_CONTEXT 0x01 541 #define PERF_ATTACH_GROUP 0x02 542 #define PERF_ATTACH_TASK 0x04 543 #define PERF_ATTACH_TASK_DATA 0x08 544 #define PERF_ATTACH_ITRACE 0x10 545 546 struct perf_cgroup; 547 struct ring_buffer; 548 549 struct pmu_event_list { 550 raw_spinlock_t lock; 551 struct list_head list; 552 }; 553 554 #define for_each_sibling_event(sibling, event) \ 555 if ((event)->group_leader == (event)) \ 556 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 557 558 /** 559 * struct perf_event - performance event kernel representation: 560 */ 561 struct perf_event { 562 #ifdef CONFIG_PERF_EVENTS 563 /* 564 * entry onto perf_event_context::event_list; 565 * modifications require ctx->lock 566 * RCU safe iterations. 567 */ 568 struct list_head event_entry; 569 570 /* 571 * Locked for modification by both ctx->mutex and ctx->lock; holding 572 * either sufficies for read. 573 */ 574 struct list_head sibling_list; 575 struct list_head active_list; 576 /* 577 * Node on the pinned or flexible tree located at the event context; 578 */ 579 struct rb_node group_node; 580 u64 group_index; 581 /* 582 * We need storage to track the entries in perf_pmu_migrate_context; we 583 * cannot use the event_entry because of RCU and we want to keep the 584 * group in tact which avoids us using the other two entries. 585 */ 586 struct list_head migrate_entry; 587 588 struct hlist_node hlist_entry; 589 struct list_head active_entry; 590 int nr_siblings; 591 592 /* Not serialized. Only written during event initialization. */ 593 int event_caps; 594 /* The cumulative AND of all event_caps for events in this group. */ 595 int group_caps; 596 597 struct perf_event *group_leader; 598 struct pmu *pmu; 599 void *pmu_private; 600 601 enum perf_event_state state; 602 unsigned int attach_state; 603 local64_t count; 604 atomic64_t child_count; 605 606 /* 607 * These are the total time in nanoseconds that the event 608 * has been enabled (i.e. eligible to run, and the task has 609 * been scheduled in, if this is a per-task event) 610 * and running (scheduled onto the CPU), respectively. 611 */ 612 u64 total_time_enabled; 613 u64 total_time_running; 614 u64 tstamp; 615 616 /* 617 * timestamp shadows the actual context timing but it can 618 * be safely used in NMI interrupt context. It reflects the 619 * context time as it was when the event was last scheduled in. 620 * 621 * ctx_time already accounts for ctx->timestamp. Therefore to 622 * compute ctx_time for a sample, simply add perf_clock(). 623 */ 624 u64 shadow_ctx_time; 625 626 struct perf_event_attr attr; 627 u16 header_size; 628 u16 id_header_size; 629 u16 read_size; 630 struct hw_perf_event hw; 631 632 struct perf_event_context *ctx; 633 atomic_long_t refcount; 634 635 /* 636 * These accumulate total time (in nanoseconds) that children 637 * events have been enabled and running, respectively. 638 */ 639 atomic64_t child_total_time_enabled; 640 atomic64_t child_total_time_running; 641 642 /* 643 * Protect attach/detach and child_list: 644 */ 645 struct mutex child_mutex; 646 struct list_head child_list; 647 struct perf_event *parent; 648 649 int oncpu; 650 int cpu; 651 652 struct list_head owner_entry; 653 struct task_struct *owner; 654 655 /* mmap bits */ 656 struct mutex mmap_mutex; 657 atomic_t mmap_count; 658 659 struct ring_buffer *rb; 660 struct list_head rb_entry; 661 unsigned long rcu_batches; 662 int rcu_pending; 663 664 /* poll related */ 665 wait_queue_head_t waitq; 666 struct fasync_struct *fasync; 667 668 /* delayed work for NMIs and such */ 669 int pending_wakeup; 670 int pending_kill; 671 int pending_disable; 672 struct irq_work pending; 673 674 atomic_t event_limit; 675 676 /* address range filters */ 677 struct perf_addr_filters_head addr_filters; 678 /* vma address array for file-based filders */ 679 struct perf_addr_filter_range *addr_filter_ranges; 680 unsigned long addr_filters_gen; 681 682 void (*destroy)(struct perf_event *); 683 struct rcu_head rcu_head; 684 685 struct pid_namespace *ns; 686 u64 id; 687 688 u64 (*clock)(void); 689 perf_overflow_handler_t overflow_handler; 690 void *overflow_handler_context; 691 #ifdef CONFIG_BPF_SYSCALL 692 perf_overflow_handler_t orig_overflow_handler; 693 struct bpf_prog *prog; 694 #endif 695 696 #ifdef CONFIG_EVENT_TRACING 697 struct trace_event_call *tp_event; 698 struct event_filter *filter; 699 #ifdef CONFIG_FUNCTION_TRACER 700 struct ftrace_ops ftrace_ops; 701 #endif 702 #endif 703 704 #ifdef CONFIG_CGROUP_PERF 705 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 706 #endif 707 708 struct list_head sb_list; 709 #endif /* CONFIG_PERF_EVENTS */ 710 }; 711 712 713 struct perf_event_groups { 714 struct rb_root tree; 715 u64 index; 716 }; 717 718 /** 719 * struct perf_event_context - event context structure 720 * 721 * Used as a container for task events and CPU events as well: 722 */ 723 struct perf_event_context { 724 struct pmu *pmu; 725 /* 726 * Protect the states of the events in the list, 727 * nr_active, and the list: 728 */ 729 raw_spinlock_t lock; 730 /* 731 * Protect the list of events. Locking either mutex or lock 732 * is sufficient to ensure the list doesn't change; to change 733 * the list you need to lock both the mutex and the spinlock. 734 */ 735 struct mutex mutex; 736 737 struct list_head active_ctx_list; 738 struct perf_event_groups pinned_groups; 739 struct perf_event_groups flexible_groups; 740 struct list_head event_list; 741 742 struct list_head pinned_active; 743 struct list_head flexible_active; 744 745 int nr_events; 746 int nr_active; 747 int is_active; 748 int nr_stat; 749 int nr_freq; 750 int rotate_disable; 751 refcount_t refcount; 752 struct task_struct *task; 753 754 /* 755 * Context clock, runs when context enabled. 756 */ 757 u64 time; 758 u64 timestamp; 759 760 /* 761 * These fields let us detect when two contexts have both 762 * been cloned (inherited) from a common ancestor. 763 */ 764 struct perf_event_context *parent_ctx; 765 u64 parent_gen; 766 u64 generation; 767 int pin_count; 768 #ifdef CONFIG_CGROUP_PERF 769 int nr_cgroups; /* cgroup evts */ 770 #endif 771 void *task_ctx_data; /* pmu specific data */ 772 struct rcu_head rcu_head; 773 }; 774 775 /* 776 * Number of contexts where an event can trigger: 777 * task, softirq, hardirq, nmi. 778 */ 779 #define PERF_NR_CONTEXTS 4 780 781 /** 782 * struct perf_event_cpu_context - per cpu event context structure 783 */ 784 struct perf_cpu_context { 785 struct perf_event_context ctx; 786 struct perf_event_context *task_ctx; 787 int active_oncpu; 788 int exclusive; 789 790 raw_spinlock_t hrtimer_lock; 791 struct hrtimer hrtimer; 792 ktime_t hrtimer_interval; 793 unsigned int hrtimer_active; 794 795 #ifdef CONFIG_CGROUP_PERF 796 struct perf_cgroup *cgrp; 797 struct list_head cgrp_cpuctx_entry; 798 #endif 799 800 struct list_head sched_cb_entry; 801 int sched_cb_usage; 802 803 int online; 804 }; 805 806 struct perf_output_handle { 807 struct perf_event *event; 808 struct ring_buffer *rb; 809 unsigned long wakeup; 810 unsigned long size; 811 u64 aux_flags; 812 union { 813 void *addr; 814 unsigned long head; 815 }; 816 int page; 817 }; 818 819 struct bpf_perf_event_data_kern { 820 bpf_user_pt_regs_t *regs; 821 struct perf_sample_data *data; 822 struct perf_event *event; 823 }; 824 825 #ifdef CONFIG_CGROUP_PERF 826 827 /* 828 * perf_cgroup_info keeps track of time_enabled for a cgroup. 829 * This is a per-cpu dynamically allocated data structure. 830 */ 831 struct perf_cgroup_info { 832 u64 time; 833 u64 timestamp; 834 }; 835 836 struct perf_cgroup { 837 struct cgroup_subsys_state css; 838 struct perf_cgroup_info __percpu *info; 839 }; 840 841 /* 842 * Must ensure cgroup is pinned (css_get) before calling 843 * this function. In other words, we cannot call this function 844 * if there is no cgroup event for the current CPU context. 845 */ 846 static inline struct perf_cgroup * 847 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 848 { 849 return container_of(task_css_check(task, perf_event_cgrp_id, 850 ctx ? lockdep_is_held(&ctx->lock) 851 : true), 852 struct perf_cgroup, css); 853 } 854 #endif /* CONFIG_CGROUP_PERF */ 855 856 #ifdef CONFIG_PERF_EVENTS 857 858 extern void *perf_aux_output_begin(struct perf_output_handle *handle, 859 struct perf_event *event); 860 extern void perf_aux_output_end(struct perf_output_handle *handle, 861 unsigned long size); 862 extern int perf_aux_output_skip(struct perf_output_handle *handle, 863 unsigned long size); 864 extern void *perf_get_aux(struct perf_output_handle *handle); 865 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 866 extern void perf_event_itrace_started(struct perf_event *event); 867 868 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 869 extern void perf_pmu_unregister(struct pmu *pmu); 870 871 extern int perf_num_counters(void); 872 extern const char *perf_pmu_name(void); 873 extern void __perf_event_task_sched_in(struct task_struct *prev, 874 struct task_struct *task); 875 extern void __perf_event_task_sched_out(struct task_struct *prev, 876 struct task_struct *next); 877 extern int perf_event_init_task(struct task_struct *child); 878 extern void perf_event_exit_task(struct task_struct *child); 879 extern void perf_event_free_task(struct task_struct *task); 880 extern void perf_event_delayed_put(struct task_struct *task); 881 extern struct file *perf_event_get(unsigned int fd); 882 extern const struct perf_event *perf_get_event(struct file *file); 883 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 884 extern void perf_event_print_debug(void); 885 extern void perf_pmu_disable(struct pmu *pmu); 886 extern void perf_pmu_enable(struct pmu *pmu); 887 extern void perf_sched_cb_dec(struct pmu *pmu); 888 extern void perf_sched_cb_inc(struct pmu *pmu); 889 extern int perf_event_task_disable(void); 890 extern int perf_event_task_enable(void); 891 extern int perf_event_refresh(struct perf_event *event, int refresh); 892 extern void perf_event_update_userpage(struct perf_event *event); 893 extern int perf_event_release_kernel(struct perf_event *event); 894 extern struct perf_event * 895 perf_event_create_kernel_counter(struct perf_event_attr *attr, 896 int cpu, 897 struct task_struct *task, 898 perf_overflow_handler_t callback, 899 void *context); 900 extern void perf_pmu_migrate_context(struct pmu *pmu, 901 int src_cpu, int dst_cpu); 902 int perf_event_read_local(struct perf_event *event, u64 *value, 903 u64 *enabled, u64 *running); 904 extern u64 perf_event_read_value(struct perf_event *event, 905 u64 *enabled, u64 *running); 906 907 908 struct perf_sample_data { 909 /* 910 * Fields set by perf_sample_data_init(), group so as to 911 * minimize the cachelines touched. 912 */ 913 u64 addr; 914 struct perf_raw_record *raw; 915 struct perf_branch_stack *br_stack; 916 u64 period; 917 u64 weight; 918 u64 txn; 919 union perf_mem_data_src data_src; 920 921 /* 922 * The other fields, optionally {set,used} by 923 * perf_{prepare,output}_sample(). 924 */ 925 u64 type; 926 u64 ip; 927 struct { 928 u32 pid; 929 u32 tid; 930 } tid_entry; 931 u64 time; 932 u64 id; 933 u64 stream_id; 934 struct { 935 u32 cpu; 936 u32 reserved; 937 } cpu_entry; 938 struct perf_callchain_entry *callchain; 939 940 /* 941 * regs_user may point to task_pt_regs or to regs_user_copy, depending 942 * on arch details. 943 */ 944 struct perf_regs regs_user; 945 struct pt_regs regs_user_copy; 946 947 struct perf_regs regs_intr; 948 u64 stack_user_size; 949 950 u64 phys_addr; 951 } ____cacheline_aligned; 952 953 /* default value for data source */ 954 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 955 PERF_MEM_S(LVL, NA) |\ 956 PERF_MEM_S(SNOOP, NA) |\ 957 PERF_MEM_S(LOCK, NA) |\ 958 PERF_MEM_S(TLB, NA)) 959 960 static inline void perf_sample_data_init(struct perf_sample_data *data, 961 u64 addr, u64 period) 962 { 963 /* remaining struct members initialized in perf_prepare_sample() */ 964 data->addr = addr; 965 data->raw = NULL; 966 data->br_stack = NULL; 967 data->period = period; 968 data->weight = 0; 969 data->data_src.val = PERF_MEM_NA; 970 data->txn = 0; 971 } 972 973 extern void perf_output_sample(struct perf_output_handle *handle, 974 struct perf_event_header *header, 975 struct perf_sample_data *data, 976 struct perf_event *event); 977 extern void perf_prepare_sample(struct perf_event_header *header, 978 struct perf_sample_data *data, 979 struct perf_event *event, 980 struct pt_regs *regs); 981 982 extern int perf_event_overflow(struct perf_event *event, 983 struct perf_sample_data *data, 984 struct pt_regs *regs); 985 986 extern void perf_event_output_forward(struct perf_event *event, 987 struct perf_sample_data *data, 988 struct pt_regs *regs); 989 extern void perf_event_output_backward(struct perf_event *event, 990 struct perf_sample_data *data, 991 struct pt_regs *regs); 992 extern int perf_event_output(struct perf_event *event, 993 struct perf_sample_data *data, 994 struct pt_regs *regs); 995 996 static inline bool 997 is_default_overflow_handler(struct perf_event *event) 998 { 999 if (likely(event->overflow_handler == perf_event_output_forward)) 1000 return true; 1001 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1002 return true; 1003 return false; 1004 } 1005 1006 extern void 1007 perf_event_header__init_id(struct perf_event_header *header, 1008 struct perf_sample_data *data, 1009 struct perf_event *event); 1010 extern void 1011 perf_event__output_id_sample(struct perf_event *event, 1012 struct perf_output_handle *handle, 1013 struct perf_sample_data *sample); 1014 1015 extern void 1016 perf_log_lost_samples(struct perf_event *event, u64 lost); 1017 1018 static inline bool event_has_any_exclude_flag(struct perf_event *event) 1019 { 1020 struct perf_event_attr *attr = &event->attr; 1021 1022 return attr->exclude_idle || attr->exclude_user || 1023 attr->exclude_kernel || attr->exclude_hv || 1024 attr->exclude_guest || attr->exclude_host; 1025 } 1026 1027 static inline bool is_sampling_event(struct perf_event *event) 1028 { 1029 return event->attr.sample_period != 0; 1030 } 1031 1032 /* 1033 * Return 1 for a software event, 0 for a hardware event 1034 */ 1035 static inline int is_software_event(struct perf_event *event) 1036 { 1037 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1038 } 1039 1040 /* 1041 * Return 1 for event in sw context, 0 for event in hw context 1042 */ 1043 static inline int in_software_context(struct perf_event *event) 1044 { 1045 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1046 } 1047 1048 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1049 1050 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1051 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1052 1053 #ifndef perf_arch_fetch_caller_regs 1054 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1055 #endif 1056 1057 /* 1058 * Take a snapshot of the regs. Skip ip and frame pointer to 1059 * the nth caller. We only need a few of the regs: 1060 * - ip for PERF_SAMPLE_IP 1061 * - cs for user_mode() tests 1062 * - bp for callchains 1063 * - eflags, for future purposes, just in case 1064 */ 1065 static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1066 { 1067 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1068 } 1069 1070 static __always_inline void 1071 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1072 { 1073 if (static_key_false(&perf_swevent_enabled[event_id])) 1074 __perf_sw_event(event_id, nr, regs, addr); 1075 } 1076 1077 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1078 1079 /* 1080 * 'Special' version for the scheduler, it hard assumes no recursion, 1081 * which is guaranteed by us not actually scheduling inside other swevents 1082 * because those disable preemption. 1083 */ 1084 static __always_inline void 1085 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1086 { 1087 if (static_key_false(&perf_swevent_enabled[event_id])) { 1088 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1089 1090 perf_fetch_caller_regs(regs); 1091 ___perf_sw_event(event_id, nr, regs, addr); 1092 } 1093 } 1094 1095 extern struct static_key_false perf_sched_events; 1096 1097 static __always_inline bool 1098 perf_sw_migrate_enabled(void) 1099 { 1100 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1101 return true; 1102 return false; 1103 } 1104 1105 static inline void perf_event_task_migrate(struct task_struct *task) 1106 { 1107 if (perf_sw_migrate_enabled()) 1108 task->sched_migrated = 1; 1109 } 1110 1111 static inline void perf_event_task_sched_in(struct task_struct *prev, 1112 struct task_struct *task) 1113 { 1114 if (static_branch_unlikely(&perf_sched_events)) 1115 __perf_event_task_sched_in(prev, task); 1116 1117 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1118 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1119 1120 perf_fetch_caller_regs(regs); 1121 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1122 task->sched_migrated = 0; 1123 } 1124 } 1125 1126 static inline void perf_event_task_sched_out(struct task_struct *prev, 1127 struct task_struct *next) 1128 { 1129 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1130 1131 if (static_branch_unlikely(&perf_sched_events)) 1132 __perf_event_task_sched_out(prev, next); 1133 } 1134 1135 extern void perf_event_mmap(struct vm_area_struct *vma); 1136 1137 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1138 bool unregister, const char *sym); 1139 extern void perf_event_bpf_event(struct bpf_prog *prog, 1140 enum perf_bpf_event_type type, 1141 u16 flags); 1142 1143 extern struct perf_guest_info_callbacks *perf_guest_cbs; 1144 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1145 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1146 1147 extern void perf_event_exec(void); 1148 extern void perf_event_comm(struct task_struct *tsk, bool exec); 1149 extern void perf_event_namespaces(struct task_struct *tsk); 1150 extern void perf_event_fork(struct task_struct *tsk); 1151 1152 /* Callchains */ 1153 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1154 1155 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1156 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1157 extern struct perf_callchain_entry * 1158 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1159 u32 max_stack, bool crosstask, bool add_mark); 1160 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1161 extern int get_callchain_buffers(int max_stack); 1162 extern void put_callchain_buffers(void); 1163 1164 extern int sysctl_perf_event_max_stack; 1165 extern int sysctl_perf_event_max_contexts_per_stack; 1166 1167 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1168 { 1169 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1170 struct perf_callchain_entry *entry = ctx->entry; 1171 entry->ip[entry->nr++] = ip; 1172 ++ctx->contexts; 1173 return 0; 1174 } else { 1175 ctx->contexts_maxed = true; 1176 return -1; /* no more room, stop walking the stack */ 1177 } 1178 } 1179 1180 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1181 { 1182 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1183 struct perf_callchain_entry *entry = ctx->entry; 1184 entry->ip[entry->nr++] = ip; 1185 ++ctx->nr; 1186 return 0; 1187 } else { 1188 return -1; /* no more room, stop walking the stack */ 1189 } 1190 } 1191 1192 extern int sysctl_perf_event_paranoid; 1193 extern int sysctl_perf_event_mlock; 1194 extern int sysctl_perf_event_sample_rate; 1195 extern int sysctl_perf_cpu_time_max_percent; 1196 1197 extern void perf_sample_event_took(u64 sample_len_ns); 1198 1199 extern int perf_proc_update_handler(struct ctl_table *table, int write, 1200 void __user *buffer, size_t *lenp, 1201 loff_t *ppos); 1202 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1203 void __user *buffer, size_t *lenp, 1204 loff_t *ppos); 1205 1206 int perf_event_max_stack_handler(struct ctl_table *table, int write, 1207 void __user *buffer, size_t *lenp, loff_t *ppos); 1208 1209 static inline bool perf_paranoid_tracepoint_raw(void) 1210 { 1211 return sysctl_perf_event_paranoid > -1; 1212 } 1213 1214 static inline bool perf_paranoid_cpu(void) 1215 { 1216 return sysctl_perf_event_paranoid > 0; 1217 } 1218 1219 static inline bool perf_paranoid_kernel(void) 1220 { 1221 return sysctl_perf_event_paranoid > 1; 1222 } 1223 1224 extern void perf_event_init(void); 1225 extern void perf_tp_event(u16 event_type, u64 count, void *record, 1226 int entry_size, struct pt_regs *regs, 1227 struct hlist_head *head, int rctx, 1228 struct task_struct *task); 1229 extern void perf_bp_event(struct perf_event *event, void *data); 1230 1231 #ifndef perf_misc_flags 1232 # define perf_misc_flags(regs) \ 1233 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1234 # define perf_instruction_pointer(regs) instruction_pointer(regs) 1235 #endif 1236 #ifndef perf_arch_bpf_user_pt_regs 1237 # define perf_arch_bpf_user_pt_regs(regs) regs 1238 #endif 1239 1240 static inline bool has_branch_stack(struct perf_event *event) 1241 { 1242 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1243 } 1244 1245 static inline bool needs_branch_stack(struct perf_event *event) 1246 { 1247 return event->attr.branch_sample_type != 0; 1248 } 1249 1250 static inline bool has_aux(struct perf_event *event) 1251 { 1252 return event->pmu->setup_aux; 1253 } 1254 1255 static inline bool is_write_backward(struct perf_event *event) 1256 { 1257 return !!event->attr.write_backward; 1258 } 1259 1260 static inline bool has_addr_filter(struct perf_event *event) 1261 { 1262 return event->pmu->nr_addr_filters; 1263 } 1264 1265 /* 1266 * An inherited event uses parent's filters 1267 */ 1268 static inline struct perf_addr_filters_head * 1269 perf_event_addr_filters(struct perf_event *event) 1270 { 1271 struct perf_addr_filters_head *ifh = &event->addr_filters; 1272 1273 if (event->parent) 1274 ifh = &event->parent->addr_filters; 1275 1276 return ifh; 1277 } 1278 1279 extern void perf_event_addr_filters_sync(struct perf_event *event); 1280 1281 extern int perf_output_begin(struct perf_output_handle *handle, 1282 struct perf_event *event, unsigned int size); 1283 extern int perf_output_begin_forward(struct perf_output_handle *handle, 1284 struct perf_event *event, 1285 unsigned int size); 1286 extern int perf_output_begin_backward(struct perf_output_handle *handle, 1287 struct perf_event *event, 1288 unsigned int size); 1289 1290 extern void perf_output_end(struct perf_output_handle *handle); 1291 extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1292 const void *buf, unsigned int len); 1293 extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1294 unsigned int len); 1295 extern int perf_swevent_get_recursion_context(void); 1296 extern void perf_swevent_put_recursion_context(int rctx); 1297 extern u64 perf_swevent_set_period(struct perf_event *event); 1298 extern void perf_event_enable(struct perf_event *event); 1299 extern void perf_event_disable(struct perf_event *event); 1300 extern void perf_event_disable_local(struct perf_event *event); 1301 extern void perf_event_disable_inatomic(struct perf_event *event); 1302 extern void perf_event_task_tick(void); 1303 extern int perf_event_account_interrupt(struct perf_event *event); 1304 #else /* !CONFIG_PERF_EVENTS: */ 1305 static inline void * 1306 perf_aux_output_begin(struct perf_output_handle *handle, 1307 struct perf_event *event) { return NULL; } 1308 static inline void 1309 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1310 { } 1311 static inline int 1312 perf_aux_output_skip(struct perf_output_handle *handle, 1313 unsigned long size) { return -EINVAL; } 1314 static inline void * 1315 perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1316 static inline void 1317 perf_event_task_migrate(struct task_struct *task) { } 1318 static inline void 1319 perf_event_task_sched_in(struct task_struct *prev, 1320 struct task_struct *task) { } 1321 static inline void 1322 perf_event_task_sched_out(struct task_struct *prev, 1323 struct task_struct *next) { } 1324 static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1325 static inline void perf_event_exit_task(struct task_struct *child) { } 1326 static inline void perf_event_free_task(struct task_struct *task) { } 1327 static inline void perf_event_delayed_put(struct task_struct *task) { } 1328 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1329 static inline const struct perf_event *perf_get_event(struct file *file) 1330 { 1331 return ERR_PTR(-EINVAL); 1332 } 1333 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1334 { 1335 return ERR_PTR(-EINVAL); 1336 } 1337 static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1338 u64 *enabled, u64 *running) 1339 { 1340 return -EINVAL; 1341 } 1342 static inline void perf_event_print_debug(void) { } 1343 static inline int perf_event_task_disable(void) { return -EINVAL; } 1344 static inline int perf_event_task_enable(void) { return -EINVAL; } 1345 static inline int perf_event_refresh(struct perf_event *event, int refresh) 1346 { 1347 return -EINVAL; 1348 } 1349 1350 static inline void 1351 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1352 static inline void 1353 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1354 static inline void 1355 perf_bp_event(struct perf_event *event, void *data) { } 1356 1357 static inline int perf_register_guest_info_callbacks 1358 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1359 static inline int perf_unregister_guest_info_callbacks 1360 (struct perf_guest_info_callbacks *callbacks) { return 0; } 1361 1362 static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1363 1364 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1365 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1366 bool unregister, const char *sym) { } 1367 static inline void perf_event_bpf_event(struct bpf_prog *prog, 1368 enum perf_bpf_event_type type, 1369 u16 flags) { } 1370 static inline void perf_event_exec(void) { } 1371 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1372 static inline void perf_event_namespaces(struct task_struct *tsk) { } 1373 static inline void perf_event_fork(struct task_struct *tsk) { } 1374 static inline void perf_event_init(void) { } 1375 static inline int perf_swevent_get_recursion_context(void) { return -1; } 1376 static inline void perf_swevent_put_recursion_context(int rctx) { } 1377 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1378 static inline void perf_event_enable(struct perf_event *event) { } 1379 static inline void perf_event_disable(struct perf_event *event) { } 1380 static inline int __perf_event_disable(void *info) { return -1; } 1381 static inline void perf_event_task_tick(void) { } 1382 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1383 #endif 1384 1385 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1386 extern void perf_restore_debug_store(void); 1387 #else 1388 static inline void perf_restore_debug_store(void) { } 1389 #endif 1390 1391 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1392 { 1393 return frag->pad < sizeof(u64); 1394 } 1395 1396 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1397 1398 struct perf_pmu_events_attr { 1399 struct device_attribute attr; 1400 u64 id; 1401 const char *event_str; 1402 }; 1403 1404 struct perf_pmu_events_ht_attr { 1405 struct device_attribute attr; 1406 u64 id; 1407 const char *event_str_ht; 1408 const char *event_str_noht; 1409 }; 1410 1411 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1412 char *page); 1413 1414 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1415 static struct perf_pmu_events_attr _var = { \ 1416 .attr = __ATTR(_name, 0444, _show, NULL), \ 1417 .id = _id, \ 1418 }; 1419 1420 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1421 static struct perf_pmu_events_attr _var = { \ 1422 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1423 .id = 0, \ 1424 .event_str = _str, \ 1425 }; 1426 1427 #define PMU_FORMAT_ATTR(_name, _format) \ 1428 static ssize_t \ 1429 _name##_show(struct device *dev, \ 1430 struct device_attribute *attr, \ 1431 char *page) \ 1432 { \ 1433 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1434 return sprintf(page, _format "\n"); \ 1435 } \ 1436 \ 1437 static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1438 1439 /* Performance counter hotplug functions */ 1440 #ifdef CONFIG_PERF_EVENTS 1441 int perf_event_init_cpu(unsigned int cpu); 1442 int perf_event_exit_cpu(unsigned int cpu); 1443 #else 1444 #define perf_event_init_cpu NULL 1445 #define perf_event_exit_cpu NULL 1446 #endif 1447 1448 #endif /* _LINUX_PERF_EVENT_H */ 1449